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Abstract

Knowing the degree of substitutability between schooling groups is essential to un-

derstanding the role of human capital in income di�erences and to assessing the

economic impact of such policies as schooling subsidies, immigration systems, or

redistributive taxes. We derive a lower bound for the substitutability required for

worldwide growth in real GDP from 1960 to 2010 to be consistent with a stable wage

premium for schooling despite the rapid growth in schooling, assuming no exogenous

worldwide regress in the technology frontier for workers with only primary school-

ing. �at lower bound for the long-run elasticity of substitution is about 4, which is

far higher than values commonly used in the literature. Given our bound, we reex-

amine the importance of human capital in cross-country income di�erences and the

roles of school quality versus the skill bias of technology in greater e�ciency gains

from schooling in richer countries.
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1 Introduction

�e impacts of policies such as schooling subsidies, immigration systems, or redistributive taxes

hinge on the substitutability in labor demand between schooling groups. Tinbergen (1975) an-

alyzed how expanding the supply of more-educated workers, under imperfect substitution, can

drive down the return to schooling, o�se�ing the impact of skill-biased technological change.
1

Likewise, assessing the wage impact of selective immigration policies or of mass migration events

in times of geopolitical distress, because they shi� relative employments by skill, requires knowl-

edge of that substitutability.

Substitutability is also key to interpreting data on schooling and wages: e.g. lower degrees

of substitutability require more skill-biased advances in technology to explain the rising return

to schooling despite the gains in educational a�ainment in recent U.S. history (Goldin and Katz,

2010).
2

Similarly, substitutability plays a prominent role in e�orts to quantify human capital’s role

in economic development as it guides our measures of labor productivity across countries based

on their educational a�ainments and returns to schooling (see Hsieh and Klenow, 2010; Jones,

2014; Caselli, 2016; Caselli and Ciccone, 2019; Hendricks and Schoellman, forthcoming, among

others).

�e consensus in the literature is that substitutability across workers of di�ering schooling is

quite low. �is consensus largely re�ects works by Katz and Murphy (1992), Heckman et al. (1998),

and Card and Lemieux (2001), all of whom estimate an elasticity of labor demand between high

school and college-trained U.S. workers of about 1.5. Each estimates that elasticity �rst controlling

for longer-term trends in relative wages, trends that largely show both rising relative wages

and supply for more-educated workers. �erefore, these estimates identify a relatively short-

run elasticity. According to the LeChatelier principle (Samuelson, 1947), a longer-run elasticity

would presumably be larger.
3

In particular, it will re�ect the incentive to innovate technology

1
�is reasoning is incorporated more explicitly into general equilibrium models by Heckman et al. (1998) and

Johnson and Keane (2013), among others. More generally, if substitutability is low, any policy to redistribute income

that reduces the relative hours of more-skilled workers will create an o�se�ing increase in inequality by raising

returns to skill (e.g., Feldstein, 1973).

2
See Ciccone and Peri (2005) for a review of work in this area.

3
Acemoglu and Autor (2011) extend the Katz and Murphy (1992) exercise through 2008 U.S. CPS data and estimate

elasticities of 1.6 to 2.9 depending on how �exibly they specify trends. Ciccone and Peri (2005) estimate a longer-run

elasticity of around 1.5 across U.S. schooling groups based on supply di�erences instrumented with child-labor and

compulsory-schooling laws. But their con�dence interval includes considerably larger elasticities, especially if one

allows for the strength of their �rst-stage instruments. Malmberg (2018) infers a low elasticity based on an estimated

gravity model of trade driven by factor endowments, which we interpret as a fairly long-run elasticity. Bowlus

et al.’s (2021) work is an important counterweight to these earlier estimates. �ey di�er from the prior literature by
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toward the expanding groups (e.g., Caselli and Coleman, 2006; Acemoglu, 2007; Hendricks and

Schoellman, forthcoming). For questions regarding development accounting, growth accounting,

or the longer-term impact of education policies, it is the longer-run elasticity that is relevant.

Given that countries di�er markedly and persistently in schooling a�ainments, it is natu-

ral to look at how returns to schooling di�er across countries to gauge long-run substitutability.

Many authors have noted that estimated Mincerian returns to schooling are nearly as high in

richer countries despite their far greater supply of educated workers. Bowles (1970) and Psacharopou-

los and Hinchli�e (1972) interpret this as evidence for high substitutability across schooling

groups. But it is now well-recognized that one cannot infer an elasticity from the cross-country

relationship between schooling and Mincer returns if richer countries exhibit more skill-biased

technology, as in Caselli and Coleman (2006), or be�er quality of schooling, as in Jones (2014).
4

We take a di�erent route to gauge substitutability, by focusing on the dramatic worldwide

increase in schooling since 1960, an increase that has been accompanied by no decline in Min-

cerian returns. We derive a lower bound on the substitutability required for growth rates in real

GDP to be consistent with that rapid growth in schooling and with the stability of Mincer returns,

assuming there was no exogenous worldwide contraction of the technology frontier for workers

without secondary schooling. We view this assumption as conservative as it covers a signi�cant

share of the world’s labor force. It also still permits an endogenous diversion of technology away

from these groups, allowing their wages to potentially decline over time. �e required lower

bound for the elasticity of substitution is nearly 4. Lower elasticities imply rapid technological

regress for a large section of the workforce worldwide from 1960 to 2010, even beyond that from

technology shi�ing endogenously toward workers with more schooling. In particular, for an elas-

ticity of substitution of 1.5 the technology frontier must contract by 98 percent for those without

secondary schooling, a group that averaged about 40 percent of the population for our sample of

60 countries.

modeling skill-biased technical change explicitly as a function of investments in information technology. �ey also

adjust skill prices and quantities to account for estimated rates of investment in human capital. As a result, they

estimate a much higher elasticity of substitution across U.S. schooling groups of 4 to 5, depending on the precise

speci�cation. We interpret their estimated elasticity as applying to the medium term.

