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Abstract

We propose a novel approximation of the risky steady state and construct first-order pertur-
bations around it for a general class of dynamic equilibrium models with time-varying and
non-Gaussian risk. We offer analytical formulas and conditions for their local existence and
uniqueness. We apply this approximation technique to models featuring Campbell-Cochrane
habits, recursive preferences, and time-varying disaster risk, and show how the proposed
approximation represents the implications of the model similarly to global solution methods.
We show that our approximation of the risky steady state cannot be generically replicated
by higher-order perturbations around the deterministic steady state, which cannot account
well for the effects of risk in our applications even up to third order. Finally, we argue that
our perturbation can be viewed as a generalized version of the heuristic loglinear-lognormal
approximations commonly used in the macro-finance literature.
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“The central fact of life that makes financial economics interesting is

that risk premia are not at all second order.” — Cochrane (2008)

1. Introduction

Risk plays a crucial role in modern dynamic equilibrium models in capturing asset pricing

facts and studying the effects of uncertainty in the economy. For example, over the last

two decades researchers have explored models with time-varying risk aversion, risk-sensitive

preferences, stochastic volatility, variable disaster risk, and risky returns in small open

economies.2 But risk presents a challenge for extant solution techniques. Projection methods

are accurate but computationally intensive and offer limited analytical insight. Perturbations

around the deterministic steady state (DSS) are certainty equivalent at first order, while at

higher orders they have disadvantages similar to those of projection methods and remain

accurate only locally, especially when non-analytic functions are involved. Finally, the DSS

can be an invalid expansion point.

In this context, a literature initiated by Coeurdacier, Rey, and Winant (2011), Juillard

(2010) and, in a special application, Devereux and Sutherland (2011) started to explore

approximations around a risky steady state (RSS). Specifically, the RSS can be defined as the

limit point of the deterministic model in which all shocks are zero, but in which agents expect

shocks to be realized according to their true distribution and form expectations consistent

with the exact solution of the stochastic model. Since approximations around the RSS do

not perturb the amount of uncertainty in the economy, they have a better chance of being

close to the exact solution of the model than perturbations around the DSS. This definition,

however, is typically impractical as it presupposes that a nonlinear accurate solution of the

model is already available to evaluate expectations. Therefore, the literature has focused

instead on a specific approximation of the RSS, namely, Coeurdacier et al. (2011) solve for

the RSS in which agents form expectations consistent with a linear approximate solution.

We likewise focus on this definition, which we call the first-order risky steady state (FRSS)

to avoid confusion with the RSS. More precisely, we define the FRSS as the limit point of

the deterministic model in which all shocks are zero, but in which agents expect shocks

to be realized according to their true distribution and form expectations consistent with a

first-order approximation of the solution around the FRSS. Since such perturbations search

2For example, among many others, Campbell and Cochrane (1999); Bansal and Yaron (2004); Fernández-
Villaverde et al. (2011); Binsbergen et al. (2012); Gourio (2012); Rudebusch and Swanson (2012); Wachter
(2013); Lopez et al. (2015); Kehoe et al. (2022).
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jointly for the expansion point and for the linear approximation coefficients, the problem has

proved challenging. Indeed, analytical formulas to compute the approximation, a discussion

of the uniqueness of the FRSS, and conditions for the stability and uniqueness of the local

dynamics of the model have so far remained unknown. Furthermore, the setup sketched

by Coeurdacier et al. (2011) does not accommodate heteroskedastic shocks and, hence,

time-varying risk premia.

This paper aims to fill these gaps in four ways. First, we obtain simple analytical formulas

for the FRSS and for the coefficients of the linear approximation around it. These formulas

facilitate an analytical understanding of the implications of risk on equilibrium prices and

quantities and are conducive to fast filtering techniques by the linearity of the approximate

solution, which, as we show, is accurate in several applications.

Second, we characterize the existence and uniqueness of the local dynamics around the

FRSS of the approximate solution by generalizing the Blanchard and Kahn (1980) saddle-path

conditions. This result, as we show, implies that we can root these approximations in formal

ground in perturbation theory.

Third, we show how, once the equations are written in the appropriate form, heteroskedas-

tic and non-Gaussian shocks, and hence time-varying risk premia, are easily accommodated.

We do so by using relative entropy, rather than variance, as the measure of dispersion, which

can be characterized by its connection with the cumulant generating function of shocks.

Therefore, while only a conventional approximation of at least third order can generate

time-varying risk premia, our perturbation around the FRSS captures risk premia variation

already at the first order and is therefore appropriate for models that speak to the initial

quote by Cochrane (2008).

Fourth, we note that, whenever forward-looking difference equations are present, the

system can be rewritten in multiple ways that lead to different approximations, a point so

far not recognized by the literature. In fact, writing a forward-looking difference equation in

recursive form or as a summation affects which variables are approximated as linear in the

states when evaluating the expectations. We discuss how to pin down the approximation as

the one that minimizes Euler equation errors.

We then discuss how our proposed perturbation noticeably differs from conventional

perturbations. Generically, we show that first-order perturbations around the FRSS are not

nested in perturbations around the DSS of arbitrary order, and hence cannot generically be

replicated with output of conventional higher-order perturbations. In fact, as pointed out

by Coeurdacier et al. (2011) and Devereux and Sutherland (2011), the DSS may not even

3
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Figure 1: Equilibrium risk-free rate and price-dividend ratio of the consumption portfolio as a function of the
state of the economy in Wachter (2006). Markers and arrows denote steady-state values under the different
solution methods: global solution (cubic splines collocated over 200 Chebyshev nodes over the interval
(10−130, 10−1) for St and shocks integrated by 20-point Gauss-Hermite quadrature), linear perturbation
around the FRSS, perturbations around the DSS. RSS: risky steady state; FRSS: first-order risky steady
state; DSS: deterministic steady state; SDSS: second-order DSS; TDSS: third-order DSS. Naive and optimal
FRSS use a summation specification with 1 and 1500 terms, respectively, for the wealth-consumption ratio.

be well-defined in examples in which the FRSS is. In this context, note that the constant

terms of conventional higher-order perturbations around the DSS are sometimes referred

to as proxies for the RSS. To distinguish them from the RSS and FRSS, we will refer to

such proxies for the RSS based on second- and third-order perturbations around the DSS as

second- and third-order deterministic steady states (or SDSS and TDSS for brevity). Besides

being problematic when the DSS is not well-defined, these alternative approximations of the

RSS have the disadvantage of being inaccurate in important applications.

Indeed, Figure 1 illustrates the different approximations in a simple example: the pricing

of a risk-free bond and of the wealth-consumption ratio in the Campbell-Cochrane habit

model of Wachter (2006). (Section 4 elaborates this example.) First- and second-order

perturbations around the DSS are severely inaccurate. Conventional third-order perturbations

recover the global solution for the risk-free rate but remain inaccurate when characterizing

equilibrium wealth. As is apparent, the constant terms of second- or third-order perturbations

around the DSS, or SDSS and TDSS, are poor approximations of the RSS. In contrast, our

approximation around the FRSS (labeled ‘optimal’ in the Figure) is much closer to the global

solution; importantly, the FRSS and the RSS are nearly identical. Even though our strategy

approximates other versions of the model less accurately, as shown in Section 4, the fact
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that our proposed FRSS is nearly identical to the RSS is all the more remarkable given

that the Campbell and Cochrane (1999) model is notoriously highly nonlinear and requires

projections on fine grids (e.g., Wachter, 2005).

Note also how our approximation differs from previous implementations of the FRSS.

First, a setup that accommodates heteroskedastic shocks is necessary to solve models with

the nonlinear habits of Campbell and Cochrane (1999), in which time-varying risk premia

play a big role. Second, Figure 1 shows that a naive implementation of the FRSS that uses

the standard recursive pricing equation of the wealth-consumption ratio performs poorly,

similar to second- or third-order perturbations around the DSS. In contrast, our approach

recognizes the multiplicity of the FRSS and exploits it to minimize Euler equation errors.

We first test the performance of our approximation in endowment economies. Besides the

habit formation models, we study the solution to the disaster risk model of Wachter (2013).

Projection methods are required to find the global solution under nonlinear habits, while rare

disasters are main examples of non-Gaussian exogenous shocks that produce time-varying

risk premia. Our approximation is accurate in solving for risk premia and volatilities of

equities and bonds at both short and long durations.

We then turn to a production economy. The real business cycle model of Jermann (1998)

with Campbell-Cochrane habits explored by Chen (2017) is appropriate for testing the

accuracy of our solution in an environment where consumption risk is endogenous, while

habits and capital adjustment costs generate volatile stock prices. In this application the full

nonlinear solution is computationally expensive, while the FRSS approximation yields a fast

and tractable solution with good accuracy.

Finally, we provide a user-friendly computer code for application to most DSGE models.

1.1. Relationship to the literature

Two strands of the literature have dealt separately with risk-adjusted linearizations.

First, the macro-finance literature has used affine risk adjustments based on lognormality at

least since Campbell (1993), with Bansal and Yaron (2004) being a prominent example and

Malkhozov (2014) offering the most recent treatment.3 However, these ad hoc approximations

remain limited in scope and lack a formal justification based on perturbation theory.

Second, Coeurdacier et al. (2011), Juillard (2010), and Devereux and Sutherland (2011)

were the first to study perturbations around (approximations of) the RSS, with de Groot

3Examples of applications of loglinear-lognormal methods include Jermann (1998); Lettau and Uhlig
(2000); Uhlig (2007); Bekaert, Cho, and Moreno (2010); Kaltenbrunner and Lochstoer (2010); Dew-Becker
(2014); Backus, Ferriere, and Zin (2015); Schorfheide, Song, and Yaron (2018); Itskhoki and Mukhin (2021)
among many others.
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(2013), Meyer-Gohde (2016), and Kliem and Uhlig (2016) offering recent applications, while

Lopez et al. (2015) and Kehoe et al. (2022) are recent applications of the approximation we

propose here. But, as discussed above, a characterization of the exact solution, uniqueness,

and local stability properties of these approximations has so far been missing. In fact, extant

treatments often rely on additional ad hoc approximations to the equations and on output

from perturbations around the DSS, and ignore the dangers of constructing what we labeled

‘naive’ FRSS approximations.

Furthermore, the relationship of these perturbations with loglinear-lognormal risk-adjusted

linearizations has not been clarified. In this context, we argue that first-order perturbations

around the FRSS can be viewed as loglinear-lognormal approximations, suitably generalized.

