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The Lightning Network: Turning Bitcoin into Money
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Abstract

The Lightning Network (LN) is a means of netting Bitcoin payments outside the blockchain.

We find a significant association between LN adoption and reduced blockchain congestion, sug-

gesting that the LN has helped improve the efficiency of Bitcoin as a means of payment. This

improvement cannot be explained by other factors, such as changes in demand or the adoption of

SegWit. We find mixed evidence on whether increased centralization in the Lightning Network

has improved its efficiency. Our findings have implications for the future of cryptocurrencies as

a means of payment and their environmental footprint.
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1 Introduction

Bitcoin was originally designed to serve as a “peer-to-peer electronic cash system” — that is, a reli-

able means of payment outside the control of centralized monetary authorities (Nakamoto (2008)).

Since its introduction in 2009, Bitcoin has grown immensely in value, but still sees relatively little

use as a means of payment (Bolt and van Oordt (2020)). One important reason is that Bitcoin’s

blockchain technology imposes capacity constraints on processing transactions. These constraints

allow Bitcoin to handle, on average, merely seven transactions per second, which compares unfa-

vorably with centralized payment systems such as Visa or Mastercard.1 When transaction demand

is high, the processing limits mean that Bitcoin transactions can take a long time to settle. In

recent years, many solutions have been proposed to resolve this so-called scalability problem, to

help Bitcoin achieve its potential as a large-scale payments system.

One such solution is the Lightning Network (LN), which allows Bitcoin users to make payments

outside the blockchain. Rather than inscribe every individual payment onto the blockchain, two

individuals can open an LN channel and make bilateral payments. Once they have completed their

payments, they can close the channel and settle the net amount. In principle, doing this requires

only two transactions on the blockchain — one to open the channel, and another to close it —

regardless of the amount settled or the number of underlying payments. In this way, adoption of

the LN can reduce demand for blockchain space and ease congestion.

We find that adoption of the Lightning Network has led to a reduction in Bitcoin blockchain

congestion and lower mining fees. The results are significant, both statistically and economically,

and cannot be explained by changes in demand for blockchain space, nor by other technological

developments. We find limited evidence that greater centralization of the network is associated

with lower fees. Our results suggest that the Lightning Network can help Bitcoin achieve greater

scalability, allowing it to operate better as a payments system. According to our results, if the LN

had existed in 2017, congestion could have been 93 percent lower.

Our analysis covers the period January 1, 2017, to September 5, 2019. Data limitations prevent

us from extending our data set. The Lightning Network continues to grow, doubling in size over

2021.2 There has been institutional adoption, too. For example, Twitter allows tipping using the

1Visa claims to able to handle over 24,000 transactions per second. See https://usa.visa.com/

run-your-business/small-business-tools/retail.html.

2See https://bitcoinvisuals.com/lightning.
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LN, among other payment methods.3 El Salvador enables Bitcoin payments among its citizens

using the Chivo Wallet, which features LN functionality (Alvarez, Argente, and Patten (2022)).

And several cryptocurrency exchanges have introduced support for the LN.4 But recent episodes

of high congestion, especially in early 2021, suggest that the LN is not a panacea.

The development of the Lightning Network may have consequences for welfare. First, as Bitcoin be-

comes a more efficient payments system, users are better off. Their transactions settle more quickly

and more cheaply (Zimmerman (2020)). Second, since fewer transactions need to be recorded on

the blockchain, less memory and energy are needed to run a Bitcoin node. This saving lowers the

cost of maintaining the blockchain, allowing more nodes to participate and making the system more

secure against a double-spending attack (Budish (2018)). Third, by reducing fees, the LN reduces

the incentive for Bitcoin miners to use large amounts of computing power, meaning less energy

use and positive consequences for the environment.5 Fourth, less blockchain congestion may mean

lower barriers to arbitrage across cryptocurrency exchanges, thereby improving market liquidity

(see Hautsch, Scheuch, and Voigt (2018)).

While this paper focuses on Bitcoin, the same technology can allow other cryptocurrencies to

be widely used, secure, and decentralized. For example, the Raiden Network is a similar netting

solution for Ethereum. Other solutions to the scalability problem have been proposed, including

sharding, and batching at exchange level.6 If the scalability problem can be successfully addressed,

it may be possible for a currency based on a permissionless blockchain to obtain wide acceptance.

