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Abstract

Quantile regression methods are increasingly used to forecast tail risks and uncertainties
in macroeconomic outcomes. This paper reconsiders how to construct predictive densities
from quantile regressions. We compare a popular two-step approach that fits a specific
parametric density to the quantile forecasts with a nonparametric alternative that lets the
“data speak.” Simulation evidence and an application revisiting GDP growth uncertainties in
the US demonstrate the flexibility of the nonparametric approach when constructing density
forecasts from both frequentist and Bayesian quantile regressions. They identify its ability to
unmask deviations from symmetrical and unimodal densities. The dominant macroeconomic
narrative becomes one of the evolution, over the business cycle, of multimodalities rather
than asymmetries in the predictive distribution of GDP growth when conditioned on financial
conditions.
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1 Introduction

Recent research has used quantile regression (QR) methods both to produce density nowcasts
and forecasts of macroeconomic and financial variables and to assess tail risks, emphasizing
asymmetries in the distribution of (real) GDP growth when conditioned on financial conditions.1

A commonly adopted approach in this literature, following Adrian et al. (2019) [henceforth
ABG], is to produce the density forecasts in two steps. As a first step, the QRs are estimated.
This means that the underlying conditional density is defined only at the chosen quantiles
(typically four quantiles are chosen). As a result, as a second step, the skewed-t density
function of Azzalini and Capitanio (2003) is fitted to these quantile forecasts by minimizing
the distance (the `2 norm) between the (empirical) regression quantiles and the (theoretical)
density-implied quantiles. This second step both smooths the estimated quantile functions
and provides a complete density forecast, albeit one whose form is now controlled by the class
of skewed-t density assumed. This second step, therefore, contrasts the nonparametric nature
of the first-step quantile regressions. Policy institutions, such as the IMF, have also adopted
this two-step approach to monitor international macroeconomic risks, such as growth-at-risk
(GaR); see Prasad et al. (2019).

This paper reconsiders the use of QRs when interest rests with the production and subsequent
evaluation of density forecasts, from which specific risk forecasts, such as GaR, can always be
extracted. The attraction of producing density forecasts rather than specific point, quantile,
or interval forecasts is that, given the forecast user’s loss function, one can readily extract from
the density forecast the features of specific interest to the user. Such a focus on the production
of density forecasts is rare in the quantile regression literature (with the notable exceptions
listed above). This is despite considerable attention having been paid to the production and
evaluation of the quantile forecasts themselves (for example, see Komunjer (2013)).

Our paper proposes and then contrasts with the aforementioned two-step ABG method,
which has become so established, a simple nonparametric (strictly “semi-parametric”) approach
to the production of density forecasts from QRs. Unlike ABG’s, this approach does not
superimpose a global density on specific quantile forecasts. Instead, the conditional quantile
forecasts from the first-step QRs are mapped directly to a conditional density, assuming only
local uniformity between the quantile forecasts. In an application to US GDP growth, we
find that use of this nonparametric approach matches or slightly improves upon the accuracy

1On the use of QR methods to produce density nowcasts and forecasts, see e.g., Gaglianone and Lima
(2012), Gaglianone and Lima (2014), Manzan and Zerom (2013), Manzan (2015), Korobilis (2017), Ferrara
et al. (2022), Chen et al. (2021), and Mitchell et al. (2022). On the more specific but connected issue of the
assessment of tail risks using QRs, see e.g., Giglio et al. (2016), Ghysels et al. (2018), Adrian et al. (2019),
Carriero et al. (2020a), Carriero et al. (2020b), Reichlin et al. (2020), Brownlees and Souza (2021), and Figueres
and Jarocinski (2020).
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of the ABG densities. It also supports the much-cited finding of ABG that the left-tail of
the conditional density of GDP growth moves with the tightness of financial conditions. But
the nonparametric approach delivers conditional forecast densities with very different features
than those when, following ABG, a skewed-t density is assumed globally. In particular, linking
to Adrian et al. (2021), we find that the very same QRs used by ABG do, in fact, deliver
multimodal GDP growth density forecasts. This is notably so at times of recession, when
conditioning on a popular index of financial conditions. The evolution over the business
cycle of multimodalities rather than asymmetries then becomes the dominant macroeconomic
narrative of the conditional predictive distribution of GDP growth.

The focus in this paper is the construction of density forecasts from QRs, given their
growing use in macroeconomics and finance since ABG. A large literature, of course, considers
the production of density forecasts using other methods; see Aastveit et al. (2019) for a
review. A literature has also grown up, in response to ABG, on the production of GaR and
density forecasts using both parametric and nonparametric alternatives to QR; for example,
see Carriero et al. (2020a), Caldara et al. (2021), Plagborg-Moller et al. (2020), De Polis et al.
(2020), and Adrian et al. (2021). By contrast, we deliberately stick to the QR models of
ABG. In so doing, we emphasize the empirical importance of moving beyond their skewed-t
parametric assumption when fitting the density to these quantile forecasts.

The remainder of this paper is structured as follows. Section 2 considers the construction
of density forecasts from quantile regressions, estimated via frequentist or Bayesian methods.
It contrasts parametric and nonparametric methods for the production of the density forecast.
Section 3 presents Monte Carlo evidence on the relative efficacy of the parametric and nonparametric
approaches at fitting densities to distributions of various underlying shapes. Section 4 revisits
the GaR application of ABG and contrasts empirical results using the parametric and nonparametric
approaches. Section 5 concludes. An online appendix contains supplementary material.

2 Density forecasts from quantile regressions

Consider the QR relating the τ -th quantile of yt+h, the variable of interest (GDP growth in our
application), to xt, a d−dimensional vector of conditioning variables including an intercept:

Qyt+h|xt(τ |xt) = x′tβτ , τ ∼ U(0, 1), (1)
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with t = 1, ..., T and where h is the forecast horizon and U(.) is the uniform density. Note
that, following ABG, we focus on QR models with time-invariant parameters.2

The QR slope, βτ , is chosen to minimize the weighted absolute sum of errors:

β̂τ = arg min
βτ

T∑
t=1

(yt+h − x′tβτ )(τ − 1yt+h≤x′tβτ ), τ ∈ (0, 1), (2)

where 1(.) denotes an indicator function. A perceived attraction of QR is that the informational
importance of xt for yt+h can vary by quantile and thereby accommodate situations where
conditioning variables have, for example, more or less informational content in the tails of the
density.

The quantile forecasts from (2), conditional on xt, are:

Q̂yt+h|xt(τ |xt) = x′tβ̂τ . (3)

Bayesian estimation of QRs has also gained attention recently. Koenker and Machado
(1999) established that likelihood-based inference using independently distributed asymmetric
Laplace densities (ALD) is directly related to (2). Yu and Moyeed (2001) show how exact
Bayesian inference using Markov chain Monte Carlo (MCMC) methods can proceed by forming
the likelihood function using the ALD; they emphasize the utility of the ALD, irrespective of
the original distribution of the data. And Kozumi and Kobayashi (2011) propose a mixture
representation of the ALD that renders the model conditionally Gaussian, facilitating estimation
using more efficient MCMC methods. Unlike classical estimation methods, Bayesian methods
naturally accommodate parameter uncertainty when forecasting.

Quantile forecasts can be constructed from the Bayesian QR, as per (3), from the posterior
parameter distribution for βτ . For the r-th MCMC draw, β̂rτ , these quantile forecasts are given
as:

Q̂yt+h|xt(τ |xt)
r = x′tβ̂

r
τ . (4)

In empirical applications, quantile regressions are estimated at a finite number of τ , i.e.,
[τ1, ..., τk], where 0 < τ1 < τ2 < .... < τk < 1. ABG, in fact, consider just k = 4. This means
that the underlying conditional density is defined only at these k quantiles. To estimate the
full conditional h−step predictive density, f̂(yt+h|xt), we therefore need to establish a mapping
from the k quantile forecasts, as in (3) or (4):

2Recent research in macroeconomics has moved on to consider QR models with time-varying-parameters
(e.g., see Korobilis et al. (2021)). The same issues, as discussed in this paper, arise when considering how to
construct density forecasts from these QR models.
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{
Q̂yt+h|xt(τ1|xt), ..., Q̂yt+h|xt(τk|xt)

}
→ f̂(yt+h|xt),∀[x′t, yt+h]′ ∈ Rdim(x)+1, (5)

where, for notational ease, we denote these quantile forecasts Q̂yt+h|xt(τj|xt) = x′tβ̂τ ; that is,
we suppress dependence on the MCMC draw.