The extant affine methods subsumed by Malkhozov (2014) proceed in two steps: first, they

linearize the equations around the DSS and, second, they adjust the solution by a risk

correction. This correction can be time-varying when risk comes from shocks to exogenous

variables but is constant when it comes from shocks to endogenous variables, and hence

fails to capture sources of time variation in risk premia that are central in our applications.4

Therefore, besides the extension to non-Gaussian shocks, we generalize extant loglinear-

lognormal methods by evaluating the approximate functions around the FRSS rather than

the DSS and by treating consistently innovations to the state vector. Still, our approximation

can be derived heuristically in a way that is similar in spirit to how affine approximations

are derived, namely, by first splitting the expectational equations into a certainty equivalent

and a dispersion term and then evaluating them with a conjectured linear solution. In this

precise sense we reconcile the two strands of the literature in macroeconomics and finance.

2. Approximation method: Heuristic algorithm

2.1. General framework

We aim to characterize the solution for jump variables yt ∈ Rny and states zt ∈ Rnz of

the dynamic system of equilibrium conditions with generic form:

0 = lnEt exp[f(yt, zt, yt+1, zt+1)], f(yt, zt, yt+1, zt+1) ≡ h(yt, zt) + f3 yt+1 + f4 zt+1

zt+1 = g(yt, zt) + λ(zt)(yt+1 − Etyt+1) + qσ(zt)εt+1

(1)

4Examples include production economies with habits and intertemporal choice under uncertainty in small
open economies, where affine approximations yield the determinacy emphasized by Coeurdacier et al. (2011)
only when generalized to coincide with perturbations around the FRSS.

6



where λ(zt)(yt+1 − Etyt+1) describes heteroskedastic endogenous risk that depends on inno-

vations in jump variables and qσ(zt)εt+1 is exogenous risk, where scalar q ∈ [0, 1] denotes

the amount of risk in the economy. We adopt the convention that q = 1 corresponds to the

model of interest. Operator lnEte
[·] is applied elementwise to a vector-valued map, with

Et the expectations operator conditioned on the history up to time-t of state variables.

Functions f : R2ny+2nz → Rny , h : Rny+nz → Rny , g : Rny+nz → Rnz , λ : Rnz → Rnz×ny and

σ : Rnz → Rnz×nε are differentiable. We denote by fi, gi, ... the derivatives of f, g, ... with

respect to the ith argument. Our framework requires function f to be linear in yt+1 and zt+1,

an unrestrictive technical assumption we will elaborate on later. The equilibrium conditions

of most DSGE models can be cast into this framework after suitable redefinition of variables.

Exogenous shocks εt ∈ Rnε have a conditional mean of zero and distribution described by

the differentiable, conditional cumulant generating function (ccgf):

κ[α(zt); zt] ≡ lnEte
α(zt)′εt+1 , for any differentiable map α : Rnz → Rnε

For example, if εt ∼ Niid(0, I), one has κ[α(zt); zt] = .5diag[α(zt)α(zt)
′].

2.2. Linearization around the FRSS

The solution of the model with expectations formed according to that solution consists

of the policy functions yt = y(zt, q) and zt = z(zt−1, q, εt). We define the FRSS of variables

yt and zt and a linearized solution around it as the point y = y(z, q) and z = z(z, q, 0) and

the linear approximate solution yt = y +Ψ(zt − z) that solve system (1) with expectations

formed consistently with the linear approximation. (Section 3 discusses this qualification.)

To solve for unknown coefficients [y, z,Ψ], we rewrite the forward-looking equations as:

0 = h(yt, zt) + f3Etyt+1 + f4Etzt+1 + Lt(f3yt+1 + f4zt+1) (2)

where Lt(xt+1) ≡ lnEte
xt+1 − Etxt+1 is a relative entropy measure—a nonnegative measure

of dispersion that generalizes variance. The presence of entropy takes risk into account and

breaks certainty equivalence. We then use the conjectured linear solution to rewrite (2) as

0 = h(yt, zt) + f3Etyt+1 + f4Etzt+1 + Lt
(
(f3Ψ+ f4)zt+1

)
(3)

Since, if Inz − λ(zt)Ψ is invertible, innovations to the state have the approximate form

zt+1 − Etzt+1 = λ(zt)Ψ(zt+1 − Etzt+1) + qσ(zt)εt+1 = (Inz − λ(zt)Ψ)−1qσ(zt)εt+1

7



it follows that rational expectations consistent with the linear solution imply the existence of

a nonnegative function L̃ : Rnz × [0, 1] → Rny

+ of the state vector:

L̃(zt, q) ≡ Lt
(
(f3Ψ+ f4)zt+1

)
= κ[(f3Ψ+ f4)(Inz − λ(zt)Ψ)−1qσ(zt); zt] (4)

where the connection with the ccgf follows from the definition of entropy.

We can therefore plug equation (4) into equation (3) and linearize it around the point

[yt; zt] = [y; z] as:

0 = h(y, z) + f1(yt − y) + f2(zt − z) + f3Etyt+1 + f4Etzt+1 + L̃(z, q) + L̃1(z, q)(zt − z)

Etzt+1 = g(y, z) + g1(yt − y) + g2(zt − z)

with the notation fi ≡ fi(y, z, y, z) and gi ≡ gi(y, z). The conjectured linear solution

yt = y +Ψ(zt − z)

zt+1 = z + g1(yt − y) + g2(zt − z) + (Inz − λ(zt)Ψ)−1qσ(zt)εt+1

(5)

can be identified by matching coefficients. Namely, the unknowns [y, z,Ψ] solve the system:

0 = g(y, z)− z

0 = h(y, z) + f3y + f4z + L̃(z, q) (6)

0 = f1Ψ+ f2 + (f3Ψ+ f4)(g1Ψ+ g2) + L̃1(z, q)

Here the entropy terms L̃(z, q) and L̃1(z, q) capture both constant and dynamic risk

corrections to an otherwise standard linearization. (In fact, when q = 0 we have L̃(z, 0) = 0

and L̃1(z, 0) = 0 and recover the DSS and the linear perturbation around it.) For example,

these terms will capture constant and time-varying risk premia, respectively.

To summarize, our approximation can be constructed as follows:

Algorithm 1. With system (1) as a starting point, proceed stepwise:

Step 1. Write expectations as the sum of a certainty-equivalent and an entropy term [ (2)].

Step 2. Conjecture a solution linear in the states and use it to characterize entropy [ (4)].

Step 3. Identify the linear solution (5) by solving matrix equation (6).

2.3. Discussion

There are two key implicit assumptions in representation (1). First, forward-looking

arguments of the expectations operator must be strictly positive—a necessary property for a
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connection with entropy. This assumption is not without loss of generality, but in practice,

most problems can be rewritten appropriately by splitting the argument into strictly positive

components.

Second, function f must be linear in yt+1 and zt+1. Note that this assumption is not

restrictive—one can always define new variables to fit the linear structure. For example,

difference equation eat = Ete
at+1+ebt with an exogenous process bt can be equivalently written

in notation (1) as 0 = lnEte
f(yt,zt,yt+1,zt+1) with f(yt, zt, yt+1, zt+1) = at+1 − ln(eat − ebt), with

yt = at and zt = bt. In fact, it is quite the opposite; there are infinite ways to represent a

model in this form whenever a forward-looking difference equation is present. The difference

equation in the previous example can be equivalently written as eat = Ete
at+N +

∑N
n=1Ete

bt+n

for each N ∈ N and can accordingly be written in form (1) by expanding the yt vector to

include the expectations Ete
at+N and Ete

bt+n .5

Generically, a degree of freedom N in the approximate solution appears for each forward-

looking difference equation present. Although the value of N we choose to write the model in

form (1) has no consequences for conventional riskless perturbations, the choice matters for

approximations around the FRSS because it determines which variables are approximated as

linear in the states, and that in turn affects entropy calculations—a point so far unrecognized

by the literature.

How should we select the best specification, and hence remove the degree of freedom

by pinning down N? Intuitively, one should pick N , and hence the definition of variables

yt and zt, so that the exact (unknown) solution of vector f3yt + f4zt is as close to linear in

the state as possible. In practice, one should select the one whose associated approximation

minimizes the difference equation’s Euler equation error. While in our applications the

optimal approximation is achieved for large N , we conjecture that the optimality of a

summation specification with large N over the recursive specification holds more generally.

In practice, our advice is to increase the number of strips progressively until the FRSS

solution changes less than some tolerance level. We illustrate these points in the examples of

Section 4.

5Namely, we can define Pnt = Ete
bt+n and express it recursively as Pnt = Et(Et+1e

bt+n) = EtPn−1,t+1 with
P0t = ebt . Similarly, we define Rnt = Ete

at+n and express it recursively as Rnt = Et(Et+1e
at+n) = EtRn−1,t+1

with R0t = eat . Letting pnt = ln(Pnt) and rnt = ln(Rnt), we therefore write 0 = lnEte
pn−1,t+1−pnt and

0 = lnEte
rn−1,t+1−rnt . The difference equation can therefore be written as 0 = lnEte

f(yt,zt,yt+1,zt+1) with

f(yt, zt, yt+1, zt+1) =

 ernt +
∑N

n=1 e
pnt − eat

pn−1,t+1 − pnt, n = 1, ..., N
rn−1,t+1 − rnt, n = 1, ..., N

 , yt =

 at
pnt, n = 1, ..., N
rnt, n = 1, ..., N

 , zt = bt

9



There are also two minor assumptions in the representation of innovations that can be

relaxed easily. First, we can generalize representation (2) to handle a dependence also on

jump variables yt of functions λ and σ—that would be replaced by functions λ̃(yt, zt) and

σ̃(yt, zt). In that case define λ(zt) = λ̃(y +Ψ(zt − z), zt) and σ(zt) = σ̃(y +Ψ(zt − z), zt) and

proceed as before. Second, when describing the dynamics of the state vector in (5), one may

also choose to approximate the volatility of innovations (Inz − λ(zt)Ψ)−1σ(zt) around zt = z.

This approximation would not affect the approximation coefficient, Ψ—it would only affect

simulations from the model—but it offers no practical advantage.

Finally, the solution of matrix equation (6) in Step 3 of Algorithm 1 deserves some

comment. Constant terms [y, z] and dynamic coefficient Ψ are necessarily identified jointly

at the end of the algorithm, as the expansion point depends on expectations, which are

formed according to the solution. Expression (6) includes nonlinear matrix equations in the

unknown coefficients that are amenable to straightforward Newton-type numerical solution

methods. Appendix C discusses simple numerical algorithms to solve matrix equation (6) as

well as a simplified two-step approach that can be used in the interest of speed when the

iterative procedure is considered to be unnecessarily slow. However, these matrix equations

are sufficiently nonlinear to allow for multiple solutions and to complicate the characterization

of the local uniqueness of the constant terms and of the determinacy of the approximate

solution’s dynamics.