The rest of the paper is organized as follows. Section 2 briefly describes the Lightning Network

and outlines findings from the existing literature. Section 3 describes our data, and Section 4 our

results. Section 5 concludes.

3See https://blog.twitter.com/en_us/topics/product/2021/bringing-tips-to-everyone.

4See https://github.com/theDavidCoen/LightningExchanges.

5The total energy consumption of Bitcoin miners is substantive, so the benefits could potentially be large. See

https://ccaf.io/cbeci/index. However, these benefits may not be realized immediately, because fees currently

comprise a small part of miners’ revenue and are expected to grow in importance over time (Easley, O’Hara, and

Basu (2019)).

6See https://blog.coinbase.com/reflections-on-bitcoin-transaction-batching-b13dad12a12 and https:

//ethereum.org/en/upgrades/shard-chains/.
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2 The Lightning Network

The Lightning Network was first introduced by Poon and Dryja (2016), and began to attract

widespread usage in January 2018. The LN is a secondary transaction layer that operates outside

the blockchain. Two users open an LN channel by contributing Bitcoin to a smart contract. They

can then transfer these coins between them without creating traffic on the blockchain (Auer (2019)).

Once the channel is closed, only the net amount needs to be settled on-chain as a single payment.

This netting reduces the required number of on-chain transactions to just two: one to introduce

the smart contract that opens an LN channel, and a second to close it. In this way, the system

can handle a much larger number of payments. Arcane Research (2022) provides an up-to-date

description of the Lightning Network.

In payments system terms, the Lightning Network can be thought of as a net settlement system

appended to Bitcoin’s gross settlement system (Kahn, McAndrews, and Roberds (2003)). This

economizes on liquidity, but introduces counterparty credit risk. The LN introduces various safe-

guards to minimize the risk of counterparty default. In particular, if one party tries to close the

channel without the approval of the other, she may forfeit her claim on any Bitcoin that are locked

in.

The Lightning Network protocol itself relies on Segregated Witness (SegWit), which is a change

to the Bitcoin transaction format activated on August 23, 2017. SegWit improves the efficiency of

blockchain storage, so that a single Bitcoin block can potentially store up to four times as many

transactions as before. Brown, Chiu, and Koeppl (2021) show that the introduction of SegWit has

reduced Bitcoin mining fees.

Only a couple of papers in the economics and finance literature focus on the Lightning Network.

Guasoni, Huberman, and Shikhelman (2021) build a strategic model in which Bitcoin users choose

whether to open LN channels, and examine the characteristics of the network that emerges. Bertucci

(2020) studies a strategic model of network formation and shows that competition between nodes

prevents the network from becoming highly centralized. More broadly, our paper relates to a

literature examining the fee-based market for blockchain space; see, for example, Easley, O’Hara,

and Basu (2019), Hautsch, Scheuch, and Voigt (2018), Huberman, Leshno, and Moallemi (2021),

Lehar and Parlour (2020), Makarov and Schoar (2020), and Zimmerman (2020).

In the computer science literature, papers have focused on the financial viability of the LN (e.g.,

Béres, Seres, and Benczúr (2019) and Brânzei, Segal-Halevi, and Zohar (2017)); its network struc-
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ture (e.g., Lin et al. (2020) and Martinazzi and Flori (2020)); and its ability to guarantee security

and privacy (e.g., Harris and Zohar (2020), Kappos et al. (2021), and Pérez-Solà et al. (2020)).

3 Data

We aim to test whether adoption of the Lightning Network is associated with reduced congestion on

the Bitcoin blockchain. We construct measures of congestion using data on the Bitcoin mempool ;

that is, the set of payments waiting to be added to the blockchain. Our data come from Jochen

Hoenicke.7 We collect data on: (i) the number of pending transactions (mempool txn count); (ii) the

fees attached to pending transactions (mempool txn fees); and (iii) the proportion of transactions

with fees under 10 satoshis per virtual byte (low fee txns).8

Data on the Lightning Network come from the website hashXP.9 This repository contains detailed

historical information on all public Lightning nodes (both active and inactive), channels between

these nodes (both open and closed), and channel capacity (in bitcoin and USD). In addition,

hashXP provides complete details of Bitcoin transactions executed in order to open and close LN

channels.10

The shape of the Lightning Network may affect its efficiency. For example, if Lightning channels

tend to be intermediated via a few central nodes, then collateral (i.e., the Bitcoin that users have

locked into the LN) can be used more efficiently. In other words, when the network is more

7See https://jochen-hoenicke.de/queue. Hoenicke operates a Bitcoin node with its own mempool. There is no

definitive mempool: each Bitcoin node may detect different pending payments. We assume that Hoenicke’s data are

an unbiased sample of the union of mempools maintained by all nodes in the Bitcoin network.