4
Re�ecting that identi�cation problem, there is no consensus on why returns are not lower in richer countries.

Jones (2014), Caselli and Ciccone (2019), and Rossi (2022) each presume low substitutability. Jones a�ributes the

“�at” Mincer pa�ern to richer countries having be�er schooling; Casselli and Ciccone demonstrate that it could

equally re�ect richer countries’ be�er schooling or more skill-biased technology; and Rossi, given his measure of

schooling quality, a�ributes the pa�ern to di�erential skill bias in technology. By contrast, Hendricks and Schoellman

(forthcoming) do not assume low substitutability. In fact, given their measure of schooling quality and some limits

on skill bias in technology, they interpret the cross-country Mincer returns as consistent with a high elasticity of

substitution.
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We exploit our bound on substitutability to reassess the role of schooling in cross-country

development accounting. Early papers by Klenow and Rodrigues-Clare (1997) and Hall and Jones

(1999) treat schooling groups as perfect, but unequal, substitutes. But, as discussed by Jones

(2014), Caselli and Ciccone (2019), and Hendricks and Schoellman (forthcoming), the mapping

from Mincerian returns to human capital depends critically on substitutability. If substitutability

is low, then the cross-country di�erences in Mincerian returns largely re�ect relative scarcities of

workers with more schooling, rather than e�ciencies. Jones (2014), Caselli (2016), and Malmberg

(2018) each consider imperfect substitutability, focusing on elasticities on the order of 1.5 given

the estimates from the literature. �is implies much greater di�erences in worker e�ciencies

across countries.

Our bound for substitutability implies smaller di�erences in e�ciencies between workers

in rich and poor countries. We conduct the exercise in Jones (2014) for " = 1.5 versus " = 4. As

anticipated by Jones, for " = 1.5, worker e�ciency accounts for most of the income di�erence

between rich and poor countries–in fact, together with di�erences in physical capital, it explains

123 percent of these di�erences. By contrast, under our pro�ered value of " = 4, it explains much

less, accounting for about a ��h of income di�erences.

Our preferred elasticity of 4 still implies that workers with more schooling are markedly

more e�cient in richer countries, even relative to those with less schooling. Next, we ask whether

this greater e�ciency re�ects be�er quality of schooling or a more skill-biased technology fron-

tier, as in Caselli and Coleman (2006) and Rossi (2022). To do so, we examine cross-country

estimates of schooling quality based on international test scores or earnings of immigrants to the

United States from Schoellman (2012). �e distinction is important for deciding whether devel-

opment policy should focus on technological advancement or on embodied skill development.
5

For an elasticity of substitution of 4, we �nd that both higher school quality and more skill-biased

technology are factors in the higher e�ciency for workers with more schooling in richer coun-

tries. But the di�erential in skill bias across countries is much less than under an elasticity of

1.5.6 Elasticity values much higher than 4 instead require the technology frontier to be less skill

biased in richer countries. If we disallow such a scenario, then we also obtain an upper bound on

the elasticity of substitution on the order of 6, so not so far above our lower bound.

5
Jones (2014) interprets these di�erences in e�ciencies for workers with more schooling as re�ecting higher

human capital in richer countries. But Caselli and Ciccone (2019) clarify that higher e�ciency for workers with

more schooling in richer countries could alternatively re�ect more skill-favoring technologies in these countries.

6
Note that this skill bias in the technology frontier is additional to that from technology’s endogenous response

to the greater supply of skilled workers in richer countries, as in Caselli and Coleman (2006) and outlined in the next

section. �at response is captured in the long-run elasticity across schooling groups.
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As a baseline, we treat production as a CES aggregator of multiple schooling groups. Be-

cause the literature sometimes presumes low substitutability across certain groups, e.g., college

versus non-college, we examine robustness to allow varying degrees of substitutability among

di�erent schooling groups. Our bounding approach does allow for a fairly low degree of substi-

tutability between a subset of schooling categories, provided high substitutability is maintained

overall. In particular, development accounting for these more general formulations still implies

that schooling di�erences explain only a fourth, or less, of the income gaps across countries.

�e paper proceeds as follows. In Section 2 we lay out our assumptions for production,

focusing on long-run substitutability of schooling groups when technology is directed to groups

as in Caselli and Coleman (2006). In Section 3 we obtain our lower bound for substitutability by

comparing growth rates in human capital constructed under various elasticities of substitution to

growth rates dictated by traditional growth accounting. We then examine the implications of our

bound for cross-country development accounting in Section 4, and discuss the relative roles of

school quality and skill bias in the technology frontier. We consider the robustness of our results

to alternative production technologies in Section 5. We conclude in Section 6.

2 Model

Our analysis is based on the relationship between the wage premium for schooling and the pro-

duction structure that shapes worker productivity. We �rst present an economy’s production as

a function of its schooling for a given technology. We then take into account that technology

responds to the relative importance of schooling groups, as in Caselli and Coleman (2006), to

derive the long-run substitutability among schooling groups, as in Hendricks and Schoellman

(forthcoming). Finally, we derive schooling’s wage premium and show how its empirical rela-

tionship with schooling scarcity may inform us about the long-run substitutability.

2.1 Directed Technology and Long-Run Substitutability

Output for the economy is a Cobb-Douglas function of physical capital, K , and technology-

enhanced aggregate labor input, H :

Y = K�H 1−� . (1)

4



H aggregates the e�ciency units of labor supplied by workers with di�erent schooling levels. Let

S be the set of all schooling groups, and Li be the number of workers with si years of schooling

for all i ∈ S with si < sj for i < j. E�ective labor input is de�ned by the constant-elasticity-of-

substitution (CES) aggregator:

H = [∑
i∈S

(Ai qi Li)

"
SR
−1

"
SR

]

"
SR"

SR
−1 , (2)

where "SR > 1 is the short-run elasticity of substitution between schooling groups. Ai is the level

of skill-speci�c technology and qi is the human capital associated with schooling level i. qi re�ects

both quantity (years) and quality of schooling. �e e�ciency of schooling group i in production,

Aiqi , therefore re�ects the extent of that group’s skills as well as the technical e�ciency a�ached

to those skills.

We follow Caselli and Coleman’s (2006) formulation of skill-speci�c technology investment.

Firms choose technologies from a set of possibilities de�ned by a technology frontier, given the

skill endowments in the country. Formally, given the wage rates and the interest rate R, �rms

rent capital K , adopt technologiesAi , and hire workers Li from each schooling group to maximize

pro�ts (K�H 1−� − ∑i∈S wiLi − RK) subject to the following technology frontier:

∑
i∈S

(
i Ai)
!
≤ B,

where B determines the level of the technology frontier, which may di�er by country. �e pa-

rameters ! > 0 and 
i determine the technical trade-o� between technologies associated with

di�erent schooling groups. If 
i is increasing with si , then investment in technologies assigned

to more-educated workers has a higher opportunity cost. ! is the elasticity of substitution be-

tween schooling-speci�c technologies; it shows how fast the marginal cost of technological en-

hancement rises with the level of the technology. Caselli and Coleman (2006) and Hendricks and

Schoellman (forthcoming) assume that ! and 
i are common to all countries. We maintain a com-

mon !, but allow 
i to vary by country. �is captures, for instance, the idea that richer countries

may be be�er at directing technology to more-schooled workers for reasons exogenous to the

model.