In this context, Proposition 1 characterizes the saddle-point stability of any solution of

the nonlinear equations (6), thereby adapting Blanchard and Kahn (1980) conditions to our

context. These conditions can be readily checked to assess the legitimacy of a solution.

Proposition 1. A solution of system (6) has unique and bounded dynamics if and only if

matrices

Γ ≡

[
f4 f3

Inz 0

]
and Υ ≡

[
−f2(y, z)− L̃1(z, q) −f1(y, z)

g2(y, z) g1(y, z)

]

have nz generalized eigenvalues α(Γ,Υ) ≡ {α ∈ C : det(Γα−Υ) = 0} inside the unit circle

and ny outside the unit circle.

Appendix A provides a proof of Proposition 1. Relative to conventional linearizations,

the determinacy of equilibrium dynamics is affected by the evaluation of derivatives at a

different expansion point and by the presence of a dynamic entropy component that affects

eigenvalues.

10



2.4. Relationship with Coeurdacier et al. (2011)

Although we follow Coeurdacier et al. (2011) in solving for the FRSS and a linear

perturbation around it, their setup and solution strategy need to be extended in two

important ways. First, Coeurdacier et al. rely on an additional approximation to solve

for the perturbation coefficients. Their procedure starts by a second-order approximation

of the original function f around yt+1 = Etyt+1 and zt+1 = Etzt+1. When applied to our

equation (1), their strategy ends up with equation:

0 ≈ h(yt, zt) + f3Etyt+1 + f4Etzt+1 +
1

2
vart (f3yt+1 + f4zt+1)

This procedure boils down in our context to replacing entropy with half the variance, and

hence is correct under normal shocks but is not under any other distributions whose entropy

does not coincide with half the variance.

Second, the framework sketched by Coeurdacier et al. (2011) assumes homoskedastic

shocks, and hence does not accommodate our applications with Campbell and Cochrane

(1999) habits or Epstein-Zin preferences with time-varying risk, including the two most

prominent examples of variable disaster risk (illustrated in our applications of Section 4) and

stochastic volatility.

In this context, we showed how to draw a connection with the cumulant generating

function of shocks and easily accommodate both non-Gaussian shocks, and perhaps more

importantly, heteroskedasticity and time-varying risk premia. The key to achieving our

simple formulas was to write the problem in the exponential form (1) to then exploit the

properties of the conditional cumulant generating function.

Relatedly, de Groot (2013) further approximates the calculations of Coeurdacier et al.

(2011) using output from second-order approximations around the DSS. Again, these ad-

ditional approximations are unnecessary, and they are by Proposition 3 below generically

inappropriate. For example, in the simple example behind Figure 1 that contains no endoge-

nous states, the RSS approximated by the method proposed by de Groot would reduce to

the SDSS, which as shown in Figure 1 offers a bad approximation for both the FRSS and

the RSS.

3. Approximation method: Formal statement

The reader interested in applications can skip this section on first reading.

11



Proposition 2 provides the mathematical foundation for the approximation treated

heuristically in Section 2 by showing that it can indeed be justified based on perturbation

theory, i.e., on the implicit function and Taylor theorems. We then discuss the relationship

of first-order perturbations around the FRSS with perturbations around the DSS and with

loglinear-lognormal affine methods.

3.1. Formal derivation

To set the ground for perturbations, we consider the parameterized family of system (1):

0 = Etxt+1 + τLt(xt+1) + (1− τ)L̃(zt, q)

zt+1 = g[y(zt, q, τ), zt] + λ(zt)(Et+1 − Et)y[z(zt, q, εt+1, τ), q, τ ] + σ(zt)qεt+1

xt+1 ≡ h[y(zt, q, τ), zt] + f3y[z(zt, q, εt+1, τ), q, τ ] + f4z(zt, q, εt+1, τ)

(7)

where L̃(z, q) ≡ κ[(f3Ψ+f4)(I−λ(z)Ψ)−1σ(z)q; z] is a differentiable function for all q ∈ [0, 1]

with L̃(z, 0) = 0. We are looking for solutions for jump and state variables yt = y(zt, q, τ) and

zt+1 = z(zt, q, εt+1, τ), where scalar q denotes the amount of risk in the economy and scalar

τ indicates whether entropy is evaluated using the true policy function or using the linear

function yt = ỹ+Ψ̃(zt− z̃) for coefficients ỹ, z̃, and Ψ̃. Under q = τ = 1 the dynamics coincide

with the original model (1). Entropy w(zt, q, τ) ≡ Lt(xt+1) is assumed to be differentiable in

zt for all q ∈ [0, 1].

It is useful to rewrite the solution of system (7) as the root of the functional

F ([y, z], ε, q, τ) ≡

{[
h(yt, zt) + f3Etyt+1 + f4Etzt+1 + τw(zt, q, τ) + (1− τ)L̃(zt, q)

zt+1 − g(yt, zt)− λ(zt)(yt+1 − Etyt+1)− qσ(zt)εt+1

]}∞

t=0

whose tth coordinate maps q ∈ [0, 1], τ ∈ [0, 1], εt+1 ∈ Rnε and essentially bounded functions

[yt; zt; yt+1; zt+1] of the history of shocks {εs}s≤t+1 into the Banach space of essentially

bounded functions of the history of shocks {εs}s≤t.

Definition. A risky steady state (RSS) of system (7) is a point zt = z̃ and τ = 1 such that

F ([y(z̃, q, 1), z̃], 0, q, 1) = 0. In words, the limit point of the deterministic system in which all

shocks are zero but in which agents i) expect shocks to be realized according to their true

distribution and ii) form expectations consistent with the exact solution.

The RSS is a more relevant expansion point than the DSS z = z̄ such that F ([y(z̄, 0, 0), z̄], 0, 0, 0) =

0 because it does not restrict q to 0. The RSS is a point around which the nonlinear system

fluctuates after a long sequence of small shocks, while nothing guarantees that the DSS is.

12



But note that point ii of the definition of RSS relies on a specific description of how people

form expectations over future states of nature. As previously discussed, whenever the exact

solution is unknown to the modeler, the calculation of the RSS is unfeasible; so a more useful

definition in this context is that of a first-order risky steady state, which coincides with the

definition given in Section 2.

Definition. A first-order risky steady state (FRSS) of system (7) is a point zt = z̃ and τ = 0

such that F ([ỹ, z̃], 0, q, 0) = 0 with ỹ = y(z̃, q, 0) and Ψ̃ = y1(z̃, q, 0). In words, the limit

point of the deterministic system in which all shocks are zero but in which i) agents expect

shocks to be realized according to their true distribution and ii) agents’ approximate decision

rules are computed using a first-order approximation around the FRSS.

Proposition 2. Suppose that an FRSS (zt, τ) = (z̃, 0) is such that the associated matrices Γ

and Υ defined in Proposition 1 have nz generalized eigenvalues inside the unit circle and ny

outside the unit circle. Then, i) implicit functions yt = y(zt, q, τ) and zt+1 = z(zt, q, εt+1, τ)

are unique and differentiable in a neighborhood of the FRSS; and ii) the coefficients (y, z,Ψ)

of the approximate solution of system (6) are indeed the coefficients from a linear perturbation

around the FRSS of system (7), i.e., y = ỹ, z = z̃, Ψ = y1(z̃, q, 0).

It follows that an FRSS with the property in the premise of Proposition 2 is a saddle

point.

The first part of Proposition 2 follows from the implicit function theorem. To be able

to invoke the theorem, we must show the invertibility of the derivative operator of map F

evaluated at the expansion point (zt, τ) = (z̃, 0). Such an operator has tth coordinate

DF,t[ŷ; ẑ] = Γ

[
Etẑt+1

Etŷt+1

]
−Υ

[
ẑt

ŷt

]

and it maps an a.s.-bounded sequence of perturbed arguments {ŷt; ẑt}∞t=0 into a unique

a.s.-bounded process u = {ut}∞t=0 that is a measurable function of the history of shocks.6

Invertibility of the derivative operator then means that an inverse exists that maps an

a.s.-bounded process {ut}∞t=0 into unique a.s.-bounded processes {ŷt; ẑt}∞t=0. It turns out

6Note how the derivative operator is well-defined because the ccgf of exogenous shocks exists and is
differentiable. Also, the existence of the ccgf of exogenous shocks is not a local property and yet is a
necessary regularity condition, as the moment Ete

α(zt)qεt+1 for a real map α need not exist otherwise, even
for arbitrarily small q > 0. Jin and Judd (2002) and Kim et al. (2008) make a similar point about the
existence of moments of shocks.
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that the saddle-point condition of the FRSS is the same one that guarantees invertibility.

After having proved the first part by the implicit function theorem, we are then able to

invoke the Taylor theorem to prove the second part of Proposition 2, as the uniqueness

and differentiability of the implicit functions imply that we can now approximate the local

solution around the FRSS (zt, τ) = (z̃, 0). Appendix B provides the full proof that fleshes

out these steps.

3.2. Relationship with conventional perturbations

First-order perturbations around the FRSS are not nested in conventional perturbations

around the DSS (zt, q, τ ) = (z̄, 0, 0) (for example, as in Schmitt-Grohé and Uribe, 2004), and

hence cannot be replicated with conventional perturbations.7 For example, in our applications

conventional perturbations of third order are still far from both the FRSS and the RSS.

Proposition 3 provides sufficient conditions under which nesting does not occur.

Proposition 3. If y(z, 1, 0) ̸= y(z̄, 1, 0) or y1(z, 1, 0) ̸= y1(z̄, 1, 0), then perturbations around

the FRSS are not nested in perturbations around the DSS of arbitrary order ℓ.

The proof follows by recognizing that one can at most reconstruct the implicit functions

y(z̄, q, 0) and y1(z̄, q, 0) using output from ℓth-order perturbations around the DSS (zt, q, τ ) =

(z̄, 0, 0) as:

y(z̄, q, 0) = lim
ℓ→∞

ℓ∑
i=1

1

i!

∂iy(z̄, q, 0)

∂qi

∣∣∣
q=0

qi, y1(z̄, q, 0) = lim
ℓ→∞

ℓ∑
i=0

1

i!

∂iy1(z̄, q, 0)

∂qi

∣∣∣
q=0

qi

as long as the implicit functions y(z̄, q, 0) and y1(z̄, q, 0) have convergent Taylor series at

q = 0 with a sufficiently large radius of convergence. In this context, the implicit functions of

interest are y(z, 1, 0) and y1(z, 1, 0); so a necessary (but not sufficient) condition for nesting

is that the radius of convergence of the Taylor series be larger than one.