8A virtual byte is equivalent to a physical byte for non-SegWit transactions and to four physical bytes for SegWit

transactions. Since SegWit allows data to be stored up to four times as efficiently, a virtual byte is a measure

of the amount of data encoded to the blockchain. Hoenicke only provides fees per virtual byte, not per physical

byte. In addition, the data do not include transactions with zero fees. This omission is because it is costless for a

vexatious attacker to submit zero-fee transactions to the mempool, so miners tend to ignore them. Including zero-fee

transactions could therefore overstate the actual level of mempool congestion. Easley, O’Hara, and Basu (2019) study

the determinants of zero-fee transactions in Bitcoin.

9See https://hashxp.org/lightning. To our knowledge, these data are available for public access and there is

no restriction on their use.

10Our data set contains only public LN channels. Users can also open private channels, which are known only to

the connecting nodes and not announced to the broader network. By their nature, no data are available on these

private channels.
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centralized, each channel, and each Bitcoin locked into the protocol, is likely to support a higher

volume of payments (see Martinazzi and Flori (2020)). To account for this effect, we include

the LN clustering coefficient as an independent variable. This network statistic is defined by

Watts and Strogatz (1998) as the average probability that two neighbors of any given node are

themselves connected. When the network is more centralized, the clustering coefficient is lower.

Thus, we predict that when the clustering coefficient is high, mempool congestion is worse. As

Figure 1 shows, the network has tended to become more clustered — and thus less centralized

— as it develops, though the last few months of the sample period show a trend toward greater

centralization.

Figure 1: Mean clustering coefficient among Lightning Network nodes.

Source: hashXP.

We introduce proxies for Bitcoin demand over this period. Higher demand for transactions on

the Bitcoin blockchain can increase congestion for reasons unrelated to LN adoption, so we need

to take it into account. While demand cannot be observed directly, Liu and Tsyvinski (2020)

suggest that it is positively related to historical price changes; in other words, there is a momentum

factor. Motivated by this observation, we introduce 1-day price change as the log-lagged change

in the Bitcoin price at midnight UTC (Coordinated Universal Time) each day. We also use price
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volatility as a proxy for speculative demand for Bitcoin. We define 30-day volatility as the rolling

standard deviation of Bitcoin returns from each of the past 30 trading days. These two measures

are computed using price data from Coin Metrics (https://coinmetrics.io/).

We also include a measure for the supply of blockchain space. Unlike demand, supply is directly

observable ex post, since we can see how many blocks were created each day. We proxy supply

by dividing miners’ total hash rate divided by average mining difficulty, using Coin Metrics data.

We call this measure mining intensity. While the Bitcoin protocol aims for a long-run mean of one

block every 10 minutes, the realized rate of block creation can vary due to chance, or due to changes

in miners’ hash rate since the previous difficulty adjustment (Nakamoto (2008)). In addition, since

SegWit adoption may affect mempool congestion, we control for it in our regressions. We obtain

data from Bitcoin Visuals on the estimated proportion of Bitcoin transactions that use SegWit

(https://bitcoinvisuals.com/chain-tx-block).

A description of each variable can be found in the Appendix. Our sample period contains daily

data from January 1, 2017, to September 5, 2019, so it includes a period of about a year before

the LN was widely adopted. We cannot extend our data set any later because, beyond these dates,

hashXP was no longer actively monitoring the Lightning Network and providing accurate data. As

a result, we are unable to study any more recent developments in the LN.

Hoenicke’s mempool data set is missing six days: Feb 1, 2017; Apr 17–19, 2017; Jun 1, 2019; and

Jun 26, 2019. We drop these days from our data set. We use first-differenced data (see later in

this section), so we also drop the following days (i.e., Feb 2, 2017; Apr 20, 2017; Jun 2, 2019; Jun

27, 2019). As a result, we have a total of 968 daily observations of the dependent variables. In

addition, the Coin Metrics data on prices are missing one day (Jan 1, 2019).