Below we set out two ways of establishing this mapping. We start with the parametric
approach of ABG. As discussed in the introduction, this approach is used widely in macroeconomics,
despite the contradiction with the nonparametric flavor of the first-step QRs.

2.1 ABG’s parametric quantile-matching approach

To estimate the full continuous conditional density forecast of yt+h, from the k quantile
forecasts, ABG, in effect, combine them by fitting the skewed-t density function of Azzalini
and Capitanio (2003) to the quantile forecasts, (3). They minimize the distance (the `2
norm) between the (empirical) regression quantiles and the (theoretical) distribution-implied
quantiles:

arg
µ,σ,α,υ

min
∑
τ

(
Q̂yt+h|xt(τ |xt)− F̂

−1(τ ;µ, σ, α, υ)
)2
, (6)

where F is the CDF of the skewed-t PDF, f, given as:

f(y;µ, σ, α, υ) =
2

σ
t

(
y − µ
σ

; υ

)
T

(
α
y − µ
σ

√
υ + 1

υ +
(
y−µ
σ

)2 ; υ + 1

)
, (7)

where t and T (.) respectively denote the PDF and CDF of the Student t-distribution, where
µ is a location parameter, σ is the scale, υ is the fatness, and α is the shape. When α = 0,
the skewed-t reduces to the Student t. When, in addition, υ =∞, (7) reduces to a Gaussian
distribution, with mean µ and standard deviation σ.

ABG focus on the exactly identified case of matching the 0.05, 0.25, 0.75, and 0.95
quantiles. But, in principle, as ABG discuss in a footnote but do not explore empirically,
more quantiles could be used, allowing the four parameters of (7) to be over-identified. Since
the choice of these k = 4 quantiles is somewhat arbitrary and may affect the shape of the
fitted distribution, below we also consider fitting the skewed-t distribution to more quantiles.

While ABG used (6) on quantile forecasts, (3), produced from a frequentist QR, others
have fitted the skewed-t-distribution to forecasts produced from a Bayesian QR. Ferrara et al.
(2022), for example, use (6) on the mean (across r = 1, ..., R MCMC draws) quantile forecasts,
(4).

5



2.2 Constructing the density forecast nonparametrically

Rather than assume a parametric function for f̂(yt+h|xt), following Parzen (1979) and Koenker
(2005), one can back out the conditional distribution directly from the conditional quantile
function via the integral transforms:

F̂ (yt+h|xt) =

∫ 1

0

1{x′tβ̂τ ≤ yt+h}dτ. (8)

By considering all τ ∈ (0, 1), one can approximate the true conditional quantile function
arbitrarily well, when the true density is a smooth conditional density (Koenker (2005), p.
53).

In practice, we follow Koenker and Zhao (1996) and adopt a simple simulation-based
approach, instead of relying on numerical integration. A random draw from the h-step-ahead
forecast distribution is given by:

ŷt+h = Q̂yt+h|xt(U |xt)
r, (9)

where U is a uniformly distributed random variable on [0, 1] as in Koenker and Zhao (1996).
Repeating across many random draws approximates F̂ (yt+h|xt).

To operationalize, with a finite k, we smooth/interpolate across adjacent quantile forecasts
by taking a first-order Taylor expansion of the CDF, (8), between the j-th and j + 1-th
quantiles:

F̂k(yt+h|xt) = τj +
τj+1 − τj

x′tβ̂τj+1
− x′tβ̂τj

(yt+h − x′tβ̂τj) (10)

= τj + F ′(y∗t+h,j|xt)(yt+h − x′tβ̂τj), (11)

for y∗t+h,j ∈
(
x′tβ̂τj , yt+h

)
⊂
(
x′tβ̂τj , x

′
tβ̂τj+1

)
. Assuming that the interval between adjacent

quantiles is relatively small, the implied distribution function is approximately linear within
the interval.

Figure 1 provides an illustration, plotting the approximate CDF in yellow and the true
CDF in blue. This illustration intuitively points to higher values of k delivering better
approximations. That is, the marginal benefits of the first-order approximation decline as
k increases, an issue we explore below both in the simulations and in the application. Unlike
ABG’s, this approach does not superimpose a global (parametric, such as a skewed-t) distribution
on specific quantile forecasts. Instead, it assumes local uniformity between the k quantile
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forecasts. Hence, it is best seen as a “semi-parametric” method, although for convenience we
continue to refer to the method as nonparametric.

Algorithm 1 summarizes the mechanics of how the density forecast is formed nonparametrically
from the QRs. Whether the QRs are estimated by frequentist or Bayesian methods, the
empirical density forecast is constructed from the sample:[
yt+h,1,yt+h,2, ...,yt+h,k,yt+h,k+1

]
. This vector can be used directly by the macroeconomist or

a kernel could be fitted.3

We note four features of Algorithm 1:

1. Since:
Prob(F−1(τj|xt) ≤ yt+h < F−1(τj+1|xt)) = τj+1 − τj, (12)

to take a sample of length N from the conditional distribution F (·|X = xt) requires
(τj+1 − τj)N samples to be taken between:(

x′tβ̂τj , x
′
tβ̂τj+1

)
. (13)

2. The quantile forecasts are re-arranged as necessary (following Chernozhukov et al. (2010))
to avoid quantile crossing.

3. The “extreme” quantiles are approximated by a specified CDF, here assumed to be the
Gaussian CDF, Φ, although any parametric CDF could be used.4 This implies:

Φ(x′tβτ1 , µ1, σ1) = τ1,Φ(x′tβτ2 , µ1, σ1) = τ2 (14)

Φ(x′tβτk−1
, µ2, σ2) = τk−1,Φ(x′tβτk , µ2, σ2) = τk, (15)

where we solve for [µ1, µ2, σ1, σ2] to satisfy these 4 equations.

4. Algorithm 1 consistently estimates the true conditional distribution F (yt+h|xt) as T, k →
∞. This is understood by noting that there are two convergence aspects to consider in
Algorithm 1: (a) statistical convergence, T →∞, and (b) convergence of the approximate
distribution to the true distribution as the number of quantile levels, k →∞:

(a) The consistency of the QR estimates β̂τj as T → ∞ (see Chernozhukov et al.
(2010) and Koenker (2005)), at the chosen quantile levels, j, implies that the

3See Krüger et al. (2021) for a discussion of the pros and cons of alternative methods for estimating the
distribution from the underlying simulation output. Their analysis demonstrates that the empirical CDF-based
approximation works well in many contexts.

4In our simulations and the application, we define “extreme” as those quantiles beyond 0.05 and 0.95 or
0.01 and 0.99. Following Chernozhukov (2005) extremal methods could be used instead.

7



approximate distribution F̂k → Fk. That is, referring again to Figure 1, the
approximate distribution converges to the piecewise-linear function (the yellow
line) approximating the true CDF (the blue line) at the chosen quantile. For
τ ∈ {τ1, ..., τk}:

Fk(x
′
tβτ |xt) = F (x′tβτ |xt), (16)

i.e., the vertex of the function equals the true density at the finite sequence of
quantile levels (and the blue and yellow lines equal each other).