It follows that the constant term of a k-order approximation around the DSS does not

generically coincide with the FRSS. Indeed, in our applications, including in Figure 1, we

can immediately see that both SDSS and TSS are still quite far from the FRSS (as well as

from the RSS), and provide a relatively bad approximation when risk matters.

7The online appendix discusses this further by comparing analytically the first-order perturbation around
the FRSS and a third-order perturbation around the DSS.
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3.3. Relationship with loglinear-lognormal affine methods

The macro-finance literature has used affine loglinear-lognormal approximation methods

at least since Campbell (1993). We focus on the exposition of the affine method in Malkhozov

(2014), which is the most general formulation of extant loglinear-lognormal methods. He

shows how affine approximations are nested in second-order perturbations around the DSS.

Since Proposition 3 established that approximations around the FRSS cannot in general be

nested in second-order perturbations around the DSS, it follows that his affine method does

not coincide with an approximation around the FRSS.

More precisely, Malkhozov’s strategy is to split expectational equations into a certainty

equivalent and variance terms and then linearize the system around the DSS. In our notation,

his approximated system is:

0 = f̄1(yt − ȳ) + f̄2(zt − z̄) + f3Et(yt+1 − ȳ) + f4Et(zt+1 − z̄) +
1

2
vart (f3yt+1 + f4zt+1)

zt+1 = f̄1(yt − ȳ) + ḡ2(zt − z̄) + λ(z̄)(yt+1 − Etyt+1) + σ(zt)εt+1

where barred variables denote their values at the DSS, and f̄i and ḡi denote the derivatives

of functions f and g with respect to their ith element evaluated at the DSS. It follows

that affine approximations coincide with our approximation in the special case of Gaussian

shocks (when entropy and half the variance coincide), linear functions h and g (so f̄1 = f1,

f̄2 = f2, ḡ2 = g2), and a constant function λ. The last qualification in particular implies that

his method corrects differently for exogenous risk variation, which manifests through σ(zt),

than for endogenous risk variation, which manifests through λ(zt). (The online appendix

elaborates with a simple example.)

More deeply, however, the heuristic construction of the perturbation around the FRSS in

Section 2 mimics in fundamental ways the construction of loglinear-lognormal approximations.

In particular, the decomposition of expectational equations (1) into a certainty equivalent

and a dispersion term in expression (2) is precisely the hallmark of affine solution methods.

In this precise sense, risky steady state approximation methods can be viewed as affine

methods.

3.4. Discussion

Our definition of FRSS is precisely the definition in Coeurdacier et al. (2011), who

conjecture a linear solution and plug it into the nonlinear equation. Intuitively, the FRSS

is the fixed point of a problem that searches jointly for an approximate solution and for

expectations evaluated using that same solution. The FRSS can differ from the RSS even
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though it remains closer to it than the DSS, as seen, for example, in Figures 1 and 2.

Generically, the RSS can be computed only by a global solution technique as the point where

the nonlinear system converges after a long simulation of zero shocks.

The FRSS remains in our applications a preferable expansion point over the DSS to study

the risk implications of a model. Here note that the sufficient condition for the absence of

nesting of FRSS perturbations in DSS perturbations listed in Proposition 3 holds in relevant

examples. The production economy in Section 4 and the small open economy described in

Coeurdacier et al. (2011), and rederived in the online appendix, are key examples where

nesting does not occur. Moreover, even when nesting is possible, the speed of convergence

as the order of approximation ℓ increases can be impractically large. For example, in the

models of Campbell and Cochrane (1999) and Wachter (2006), Figures 1 and 2 show how

third-order perturbations fall short of providing a sufficiently accurate approximation of the

solution. In those basic examples, the risk implications are severely biased around the DSS,

even up to the popular third order.

4. Applications

We illustrate our approximation in the context of three models, and compare it with

conventional perturbations. Models with Campbell-Cochrane habits are particularly suited

to test our approximation as they display strong heteroskedasticity; the state of the economy

is driven by consumption innovations, which are endogenous objects outside an endowment

economy. Models with risk-sensitive preferences and time-varying disaster risk similarly

produce variation in risk premia, while non-Gaussianities make loglinear-lognormal methods

inapplicable.8

We start by pricing a risk-free bond and wealth in the Gaussian endowment economies

with the habit formation of Campbell and Cochrane (1999) and Wachter (2006), which we

illustrated in Figure 1. When pricing wealth we will illustrate the multiplicity problem

discussed in Section 2.3 and how to choose which specification to retain. We then show

how to handle a non-Gaussian disaster component by pricing a risk-free bond and wealth in

the model of Wachter (2013). Finally, we apply our approximation to a more challenging

model—the production economy of Jermann (1998) extended as in Chen (2017) to incorporate

Campbell-Cochrane habits, and hence a larger role for risk.

8Alternatively, models with risk-sensitive preferences and stochastic volatility offer another prominent
example of heteroskedasticity that would fit our framework nicely. We select here the example with variable
disaster risk because it illustrates both how to deal with non-Gaussianities and heteroskedasticity.
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To compare the different solutions, we report policy functions over the state space—an

obvious metric—and risk pricing at different horizons by comparing the term structures of

zero-coupon claims and, in production economies, multiperiod Euler equation errors. This

second exercise decomposes the quality of the approximation at different time horizons, and

for claims that are the basis for pricing other, more complex assets and characterizing the

welfare costs of fluctuations and the investors’ marginal utility. We define errors in the

n-period Euler equation from a solution for consumption c(0)(zt) as:

EEE(n)(zt) ≡ log10

∣∣∣1− ec
(n)(zt)−c(0)(zt)

∣∣∣
where c

(n)
t (zt) solves equation 0 = lnEte

mt+1[c
(n−1)
t+1 (zt),c

(n)
t (zt)]+rt , for points zt that cover a

high-probability region of the state space, and a stochastic discount factor mt+1 that is a

function of consumption. Intuitively, an n-period Euler equation error of −ε implies that

the consumer is making a one dollar mistake in how much she decides to save over an

n-period horizon for every 10ε dollars spent. Since errors accumulate as the horizon increases,

multiperiod Euler equation errors provide an indication of how good the approximation is

for long-term valuations.

(In what follows lower-case letters and hat variables will denote, respectively, logarithms

and log deviations from the expansion point.)

4.1. Habit formation

A representative consumer with Campbell and Cochrane (1999) preferences

E0

∞∑
t=0

βt
(Ct −Xt)

1−γ − 1

1− γ

lives in an endowment economy that describes the equilibrium risk-free rate (r) and the

log wealth-consumption ratio (w − c) as a function of two state variables—the consumption

process (C), which follows a random walk ct+1 = µ+ ct + σεt+1, with εt ∼ Niid(0, 1), and a

process for surplus consumption (S ≡ 1−X/C) relative to an external habit level (X) with

law of motion

st+1 = ρsst + Λ(st)(ct+1 − Etct+1)

for some nonlinear function Λ(st). Parameter β is the rate of time preference and 1/γ is the

elasticity of intertemporal substitution.
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This endowment economy is described by the pricing equation for the risk-free rate

0 = lnEte
mt+1+rt (8)

where mt+1 = ln(β) − γ∆ct+1 − γ∆st+1 is the log stochastic discount factor, and by the

pricing equation for the wealth portfolio Wt = Ct + EtMt+1Wt+1:

ewt−ct = 1 + Ete
mt+1+∆ct+1+wt+1−ct+1 (9)

= Ete
mt,t+N+ct+N−ct+wt+N−ct+N +

N−1∑
n=0

Ete
mt,t+n+ct+n−ct (10)

where mt,t+n =
∑n

j=1mt+j is the n-period log stochastic discount factor. Because it is a

forward-looking difference equation, equation (9) can be written as (10), so there are infinite

ways to cast it into form (2). Namely, for a given N > 0, we must solve the system of 2N

equations:

ewt−ct = erc
(N)
t +

N−1∑
n=0

epc
(n)
t , pc

(n)
t = lnEte

mt+1+∆ct+1+pc
(n−1)
t+1 , rc

(n)
t = lnEte

mt+1+∆ct+1+rc
(n−1)
t+1

(11)

with boundary conditions pc
(0)
t = 0 and rc

(0)
t = wt − ct, where pc

(n)
t describes the log price-

consumption ratio of the nth consumption strip, i.e., a claim to n-periods-ahead consumption,

and rc
(n)
t is the log value of a claim to n-periods-ahead wealth as a fraction of consumption.

Including difference specification (9)—or (10) with N = 1—among the equilibrium

conditions implies approximating the price of the sum of strips as conditionally lognormal.

Including specification (10) forN → ∞ implies approximating each strip price as conditionally

lognormal. Since the sum of lognormals is generically not a lognormal, and in contrast with

conventional riskless perturbations, it follows that it matters which specification we choose

to approximate, as discussed in Section 2.3.

4.1.1. Perturbation around the FRSS

We use the algorithm in Section 2 to approximate equations (8) and (10).
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Step 1. Write expectational equations in terms of a certainty equivalent and entropy:

0 = ln(β)− γEt∆ct+1 − γEt∆st+1 + rt + Lt (−γ∆ct+1 − γ∆st+1)

0 = ln(β) + (1− γ)Et∆ct+1 − γEt∆st+1 + Etpc
(n−1)
t+1 − pc

(n)
t + Lt

(
(1− γ)∆ct+1 − γ∆st+1 + pc

(n−1)
t+1

)
for n = 1, ..., N and with boundary condition pc

(0)
t = 0.