To ensure that �rms choose Ai > 0 for all i ∈ S, we assume that the parameters satisfy:

! − "SR + 1 > 0. (3)
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As shown in Appendix D.1, this guarantees that �rms make the same interior input choices, so

we can characterize the equilibrium using the optimality conditions of a representative �rm.

�e optimal level of technology for schooling group i is dictated by:

Ai = (
wiLi
wL )

1
!
× ( B

1
! /
i ) . (4)

B
1
! /
i is the maximal technology achievable for group i, conditional on forgoing any technology

for all other groups. We call this the technology frontier for group i and denote it as bi = B
1
! /
i .

Relative to that frontier, the directed component of a group’s technology responds positively to

its importance in overall earnings.
1
! governs the strength of that response.

7
Substituting for

relative earnings in (4), group i’s technology in reduced form is:

Ai = (
qi Li
H )

"
SR
−1

!"
SR
−"

SR
+1

× b
!"

SR

!"
SR
−"

SR
+1

i . (5)

Technology for schooling group i depends on two factors: its human capital and its technology

frontier. Higher group human capital, qiLi , raises its return to technology investment. Higher bi
re�ects be�er available technology, B, and/or a lower opportunity cost of adoption, 
i , for group

i.

As shown in Hendricks and Schoellman (forthcoming), equation (4) implies that the equi-

librium allocation and prices in the labor market are equivalent to those given by the optimality

conditions of a representative �rm with the following alternative aggregator.
8

H = [∑
i∈S

(qi bi Li)
"−1
"
]

"
"−1 , (6)

where the long-run elasticity of substitution is

" =
!"SR − "SR + 1
! − "SR + 1

.

�e assumption in (3) guarantees that " is �nite and " > "SR for all "SR > 0. Since we assume

"SR > 1, we also have " > 1. �is elasticity of substitution can be considered to be the long-run

elasticity of substitution where technology is endogenous.

7
Given the technology in (2), relative earnings for groups i and j are:

wiLi
wjLj = (

AiqiLi
AjqjLj )

1− 1
"SR .

8
A derivation is provided in Appendix D.2.
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2.2 School�ality, Technology Frontier, and Scarcity in Relative Wages

�e wage rate (in logs) for workers in schooling group i implied by the technology in (6) is:

ln wi = ln
)Y
)H

+
1
"
lnH + (1 −

1
" )

ln (qibi) −
1
"
ln Li . (7)

Because the �rst two terms in (6) are common to all workers, the relative wages of any two groups

depend only on the last two components—the relative e�ciency and relative supply of labor. For

instance, the wage premium for group i relative to j is: (1 − 1
" ) ln (

qibi
qjbj ) −

1
"(

Li
Lj ).

With multiple schooling groups, the wage premium for schooling is typically estimated by

projecting log wages on years of schooling, yielding the estimated Mincer return. An important

bene�t of mapping our framework to the Mincer return is that its estimates are readily available

for many countries and time periods from meta studies. De�ne the (model) Mincer return to

schooling, m, as the coe�cient of the projection of log wage on years of schooling: E(lnwi |si) =
lnw + m (si − s̄). �e Mincer return is:

m = (1 −
1
" )(

�q + �b) +
1
"
x. (8)

�q and �b are, respectively, the log-projections of human capital qi and the technology frontier,

bi , on years of schooling. Intuitively, �q captures the quality of schooling, while �b captures the

skill bias of the technology frontier. x = −�L is minus the regression coe�cient from projecting

ln Li on years of schooling. x gives the average percentage decline in labor supply per year of

schooling: E(ln Li |si) = ln L − x(si − s̄). It measures the relative scarcity of skilled workers—a

large positive x indicates that, on average, the supply of workers rapidly declines with years of

schooling.
9

Equation (8) frames our analysis. Schooling’s wage premium re�ects the impacts of long-

run e�ciency, �q + �b and scarcity, x , with relative weights determined by the inverse elasticity

of substitution. �e easier the substitutability (lower "), the higher is the e�ciency premium and

the lower is the scarcity premium. With directed technologies note that: (a) long-run e�ciency

re�ects skill bias in the technology frontier (�b), not in the level of technology, and (b) scarcity’s

weight in the wage premium equals
1
" <

1
"SR

, re�ecting that the impact on wages of a group’s

supply is partly o�set by improvements to the technology assigned to that group.

9
If schooling a�ainment takes only two values from S = {1, 2}, then: x = ln (

s2−s̄
s̄−s1)/(s2 − s1); so s̄ is a su�cient

statistic for x . But more generally x varies for a given s̄ because it re�ects the skewness of the schooling distribution.

7



3 Substitutability and Growth Accounting

In this section we ask what values of " are consistent with worldwide trends in schooling a�ain-

ment and Mincer returns as well as growth rates in labor productivity assuming no worldwide

technological regress, decline in bi , for the bo�om schooling group.

3.1 Data and Patterns for Schooling Scaricity and Premia

To exploit the comovements of schooling’s scarcity and its wage premium across time and coun-

tries, we merge the meta-data set of Mincer returns assembled by Psacharopoulos and Patrinos

(2018) with data on schooling distributions from Barro and Lee (2013) for ages 25 to 54 to capture

the working-age population. �e merger yields an unbalanced panel with 367 observations that

consist of 104 countries for the years 1960 to 2010 at 5-year intervals. For growth accounting we

require a country to be observed at three or more of the intervals, yielding a smaller sample with

60 countries and 298 observations.
10

We return to the broader sample of 104 countries in Section

4 for conducting the cross-country development accounting. Appendix A provides details on the

data sets and a list of countries for each sample.