(b) As k →∞, the piecewise-linear CDF (the yellow line in Figure 1) converges to the
true distribution (the blue line in Figure 1) between these quantile levels. This is
seen as follows. Given a smoothness assumption for the true density, by Taylor’s
theorem, rewrite the true distribution as:

F (yt+h|xt) = τj + f(y∗t+h,1|xt)(yt+h − x′tβτj), (17)

for any yt+h ∈
(
x′tβτj , x

′
tβτj+1

)
and some y∗t+h,1 ∈

(
x′tβτj , yt+h

)
. Then, by the mean

value theorem, the approximate k quantile level distribution:

Fk(yt+h|xt) = τj +
τj+1 − τj

x′tβτj+1
− x′tβτj

(yt+h − x′tβτj) (18)

= τj + f(y∗t+h,2|xt)(yt+h − x′tβτj), (19)

for y∗t+h,2 ∈
(
x′tβτj , x

′
tβτj+1

)
. Comparing (17) and (19), the only difference is between

y∗t+h,1 and y∗t+h,2. Yet, note that:

x′tβτj ≤ y∗t+h,2 ≤ x′tβτj+1
(20)

x′tβτj ≤ y∗t+h,1 ≤ yt+h ≤ x′tβτj+1
. (21)

Further assume that the conditional quantiles are linear in the regressors, uniformly
across all τ. Then, we can let k →∞. As k →∞, τj+1 − τj → 0, and the intervals
in (20) and (21) converge by the sandwich theorem such that:

y∗t+h,1 = y∗t+h,2.

Hence:
lim
k→∞

Fk(yt+h|xt) = F (yt+h|xt).

In the simulations and empirical application below, we consider how to choose k.
We suggest, in effect, to choose k empirically to maximize forecasting performance.
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true CDF
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Figure 1: Illustrative comparison of the true CDF against Algorithm 1 (Fk) and the CDF
assuming uniform (equal) weights between adjacent quantiles

In general, we find that intermediate values of k (such as k = 19) tend to work
best. These balance the need for a value large enough to accurately trace out the
shape of the underlying distribution, with the risk, especially in smaller samples,
of introducing noise by estimating QRs in the tails of the distribution with too few
observations.

Algorithm 1, where the proposed distribution is:

F̂k(yt+h|xt) = τj +
τj+1 − τj

x′tβ̂τj+1
− x′tβ̂τj

(yt+h − x′tβ̂τj), (22)

when yt+h ∈
(
x′tβ̂τj , x

′
tβ̂τj+1

)
, can be contrasted with an alternative of using equal weights

between adjacent quantiles:

F̂EW (yt+h|xt) =


τj yt+h ∈ (x′tβ̂τj , x

′
tβ̂τj+1

)

0 yt+h < x′tβ̂τ1

1 yt+h ≥ x′tβ̂τk

, (23)
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which amounts to a zero-order approximation of the CDF between quantiles j and j+1. We
emphasize that this is, in effect, the approach used by Korobilis (2017) to produce density
forecasts from Bayesian QRs. This approach involves collecting together the r = 1, ..., R

MCMC draws of the quantile forecast Q̂yT+h
(τ |xt)r across τ ∈ [0.05, 0.10, ..., 0.90, 0.95] and

then constructing the full posterior density forecast from this stacked vector - using a kernel
to smooth.

Figure 1 also illustrates how equal weights differ from Algorithm 1. It shows how equal
weights intuitively provide a worse approximation to the true CDF. Note that, given the
estimated quantile levels, the straight lines that Algorithm 1 imposes between adjacent quantiles
provide a piecewise-linear approximation to the CDF. Unlike the piecewise-constant function
implied by equal weights, the piecewise-linear approximation benefits from smoothness in
the estimated CDF. Statistics such as the conditional mean can be obtained via numerical
integration of: ∫

xtf̂k(yt+h|xt)dxt, (24)

where:

f̂k(yt+h|xt) =


φ(yt+h|µ̂1, σ̂1) yt+h ≤ x′tβ̂τ1

τj+1−τj
x′tβ̂τj+1−x

′
tβ̂τj

x′tβ̂τj < yt+h ≤ x′tβ̂τj+1

φ(yt+h|µ̂2, σ̂2) yt+h > x′tβ̂τk .

(25)

Algorithm 1, instead, relies on samples from the conditional density f̂k(yt+h|xt), which lets
us readily construct the whole density.

3 Simulation results

To evaluate the performance of the nonparametric approach to construction of the predictive
density from QRs, relative to extant alternatives including the approach of ABG, we conduct
a set of Monte Carlo experiments. These experiments let us assess the ability of the different
approaches to uncover a range of distributional forms. We consider five data-generating
processes (DGPs) that yield densities for {yt}Tt=1 that are:

1. (DGP1) Gaussian: N(0, 1).

2. (DGP2) Negatively skewed: f(y;µ = 1, σ = 2, α = −0.5, υ = 10), where f(.) is as
defined in (7).
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Algorithm 1 A local-linear algorithm to construct density forecasts from quantile regressions
• Estimate the QR at τj (j = 1, ..., k).

• Denote the QR estimates, β̂τj , where for Bayesian estimation β̂τj = {β̂1
τj
, ..., β̂Rτj} is a

d × R dimensional matrix, where r = 1, ..., R, defined by stacking across the MCMC
draws. In the frequentist case, R = 1. Define:

Qt =
[
(xt ˆ′βτ1)

′, (x′tβ̂τ2)
′, ..., (x′tβ̂τk)

′
]
∈ RR×k.

• Rearrange the elements of the rth row of the matrix Qt from smallest to largest in case
they are not monotonic.

• for j = 2 : k

– Obtain the sub-sample given random variables uniformly distributed on
[Q̃t,j−1, Q̃t,j]:

yt+h,j = Q̃t,j−11
′
(τj−τj−1)N

+ diag(Q̃t,j − Q̃t,j−1)Uj

where Q̃t,j denotes the jth column of Qt and Uj is a matrix of dimension R× (τj −
τj−1)N , with each element drawn from a standard uniform distribution similar to
(9).

• end

• Fit a Gaussian (or some other) distribution via β̂τ1 and β̂τ2 , and sample from the lower
tail F (yt+h|xt) < τ1 to obtain yt+h,1

• Fit a Gaussian (or some other) distribution via βτk−1n and βτk,n, and sample from the
upper tail F (yt+h|xt) > τk to obtain yt+h,k+1

Finally, create the stacked vector of forecasts:
[
yt+h,1,yt+h,2, ...,yt+h,k,yt+h,k+1

]
.

11



3. (DGP3) High kurtosis: f(y;µ = 1, σ = 1, α = 1, υ = 5).

4. (DGP4) Bimodal (mixture of Gaussian) : 1/3N(0, .04) + 2/3N(1, .04).

5. (DGP5) Trimodal (mixture of Gaussian): 1/6N(0, 0.2) + 1/3N(1, 0.2) + 1/2N(2, 0.2).

For {yt}Tt=1 samples of size T = 100 and T = 1, 000 drawn from each of these five DGPs
(see Figure 2 for an illustrative visualization), we then estimate five alternative densities and
compare their fit against the (true) DGP density. In all cases, when estimating the QR, we
set xt = 1, that is, we consider an intercept only.

The five densities we fit to the {yt}Tt=1 samples are:

1. NP(freq): estimate the QRs (where k = 19, such that τ ∈ [0.05, 0.10, ..., 0.90, 0.95])
using frequentist methods, (2), and then construct the density nonparametrically via
Algorithm 1. We also experiment, as summarized below, with k = 4 where τ ∈
[0.05, 0.25, 0.75, 0.95] (as in ABG) and k = 99 where τ ∈ [0.01, 0.02, ..., 0.99].

2. NP(B): estimate the QRs (where k = 19, such that τ ∈ [0.05, 0.10, ..., 0.90, 0.95]) using
Bayesian methods and then construct the density nonparametrically via Algorithm 1.
At the first stage, the Bayesian QR is estimated using a standard normal uninformative
prior for the q−vector of βτ coefficients, centered on a zero mean:

βτ ∼ N(0,Vβ), (26)

where Vβ = 10Iq.

3. EW(B): estimate the QRs (where k = 19, such that τ ∈ [0.05, 0.10, ..., 0.90, 0.95]) using
Bayesian methods (as in NP(B)) but then construct the density using equal weights,
(23).