Step 2. Conjecture linear solutions rt = r + ψrst and pc
(n)
t = pc(n) + ψ(n)st and use the

Gaussian ccgf to characterize the entropy terms as:

Lt (−γ∆ct+1 − γ∆st+1) = γ2[1 + Λ(st)]
2σ

2

2

Lt

(
(1− γ)∆ct+1 − γ∆st+1 + pc

(n−1)
t+1

)
=
(
1− γ[1 + Λ(st)] + ψ(n−1)Λ(st)

)2 σ2

2

Step 3. Identify the solution by solving matrix equation (6) or, equivalently, linearize:

0 = ln(βe−γµ) + γ(1− ρs)st + r + ψrst + γ2[1 + Λ(st)]
2σ

2

2

≈ r + ln(βe−γµ) + γ2[1 + Λ(0)]2
σ2

2
+
[
ψr + γ(1− ρs) + γ2[1 + Λ(0)]Λ1(0)σ

2
]
st

0 = ln(β) + (1− γ)Et∆ct+1 − γEt∆st+1 + Etpc
(n−1)
t+1 − pc

(n)
t +

(
1− γ[1 + Λ(st)] + ψ(n)Λ(st)

)2 σ2

2

≈ pc(n−1) − pc(n) + ln(βe(1−γ)µ) +
(
1− γ[1 + Λ(0)] + ψ(n−1)Λ(0)

)2 σ2

2

+
[
ψ(n−1)ρs − ψ(n) + γ(1− ρs) +

(
1− γ[1 + Λ(0)] + ψ(n−1)Λ(0)

)
(ψ(n−1) − γ)Λ1(0)σ

2
]
st

for n = 1, ..., N , and match coefficients to identify the unknown vector [r;ψr; pc
(n);ψ(n)] as:

r = − ln(βe−γµ)− γ2[1 + Λ(0)]2
σ2

2
(12)

ψr = −γ(1− ρs)− γ2[1 + Λ(0)]Λ1(0)σ
2

pc(n) = pc(n−1) + ln(βe(1−γ)µ) +
(
1− γ[1 + Λ(0)] + ψ(n−1)Λ(0)

)2 σ2

2
(13)

ψ(n) = ψ(n−1)ρs + γ(1− ρs) +
(
1− γ[1 + Λ(0)] + ψ(n−1)Λ(0)

)
(ψ(n−1) − γ)Λ1(0)σ

2

with boundary condition pc(0) = ψ(0) = 0.
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Analogously, and relevant for N <∞, rc
(n)
t = rc(n) + φ(n)st where

rc(n) = rc(n−1) + ln(βe(1−γ)µ) +
(
1− γ[1 + Λ(0)] + φ(n−1)Λ(0)

)2 σ2

2

φ(n) = φ(n−1)ρs + γ(1− ρs) +
(
1− γ[1 + Λ(0)] + φ(n−1)Λ(0)

)
(φ(n−1) − γ)Λ1(0)σ

2

with rc(0) = ln
(
erc

(N)
+
∑N−1

n=0 e
pc(n)

)
and φ(0) = (erc

(N)
φ(N) +

∑N−1
n=0 e

pc(n)
ψ(n))/(erc

(N)
+∑N−1

n=0 e
pc(n)

).

We can then write the approximate solution for the wealth-consumption ratio as:

ewt−ct = erc
(N)+φ(N)st +

N−1∑
n=0

epc
(n)+ψ(n)st →

∞∑
n=0

epc
(n)+ψ(n)st (14)

with the associated the FRSS of the log wealth-consumption ratio

wcFRSS = ln

( ∞∑
n=0

epc
(n)

)
(15)

4.1.2. Perturbations around the DSS

Compare our approximation with a conventional third-order approximation of the solution

for the risk-free rate, the price-dividend ratio of the consumption portfolio, and the price-

dividend ratio of consumption strips. Even though, as discussed, the choice of N does not

matter for conventional perturbations, for ease of comparison with our approximation we

derive the coefficients for the specification of the model with N → ∞. Namely,

rt = − ln(βe−γµ)− γ(1− ρs)st − γ2[1 + Λ(0)]2
σ2

2︸ ︷︷ ︸
2nd order term

− γ2[1 + Λ(0)]Λ1(0)σ
2st︸ ︷︷ ︸

3rd order term

(16)

wt − ct = − ln
(
1− βe(1−γ)µ

)
+ (1− βe(1−γ)µ)

∞∑
n=0

βne(1−γ)nµ
[
pc

(n)
t − n ln(βe(1−γ)µ)

]
(17)

pc
(n)
t = n ln(βe(1−γ)µ) + ψ̄

(n)
1 st + ψ̄

(n)
2 σ2︸ ︷︷ ︸

2nd order term

+ ψ̄
(n)
3 σ2st︸ ︷︷ ︸

3rd order term

(18)

20



where we highlighted the terms that are progressively captured as the order of approximation

increases, and where

ψ̄
(n)
1 = ψ̄

(n−1)
1 ρs + γ(1− ρs)

ψ̄
(n)
2 = ψ̄

(n−1)
2 +

1

2

(
1− γ[1 + Λ(0)] + ψ̄

(n−1)
1 Λ(0)

)2
(19)

ψ̄
(n)
3 = ψ̄

(n−1)
3 ρs +

(
1− γ[1 + Λ(0)] + ψ̄

(n−1)
1 Λ(0)

)
(ψ̄

(n−1)
1 − γ)Λ1(0)

with ψ̄
(0)
1 = ψ̄

(0)
2 = ψ̄

(0)
3 = 0.

Accordingly, we can recover the SDSS and TDSS, which coincide, in this example, for

the risk-free rate and for the log wealth-consumption ratio by setting st = 0 in (16) and (17).

Here note that the SDSS and TDSS values of the risk-free rate coincide with the FRSS value,

but the FRSS wealth-consumption ratio differs from the SDSS and TDSS values. Figure 1

illustrates these differences for two benchmark parameterizations discussed below.

The reason for these differences can be understood by comparing expressions (13) and (19).

Namely, to evaluate the value of the nth consumption strip, and in particular the risk premium

it commands, it is necessary to evaluate how the price of the (n− 1)th strip varies with the

state of the economy. Our approximation solves jointly for the price and for the elasticity

of the strips, while conventional perturbations proceed iteratively by first solving for the

elasticity of the (n− 1)th strip in the absence of risk premia and then using that elasticity

to evaluate the risk premium commanded by the nth strip. This iterative approach results

in a loss of accuracy in our example.

4.1.3. Numerical example

We specify sensitivity function Λ(st) = S−1
√
1− 2st−1 and calibrate the model using the

values in Campbell and Cochrane (1999) and Wachter (2006) reported in Table 1. Figures 1

and 2 compare the exact solution to our approximation by plotting the map from the value

of the state variable (surplus consumption) into the price-dividend ratio of the consumption

portfolio.

As discussed in Section 2.3, N should be picked to minimize Euler equation errors of

the original forward-looking difference equation (9). In this example, our approximation

with N → ∞ (we use N = 1500 in practice) offers the most accurate approximation around

the expansion point. Indeed, Figure 2a shows the approximation for two extreme values of

N , N = 1 (labeled ‘naive’ in Figure 1) plotted in black and N = 1500 (labeled ‘optimal’ in

Figure 1) in red. The approximation around the FRSS in the specification with N = 1 is
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Parameter Habit formation Disaster risk

Camp-Coch Wachter Wachter
Frequency monthly quarterly quarterly

Subjective discount factor, β .891/12 .9843 exp(−.012/4)
Utility curvature parameter γ 2 2 3
Utility curvature parameter ρ {1/3, 1, 3}
Habit persistence, ρs .871/12 .891/4

Steady-state surplus consumption ratio, S .057 .038
Mean growth rate (in %), µ 1.89/12 2.20/4 2.52/4

Standard deviation of consumption innovations (in %), σ 1.50/
√
12 .86/

√
4 2.00/

√
4

Average number of disasters per period (in %), p 3.55/4

Mean reversion, ρp .921/4

Volatility of disaster intensity, ϕσ .067/4
Impact of disaster, θ −.26
Volatility of disaster impact, θδ −.10

Table 1: Deep parameters and their calibration.

noticeably worse than the one associated with N = 1500. This dramatic difference illustrates

how the FRSS is not uniquely defined, as previously discussed, and how to pin down the

best approximation of the RSS.

Furthermore, in this application it is interesting to notice that we can actually reconstruct

very accurately the global solution using the output of the first-order approximation around

the FRSS. Figure 2b plots a solution that adds the approximate prices of strips as
∑∞

n=0 e
pc

(n)
t

under the different approximations of the consumption strip prices pc
(n)
t , using the fact that

the wealth-consumption ratio equals that sum. It is apparent that such a sum of strip prices

under the linearization around the FRSS reconstructs almost exactly the global solution. This

property follows from the fact that the log price-consumption ratios of consumption strips are

nearly linear in the state vector under the calibration in Wachter (2006). In fact, this property

holds quite generally in this class of models, with the exception, illustrated in Figure 2c, of

the knife-edge parameterization of Campbell and Cochrane (1999) that generates exactly

constant risk-free rates at all maturities, which is notoriously more nonlinear and harder

to approximate. In these examples with knife-edge parameterizations, our approximation

performs similarly only to global solution methods with relatively coarse grids. In this

context, recall in fact that Wachter (2005) warned us of a difference in level that is apparent

when using an insufficiently coarse grid for the original Campbell and Cochrane (1999)

parameterization.

In these examples, conventional third-order perturbations deliver a much less accurate
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approximation as they capture to a lower extent the nonlinear effect of risk on prices.

Figures 5 and 6 complement Figures 1 and 2 by comparing the global solution for several

risk premia and return volatilities with our proposed solution. The figures report the term

structures of equilibrium risk premia and realized return volatilities of zero-coupon equities

and bonds. Relative to the global solution, a first-order approximation around the FRSS

manages to capture the level, amplitude, and, to a varying degree of accuracy, even the shape

of the term structures.

4.2. Disaster risk

Consider a discrete-time version of the endowment economy in Wachter (2013). Investors

have Epstein-Zin recursive preferences:

vt = ct +
1

1− ρ
ln
(
1− β + βe(1−ρ)(xt−ct)

)
, xt =

1

1− γ
lnEte

(1−γ)vt+1 (20)

where β is the rate of time preference, 1/ρ the elasticity of intertemporal substitution, and γ

the risk aversion coefficient. The log stochastic discount factor is mt+1 = ln(β)− ρ∆ct+1 −
(γ − ρ)(vt+1 − xt) and x represents a certainty equivalent. When ρ ̸= 1 we can rewrite these

preferences as:

vt − ct =
1

1− ρ
ln
(
1− β + βe(1−ρ)(xt−ct)

)
wt − ct = − ln(1− β) + (1− ρ)(vt − ct)

(21)

along with equation (11) with boundary conditions pc
(0)
t = 0 and rc

(0)
t = wt − ct. (These

expressions are derived in the online appendix.) When ρ = 1, log utility is vt = (1− β)ct +

β(1− γ)−1 lnEte
(1−γ)vt+1 .

Investors live in an endowment economy in which log consumption growth has a normal

component εc as well as a disaster component ξ modeled as a Poisson mixture of normals:

ct+1 = µ+ ct + σεct+1 − θξt+1

where εct ∼ Niid(0, 1) and ξt|jt ∼ N(jt, jtδ
2), with the number of jumps jt+1 ∼ Poisson(pt).

We assume that εct+1 and εξt+1 ≡ ξt+1 − Etξt+1 are independent, where Etξt+1 = Etjt+1 = pt.

Disaster intensity pt evolves according to the discrete-time square-root process:

pt+1 = (1− ρp)p+ ρppt +
√
ptϕσε

p
t+1

23



0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

25

30

35

(a) Wachter (2006).

0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

25

30

35

(b) Wachter (2006).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

5

10

15

20

25

30

35

40

45

(c) Campbell and Cochrane (1999).