To measure scarcity of schooling we divide workers into four groups: i) less than secondary,

ii) some secondary, iii) completed secondary, and iv) any tertiary (college) education.
11

Appendix

C examines the consistency of measured scarcity with grouping rules, showing that it is important

to have at least three groups to capture scarcity of schooling across countries. Section 5 considers

the robustness of our results to alternative technologies that allow for nested-CES aggregators

within these schooling groups.

We can measure schooling scarcity, for each country in each year, by regressing the log size

of the population in each schooling category on that category’s years of schooling. �e negative

of the estimated coe�cient, which shows the average percentage-point decline in labor supply per

year of schooling, is our measure of scarcity, x . Note that Barro and Lee (2013) report schooling

distributions based on population. Using the population distribution of schooling (rather than

employment distribution) could skew scarcity measures if employment-to-population ratios di�er

systematically with years of schooling. In Appendix B, we show that such a bias is not signi�cant.

10
We drop observations through 1990 for countries that were formerly held in the Soviet Union.

11
For our 104 country sample, the average shares by group are respectively 83 percent, 9 percent, 6 percent, and

3 percent in 1965 (weighted by population), and they become 38 percent, 31 percent, 23 percent, 8 percent in 2010.
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Figure 1 displays the worldwide trends in average years of schooling, schooling scarcity, and

Mincer returns from 1960 to 2010. Averages weight countries by their employment in 2000. As

seen in Panel a, the average years of schooling have increased from about 3 in 1960 to 9 in 2010.

Corresponding to this trend is the tremendous fall in scarcity shown in Panel b. �e worldwide

decreases in schooling scarcity, however, have produced no trend in the Mincer return. Average

Mincer returns have remained largely stable, decreasing from 1965 to 1975 but rebounding ever

since.

�ese pa�erns motivate our approach to bound the long-run elasticity of substitution through

growth accounting. Recall the relationship between Mincer returns and scarcity in equation (8).

Explaining the lack of trend in Mincer returns, despite decreased scarcity, requires faster e�-

ciency growth for groups with more schooling, due to either improved quality of schooling (in-

crease in �q) or skill-biased shi�s in the technology frontier (increase in �b). If schooling groups

are poor substitutes, then this requires spectacularly rapid e�ciency gains for those with more

schooling. In particular, for " = 1.5, relative gains in school quality and the technology frontier,

�q + �b , must be twice the decline in scarcity to keep the Mincer return constant.
12

From 1960 to

2010, average scarcity declined 33 percentage points; so this requires that each year of schooling

added a 66 percentage-point gain in relative e�ciency during this period. �is translates to a 700-

fold increase between 1960 and 2010 in the e�ciency of college graduates relative to workers who

completed primary schooling (10 additional years of schooling). But we show next that growth

accounting bounds these gains far below such rates given the actual rates of growth in real in-

comes, assuming that technology for those with less schooling has not regressed worldwide. In

turn, this implies an elasticity of substitution of 4 across schooling groups, if not higher.
13

3.2 Reconciling Skill-Biased E�ciency Gains with Growth Accounting

�e labor aggregator in equation (6) provides a basis to measure growth in e�ective labor input,

including the impact of labor-augmenting technological change. From (6), e�ective labor per

worker, ℎ = H/L, can be expressed in terms of: (a) group 1’s schooling and technology frontier,

(b) the schooling and technology frontiers of all other groups relative to group 1’s, and (c) relative

12
Let Δ denote changes over time. From equation (8), Δm = 0 implies that Δ(�q + �b) = −1

"−1Δx , which equals

−2Δx when " = 1.5.
13

For the case of " = 4, the implied change in �q +�b is 11 percentage points from 1960 to 2010. It then translates to

a 3-fold increase in the e�ciency of college graduates relative to workers who completed primary schooling during

this period.

9



Figure 1: Trends of Schooling, Scarcity, and Mincer Return
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the trends are obtained by taking the average (weighted by employment in 2000) over Barro and Lee’s sample. Data

on the Mincer return are taken from Psacharopoulos and Patrinos (2018), where the trend is obtained by taking the

average (weighted by employment in 2000) over Psacharopoulos and Patrinos’ sample.

labor supplies:

ℎ(") = q1b1(
L1
L ) [

∑
i∈S

(
qibi
q1b1

Li
L1)

"−1
"

]

"
"−1

. (9)

We write e�ective labor as ℎ(") to emphasize that its value hinges on the elasticity of substitution

". From equation (7),
qibi
q1b1

can be related to the wage rate and to the employment of group i
relative to group 1:

qibi
q1b1

= (
wi
w1)

"
"−1

(
Li
L1)

1
"−1

.

Making that substitution in (9) gives:

ℎ(") = q1b1 ⋅ (
w
w1)

"
"−1

(
L
L1)

1
"−1

= z1 ℎ−z1("). (10)

Here w denotes the average wage in the economy, ∑i∈S
wiLi
L . We approximate w relative to group

1’s wage based on a country’s Mincer return:
w
w1
= ∑i∈S [em(si−s1)

Li
L ].

Equation (10) breaks e�ective labor input per worker into two components: the frontier for

10



the lowest schooling group, z1, and the quantity of e�ective labor in the economy normalized by

z1, which we label ℎ−z1("). z1 = q1b1 is a combination of human capital for the minimal schooling

group and its technology frontier. ℎ−z1(") increases in both the relative wages and employments of

other groups compared to group 1. Dramatic growth worldwide in
L
L1

, together with the stability

of Mincer returns, requires an increase in ℎ−z1("). �at increase is especially large if " is small. In

turn, this implies that e�ective labor input per worker, ℎ, will exhibit growth that is well above

and beyond any growth in z1 for the lowest schooling group through improvement in its human

capital or expansion of its technology frontier.

In turn, the growth rate in e�ective labor input per worker, in log-di�erences, can be viewed

as the sum of growth rates in z1 and ℎ−z1("), denoted respectively gz1 and gℎ−z1("):

gℎ(") = gz1 + gℎ−z1("). (11)

For any assumed elasticity ", gℎ−z1(") can be calculated from how the schooling distribution and

Mincer return evolve over time. Our strategy is to construct an implied lower bound for gℎ(")
under various values for " by: (a) measuring gℎ−z1(") from cross-country data for each ", and (b)

assuming a plausible lower bound for gz1 , the growth in e�ciency of the lowest group re�ecting

changes in its schooling quality and growth in its technology frontier.