4. ABG: follow ABG (using their replication material) and estimate the QRs (where k = 4,
such that τ ∈ [0.05, 0.25, 0.75, 0.95]) using frequentist methods and then construct the
density parametrically via (7).5

5. ABG kernel: as a non-QR benchmark, follow ABG and nonparametrically estimate a
kernel density.6

5We note that in ABG’s Matlab replication materials (available at http://doi.org/10.3886/E113169V1),
when matching the quantile forecasts to the skewed-t density they approximate integrals with discrete sums.
Specifically, looking at ABG’s Step2match.m file (line 100), we see that they evaluate the skewed-t density
only over a grid from -15 to 10. Instead, we use an exact analytical solution. In the empirical section below
we return to this issue, showing its empirical importance.

6See equation (8) of ABG for details of the specific kernel density estimator employed.
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For all the Bayesian models, we estimate using 20,000 MCMC draws with a burn-in of 10,000
draws. With regard to the Bayesian QR and Algorithm 1, we save every 10th draw from the
10,000 draws. This yields 1,000 draws (across k quantiles) that are then inputted by draw
into Algorithm 1 where N = 100. This delivers a vector of 100,000 draws (1,000*100) from
each predictive forecast density.

Tables 1 and 2, for T = 100 and T = 1, 000, respectively, report the mean squared error
(across R = 100 parallelized chains) of the first four moments of the fitted densities relative to
the true (DGP) density and the average Kullback-Leibler (KL) distance between the fitted and
true densities. KL is constructed as the expected difference in their logarithmic scores. Looking
at the KL distance first, as a measure of overall density fit, we see that the nonparametric
(NP) estimators, whether NP(freq) or NP(B), consistently deliver the best-fitting densities
irrespective of the shape of the true density.7 As anticipated, ABG’s parametric approach is
competitive only when the true density is unimodal. Instabilities in estimation of the skewed-
t density mean that ABG is not, however, always the best-fitting density even for DGP1
through DGP3, when the true density is unimodal, and we might expect the parametric
nature of ABG to deliver gains. But for the multimodal densities (DGP4 and DGP5) use of
Algorithm 1 is clearly preferable. Like ABG’s, the equal-weighted Bayesian approach, EW(B),
also performs poorly for multimodal densities and, in fact, under-performs relative to ABG
for the three unimodal DGPs. The benchmark kernel density, like the NP estimators, can also
accommodate multimodalities. However, the kernel density does not deliver as good-fitting
densities as the NP approaches, in particular for the smaller sample size of T = 100.

Turning to the accuracy of the first four moments, as judged by the mean squared error
(MSE) between the respective moment of the fitted and true densities, we observe a similar
picture. The NP estimators dominate both ABG, EW(B), and kernel. We also note how
explosive estimation, for some Monte Carlo replications, pushes up the MSE estimates in
some instances, especially for EW(B) and ABG. When estimates of υ < 4, not all of the first
four moments of the skewed-t density are defined.

7To isolate the role of k in explaining this result, given k = 4 in ABG but k = 19 in NP(freq), we
experimented with NP(freq) when k = 4 (τ ∈ [0.05, 0.25, 0.75, 0.95]) and k = 99 (τ ∈ [0.01, 0.02, ..., 0.99]); and
we experimented with ABG when k was increased from its maintained value of 4. As Table 4 in the online
appendix shows, decreasing k to k = 4 markedly lessens the accuracy of NP(freq) and increasing k to k = 99
also worsens accuracy. While we might expect increases in k to improve accuracy for NP(freq), as the local
uniformity assumption becomes weaker, parameter estimation errors increase for more extreme quantiles. The
objective function of the standard QR estimator is not smooth, and the QR estimates can experience jumps.
Future work might consider the benefits of producing the density forecasts having first smoothed the objective
function, e.g., as in Fernandes et al. (2021). Increasing k for NP(freq), well into the 5 percent tails as is
the case when k = 99, was therefore found to deliver noisier estimates of the underlying conditional density,
especially for the smaller T = 100. By contrast, due to its parametric assumption, increasing k did little to
affect results for ABG.
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In sum, the Monte Carlo evidence confirms that the choice of how to fit a density to quantile
forecasts matters. While ABG’s parametric assumption may work well, unsurprisingly it will
only do so for true densities that are unimodal. Instead, it is relatively simple to let the
“data speak,” as they do when estimating the QRs in the first place, and use nonparametric
approaches as detailed in Algorithm 1 to construct the forecast density from the quantile
forecasts. While these simulations are, of course, just illustrative, they do indicate how
the nonparametric approach of Algorithm 1 can flexibly accommodate a greater variety of
distributional shapes than ABG, even for modest sample sizes. They also suggest that when
using Algorithm 1 intermediate values of k (such as k = 19) best approximate the underlying
density.

In principle, we anticipate a trade-off when selecting what k to use in Algorithm 1. Too
small a value does not give NP sufficient flexibility to smoothly fit different distributional
shapes. Too large a value for k, especially for smaller sample sizes, T , increasingly forces
the QR into the tails of the density, where there are fewer observations. This may induce
noise in the forecast density, and raises the risk of introducing erroneous spikes or modes
(undersmoothing) in the forecast density when fitted using NP. To investigate this possible
trade-off, in the empirical appendix we report supplementary simulation results (see Table 5).
These involve, for DGP1 through DGP5, using the calibrated unimodality test of Hartigan
and Hartigan (1985), as proposed by Cheng and Hall (1998), and reporting the proportion
of rejections of unimodality. Table 5 confirms that while increasing k, when using NP(freq),
does increase the chance of identifying false peaks in the unimodal densities of DGP1 through
DGP3, this risk rapidly declines to zero for sample sizes of T > 50. This suggests that
increasing k does not inject false peaks into the fitted densities, except for very small samples
(T = 25). In turn, for the multimodal DGPs (DGP4 and DGP5), NP(freq) does a good job of
rejecting unimodality, except for smaller values of k (specifically, k = 4 and k = 9). As long
as k is at least 19, we see rejection rates in Table 5 of over 90 percent, even when T = 25.
These rejection rates rise further as T increases. In short, these supplementary unimodality
tests both support the use of intermediate values of k when using Algorithm 1 and provide
confidence that Algorithm 1 does not identify false modes in the forecast density, unless T is
especially small relative to k.

14



Gaussian Negative Skewness High Kurtosis

Bimodal Trimodal

Figure 2: Simulated draws from the 5 DGP densities (T = 1, 000)
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Table 1: Average mean squared error and Kullback-Leibler (KL) distance for T = 100

Models Mean Variance Skewness Kurtosis KL

DGP1: Unimodal (Gaussian)

NP(freq) 0.01 0.03 0.12 0.40 0.02

NP(B) 0.01 0.03 0.12 0.60 0.06

EW(B) 0.01 0.48 0.01 0.05 0.06

ABG 0.01 0.05 Inf Inf 0.02

ABG Kernel 0.01 0.07 0.04 0.10 0.02

DGP2: Unimodal (Negative Skewness)

NP(freq) 0.05 0.73 0.14 1.51 0.02

NP(B) 0.05 0.70 0.18 1.02 0.05

EW(B) 0.04 7.32 0.03 0.61 0.06

ABG 0.05 Inf Inf Inf 0.03

ABG Kernel 0.05 1.32 0.10 0.82 0.04

DGP3: Unimodal (High Kurtosis)

NP(freq) 0.01 0.12 1.11 80.41 0.02

NP(B) 0.01 0.08 0.46 49.13 0.06

EW(B) 0.01 0.34 0.82 72.22 0.07

ABG 0.01 Inf Inf Inf 0.03

ABG Kernel 0.01 0.30 0.66 59.62 0.12

DGP4: Bimodal

NP(freq) 0.00 0.00 0.01 0.04 0.03

NP(B) 0.00 0.00 0.01 0.06 0.05

EW(B) 0.00 0.05 0.04 1.99 0.25

ABG 0.00 0.00 0.30 6.14 0.30

ABG Kernel 0.00 0.00 0.01 0.11 0.11

DGP5: Trimodal

NP(freq) 0.00 0.00 0.01 0.04 0.05

NP(B) 0.00 0.00 0.01 0.07 0.06

EW(B) 0.00 0.23 0.07 1.23 0.32

ABG 0.00 0.01 0.31 5.20 0.26

ABG Kernel 0.00 0.01 0.02 0.07 0.21
Notes: Inf denotes infinity. NP(freq) uses k = 4. The 5 estimators and 5 DGPs are defined in
Section 3.
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Table 2: Average mean squared error and Kullback-Leibler (KL) distance for T = 1, 000