Figure 2: Comparison of solutions for the wealth-consumption ratio in models with Campbell and Cochrane (1999) habits. Markers and arrows
denote steady-state values under the different solution methods: global solution (cubic splines collocated over 200 Chebyshev nodes over the
interval (10−130, 10−1) for St and shocks integrated by 20-point Gauss-Hermite quadrature), linear perturbation around the FRSS, perturbations
around the DSS. RSS: risky steady state; FRSS: first-order risky steady state; DSS: deterministic steady state; SDSS: second-order DSS; TDSS:
third-order DSS. The small-grid global solution uses the same cubic spline approach but over an interval (10−2, 10−1) for St.



with εpt ∼ Niid(0, 1) and independent of εct and ε
ξ
t . Thus, the shock εt = [εct ;

√
pt−1ε

p
t ; ε

ξ
t ] has

ccgf:

κ([αc;αp;αξ]; pt) =
1

2
α2
c +

[
1

2
α2
p + (eαξ+

1
2
α2
ξδ

2 − 1)− αξ

]
pt

As in the previous example, for each N > 0 there is a way to write model (21) in form (1).

Finally, the Euler equation that characterizes the risk-free rate rt is

0 = lnEte
ln(β)−ρ∆ct+1+(ρ−γ)(vt+1−xt)+rt

4.2.1. Perturbation around the FRSS

Step 1. Write expectational equations in terms of a certainty equivalent and entropy:

0 = ln(β) + (1− ρ)Et∆ct+1 + (ρ− γ)(Etvt+1 − xt) + Etpc
(n−1)
t+1 − pc

(n)
t

+ Lt

(
(1− ρ)∆ct+1 + (ρ− γ)vt+1 + pc

(n−1)
t+1

)
(22)

0 = ln(β)− ρEt∆ct+1 + (ρ− γ)(Etvt+1 − xt) + Lt (−ρ∆ct+1 + (ρ− γ)vt+1) + rt (23)

Step 2. Conjecture a linear solution for stationary variables pc
(n)
t = α

(n)
0 + α

(n)
1 p̂t, wt − ct =

wc+ ψwp̂t, vt − ct = vc+ ψvp̂t, xt − ct = xc+ ψxp̂t, and rt = r + ψrp̂t and combine it with
the ccgf to characterize entropy:

Lt

(
(1− ρ)∆ct+1 + (ρ− γ)vt+1 + pc

(n−1)
t+1

)
=

(1− γ)2σ2

2

+

[
[(ρ− γ)ψv + α

(n−1)
1 ]2ϕ2σ2

2
+ e(γ−1)θ+

(γ−1)2θ2δ2

2 − 1 + (1− γ)θ

]
pt

Lt (−ρ∆ct+1 + (ρ− γ)vt+1) =
γ2σ2

2
+

(
(ρ− γ)2ψ2

vϕ
2σ2

2
+ eγθ+

γ2θ2δ2

2 − 1− γθ

)
pt

Step 3. Identify the linear solution by solving matrix equation (6) or, equivalently, lin-

earize (21):

0 =
1

1− ρ
ln
(
1− β + βe(1−ρ)xc

)
+

βe(1−ρ)xcψx

1− β + βe(1−ρ)xc
p̂t − vc− ψvp̂t

0 = ln(1− β) + wc+ ψwp̂t − (1− ρ)(vc+ ψvp̂t)

0 = ln

( ∞∑
n=0

eα
(n)
0

)
+

∑∞
n=0 e

α
(n)
0 α

(n)
1∑∞

n=0 e
α
(n)
0

p̂t − wc− ψwp̂t
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plug the entropy term in equations (22) and (23) as

0 = ln(βe(1−γ)µ) + (ρ− γ)[vc− xc+ (ψvρp − ψx)p̂t] + α
(n−1)
0 − α

(n)
0 + (α

(n−1)
1 ρp − α

(n)
1 )p̂t

+
(1− γ)2σ2

2
+

[
[(ρ− γ)ψv + α

(n−1)
1 ]2ϕ2σ2

2
+ e(γ−1)θ+

(γ−1)2θ2δ2

2 − 1

]
pt

0 = ln(βe−γµ) + (ρ− γ)[vc− xc+ (ψvρp − ψx)p̂t] +
γ2σ2

2
+

[
(ρ− γ)2ψ2

vϕ
2σ2

2
+ eγθ+

γ2θ2δ2

2 − 1

]
pt + r + ψrp̂t

and match coefficients to identify the unknown vector [α
(n)
0 ;α

(n)
1 ;wc;ψw; vc;ψv;xc;ψx; r;ψr].

4.2.2. A special case: ρ = 1

Note that we can derive an exact solution in the limit as ρ→ 1: it is easy to verify that a

linear solution for vt − ct in pt solves the problem vt = (1− β)ct + β(1− γ)−1 lnEte
(1−γ)vt+1 .9

Therefore, our approximation recovers naturally the exact solution, as the identification

conditions in step 3 are identical; namely, they reduce to wc = − ln(1−β) and ψw = 0, which

imply α
(n)
0 = n ln(β) and α

(n)
1 = 0, and to vc = βxc and ψv = βψx. Likewise, we recover also

the exact risk-free rate

rt = − ln(βe−µ)− γ2σ2

2
+

(γ − 1)2σ2

2
−
(
eγθ+

γ2θ2δ2

2 − e(γ−1)θ+
(γ−1)2θ2δ2

2

)
pt

4.2.3. Perturbations around the DSS

To draw a comparison with conventional perturbations, we focus on the case ρ → 1,

which has an exact solution. Here while our approximation recovers the exact solution

as ρ → 1, conventional perturbations do so only as the order of approximation goes to

infinity. Therefore, even if in this example the FRSS turns out to be nested in conventional

perturbations, it is less costly to use our approximation.

Indeed, even in the simple case with time-separable preferences (γ = ρ), as ρ → 1 a

conventional ℓth-order perturbation of the risk-free rate yields:

rt = − ln(βe−µ)− θpt −
ℓ∑

j=1

κj,t
j!

ℓ→∞→ − ln(βe−µ)− σ2

2
− (eθ+θ

2 δ2

2 − 1)pt

where κj,t is the jth conditional cumulant of θεξt+1−σεct+1, hence
∑∞

j=1
κj,t
j!

= lnEte
θεξt+1−σεct+1

by definition of the ccgf. Conventional perturbations yield the exact solution only as the

9Coefficient ψv solves a quadratic equation and we retain the negative root as it is the only one that
implies ψv = 0 when disasters have no impact—θ = 0.
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order of approximation goes to infinity.

4.2.4. Numerical example

We calibrate the model using the parameter values in Wachter (2013) for the mean and

standard deviation of the distribution of consumption drops during a disaster fitted to OECD

country data. Table 1 reports the parameter values. Figure 3 compares the exact solution to

our approximation by plotting the map from the value of the state variable (disaster intensity)

into the utility-consumption and the wealth-consumption ratios for different values of the

elasticity of intertemporal substitution. We consider logutility (ρ = 1), a value of 3 (ρ = 1/3)

(higher than typically considered by the literature), and expected utility (ρ = γ). The

approximation around the FRSS recovers the exact solution at ρ = 1 and remains extremely

close to the global solution around the expansion point for specifications departing from

logutility. The accuracy degrades only in tail regions of the state space, where nonlinearities

become particularly relevant (see also Pohl et al., 2018).

Note that a first-order approximation around the DSS recovers constant functions for the

utility-consumption and the wealth-consumption ratios that lie dramatically far from the

global functions, as indicated in Figure 3 (tagged by ‘DSS’).

Figure 7 complements Figure 3 by comparing the global solution with our approximate

solution. The figure reports the term structures of equilibrium risk premia and realized

return volatilities of zero-coupon equities and bonds. Dividends are defined as in Wachter

(2013) as levered consumption Dt = C2.6
t . Relative to the projected solution, the first-order

perturbation around the FRSS manages to capture the level, amplitude, and shape of the

term structures.

4.3. Production economy with habits

Consider next a version of the production economy with the habit formation and capital

adjustment costs in Jermann (1998) extended to incorporate a Campbell-Cochrane specifica-

tion for habits to give a larger role to risk, as studied in Chen (2017). In particular, these

habits can fix the counterfactually large interest rate variation in Jermann’s specification

through a large precautionary savings motive.

A representative consumer with Campbell-Cochrane habits in consumption lives in a

production economy and chooses output Yt = A1−α
t Kα

t and the trajectory of capital, whose
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Figure 3: Comparison of solutions for the map of surplus consumption into the wealth-consumption ratio in
Wachter’s (2013) model with variable rare disasters. Global solution and first-order perturbations around
the FRSS for different values of the elasticity of intertemporal substitution. Global solutions use Smolyak
collocation of Chebyshev polynomials of up to degree 8 and 10-point Gauss-Hermite quadrature.

accumulation is subject to adjustment costs:

Kt+1 =

[
1− δ + Φ

(
It
Kt

)]
Kt = eµKt +

ī

1− 1
ξ

[(
It
īKt

)1− 1
ξ

− 1

]
Kt

where ī ≡ δ
1+1/ξ

is the DSS investment-capital ratio. Output is devoted to consumption or to

investment, Yt = Ct + It. Technology and habits are driven by:

at+1 = µ+ at + σεt+1

st+1 = ϕst + Λ(st)(ct+1 − Etct+1)

where εt ∼ Niid(0, 1).

Joint optimality of consumption, investment, and capital accumulation implies:

it − kt − log(̄i)

ξ
+∆kt+1 = ln

(
erk

(N)
t +

N∑
n=1

epk
(n)
t

)
erk

(n)
t = Ete

mt+1+∆kt+1+rk
(n−1)
t+1 , epk

(n)
t = Ete

mt+1+∆kt+1+pk
(n−1)
t+1

with initial conditions pk
(0)
t = dt − kt and rk

(0)
t = (it − kt − log(̄i))/ξ +∆kt+1, and marginal
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Parameter Habit formation

Frequency quarterly
Subjective discount factor, β .987
Utility curvature parameter γ 2
Habit persistence, ϕ .98
Steady-state surplus consumption ratio, S .073
Mean growth rate (in %), µ 1.80/4

Standard deviation of tfp innovations (in %), σc 1.20/
√
4

Capital share, α 0.35

Investment-capital ratio, ī = δ
1+1/ξ 0.0205

Capital adjustment cost curvature, 1
ξ 0.4

Table 2: Deep parameters and their calibration (quarterly frequency) in the RBC model with Campbell-
Cochrane habits.

product of capital net of new investment

Dt

Kt

= α
Yt
Kt

− It
Kt

This specification is a version of the model in Jermann (1998) with Campbell-Cochrane

habits explored by Chen (2017).