We employ gz1 = 0 for its lower bound where we treat those with completed primary edu-

cation or less as group 1. We view this as conservative. For instance, if one assumes no change

in labor quality for group 1, this requires no improvement on average from the technological

frontier for these workers worldwide since 1960. While declines in school quality are imaginable,

we would not anticipate a decline in quality of primary schooling worldwide since 1960.
14

But,

regardless, given the limited schooling received by these workers, any such decline in quality

should be swamped in importance by worldwide gains in group 1’s technology frontier, espe-

cially recognizing that this group averaged about 40 percent of the working age population for

these countries as of 2000. �erefore, we view gz1 = 0 as providing a conservative lower bound

for gℎ(").

Note that our bounding assumption does allow for technological regress for group 1 in the

form of directed technological change. In fact, we show below that gz1 = 0 implies substantial

decline in the absolute e�ciency of the bo�om schooling group, e1 = q1A1, driven by their decline

in importance, assuming the elasticity of substitution is lower in the short run than in the long

14
Compositional changes could a�ect q1, as we discuss below in the context of the �ndings.
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run. If one alternatively assumed zero growth in e1 over time, that would imply a less conservative

lower bound. We caution against this assumption. Indeed, using the short-run version of the

production function, Caselli and Coleman (2002) and Acemoglu and Restrepo (2020) each �nd a

moderate decline in absolute e�ciency for non-college-educated workers in the United States.
15

Our assumption that gz1 = 0 on average does not restrict how skill bias in technology, the pa�ern

of �b’s, varies by country. It only requires that, on average, the technology frontier has not

regressed worldwide, at least not enough to o�set any gains in school quality, for those at the

lowest schooling level.

Alternatively gℎ can be measured from standard growth accounting, given an economy’s

growth rates of output and capital. From the aggregate technology in (1), output per worker is

y = k�ℎ1−� where k, like ℎ, denotes input per worker. �e growth rate of e�ective labor is:

gℎ =
1

1 − �
(gy − �gk), (12)

where, again, gℎ re�ects the impact of technical change as well as increases from investments

in schooling. �us, by comparing gℎ(") from (11) to its estimate from growth accounting we can

judge plausible magnitudes for ".

3.3 Results for Lower Bound

In Figure 2, we contrast the worldwide growth rates of e�ective labor between 1960 and 2010

implied by the two accounting methods, where worldwide means averaging over the 60 countries

weighted by employment in 2000.
16

We treat completed primary or less as the minimal schooling

group. �e data on output and capital per worker behind gℎ come from the Penn World Tables 9.1

(Feenstra et al., 2015). We assume that � , capital’s share in output, is 1/3. gℎ(") is constructed using

data on educational a�ainments for ages 25 to 54 from Barro and Lee (2013) and Mincer returns

from Psacharopoulos and Patrinos (2018). �e red (dark) bar to the right shows the growth rate gℎ
from the growth accounting equation (12). Recall that under our bounding assumption, gℎ−z1(") is

a lower bound on the implied overall growth rate gℎ("). �e gray bars show those lower bounds

implied by the changes in schooling distributions and Mincer return under di�ering values of

the elasticity of substitution. Each gray bar presumes zero average growth worldwide from 1960

15
Caselli and Coleman interpret that decline as re�ecting directed technological change; Acemoglu and Restrepo

explain it by automatic tasks reducing the demand for less-skilled workers.

16
�e annualized growth rates are calculated over 1960 to 2010 for the 60 countries with estimated Mincer returns

at three or more points in time. �e average beginning and ending years across the countries are 1973 and 2007.
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Figure 2: Substitutability and the Implied Rate of E�ective Labor Input Growth (%)
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Notes: Figure depicts average annual growth rate of e�ective labor across the 60-country sample. �e gray (light)

bars show the mean gℎ(") implied by values of the elasticity of substitution ("), given changes in schooling and

Mincer returns. �e red (dark) bar shows gℎ from growth accounting given a capital share of one-third. Countries

are weighted by their total employment as of 2000. Source: Authors’ calculations based on Psacharopoulos and

Patrinos (2018), Barro and Lee (2013), and Penn World Table 9.1.

to 2010 for the lowest schooling group, completed primary or less, from human capital and the

technology frontier (gz1 = 0).

We see that gℎ(") is strongly decreasing in the assumed elasticity of substitution. �e rea-

soning is straightforward. �e worldwide decrease in the scarcity of higher schooling groups

was a force to reduce Mincer returns to schooling, especially if the elasticity of substitution is

low. Because Mincer returns were essentially stable despite declining scarcity, higher schooling

groups must have become more e�cient over time. For low elasticities, that rate of e�ciency

gain must be extremely rapid. In particular, for " = 1.5, gℎ(") must average 10.4 percent per year

during the 50 years for the 60 countries.

But such rapid growth in e�ective labor is sharply at odds with actual output growth around

the world: A 10.4 percent growth rate in e�ective labor, given a labor share of two-thirds, produces

an annual output growth of 7.0 percent even ignoring capital’s growth; that far exceeds actual

rates. �e (red) dark bar in Figure 2 shows that the rate of e�ective labor growth that is consistent

with the observed output growth is instead 2.8 percent.

Assuming, on average, no growth in human capital or the technology frontier for the low-

est schooling group (average gz1 = 0), an elasticity of substitution of 4.2 is required to reconcile

the growth rate of e�ective labor from the constructive accounting, gℎ("), with that from growth

13



accounting. Furthermore, deviations much from " = 4.2 imply substantial declines in the techno-

logical frontier for group 1. For " = 3 the frontier must contract at 0.83 percent per year, producing

a cumulative contraction of a third on average worldwide from 1960 to 2010. For " = 2 that cu-

mulative contraction is nearly 80 percent, while for " = 1.5 it is 98 percent. �at is, under " = 1.5,
the contraction in the technology frontier for those without any secondary schooling must be so

extreme that in 2010 it takes 50 such workers to have the capacity of one in 1960.

We highlight that the bound gz1 = 0 does imply technological regress for group 1 via directed

technological change away from group 1 due to its declining importance. Substituting the optimal

choice of technology into the de�nition of worker e�ciency, e1 = q1A1, gives:

e1 = q1b1 ⋅ (
w1L1
wL )

1
! = z1 ⋅ V1

1
! .