Table 1 shows summary statistics for our data. Many of the variables are highly volatile with

substantive right-skew. Because of this skewness, we use the logarithms of mempool txn count,

mempool txn fees, LN channels, and LN capacity in our regressions.

Figure 2a plots the number of transactions waiting to be confirmed in Bitcoin’s mempool (denoting

congestion) over our sample period, along with active LN channels over time and the percentage of

transactions that use SegWit. Congestion in Bitcoin has fallen markedly since early 2018, coinciding

with the introduction and rapid adoption of the LN. Congestion has remained relatively low since
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Table 1: Summary statistics.

count mean std dev min median max

Mempool txn count 968 23,042 40,619 92 5,731 252,750

Mempool txn fees (USD) 968 106,180 440,206 39 3,008 4,750,619

Low fee txns (%) 968 53.45 28.30 0 52.04 95.99

Lightning Network channels 968 12,671 15,374 0 7,575 44,087

Lightning Network capacity (USD) 968 2,766,535 4,080,066 0 205,388 11,794,337

Lightning Network mean clustering 968 0.06 0.07 0 0.06 0.19

SegWit txns (%) 968 20.72 15.48 0 27.61 46.80

30-day volatility 968 4.16 1.54 1.10 4.03 8.07

1-day price change 967 0.00 0.04 -0.21 0.00 0.23

Mining intensity 968 7.49 0.82 3.98 7.51 9.79

Notes: Daily data from January 1, 2017, to September 5, 2019. See the Appendix for variable definitions

and data sources.

then, although it picked up slightly in mid-2019.11 Figure 2b plots similar measures weighted by

monetary value: we measure congestion using mempool fees, LN adoption using the USD value of

locked Bitcoin, and SegWit usage by the monetary value of transactions. Total fees attached to

payments waiting in the mempool have fallen since 2017, suggesting either lower demand or greater

supply of settlement capacity. Over this period, the total value of Bitcoin used to collateralize LN

channels has risen.

Figure 3 shows that the distribution of fees has changed over our sample period. Generally, fees

have fallen in nominal bitcoin terms. The proportion of transactions with fees below 10 satoshis

per virtual byte rose from 32.6 percent on January 1, 2018, to 74.2 percent on September 5, 2019.12

We are interested in whether LN adoption is associated with lower mempool congestion. We test

for relationships using autoregressive integrated moving average (ARIMA) specifications, which

11By September 2019, the average daily mempool count was 75 percent lower than at the start of 2017. This

decline in congestion does not appear to be driven by lower demand for Bitcoin. Although demand initially declined

following the collapse of the cryptocurrency market in early 2018, the number of confirmed transactions subsequently

grew to over 300,000 transactions per day by September 5, 2019, nearly back to its 2017 peak. See https://www.

blockchain.com/charts/n-transactions.

12There are 100 million satoshis to a bitcoin.
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Figure 2: Bitcoin mempool and the adoption of the Lightning Network and SegWit.
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(b) Mempool fees
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Sources: Jochen Hoenicke, blockchain.com, and hashXP.

estimate the following regression equation:

ydt = c+

p∑
i=1

φiy
d
t−i +

q∑
j=1

θjεt−j +Xd
t β + εt, (1)
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Figure 3: Distribution of fees in the Bitcoin mempool.
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where c is a constant term, yd is the variable of interest expressed after taking d differences, Xd
t

is a vector of the d-differenced independent variables, and εt is a residual term. The parameter p

is the number of lags of the variable of interest, d is the number of differences taken, and q is the

length of the moving average window of historical residual terms. For each specification, we esti-

mate the parameters (p, d, q) using the Hyndman-Khandakar algorithm (Hyndman and Khandakar

(2008)). The time variable t is daily. We employ robust standard errors, since we cannot be sure

of homoskedasticity.

Figures 2a and 2b suggest that the data are non-stationary. We take first-differences of all our

variables. Augmented Dickey-Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests

confirm that these first-differenced variables are stationary (i.e., d = 1).

4 Results

We run three sets of regressions. First, we test the effect of LN adoption on mempool count,

using the number of LN channels. We run four versions of this model. Model (1) contains no

controls; model (2) includes the demand and supply controls; model (3) includes the proportion

of transactions that use SegWit; and model (4) has all the controls. Table 2 reports the results.

In each of the four specifications, an increase in the number of LN channels reduces the mempool
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count. The results are significant at the 1 percent level. None of the supply and demand controls

have a significant impact on mempool size.13

Table 2: Impact of Lightning Network adoption by number of channels on mempool

count.