Models Mean Variance Skewness Kurtosis KL

DGP1: Unimodal (Gaussian)

NP(freq) 0.00 0.01 0.06 0.15 0.00

NP(B) 0.00 0.00 0.01 0.03 0.01

EW(B) 0.00 0.52 0.00 0.04 0.06

ABG 0.00 0.00 0.02 0.21 0.00

ABG Kernel 0.00 0.01 0.01 0.02 0.01

DGP2: Unimodal (Negative Skewness)

NP(freq) 0.01 0.31 0.06 1.04 0.00

NP(B) 0.01 0.09 0.02 0.56 0.01

EW(B) 0.00 7.37 0.02 0.63 0.06

ABG 0.00 0.15 0.04 Inf 0.00

ABG Kernel 0.00 0.18 0.02 0.30 0.01

DGP3: Unimodal (High Kurtosis)

NP(freq) 0.00 0.10 0.99 82.64 0.00

NP(B) 0.00 0.03 0.28 60.95 0.02

EW(B) 0.00 0.28 0.79 72.63 0.07

ABG 0.00 0.03 Inf Inf 0.00

ABG Kernel 0.00 0.03 0.60 142.25 0.05

DGP4: Bimodal

NP(freq) 0.00 0.00 0.00 0.00 0.00

NP(B) 0.00 0.00 0.00 0.00 0.01

EW(B) 0.00 0.05 0.04 2.02 0.26

ABG 0.00 0.00 0.32 6.23 0.31

ABG Kernel 0.00 0.00 0.00 0.02 0.03

DGP5: Trimodal

NP(freq) 0.00 0.00 0.00 0.01 0.03

NP(B) 0.00 0.00 0.00 0.01 0.02

EW(B) 0.00 0.27 0.07 1.22 0.33

ABG 0.00 0.01 0.30 5.09 0.25

ABG Kernel 0.00 0.00 0.00 0.01 0.09
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4 Empirical results: Revisiting the growth-at-risk application

of ABG

ABG established the empirical utility of quantile regressions for modeling the conditional
density of US GDP growth. They found that deteriorating financial conditions, as captured
by the Chicago Fed’s National Financial Conditions Index (NFCI), have an asymmetric effect
on GDP growth.8 In particular, they link GDP growth tail risks to poor financial conditions.
Recessions are associated with left-skewed conditional forecast densities. Carriero et al.
(2020a) challenge this view, noting that ABG’s empirical finding that downside risk varies
more than upside risk could equally well be explained by symmetric conditional forecast
densities as by asymmetric unconditional forecast densities. These could be produced, for
example, by Bayesian VAR models with stochastic volatility. Caldara et al. (2021) similarly
suggest use of a parametric modeling framework that rationalizes the empirical findings of ABG
but maintains use of symmetric conditional densities. They capture nonlinear effects with a
Markov-switching model, in which the transition probabilities depend, inter alia, on financial
conditions. Adrian et al. (2021) also jettison use of QR and instead use kernel-based estimators
to support their finding that the forecast density of GDP growth is approximately Gaussian
and unimodal during normal periods, but becomes multimodal during periods of tight financial
conditions. They also make the theoretical case for multimodality, explaining how it arises in
macrofinancial intermediary models with occasionally binding financial constraints.

Given the degree to which ABG’s empirical findings, based on their parametric quantile-
matching approach, have influenced the subsequent literature, as we have just selectively
reviewed, we emphasize the importance of letting the “data speak” about the nature of the
conditional density forecast for GDP growth when mapping the quantile forecasts to the
density forecasts. Accordingly, we revisit ABG’s application. But we compare their skewed-t
conditional density forecasts, which assume unimodality but allow for asymmetry, with those
conditional density forecasts formed when we make no such assumption and, via Algorithm
1, better let the data inform this mapping.

Specifically, to facilitate comparison with ABG’s parametric approach to constructing
forecast densities from QRs, we use their data, sample periods, and preferred models. Specifically,
we estimate QR models relating GDP growth to both lagged GDP growth and NFCI.9 This

8The NFCI aggregates a large set of variables capturing credit quality, risk, and leverage.
9A subsequent literature has also used QRs to model GaR and construct GDP growth density forecasts. But

it has examined the benefits of disaggregating the Chicago Fed’s NFCI, using real-time NFCI vintages, and/or
considered additional indicators; e.g., see Plagborg-Moller et al. (2020), Reichlin et al. (2020), Brownlees and
Souza (2021), Kohns and Szendrei (2021), and Amburgey and McCracken (2022). Given the importance of
the original modeling strategy in shaping the ongoing research agenda, as summarized in our introduction,
we return to ABG’s model space and consider (latest-vintage) NFCI alone. We expect that adding in extra
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then lets us produce, via the aforementioned parametric and nonparametric approaches, one-
quarter-ahead and one-year-ahead forecast densities for GDP growth conditional first on both
lagged GDP growth and NFCI and second on just lagged GDP growth. Thereby, we isolate
the role that NFCI plays in driving results. We re-assess ABG’s claim that financial conditions
are critical when density forecasting GDP growth in the US. Our focus, in common with much
of the literature, is assessing the in-sample fit of the conditional densities. Thus we provide
guidance on the importance of considering how to fit a density to the quantile forecasts.
But we do provide some out-of-sample evaluation evidence too, although the latter arguably
tells us more about the instabilities faced out-of-sample (see Rossi (2021)) than about the
relative merits of different ways of constructing predictive densities from QRs. Nevertheless, in
anticipation of the known benefits of shrinkage when forecasting out-of-sample, we do consider
a variant of NP(B) that imposes a more informative prior. That is, we estimate Bayesian QRs
with Minnesota priors. We follow Carriero et al. (2020b) and set Vi, the i-diagonal elements
of Vβ, as follows:

Vi =


λ1λ2

σGDP
σj

λ1
lλ3

1000σGDP

for the coefficients other than the lag l of GDP,

for the coefficients on the lag l of GDP,

for the intercept,

(27)

where σGDP and σj are the standard deviations from an AR(4) model for GDP growth and the
j-th regressor (other than GDP growth), estimated with data available at the forecast origin.
We follow Carriero et al. (2020b) and set λ1 = λ2 = 0.2, and λ3 = 1. In terms of the in-sample
fit, the prior variance on the coefficient on the lag of GDP is 0.2 for both the one-quarter-
and one-year-ahead forecasts. On the other hand, the prior variance on the coefficient for
NFCI differs. One-quarter-ahead, its prior variance is 0.25, while one-year-ahead it is 0.08.
Let NP(BM) denote the forecast densities produced using this Minnesota prior and Algorithm
1.

Given this paper’s emphasis on construction of the entire predictive density rather than
just estimating GaR, we focus on assessing the overall fit of the competing forecast densities
using probability integral transforms (PITs), i.e., the CDF of the forecast evaluated at the
subsequent realization of GDP growth. For correctly calibrated forecast densities (see Diebold
et al. (1998) and Mitchell and Wallis (2011)), these PITs, at the minimum, should be uniformly
distributed. As shown by Diebold et al. (1998), correctly calibrated forecast densities will
be preferred by all users, irrespective of their loss function. Nevertheless, to supplement

variables and allowing for possible additional nonlinearities will distinguish our approach further from ABG’s.
Given their skewed-t assumption, ABG’s densities cannot accommodate the likely multimodalities associated
with nonlinearity.
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PITs-based tests of calibration and to facilitate cross-model comparison, we also report two
commonly used scoring rules for density evaluation: the average logarithmic predictive score
and the average continuous ranked probability score (CRPS). The CRPS is a popular density
forecast-based scoring rule that offers greater robustness to outliers than the logarithmic score
used by ABG; see Gneiting and Raftery (2007).