4.3.1. Numerical example

Under the specification Λ(st) = S−1
√
1− 2st− 1, we calibrate the model using the values

listed in Table 2. We let the sensitivity function of surplus consumption vary to avoid a

risk-free rate puzzle, and set β and S to achieve a stable risk-free rate around the mean

reported by Chen. The rest of the parameterization is the same as in Chen (2017).

Figure 4 plots the policy function of the equilibrium investment-capital ratio and the

consumption-productivity ratio as a function of the states. Deterministic and risky steady

state values of states differ, especially for detrended capital K/A. Each plot sets the other

state to its steady-state value. In particular, the approximation around the FRSS is close to

the global solution at the expansion point, while the DSS approximation is inaccurate. For

completeness we also plot the standard affine approximation exemplified by Malkhozov (2014),

which disregards the volatility in the sensitivity function of surplus consumption due to the

presence of endogenous (consumption) risk and linearizes around the DSS. The first-order

approximation around the FRSS offers a better approximation. We argue that the rooting

of our approximation in perturbation theory makes it superior to ad hoc risk-adjustment

strategies, as illustrated by this example.
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Figure 4: Comparison of the standard loglinear-lognormal affine approximations in Malkhozov (2014) and
first-order perturbations around the FRSS for the map of states into detrended investment and consumption
in the model with capital accumulation and Campbell-Cochrane habits. The projected solution uses Smolyak
collocation of Chebyshev polynomials of up to degree 8 and 10-point Gauss-Hermite quadrature. The state
space consists of surplus consumption (S) and detrended capital (K/A). Blue circles denote the RSS values.
For a meaningful comparison, we plot solutions as we vary one state and set the other at its RSS value.
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Figure 8 plots term structure implications; in this context, the linearization around the

FRSS performs similar to the global solution. Risk pricing is accurate at all horizons.

Figure 9 shows multiperiod Euler equation errors. The accuracy of our global solution in

terms of conventional one-step ahead Euler equation errors is consistently lower than −2,

and remains with maximums of around −2 over arbitrarily long horizons. These values are

considerably lower than under the global solution but remain relatively small; values of around

−3 are typically retained as acceptable in the extant literature (e.g., Fernández-Villaverde

et al., 2015).

5. Conclusion

We developed a theory of first-order perturbations around a specific stochastic steady

state—what we call the first-order risky steady state. Importantly, this first-order approxima-

tion captures time variation in risk premia; in this precise sense, this approximation method

is a natural choice for models that imply risk premia of first-order importance. The resulting

approximation technique offers explicit formulas and numerical routines to approximate

equilibrium quantities and asset prices in a large class of dynamic macro-finance models

as well as conditions for the existence and uniqueness of the approximate local dynamics.

We have also provided a flexible and user-friendly Matlab code available online that can be

integrated in Dynare.

Appendix

A. Proof of Proposition 1

We follow Klein (2000) and consider the generalized Schur factorization of Γ and Υ, with

unitary Q,Z ∈ Cny+nz×ny+nz and upper triangular matrices S, T ∈ Cny+nz×ny+nz such that:

QΓZ = S =

[
S11 S12

0 S22

]
QΥZ = T =

[
T11 T12

0 T22

]
Z =

[
Z11 Z12

Z21 Z22

]
, Z∗ =

[
Z∗

11 Z∗
21

Z∗
12 Z∗

22

]

with Z∗ the conjugate transpose of Z, where S11, T11 ∈ Cnz×nz , S22, T22 ∈ Cny×ny , Z11 ∈
Cnz×nz , Z12 ∈ Cnz×ny , and matrices S, T are sorted with generalized eigenvalues α(Γ,Υ) =

{tii/sii, i = 1, ..., ny + nz} in increasing order as |tii/sii| < 1, i = 1, ..., nz and |tii/sii| > 1, i =

nz + 1, ..., nz + ny. The dependence of Q,S, T, Z on q is not denoted explicitly for simplicity.
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We rewrite the matrix equation that describes the solution (6) as:

Γ

[
Inz

Ψ

]
[g1(y, z)Ψ + g2(y, z)](zt − z) = Υ

[
Inz

Ψ

]
(zt − z)

or: QΓZZ∗

[
Inz

Ψ

]
Et(zt+1 − z) = QΥZZ∗

[
Inz

Ψ

]
(zt − z) ⇔ SEt

[
xz,t+1

xy,t+1

]
= T

[
xz,t

xy,t

]
(A.1)

with [
xz,t

xy,t

]
≡ Z∗

[
Inz

Ψ

]
(zt − z), xz,t ∈ Rnz

t , xy,t ∈ Rny

t (A.2)

Note that the upper triangular matrices S11 and T22 are invertible, as their respective

eigenvalues {sii, i = 1, ..., nz} and {tii, i = nz + 1, ..., nz + ny} are nonzero by the assumption

about eigenvalues.

By the stability requirement lim |Etzt+N | <∞, equation (A.1) implies:

xy,t = T−1
22 S22Etxy,t+1 = (T−1

22 S22)
NEtxy,t+N

N→∞→ 0

as the eigenvalues of the upper triangular matrix T−1
22 S22 coincide with {sii/tii, i = nz +

1, ..., nz+ny}, and hence lie within the unit circle. Therefore, xy,t is determined uniquely and

is a bounded process if and only if {sii/tii, i = nz + 1, ..., nz + ny} lies within the unit circle.

Next, using definition (A.2), it follows that Ψ = −(Z∗
22)

−1Z∗
12 = Z21Z

−1
11 , where the last

equality and invertibility are due to the orthonormality of matrix Z. The orthonormality of

Z also implies Z∗
11 − Z∗

21(Z
∗
22)

−1Z∗
12 = Z−1

11 . Therefore, equation (A.1) implies:

Etxz,t+1 = S−1
11 T11xz,t, xz,t = (Z∗

11 + Z∗
21Ψ)(zt − z) = Z−1

11 (zt − z)

hence Et(zt+1 − z) = Z11S
−1
11 T11Z

−1
11 (zt− z), so the spectrum of matrix g1(y, 0)Ψ+ g2(y, 0) is:

{
λ ∈ C : det[Z11S

−1
11 T11Z

−1
11 − λInz ] = 0

}
=

{
tii
sii
, i = 1, ..., nz

}
Therefore, the state vector has stable dynamics if and only if {tii/sii, i = 1, ..., nz} lies within

the unit circle.
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B. Proof of Proposition 2

FRSS is a saddle point ⇒ Locally unique and differentiable implicit functions. The goal is to

show that maps [y, z] of [ε, q, τ ] are defined uniquely and are differentiable on a sufficiently

small neighborhood of [0, q, 0]. The proof follows from the implicit function theorem, provided

we can invoke it. To be able to invoke the implicit function theorem in Banach spaces (e.g.,

Lang, 1993, p.364), we have to prove that the derivative operator around the expansion point

is invertible as a continuous (and hence bounded) linear operator.10

In turn, we have invertibility—i.e., an a.s.-bounded process {ut}∞t=0 maps into unique

a.s.-bounded processes {ŷt; ẑt}∞t=0—if and only if the expansion point is a saddle point. To

prove this claim, we write the derivative as:

Q DF,t[ŷ; ẑ] = S

[
Etxz,t+1

Etxy,t+1

]
− T

[
xz,t

xy,t

]
, with

[
xz,t

xy,t

]
≡ Z∗

[
ẑt

ŷt

]

where Q,S, T, Z constitute the Schur factorization of Γ and Υ. The dependence of Q,S, T, Z

on q is not denoted explicitly for simplicity. We then note that the derivative operator in

equation:

DF [ŷ; ẑ] = u ⇔ S

[
Etxz,t+1

Etxy,t+1

]
= T

[
xz,t

xy,t

]
+ vt,

[
vz,t

vy,t

]
≡ Qut

can be inverted as:

xy,t = T−1
22 S22Etxy,t+1 − T−1

22 vy,t
N→∞→ −

∞∑
j=0

(T−1
22 S22)

jT−1
22 Etvy,t+j

Etxz,t+1 = S−1
11 T11xz,t + S−1

11 (T12xy,t − S12Etxy,t+1) + S−1
11 vz,t

if and only if T22 and S11 are invertible and T−1
22 S22 and S−1

11 T11 have eigenvalues inside the

unit circle; this property defines the FRSS as a saddle point. Orthonormal matrices Q and

Z map v and [xz;xy] back into the original processes u and [y; z].

The invertibility of the derivative operator evaluated at the expansion point implies

10We also require [y, z] to be in an open set of the topology of a.s.-bounded functions. As in the case of
linear perturbations around the DSS, we can guarantee this property in the topology of essentially bounded
functions if exogenous shocks have a.s.-bounded support (Jin and Judd, 2002). Note that the reasoning is
local; in particular, for a zt in a neighborhood of z̃ we have that zt+1 is in the same neighborhood only under
a sufficiently small q > 0. Whether q = 1 is sufficiently small will in turn depend on whether σ(z̃) is and will
be a practical question about the quality of the approximation.

33



that we can rely on the implicit function theorem to characterize the functions of the

history of shocks with the target form yt = y(zt, q, τ) and zt+1 = z(zt, q, εt+1, τ) that solve

F ([y, z], ε, q, τ) = 0. Namely, these functions are unique and differentiable in a neighborhood

of the expansion point (zt, τ) = (z̃, 0).

Locally unique and differentiable implicit functions ⇒ Coefficients from first-order Taylor

approximation equal coefficients from heuristic approximation. The uniqueness and differ-

entiability of the implicit functions imply that we can now approximate the local solution

around the FRSS (zt, τ) = (z̃, 0) via the Taylor theorem. (Note that no expansion in q will

take place.) We are looking to identify the approximate functions:

yt = y(z̃, q, 0) + y1(z̃, q, 0)(zt − z̃) + y3(z̃, q, 0)τ

zt+1 = z(z̃, q, εt+1, 0) + z1(z̃, q, εt+1, 0)(zt − z̃) + z4(z̃, q, εt+1, 0)τ

xt+1 = x(z̃, q, εt+1, 0) + x1(z̃, q, εt+1, 0)(zt − z̃) + x4(z̃, q, εt+1, 0)τ

It is useful to define the derivative of a differentiable matrix λ : Rnz → Rny×nx as:

λ1(0) =


∂λ(1,:)(0)

∂ẑt
...

∂λ(ny,:)(0)

∂ẑt

 ∈ Rnzny×nx ,
∂λ(i,:)(0)

∂ẑt
≡


∂λ(i,1)(0)

∂ẑ1,t
· · · ∂λ(i,nx)(0)

∂ẑ1,t
...