(1) (2) (3) (4)

ΔLN channels (log) -0.247∗∗∗ -0.244∗∗∗ -0.251∗∗∗ -0.249∗∗∗

(0.075) (0.077) (0.077) (0.078)

ΔLN mean clustering -3.857 -3.803 -4.004 -4.007

(5.959) (6.073) (5.800) (5.918)

ΔSegWit txns (%) 0.016 0.018

(0.012) (0.012)

Δ30-day volatility -0.024 -0.020

(0.082) (0.082)

Δ1-day price change -0.738 -0.744

(0.622) (0.620)

ΔMining intensity 0.033 0.042

(0.048) (0.049)

Constant -0.001 -0.001 -0.001 -0.002

(0.009) (0.009) (0.009) (0.009)

Observations 967 966 967 966

AIC 2589 2590 2589 2589

Notes: Regressions of LN channels (log) on mempool transaction count (log). In all four models, the param-

eters selected by the Hyndman-Khandakar algorithm are: p = 6 lagged terms included for the dependent

variable, d = 1 difference taken, and q = 2 length of window for the moving average of historical residual

terms. Data are from January 1, 2017, to September 5, 2019. See the Appendix for variable definitions and

data.

Our second set of results tests a similar relationship using US dollar values. We regress the USD

value of Bitcoin locked into the LN against the USD value of fees attached to mempool transactions.

Table 3 shows the results. As before, greater LN capacity is associated with reduced congestion.

This time, however, the results are not significant at the 5 percent level once we include supply and

demand controls.

Finally, we investigate how the LN affects the proportion of low fee transactions in the mempool.

13For each model, Portmanteau and Durbin-Watson tests suggest no evidence of autocorrelation in the residuals.
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Table 3: Impact of Lightning Network adoption by capacity value on mempool fees.

(1) (2) (3) (4)

ΔLN capacity (USD log) -0.198∗∗ -0.199∗ -0.197∗∗ -0.198∗

(0.099) (0.102) (0.100) (0.102)

ΔLN mean clustering -6.889 -7.233 -7.150 -7.572

(7.940) (7.977) (7.652) (7.674)

ΔSegWit txns (%) 0.025∗ 0.027∗

(0.014) (0.014)

Δ30-day volatility 0.115 0.122

(0.105) (0.105)

Δ1-day price change -0.549 -0.548

(0.837) (0.835)

ΔMining intensity 0.030 0.041

(0.058) (0.058)

Constant 0.003 0.003 0.002 0.002

(0.010) (0.010) (0.010) (0.010)

Observations 967 966 967 966

AIC 3042 3043 3040 3041

Notes: Regressions of LN capacity (USD log) on mempool fees (USD log). In all four models, the parameters

selected by the Hyndman-Khandakar algorithm are the same: p = 6 lagged terms included for the dependent

variable, d = 1 difference taken, and q = 1 length of window for the moving average of historical residual

terms. Data are from January 1, 2017, to September 5, 2019. See the Appendix for variable definitions and

data.

Table 4 shows that greater LN usage is associated with a significant increase in low fee transactions.

Unlike the first two sets of regressions, clustering has a significant and negative impact on low fees.

In other words, a more centralized network means that transactions are likelier to have low fees, in

line with our priors.

Overall, these results suggest that increased LN usage is associated with a significant reduction in

mempool congestion. Since there is no theoretical upper limit on LN usage, there is the potential

for further reductions in congestion in the future. However, network centralization does not have a

clear effect on the efficiency of the network.14

14We also run a set of regressions that include interaction terms between the LN adoption variable and the mean

clustering coefficient. In each case, the interaction terms are not statistically significant and their inclusion does not

affect the other results. More details are available upon request.
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Table 4: Impact of Lightning Network adoption by number of channels on low fee

mempool transactions.