Figures 3 and 4 plot the cumulated PITs, respectively, for the one-quarter-ahead and one-
year-ahead forecast densities produced using the 5 models of Section 3 plus NP(BM). These
models consider both NFCI and lagged GDP growth as conditioning information, as favored
by ABG. We also plot the PITs dropping NFCI from the QR, to isolate the importance of
conditioning on financial conditions when density forecasting GDP growth.10 Looking at these
cumulated PIT plots across these 2 figures, it is apparent that NP(freq) appears to deliver
the best-calibrated forecast densities. Its cumulated PITs are closest to the 45-degree line.
Interestingly, the densities are well-calibrated at a 95 percent significance level, according to
the PITs test of Rossi and Sekhposyan (2019), irrespective of whether NFCI is included in the
QR.11 The ABG densities perform second best, a very close second to NP(freq), but with a
few extra little deviations from the 45 degree line. While based on the same frequentist QR
as ABG, this indicates that fitting the skewed-t density to these same quantile forecasts is not
as beneficial as using Algorithm 1. To investigate whether it is the higher value of k = 19

in NP(freq), relative to ABG (where k = 4), that explains this result rather than the use of
Algorithm 1, we produced predictive densities from ABG assuming k = 19 (see Figure 16 in
the online appendix). As in the Monte Carlo experiments, these alternative ABG densities
are found to perform similarly to those when k = 4. Thus, we conclude that it is the use of
Algorithm 1, rather than a different sized k, that yields the forecasting gains.

Algorithm 1 does not work quite as well (in-sample) when we estimate the QRs by
Bayesian methods, whether with an uninformative or more informative prior. Accommodating
parameter estimation uncertainties and shrinking the QR coefficients to zero (as with NP(BM))
does not help, at least in-sample. EW(B), in contrast, understates forecast uncertainty, as
evidenced by S-shaped cumulated PITs.

10We emphasize how when constructing the ABG densities we use ABG’s replication code. Therefore,
as discussed in Section 3, we approximate integrals with discrete sums. We return later to the empirical
applications of this.

11Figure 15 in the online appendix again shows how the choice of k in NP(freq) matters. From the S-shaped
nature of the cumulated PITs, we can infer that the density forecast is too narrow at k = 4. Calibration is
better at k = 99, but not obviously better than when k = 19 (as shown in Figures 3 and 4). This is consistent
with the Monte Carlo evidence in Section 3 that a “medium-sized” value for k appears sufficient. The critical
value bands of Rossi and Sekhposyan (2019) should be taken as “general guidance,” to quote ABG, since they
are derived assuming a rolling window of estimation, while, like ABG, we use an expanding window.
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Figure 3: CDF of the in-sample PITs (one-quarter-ahead forecasts, 1973Q1-2015Q4) from the
6 density forecasts with and without NFCI. Note: the figures show the empirical CDF of the
PITs (blue line) from the QR models with NFCI (and lagged GDP), the empirical CDF of the
PITs (dashed red line) from the QR models without NFCI, the CDF of the PITs under the
null hypothesis of correct calibration (the 45-degree line), and the 5% critical value bands of
the Rossi and Sekhposyan (2019) PITs test.
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Figure 4: CDF of the in-sample PITs (one-year-ahead forecasts, 1973Q4-2015Q4) from the 6
density forecasts with and without NFCI. Note: the figures show the empirical CDF of the
PITs (blue line) from the QR models with NFCI and lagged GDP, the empirical CDF of the
PITs (dashed red line) from the QR models without NFCI, the CDF of the PITs under the
null hypothesis of correct calibration (the 45-degree line), and the 5% critical value bands of
the Rossi and Sekhposyan (2019) PITs test.
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Figure 5: In-sample plots of the expected shortfall and expected longrise at τ = 0.05 using
ABG and NP(freq), from QRs with NFCI and lagged GDP
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Figure 6: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-quarter-ahead), from QRs with NFCI and lagged GDP
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Figure 7: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-year-ahead), from QRs with NFCI and lagged GDP

Figure 5 confirms that using our preferred density, NP(freq), when conditioned on both
NFCI and lagged GDP growth, does not change the central narrative of ABG: the left tail
of the conditional density of GDP growth moves with the tightness of financial conditions.12

12This “stylized fact” has been confirmed using alternative modeling approaches to QR, such as the
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And the right tail is relatively invariant. Figure 5 evidences this by plotting, over time, the
expected shortfall and longrise estimates from both ABG and NP(freq). Expected shortfall
(SFt+h) and longrise (LRt+h) summarize downside and upside risk, respectively. They measure
the total probability mass that the conditional distribution assigns to the left and right tails
of the distribution:

SFt+h =
1

π

∫ π

0

F̂yt+h|xt(τ |xt)dτ ; (28)

LRt+h =
1

π

∫ 1

1−π
F̂yt+h|xt(τ |xt)dτ. (29)

Figure 5 shows that the expected shortfall and longrise estimates from ABG and NP(freq)
track each other very closely. Expected shortfall is far more volatile than expected longrise,
as the narrative of ABG emphasizes.

However, despite this similarity, when we look more deeply at the densities underlying
these estimates we start to appreciate that the choice of how to construct the density from
the quantile forecasts does still matter. It can reveal further features of economic interest.
Figures 6 and 7 show this by plotting, over time, for the one-quarter-ahead and one-year-ahead
forecasts, respectively, the first 4 moments of the ABG and NP(freq) densities. While the first
two moments from ABG and NP(freq) are similar, the third and especially fourth moments
differ, albeit they share some commonalities. In particular, we note how the evidence for
or against skewness in GDP growth varies over time. This is consistent with Carriero et al.
(2020a), who find, using alternative tests, weak evidence for skewness. Figure 6, in particular,
shows that NP(freq) points to less negative skewness during the period of the global financial
crisis.13 This disagreement between ABG and NP(freq) is also consistent with the finding in
Plagborg-Moller et al. (2020) that only the lower moments of the GDP growth conditional
density are well-estimated.14

Next we provide some illustrative in-sample plots of our predictive densities. In Figure 8
we zoom in on a relatively stable period: 2005. Then, in Figure 9, we look at 2008, during the
global financial crisis, a period also emphasized in ABG and Adrian et al. (2021). We focus
on the one-quarter-ahead in-sample densities, with the analogous one-year-ahead and out-of-
sample plots in the online appendix.15 Confirming the findings of Adrian et al. (2021), who

parametric time-varying skewed-t model of De Polis et al. (2020).
13This is consistent with modest falls in the degree of asymmetry when NP(freq) rather than ABG is used in

Figure 5. That is, while following the same general patterns, expected shortfall and longrise are more volatile,
over time, when ABG rather than NP(freq) is consulted.

14Figures 13 and 14 in the online appendix indicate how ABG’s coding choice to assess the skewed-t density
over a finite grid is important. If, instead, we assess the skewed-t density analytically, instead of relying on
ABG’s approximation, we observe far more extreme estimates for the higher moments.

15Figures 19 through 24 in the online appendix qualitatively confirm the impression from Figures 8 and 9.