V1 denotes group 1’s earnings as a share of total earnings in the economy. (See Appendix D.3 for

a derivation.) �erefore, even assuming gz1 = 0, group 1 exhibits a growth rate of ge1 =
1
!gV1 =

"−"SR
("−1)("SR−1)

gV1 in its e�ciency, where gV1 is the growth rate in its share of payments to labor. For

the 60 countries, gV1 averaged -4.5 percent per year from 1960 to 2010. �at rapid decline in group

1’s relative earnings implies a large decline in the e�ciency of group 1 to the extent that " exceeds

"SR .

Table 1 illustrates the corresponding e�ciency drops for values of "SR ranging from 1.5 up

to 4.2, our lower bound for ", while holding " = 4.2. For a short-run elasticity of 3, directed

technological regress yields ge1 = −0.8 percent per year, which translates to the lowest schooling

group losing 33 percent of its 1960 e�ciency by 2010. A short-run elasticity of 2 implies that

the �rst group lost nearly 80 percent of its e�ciency. Finally, a short-run elasticity "SR = 1.5
implies that directing technology away from group 1 reduced its e�ciency by 98 percent over

the 50 years. For this reason, we would argue that an elasticity as low as 1.5, even in the short to

medium run, strains plausibility.

While regress in the technology frontier is unlikely, average skills of the least-educated

group could fall over time if they become more negatively selected by ability. Adjusting for

plausible selection, however, does not substantially alter the conclusions above. In particular,

to rationalize a value for " of 1.5 requires that selection has reduced the quality of the bo�om

group by 7.6 percent per year, or by 98 percent in total, between 1960 and 2010. Given that the

bo�om group shrunk by 65 percent over the entire period, this requires those reductions to fall

on average on workers who had 76 times the average productivity of the 35 percent that remain

14



Table 1: Decline in E�ciency of Group 1 under " = 4.2

"SR 1.5 2 3 4.2
e1,2010
e1,1960 0.02 0.21 0.67 1.0

in the bo�om group.
17

�at is an implausible di�erential considering the cross-sectional wage

dispersion. For comparison, we computed the ratio of average weekly earnings of the highest

65 percent to the lowest 35 percent within the bo�om education group for U.S. data from the

March supplements to the Current Population Survey (CPS) for the years 1975 to 1985. �at ratio

is 2.4. �is should be an upper bound, for our purposes, because it assumes perfect sorting out

of group 1. Even the 90-to-10 ratio for the entire U.S. wage distribution was about 3.5 during the

1980s (Autor et al., 2008). So selection would have to be so extreme that the reductions from the

primary schooling group were at the very top of the overall earnings distribution.

Our assumption is that, on average across countries, there was no decline in the combina-

tion of human capital and technology frontier for workers with no secondary schooling (gz1 = 0).
To make clear the conservative nature of this assumption, we note that these workers are a sig-

ni�cant share in many countries. Over 1960 to 2010, this group averaged 20 percent or more of

the population aged 25-54 in 54 of our 60 countries. To further drive this point home, in Figure

3 we repeat the exercises above, contrasting gℎ from growth accounting with the rate gℎ("), but

now we restrict the sample to the 42 countries for which group 1 constitutes its median schooling

level as of 1985, the mid-year of the sample period. Rejecting the bounding assumption of zero

combined growth in human capital and technology frontier for those without secondary school-

ing would thus require regression, on average over 50 years, for the majority of workers in these

countries.

Figure 3 presents the worldwide growth rates of e�ective labor implied by alternative values

of ", where worldwide now means averaging over the 42 countries with median schooling of

completed primary or less as of 1985. For lower elasticities, implied annual rates of e�ciency

gain remain extremely rapid: For " = 1.5, gℎ(") averages 9.7 percent over the 50 years; for " = 2, it

averages 5.5 percent. But these numbers dramatically contradict the rate from growth accounting

of 2.9 percent per year (dark bar in �gure). To reconcile the growth rate of e�ective labor from

the constructive accounting, gℎ("), with that from growth accounting dictates an elasticity of

17
Let qout be the average quality for the 65 percent of group 1 workers who �ow out, with qstay that for those who

stay. A 98 percent drop in quality requires qstay = 0.02(0.35 qstay + 0.65 qout ), and hence qout /qstay ≈ 76.
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Figure 3: Results for Countries Whose L1/L ≥ 50% in 1985
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Notes: Figure depicts average annual growth rate of human capital across the 42 countries. �e gray bars show

the mean gℎ(") implied by various values of the elasticity of substitution ("). �e red bar shows gℎ from growth

accounting given a capital share of one-third. Countries are weighted by their total employment as of 2000. Source:

Authors’ calculations based on Psacharopoulos and Patrinos (2018), Barro and Lee (2013), and Penn World Table 9.1.

substitution of 3.8. �is is only modestly smaller than the elasticity of 4.2 required for the 60-

country sample. Moreover, signi�cant deviations below " = 3.8 imply substantial declines in the

technological frontier for group 1. For " = 3 the frontier must contract by nearly a fourth from

1960 to 2010. For " = 2 and " = 1.5 the required contractions are 73 percent and 97 percent.

3.4 Cross-Country Results for Lower Bound

Trends across countries also reveal li�le response of Mincer returns to relative declines in the

scarcity of schooling. Figure 4 plots the average annual change in Mincer return against that

in scarcity for our 60-country sample. While scarcity shows a secular decline, consistent with

Figure 1, it is far more pronounced in some countries. At the same time, we see no signi�cant

correlation between changes in scarcity and changes in Mincer return—the correlation coe�cient

is -0.12 with a 0.33 p-value. Consider the set of countries that exhibited the steepest declines in

scarcity, represented by the top quintile in terms of reduced scarcity. On average, these countries

exhibited a 1.2 percentage-point annual decline in scarcity in conjunction with an annual increase

in Mincer return of 0.08 percentage points. For " = 1.5, this requires that each year of schooling be

associated with a 132 percentage points gain in relative e�ciency on average for these countries

from 1960 to 2010.
18

�is implies that the e�ciency of college graduates, relative to workers with

18
Rearrange equation (8): Δ(�q + �b) = ( "

"−1) Δm − ( 1
"−1) Δx , where Δ denotes change over time.
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completed primary, increased by a factor of 500 thousand!