...
∂λ(i,1)(0)

∂ẑnz,t
· · · ∂λ(i,nx)(0)

∂ẑnz,t

 ∈ Rnz×nx

for each row i = 1, ..., nz.
A Taylor approximation of the equilibrium conditions around point [zt, τ ] = [z̃, 0] yields:

z(z̃, q, εt+1, 0) = g[y(z̃, q, 0), z̃] + λ(z̃)(Et+1 − Et)y[z(z̃, q, εt+1, 0), q, 0] + qσ(z̃)εt+1

= g[y(z̃, q, 0), z̃] + σz(z̃, q)εt+1, σz(zt, q) ≡ q[Inz
− λ(zt)y1(z̃, q, 0)]

−1σ(zt)

z1(z̃, q, εt+1, 0)(zt − z̃) = [g1y1(z̃, q, 0) + g2](zt − z̃) + [Inz
⊗ (zt − z̃)′]λ1(z̃)(Et+1 − Et)y[z(z̃, q, εt+1, 0), q, 0]

+ λ(z̃)(Et+1 − Et)y1[z(z̃, q, εt+1, 0), q, 0]z1(z̃, q, εt+1, 0)(zt − z̃)

+ [Inz
⊗ (zt − z̃)′]σ1(z̃)qεt+1

= [g1y1(z̃, q, 0) + g2](zt − z̃) + [Inz
⊗ (zt − z̃)′]σ1,z(z̃, q)εt+1

z4(z̃, q, εt+1, 0) = g1y3(z̃, q, 0) + [Inz − λ(zt)y1(z̃, q, 0)]
−1λ(z̃)(Et+1 − Et)y3(z̃, q, 0)

= g1y3(z̃, q, 0)
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where g1 ≡ g1[y(z̃, q, 0), z̃] and g2 ≡ g2[y(z̃, q, 0), z̃], with the auxiliary variable:

x(z̃, q, εt+1, 0) = h[y(z̃, q, 0), z̃] + f3y[z(z̃, q, εt+1, 0), q, 0] + f4z(z̃, q, εt+1, 0)

= h[y(z̃, q, 0), z̃] + f3y(z̃, q, 0) + f4z̃ + [f3y1(z̃, q, 0) + f4]σz(z̃, q)εt+1

x1(z̃, q, εt+1, 0)(zt − z̃) = [f1y1(z̃, q, 0) + f2 + f3y1[z(z̃, q, εt+1, 0), q, 0]z1(z̃, q, εt+1, 0) + f4z1(z̃, q, εt+1, 0)] (zt − z̃)

= [f1y1(z̃, q, 0) + f2 + [f3y1(z̃, q, 0) + f4] (g1y1(z̃, q, 0) + g2)] (zt − z̃)

+ [f3y1(z̃, q, 0) + f4][Inz
⊗ (zt − z̃)′]σ1,z(z̃, q)εt+1

x4(z̃, q, εt+1, 0) = f1y3(z̃, q, 0) + f3y3[z(z̃, q, εt+1, 0), q, 0] + [f3y1[z(z̃, q, εt+1, 0), q, 0] + f4] z4(z̃, q, εt+1, 0)

= [f1 + f3 + [f3y1(z̃, q, 0) + f4]g1] y3(z̃, q, 0)

where f1 ≡ f1[y(z̃, q, 0), z̃] and f2 ≡ f2[y(z̃, q, 0), z̃]. In the derivation we used the property

of the approximate solution:

y[z(z̃, q, εt+1, 0), q, 0] = y(z̃, q, 0) + y1(z̃, q, 0)σz(z̃, q)εt+1

y1[z(z̃, q, εt+1, 0), q, 0] = y1(z̃, q, 0)

that follows from y[z(zt, q, εt+1, 0), q, 0] = y(z̃, q, 0) + y1(z̃, q, 0)[z(zt, q, εt+1, 0)− z̃].

Next, we evaluate entropy using the local solution:

w(z̃, q, 0) = L
[
ex(z̃,q,εt+1)+x1(z̃,q,εt+1)(zt−z̃)|z̃

]
= κ [(f3y1(z̃, q, 0) + f4)σz(z̃, q); z̃] (B.3)

and hence we identify [y(z̃, q, 0), y1(z̃, q, 0)] using equation Etxt+1 + τw(zt, q, τ) + (1 −
τ)L̃(zt, q) = 0 and matching coefficients as:

0 = h[y(z̃, q, 0), z̃] + f3y(z̃, q, 0) + f4z̃ + L̃(z̃, q) (B.4)

0 = f1y1(z̃, q, 0) + f2 + [f3y1(z̃, q, 0) + f4][g1y1(z̃, q, 0) + g2] + L̃1(z̃, q) (B.5)

0 = [f1 + f3 + [f3y1(z̃, q, 0) + f4]g1] y3(z̃, q, 0) + w(z̃, q, 0)− L̃(z̃, q) (B.6)

Matrix equations (B.4) and (B.5) coincide with matrix equation (6). It follows that z = z̃,

y = y(z̃, 1, 0) and Ψ = y1(z̃, 1, 0). Therefore, matrix equations (B.4) and (B.5) coincide with

matrix equation (6); the heuristically derived coefficients can be interpreted as the coefficients

from a first-order perturbation around the FRSS (zt, τ) = (z̃, 0) evaluated at q ∈ [0, 1] and

εt+1 = 0.

Finally, z = z̃ and Ψ = y1(z̃, 1, 0) imply w(z̃, q, 0) = L̃(z̃, q) by equation (B.3). It follows

that y3(z̃, q, 0) = 0 by equation (B.6). The local slope of the solution with respect to τ is

zero.
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C. Numerical considerations

The nonlinear system of equations (6) in the unknowns [y, z,Ψ] is amenable to standard

numerical solution methods. Still, an educated initial guess is often needed to select the

saddle path.

When the DSS can be solved for, it offers a natural initial guess. Namely, we can often

start by finding the point [ȳ, z̄]:

0 = f(ȳ, z̄) + f3ȳ + f4z̄, z̄ = g(ȳ, z̄)

and, by a QZ decomposition (see Appendix A), the DSS slope Ψ̄ that solves:

0 = f1(ȳ, z̄)Ψ̄ + f2(ȳ, z̄) + (f3Ψ̄ + f4)[g1(ȳ, z̄)Ψ̄ + g2(ȳ, z̄)]

We propose two algorithms that start from the output of a first-order approximation

around the DSS.

C.1. Continuation algorithm

A simple continuation algorithm to solve system (6) numerically can be based on the

observation that the solution [y, z,Ψ] to system:

0 = h(y, z) + f3y + f4z + qL̃(z, q), z = g(y, z)

0 = f1Ψ+ f2 + (f3Ψ+ f4)(g1Ψ+ g2) + qL̃1(z, q)
(C.7)

coincides with a linear approximation around the DSS at q = 0 and around the FRSS at

q = 1.

Algorithm 2. Set a sequence of N scalars q0 < ... < qN with q0 = 0 and qN = 1 and solve

system (C.7) at q0 = 0, which yields the DSS (ȳ, z̄) and the associated first-order coefficients

Ψ̄. Then, for each n = 1, ..., N , solve system (C.7) at q = qn by a numerical solver using the

solution of system (C.7) at q = qn−1 as the initial guess.

When the DSS is not a valid expansion point but the FRSS is, the system should be

solved directly at q > 0, so the algorithm can be started at some value of q ∈ (0, 1] for which

a solution can be obtained.

C.2. Iterative algorithm

A second, faster iterative algorithm to solve system (6) numerically also starts from the

DSS.
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Algorithm 3. Initialize the algorithm at y0 = ȳ, z0 = z̄, Ψ0 = Ψ̄, and iterate to convergence

the following steps:

1. Find [yn, zn] in:

0 = f(yn, zn) + f3yn + f4zn + L̃(zn−1; Ψn−1)

zn = g(yn, zn)

using L̃(zt; Ψ) = κ[(f3Ψ+ f4)[Inz − λ(zt)Ψ]−1σ(zt); zt].

2. By a QZ decomposition find Ψn in:

0 = f1(yn, zn)Ψn + f2(yn, zn) + (f3Ψn + f4)[g1(yn, zn)Ψn + g2(yn, zn)] + L̃1(zn−1; Ψn−1)

While we advocate for running the algorithm to convergence to solve for the FRSS, an

alternative, faster procedure is to run it in simply two stages, thereby stopping at the point

[y1, z1] and with coefficients Ψ1. Such a procedure would extend to our setup a strategy

similar in spirit to de Groot (2013), who first uses a conventional second-order approximation

to approximate the FRSS as the SDSS and then linearizes the equations around the SDSS to

derive the linear coefficients of the solution.
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Figure 5: Comparison of solution methods to compute average equilibrium term structures of holding-period risk premia {lnEtR
e,(n)
t+1 } and

volatilities {stdt(r(n)t+1)} in Campbell and Cochrane (1999). Linearization around the FRSS (solid red) and projected solution using cubic splines
collocated over 200 Chebyshev nodes and 20-point Gauss-Hermite quadrature (dashed blue).
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Figure 6: Comparison of solution methods to compute average equilibrium term structures of holding-period risk premia {lnEtR
e,(n)
t+1 } and

volatilities {stdt(r(n)t+1)} in Wachter (2006). Linearization around the FRSS (solid red) and projected solution using cubic splines collocated over
200 Chebyshev nodes and 20-point Gauss-Hermite quadrature (dashed blue).
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Figure 7: Comparison of solution methods to compute average equilibrium term structures of holding-period risk premia {lnEtR
e,(n)
t+1 } and

volatilities {stdt(r(n)t+1)} in Wachter (2013). Linearization around the FRSS (solid red) and projected solution using Chebyshev polynomials of up
to degree eight collocated over a Smolyak grid and 10-point Gauss-Hermite quadrature (dashed blue).
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Figure 8: Comparison of solution methods to compute average equilibrium term structures of holding-period risk premia {lnEtR
e,(n)
t+1 } and

volatilities {stdt(r(n)t+1)} in Jermann (1998)/Chen (2017). Linearization around the FRSS (solid red) and projected solution using Chebyshev
polynomials of up to degree eight collocated over a Smolyak grid and 10-point Gauss-Hermite quadrature (dashed blue).
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Figure 9: Multiperiod Euler equation errors in Jermann (1998)/Chen (2017). Errors are expressed in log10. Values in the state dimension
index different pairs [kat,

√
1− 2ŝt] built as the Cartesian product of 10 equidistant points along each dimension. The projected solution

uses Chebyshev polynomials of up to degree eight collocated over a Smolyak grid. Expectations are evaluated using 10-point Gauss-Hermite
quadrature.
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