24



use kernel methods, clear evidence of multimodality emerges at the time of the global financial
crisis when we use Algorithm 1 to construct the density forecast from the QR.16 If, as in ABG,
we assume a skewed-t density we obscure this important macroeconomic feature. Instead, we
would simply infer more evidence for a skewed density. The evidence of multimodality during
the global financial crisis, gleaned from NP(freq), is somewhat more muted when we look at the
out-of-sample density forecasts as plotted in the online appendix. But, as shown by Figure 10,
when the calibrated unimodality test of Hartigan and Hartigan (1985) as proposed by Cheng
and Hall (1998) is used, rejections of unimodality are far greater when we do condition on
NFCI. These rejections are especially pronounced during NBER recessionary periods, again
confirming the finding of Adrian et al. (2021).
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Figure 8: GDP growth density forecasts conditional on NFCI and lagged GDP for 2005 made
one-quarter-ahead (in-sample)

16There is also recent evidence that professional forecasters’ density forecasts for GDP growth are best
acknowledged, at certain points in time, as multimodal. Ganics et al. (2020), who study the Survey of
Professional Forecasters (SPF) in the US, find that multimodalities in their combined GDP growth densities
emerge around business cycle turning points, such as the Great Recession.
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Figure 9: GDP growth density forecasts conditional on NFCI and lagged GDP for 2008 made
one-quarter-ahead (in-sample)
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Panel C: GDP only Panel D: GDP only
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Notes: Panel A reports the p-values from the Hartigans’ unimodality test (one-quarter-ahead) for the NP(freq)
in-sample GDP growth density forecasts conditional on NFCI and lagged GDP. Panel B reports the p-values
from the Hartigans’ unimodality test over time (one-year-ahead) for the NP(freq) in-sample GDP growth
density forecasts conditional on NFCI and lagged GDP. Panel C reports the p-values from the Hartigans’
unimodality test over time (one-quarter-ahead) for the NP(freq) in-sample GDP growth density forecasts
conditional on only lagged GDP. Panel D reports the p-values from the Hartigans’ unimodality test over time
(one-year-ahead) for the NP(freq) in-sample GDP growth density forecasts conditional only on lagged GDP.
NBER recessionary periods are shaded gray.

Figure 10: P-values over time from the calibrated Hartigans’ unimodality test

Finally, we turn to out-of-sample evaluation of the forecast densities over the sample period
1993Q1-2015Q4. Again this is the same evaluation period as ABG, and we follow ABG in
recursively producing the predictive densities from QRs estimated on expanding windows of
data dating back to 1973Q1. Figures 11 and 12 show that the accuracy of the forecast densities
is worse out-of-sample. The null hypothesis of correct calibration is frequently rejected at a
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95 percent significance level one-quarter-ahead, but not one-year-ahead. Comparison with
the in-sample densities indicates that they too deteriorate in accuracy when evaluated on the
sub-sample from 1993.17 Interestingly, the PITs are closer to the 45-degree line when not
conditioning on financial conditions, reminding us that autoregressive models can be hard to
beat when forecasting out-of-sample.

Table 3 shows that out-of-sample the Bayesian QR methods, with Algorithm 1, tend to
deliver the highest average logarithmic predictive scores and the lowest CRPSs. But the
average logarithmic score statistics, in particular, are dominated by the forecasting failures at
the time of the global financial crisis. So we prefer to emphasize the CRPS, given it is more
robust to large but rare forecasting errors. Conditioning the GDP density forecasts on NFCI
also tends to lead to improvements in the CRPS, especially one-quarter-ahead. Importantly,
in terms of this paper’s focus on isolating the best means of constructing density forecasts
from the same quantile forecasts, Table 3 shows that NP(freq) at least matches the accuracy
of ABG, according to CRPS, at both forecast horizons.

Despite the fact that the accuracy of the ABG densities is often improved upon, both
in-sample and out-of-sample, this is not the key takeaway we wish to emphasize. Instead,
the bottom line is that these alternative, nonparametric ways of constructing the predictive
density from QRs on average match, and at times (albeit perhaps modestly) improve upon,
the statistical accuracy of the ABG densities.18 But in so doing they unmask deviations from
unimodality lost by ABG. In turn, they suggest that multimodalities, rather than deviations
from symmetry, are the primary economic feature of GDP density forecasts that should be
emphasized, particularly when conditioning on financial conditions. But, as also emphasized
by Ganics et al. (2020) in their analysis of the density forecasts from the SPF, periods when
multimodalities emerge tend to be rare and short-lived. This means that accommodating
them does not make a big difference when evaluating the average statistical performance of
the models. But it affects the economic narrative.

17See Figures 17 and 18 in the online appendix.
18Giacomini and White (2006) tests confirm that the differences between the average scores seen in Table 3

are not statistically significant at traditional significance levels.
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Figure 11: CDF of the out-of-sample PITs (one-quarter-ahead, 1993Q1-2015Q4) from the 6
density forecasts with NFCI and lagged GDP. Note: the figures show the empirical CDF of
the PITs (red line), the CDF of the PITs under the null hypothesis of correct calibration (the
45-degree line), and the 5% critical value bands of the Rossi and Sekhposyan (2019) PITs test.
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Figure 12: CDF of the out-of-sample PITs (one-year-ahead, 1993q4-2015Q4) from the 6 density
forecasts with NFCI and lagged GDP. Note: the figures show the empirical CDF of the PITs
(red line), the CDF of the PITs under the null hypothesis of correct calibration (the 45-degree
line), and the 5% critical value bands of the Rossi and Sekhposyan (2019) PITs test.
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Table 3: Average log predictive score (LPS) and continuous ranked probability score (CRPS)
for the one-quarter-ahead forecasts (out-of-sample, 1993Q1-2015Q4) and the one-year-ahead
forecasts (out-of-sample, 1993q4-2015Q4)

With NFCI & GDP With lagged GDP only

One-quarter-ahead One-year-ahead One-quarter-ahead One-year-ahead

LPS CRPS LPS CRPS LPS CRPS LPS CRPS

ABG -2.24 1.27 -2.02 0.98 -2.31 1.32 -1.99 0.96

EW(B) -2.32 1.30 -2.00 0.97 -2.45 1.38 -2.14 1.01

NP(B) -2.25 1.25 -1.99 0.96 -2.31 1.29 -2.02 0.96

NP(BM) -2.23 1.24 -2.01 0.95 -2.31 1.29 -2.02 0.96

NP(freq) -2.47 1.26 -2.05 0.97 -2.33 1.29 -2.08 0.96

ABG Kernel -2.27 1.31 -2.12 1.01 -2.34 1.32 -2.10 0.99

5 Conclusion

This paper reconsiders how to construct density forecasts from quantile regressions. While
quantile regression methods are finding increasing application in macroeconomics and finance,
as one means of accommodating nonlinear relationships, the specific issue of how to construct
density forecasts from quantile regressions has received less attention. In the macroeconomic
and finance literature, following ABG, it has become popular to assume a specific parametric
form when matching the quantile forecasts to a density forecast. We reconsider nonparametric
approaches to constructing predictive densities from quantile regressions, estimated either by
frequentist or by Bayesian methods, and compare these with the parametric approach. We
suggest a simple simulation-based algorithm. Unlike the parametric approach of ABG, we
find that it can flexibly accommodate various distributional shapes.

In an application revisiting ABG, our proposed nonparametric approach corroborates the
finding of Adrian et al. (2021) that the conditional density of GDP growth in the US can
exhibit multimodality, especially during recessionary periods. These multimodalities in GDP
growth are found to be increasingly prominent when the density forecasts, as suggested by
ABG, are conditioned on financial conditions. But while Adrian et al. (2021) are forced to
move away from the QR framework of ABG to document this novel empirical fact, we show
that this finding is indeed shared by QR-based density forecasts - as long as we let the “data
speak.” However, we need to let the “data speak” not just when we model GDP growth
with respect to financial conditions, via the first-step quantile regressions, but also when we
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subsequently construct the forecast densities from the quantile forecasts.
Accordingly, this paper supports the addition of QR methods to the toolkit of the macro

modeler. But it suggests that, when constructing density forecasts from quantile forecasts, it
is better to respect the nonparametric flavor of QR by also using non- (or semi-) parametric
methods to construct the density. Importantly, these methods provide similarly accurate, even
slightly improved, density forecasts for US GDP growth. The methods are also operational
irrespective of whether the first-step QRs are estimated via frequentist or Bayesian methods.
Relative to ABG and their assumption that the forecast density is skewed-t, our nonparametric
approach unmasks deviations from unimodality in GDP growth forecast densities when conditioned
on financial conditions. The evolution of multimodalities, rather than asymmetries, then
becomes the central macroeconomic narrative for the conditional predictive distribution of
GDP growth. Following Adrian et al. (2021), this calls for structural macroeconomic models
able to replicate these new empirical features, such as the nonlinear dynamic stochastic general
equilibrium model of Rottner (2021) that allows for excessive leverage accumulation and
endogenous financial crises.
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6 Online Appendix

This appendix contains supplementary tables and figures referred to in the main paper.