In Figure 5 we plot each country’s rate of e�ective labor growth both from growth account-

ing, gℎ, and from inductive accounting, gℎ−z1("), versus its growth rate in schooling scarcity. First

consider Panel a, where the triangles illustrate gℎ−z1(") calculated for " = 1.5. �e country values

for gℎ−z1(1.5) lie systematically far above the corresponding rates, illustrated by circles, based on

growth accounting. But the size of this discrepancy: (a) di�ers dramatically across countries,

and (b) is larger for countries that exhibited sharper declines in schooling scarcity. On the la�er

point, a 1 percentage point higher annual growth rate in scarcity is associated with a 12 percentage

points lower growth rate in gℎ−z1(1.5), despite having no association with e�ective labor growth

as captured by growth accounting. By contrast, in Panel b, with gℎ−z1(") calculated for " = 4, the

discrepancy between the two measures of e�ective labor growth is small on average, much less

disperse, and displays no relation to the change in scarcity in a country.

�is is further illustrated in Figure 6. �e �gure shows histograms of the di�erentials: gz1 =
gℎ − gℎ−z1("), for " = 1.5 and " = 4. While our bounding assumption requires these to be non-

negative, for " = 1.5 they are negative for most countries, with discrepancies greater than 10

percent per year for 24 countries. By contrast, under " = 4 the growth rates, gz1 , required for

the two measures to align are fairly tightly grouped near zero. �us, the cross-country trends in

schooling and Mincer returns also support a value for " of 4, if not higher. In particular, consider

choosing " to minimize the distance between the two measures, gℎ and gℎ(") across our sample

of 60 countries. �at exercise weighs matching the cross-country correlation between the two

measures as well as their means.
19

�is yields "∗ = 5.5, with a 95 percent con�dence interval [3.3,

129.9].

4 Implications for Cross-Country Income Accounting

In this section we apply our lower bound for substitutability among schooling groups (" = 4)
to investigate how much of the cross-country income inequality can be potentially a�ributed

to di�erences in human capital. We revisit Jones’s (2014) accounting framework with di�erent

values of substitutability (" = 1.5 and 4) in Section 4.2. As discussed below, as well as in Caselli

and Ciccone (2019), that framework may overstate the variation in human capital. We hence

propose a revised accounting framework in Section 4.3 that isolates human capital from other

19
Formally, it numerically solves the problem: "∗ = min" ∑c Lc[gℎ,c − gℎ−z1,c (")]

2
, where c denotes a country and

Lc is its employment in 2000.
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Figure 4: Annual Changes in Mincer Return and School Scarcity by Country
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Notes: Figure plots average yearly changes of Mincer return and schooling scarcity for the 60-country sample de-

scribed in Appendix A. Scarcity is obtained from authors’ calculations based on Barro and Lee (2013), and Mincer

return is taken from Psacharopoulos and Patrinos (2018). �e correlation coe�cient is -0.12 (p-value = 0.33).

Figure 5: Accounting Results and Decrease in Scarcity
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Notes: Figures plot annual growth rates of e�ective labor, with circles for growth accounting and triangles for induc-

tive accounting, against growth rates of schooling scarcity for the 60-country sample. Source: Authors’ calculations

based on Psacharopoulos and Patrinos (2018), Barro and Lee (2013), and Penn World Table 9.1.
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Figure 6: Elasticity of Substitution and E�ciency Regress needed for Group 1
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Notes: �e �gure gives histograms of the frontier growth rates for group 1, gz1 , required to reconcile gℎ−z1 (") with

growth accounting. Histograms are for both " = 1.5 (gray) and for " = 4 (pink). Source: Authors’ calculations based

on Psacharopoulos and Patrinos (2018), Barro and Lee (2013), and Penn World Table 9.1.

e�ciency gains from schooling, such as skill bias in the technology frontier.

4.1 Cross-Country Patterns in Scarcity and Return to Schooling

We �rst describe how schooling scarcity and Mincer return vary by income per worker in our

development accounting sample (104 countries and 367 observations; see Appendix A). Panel a

in Figure 7 shows the cross-country distribution of scarcity against log GDP per worker. Not sur-

prisingly, more educated workers (lower scarcity) are more abundant in higher income countries.

Recall the relationship between Mincer return and scarcity in equation (8): If wage premiums are

driven by scarcity of schooling, then the abundance of schooling should translate to lower wage

premiums in these countries. Panel b shows instead that the Mincer return is remarkably �at

over income per worker.
20

Absent di�erences in �q or �b , this would suggest that the elasticity

of substitution must be very high.

To reconcile the pa�erns in Figure 7 with low substitutability requires that richer countries

have su�ciently higher school quality (�q) or technology frontiers that are su�ciently more skill

biased (�b) to o�set the impact of less scarcity. �e required e�ciency gaps are, however, immense

if " = 1.5. On average, a one log point higher income per worker has to be associated with a 17

20
Speci�cally, a one log point higher income is associated with 9 percentage points lower scarcity (standard error

= 0.6) and 0.26 percentage points lower Mincer return (standard error = 0.20). We control for year �xed e�ects in

regressions.
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Figure 7: Mincer Return and Scarcity across Countries

(a) Scarcity (%)

-40

-20

0

20

40

60

Sc
ar

ci
ty

 (%
)

7 8 9 10 11 12
Log GDP per Worker 

(b) Mincer Return (%)

0

10

20

30

40

M
in

ce
r R

et
ur

n 
(%

)

7 8 9 10 11 12
Log GDP per Worker 

Notes: Data on Mincer return are taken from Psacharopoulos and Patrinos (2018). Scarcity re�ects authors’ calcu-

lations based on Barro and Lee (2013). Log real GDP per worker is from Penn World Tables 9.1. �e sample is an

unbalanced panel of 104 countries with 367 observations (see Appendix A for detail).

percentage points increase in �q + �b . In 2000, for instance, the interquintile range of income in

our sample was 1.7 log points, implying a 29 percentage-point di�erence in �q + �b between the

top and bo�om 20th percentiles. Note that this productivity gap is per year of schooling! �is

means that a high school graduate, with 12 years of schooling, in the richer country has 37 times

the productivity of a similar worker in the poorer country and a college graduate with 16 years of

schooling has 122 times the productivity, even assuming workers without schooling are equally

productive.