(1) (2) (3) (4)

ΔLN channels (log) 0.192∗∗∗ 0.186∗∗∗ 0.195∗∗∗ 0.187∗∗∗

(0.034) (0.035) (0.034) (0.035)

ΔLN mean clustering -2.244∗∗∗ -2.295∗∗∗ -2.169∗∗ -2.144∗∗

(0.858) (0.863) (0.864) (0.871)

ΔSegWit txns (%) -0.016∗∗∗ -0.016∗∗∗

(0.004) (0.004)

Δ30-day volatility -0.018 -0.024

(0.024) (0.024)

Δ1-day price change 0.059 0.065

(0.224) (0.223)

ΔMining intensity 0.042∗∗∗ 0.036∗∗

(0.015) (0.015)

Constant -0.002 -0.002 -0.002 -0.001

(0.002) (0.002) (0.002) (0.002)

Observations 967 966 967 966

AIC 692 674 676 658

Notes: Regressions of LN channels (log) on proportion of mempool transactions with fees below 10 satoshis

per virtual byte. In all models, the parameters selected by the Hyndman-Khandakar algorithm are the same:

p = 6 lagged terms included for the dependent variable, d = 1 difference taken, and q = 2 length of window

for the moving average of historical residual terms. Data are from January 1, 2017, to September 5, 2019.

See the Appendix for variable definitions and data.

In each regression, SegWit has the opposite effect of Lightning Network adoption on mempool

congestion, although the results are only significant in Table 4. At first glance, the signs of the

coefficients are surprising: greater use of SegWit appears to increase, rather than reduce, congestion.

There are a number of possible explanations. First, LN transactions require SegWit, so there is

some positive correlation between these variables. However, the exact relationship is not clear,

since we do not have data on the number of LN transactions, only on the number of channels and

the value of Bitcoin locked in. Second, the causality is not clear. It may be that periods of high

congestion encourage greater SegWit usage. Third, since SegWit transactions use fewer virtual

bytes than non-SegWit transactions (all else equal), users may be willing to pay a higher fee per
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virtual byte.15

We can assess the economic significance of reducing Bitcoin congestion by posing the following

counterfactual question: if, during 2017, the LN had existed and been the size it was at the end of

our sample, by how much would Bitcoin congestion have been lowered? Our results suggest that

the mempool count would have been 93 percent lower, mempool fees 96 percent lower, and the

proportion of low fee transactions 197 percent higher. These numbers demonstrate that the LN

can potentially have a substantial impact on blockchain congestion.

5 Conclusions

We show that usage of the Lightning Network is associated with reduced mempool congestion in

Bitcoin and with lower fees. Our findings suggest that the off-chain netting benefits of the Lightning

Network can help Bitcoin to scale and function better as a means of payment. Centralization of

the Lightning Network does not appear to make it much more efficient, though it may increase the

proportion of low fee transactions.

Data are not available on how Bitcoin is used, so we cannot say for sure whether Bitcoin is being

increasingly used as a means of payment. Makarov and Schoar (2021) study blockchain data and

conclude that the majority of usage is for trading and speculative purposes, but their analysis does

not extend to transactions that take place on the Lightning Network. We can only say that the

Lightning Network loosens a key technological constraint by allowing payments to be settled more

quickly.
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Appendix: Definitions of variables

Variable Definition

Mempool txn count Total number of unconfirmed transactions in the Bitcoin (BTC) mempool.

Source: Jochen Hoenicke.

Mempool txn fees (USD) Total fees in USD of pending unconfirmed transactions in the Bitcoin

mempool. Source: Jochen Hoenicke.

Low fee txns (%) Percentage of transactions in the Bitcoin mempool offering a fee lower

than 10 satoshis per virtual byte. 100 million satoshis = 1 bitcoin. Source:

Jochen Hoenicke.

Lightning Network channels Number of active channels on the Lightning Network. Data from Jan 1,

2018. Source: hashXP.

Lightning Network capacity (USD) Total value of active channels on the Lightning Network (in USD). Data

from Jan 1, 2018. Source: hashXP.

Lightning Network mean clustering Mean clustering coefficient across Lightning nodes, as defined by Watts

and Strogatz (1998). Source: hashXP.

SegWit txns (%) Average daily percentage of Bitcoin transactions per block that use Seg-

regated Witness (SegWit). Data from Aug 23, 2017. Source: Bitcoin

Visuals.

30-day volatility Rolling standard deviation of Bitcoin returns from past 30 trading days.

Source: Coin Metrics.

1-day price change Rolling difference in log Bitcoin price between days t−1 and t−2. Source:

Coin Metrics.

Mining intensity Expected rate of block creation, measured as total hash rate supplied by

miners divided by average difficulty. Source: Coin Metrics.

Note: Data are from January 1, 2017, to September 5, 2019 unless otherwise indicated.
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