Table 4: Average mean squared error and Kullback-Leibler (KL) distance for NP(freq) using
k = 4 and k = 99

Models Mean Variance Skewness Kurtosis KL

k = 4 and T = 100

DGP1: Unimodal (Gaussian) 0.02 1.19 0.05 1.84 0.31

DGP2: Unimodal (Negative Skewness) 0.17 20.87 0.02 5.42 0.32

DGP3: Unimodal (High Kurtosis) 0.03 1.21 1.26 105.97 0.35

DGP4: Bimodal 0.02 0.03 0.16 0.28 0.32

DGP5: Trimodal 0.04 0.36 0.00 0.06 0.36

k = 4 and T = 1, 000

DGP1: Unimodal (Gaussian) 0.01 1.02 0.04 1.85 0.30

DGP2: Unimodal (Negative Skewness) 0.06 18.61 0.01 5.42 0.32

DGP3: Unimodal (High Kurtosis) 0.00 0.76 1.23 106.43 0.35

DGP4: Bimodal 0.02 0.03 0.15 0.27 0.32

DGP5: Trimodal 0.04 0.36 0.00 0.06 0.36

k = 99 and T = 100

DGP1: Unimodal (Gaussian) 0.01 0.02 0.07 0.35 0.03

DGP2: Unimodal (Negative Skewness) 0.05 0.59 0.39 18.53 0.04

DGP3: Unimodal (High Kurtosis) 0.01 0.16 1.16 61.56 0.04

DGP4: Bimodal 0.00 0.00 0.01 0.02 0.03

DGP5: Trimodal 0.00 0.00 0.01 0.02 0.05

k = 99 and T = 1, 000

DGP1: Unimodal (Gaussian) 0.00 0.00 0.01 0.06 0.00

DGP2: Unimodal (Negative Skewness) 0.00 0.07 0.02 0.45 0.00

DGP3: Unimodal (High Kurtosis) 0.00 0.02 0.37 59.98 0.00

DGP4: Bimodal 0.00 0.00 0.00 0.00 0.01

DGP5: Trimodal 0.00 0.00 0.00 0.00 0.03
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DGP T = 25 T = 50 T = 250 T = 1, 000 T = 10, 000

k = 4

Gaussian 28.70% 30.00% 23.30% 15.20% 2.00%

Negative Skewness 18.00% 16.60% 5.30% 1.00% 0.00%

High Kurtosis 14.00% 9.70% 0.20% 0.00% 0.00%

Bimodal 94.50% 98.70% 100.00% 100.00% 100.00%

Trimodal 16.80% 8.50% 0.20% 0.00% 0.00%

k = 9

Gaussian 27.80% 13.00% 0.00% 0.00% 0.00%

Negative Skewness 21.30% 8.30% 0.00% 0.00% 0.00%

High Kurtosis 20.50% 8.00% 0.10% 0.00% 0.00%

Bimodal 93.30% 96.60% 99.90% 100.00% 100.00%

Trimodal 71.50% 18.80% 0.90% 0.00% 0.00%

k = 19

Gaussian 34.20% 11.70% 0.00% 0.00% 0.00%

Negative Skewness 31.80% 9.50% 0.00% 0.00% 0.00%

High Kurtosis 30.10% 7.90% 0.00% 0.00% 0.00%

Bimodal 91.30% 86.30% 94.20% 99.50% 100.00%

Trimodal 95.60% 94.90% 97.40% 99.90% 100.00%

k = 99

Gaussian 65.10% 31.70% 0.00% 0.00% 0.00%

Negative Skewness 62.60% 28.50% 0.00% 0.00% 0.00%

High Kurtosis 59.20% 20.30% 0.00% 0.00% 0.00%

Bimodal 96.00% 96.40% 98.70% 99.90% 100.00%

Trimodal 99.10% 99.30% 99.90% 100.00% 100.00%

Table 5: Rejection rates (across 1,000 replications) of unimodality at 95% using the calibrated
Hartigan test
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Figure 13: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-quarter-ahead), when ABG’s skewed-t density is simulated not truncated

1975 1980 1985 1990 1995 2000 2005 2010 2015
-1

0

1

2

3

4

5
Mean

1975 1980 1985 1990 1995 2000 2005 2010 2015
0

100

200

300

400

500
Variance

1975 1980 1985 1990 1995 2000 2005 2010 2015

-40

-20

0

20

40

60
Skewness

1975 1980 1985 1990 1995 2000 2005 2010 2015
0

1000

2000

3000

4000

5000

6000
Kurtosis

ABG
NP(freq)

One year ahead

Figure 14: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-year-ahead), when ABG’s skewed-t density is simulated not truncated
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Figure 15: CDF of the in-sample PITs for NP(freq) when k = 4 and k = 99. Note: the figures
show the empirical CDF of the PITs (red line), the CDF of the PITs under the null hypothesis
of correct calibration (the 45-degree line), and the 5% critical value bands of the Rossi and
Sekhposyan (2019) PITs test.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

pi
ric

al
 C

D
F

Nineteen quantiles - one quarter ahead

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

pi
ric

al
 C

D
F

Nineteen quantiles - one year ahead

Model
Theoretical and 5% Critical ValuesABG Alternative Quantiles

Figure 16: CDF of the in-sample PITs for ABG when k = 19. Note: the figures show the
empirical CDF of the PITs (red line), the CDF of the PITs under the null hypothesis of correct
calibration (the 45-degree line), and the 5% critical value bands of the Rossi and Sekhposyan
(2019) PITs test.
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Figure 17: CDF of the in-sample PITs (one-quarter-ahead forecasts, 1993Q1-2015Q4) from
the 6 density forecasts with and without NFCI. Note: the figures show the empirical CDF of
the PITs (blue line) from the QR models with NFCI (and lagged GDP), the empirical CDF
of the PITs (dashed red line) from the QR models without NFCI, plus the CDF of the PITs
under the null hypothesis of correct calibration (the 45-degree line), and the 5% critical value
bands of the Rossi and Sekhposyan (2019) PITs test.
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Figure 18: CDF of the in-sample PITs (one-year-ahead forecasts, 1993Q4-2015Q4) from the
6 density forecasts with and without NFCI. Note: the figures show the empirical CDF of the
PITs (blue line) from the QR models with NFCI (and lagged GDP), the empirical CDF of the
PITs (dashed red line) from the QR models without NFCI, plus the CDF of the PITs under
the null hypothesis of correct calibration (the 45-degree line), and the 5% critical value bands
of the Rossi and Sekhposyan (2019) PITs test.

-5 0 5 10
0

0.1

0.2

0.3

0.4
2005Q1

A
c
tu

a
l 
v
a
lu

e

-5 0 5 10
0

0.1

0.2

0.3

0.4
2005Q2

A
c
tu

a
l 
v
a
lu

e

ABG
NP(freq)
NP(B)
NP(BM)
EW(B)
ABG Kernel

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

2005Q3

A
c
tu

a
l 
v
a
lu

e

-5 0 5 10
0

0.1

0.2

0.3

0.4
2005Q4

A
c
tu

a
l 
v
a
lu

e

ABG
NP(freq)
NP(B)
NP(BM)
EW(B)
ABG Kernel

Figure 19: GDP growth density forecasts conditional on NFCI and lagged GDP for 2005 made
one-year-ahead (in-sample)
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Figure 20: GDP growth density forecasts conditional on NFCI and lagged GDP for 2008 made
one-year-ahead (in-sample)
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Figure 21: GDP growth density forecasts conditional on NFCI and lagged GDP for 2005 made
one-quarter-ahead (out-of-sample)
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Figure 22: GDP growth density forecasts conditional on NFCI and lagged GDP for 2008 made
one-quarter-ahead (out-of-sample)
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Figure 23: GDP growth density forecasts conditional on NFCI and lagged GDP for 2005 made
one-year-ahead (out-of-sample)
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Figure 24: GDP growth density forecasts conditional on NFCI and lagged GDP for 2008 made
one-year-ahead (out-of-sample)
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