Such a gap of �q+�b is tantamount to an enormous gap in e�ective labor input (ℎ = H/L) be-

tween richer and poorer countries. In contraposition, our lower bound on substitutability there-

fore places a ceiling on the extent to which schooling can explain cross-country income di�er-

ences. In the following subsection, we revisit the development accounting proposed by Jones

(2014). Under our lower bound of " = 4, we �nd that schooling accounts for about 20 percent of

income di�erences. We also show that the commonly used value (" = 1.5) substantially overstates

the role of schooling in development accounting.
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4.2 Substitutability and Development Accounting

As derived in Section 3.2, we can write each country’s aggregate production function as y =
k� [z1 ℎ−z1(")]

1−�
, where ℎ−z1(") = (w/w1)

"
"−1 (L/L1)

1
"−1 is calculated using data on its schooling and

Mincer return for a given value of elasticity of substitution. Taking the log of both sides gives

ln y = � ln k + (1 − �) ln ℎ−z1(") + (1 − �) ln z1. (13)

To gauge the importance of human capital, Jones (2014) asks how much of the cross-country

di�erences in log income (ln y) can be accounted for by the term (1−�) ln ℎ−z1("), which captures

the contribution of e�ective labor input to aggregate income per worker. To isolate the role of "
for Jones’ results, we ignore potential di�erences in q1 across countries.

Figure 8 shows the calculated (1 − �) ln ℎ−z1(") on the vertical axis against log income per

worker, assuming " = 1.5 in Panel a and " = 4 in Panel b. We assume a capital intensity of � = 1/3.
Variables are normalized to set the predicted value for the poorest country to zero, and we subtract

year �xed e�ects from (1−�) ln ℎ−z1(") to focus on its cross-country variation. Each country-year

observation is depicted by a circle, and the solid blue line shows the regression line. Its slope, our

coe�cient of interest, represents the average share of log income di�erences explained by the

e�ective labor input. �e solid red line similarly depicts the ��ed values for � ln k +(1−�)ℎ−z1(").
(Country-year observations are not shown.) Its slope captures the total contribution of capital

and e�ective labor. If it exceeds one (red line above the 45-degree line), labor and capital explain

more than 100 percent of income gaps, implying that z1 must decrease with income. We report the

slopes of the ��ed lines in Table 2 to summarize each factor’s contribution to income di�erences.

Low substitutability greatly widens the ℎ−z1(") gap between rich and poor countries. For " =
1.5, e�ective labor input captures 82 percent of income di�erences. �is is too high, given cross-

country di�erences in incomes and capital stocks. Since capital explains 41 percent of income gaps

in our sample, capital and labor together account for 123 percent. An unavoidable implication is

that z1 decreases substantially with development. For instance, workers in the bo�om schooling

group in a poor country, at the 20th percentile of per capita income, must be 80 percent more

e�cient than workers of that schooling in a rich country, at the 80th income percentile.
21

21
Jones approximates the q1 gap between rich and poor countries by wage di�erences among U.S. immigrants.

He �nds q1 to be slightly lower in rich countries. �us, lower e�ciency largely translates into a contraction of the

technology frontier. For instance, Jones (2014) �nds Israel’s q1 to be 17 percent lower than Kenya’s. Given Israel has

16.9 times Kenya’s income, this explains only (1 − �) ln(0.83)/ ln(16.9) = −4 percent of their income gap, leaving -19

percent to be accounted for by Israel’s lower b1.
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Figure 8: Development Accounting Using Jones’ (2014) Framework
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Notes: Figure plots the e�ective labor input (1 − �)ℎ−z1 (") against log GDP per worker. Variables are normalized to

set the predicted value for the poorest country to zero, and year �xed e�ects are subtracted from the vertical-axis

variable. �e solid lines depict the OLS ��ed values (see description in the text). �e poor country is de�ned as the

median country with less than a quarter of US GDP per worker in 2000.

Table 2: Share of Income Di�erences Explained by Factors (%)

" 1.5 4 ∞

� ln k 41 41 41

(1 − �) ln ℎ−z1(") 82 20 7

Total 123 61 48

Notes: Each column reports accounting results given long-run substitutability (" in column header). Shares are

obtained by projecting each factor (speci�ed in row header) on log GDP per worker controlling for year �xed e�ects.
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Our lower bound on substitutability, " = 4, substantially limits the contribution of e�ective

labor input to 20 percent of income di�erences. Capital and labor together contribute only 60

percent in this case, implying that z1 increases with income, accounting for the remaining 40

percent of income di�erences. In general, using a higher elasticity of substitution results in a

lower contribution of labor inputs and a larger contribution of z1. For example, early papers

treated schooling groups as perfect, but unequal, substitutes (see, e.g., Klenow and Rodrigues-

Clare, 1997; Hall and Jones, 1999; Caselli, 2005). In this case, the contribution of labor input

reduces to 7 percent, leaving about half of the income gap to be explained by z1. In that sense,

development accounting under our lower bound (" = 4) is much closer to that under perfect

substitutes (" = ∞) than that under " = 1.5.

Some studies treat the United States as the rich country benchmark. Doing so does not

change our conclusion. However, we note that the ℎ−z1(") for the United States is above average

among similarly rich countries. As a result, US comparisons give a larger role for e�ective labor

for any ". We illustrate this for the year 2000 in Figure 8 by comparing the United States with the

median poor country. Poor countries are de�ned, as in Hendricks and Schoellman (forthcoming),

to be those with less than a quarter of the United States’ real GDP per worker. We �nd that

e�ective labor accounts for 55 percent of the income gap under " = 4, demonstrated by the

steeper slope of the dashed blue line in Panel b, and an incredible 233 percent under " = 1.5.22

Jones (2014) interprets his framework as accounting for the role of human capital in ex-

plaining income di�erences. However, Caselli and Ciccone (2019) point out that this framework

counts not only human capital but also all other factors that a�ect the e�ciency gains from

schooling, such as skill-biased technology. �rough the lens of our model, higher skill premia

in richer countries may re�ect be�er schooling (higher �q) or more skill-biased technology fron-

tiers (higher �b). Jones’s (2014) thought experiment tells us what percentage of the income gap

would have been bridged if poor countries could achieve rich countries’ educational a�ainment

(Li), human capital gains from schooling (�q), as well as the shape of their technology frontier

(�b). A�ributing technological gains to human capital overstates the variation in human capital

when richer countries’ technology frontier is more skill biased. �e next subsection provides an

alternative accounting that isolates human capital from other skill-biased factors.

22
�e contribution of e�ective labor to the income gap ranges from 48 percent to 65 percent between 1980 and

2000 under " = 4.
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4.3 School�ality and the Skill Bias of Technology Frontier across Countries

To isolate the contribution of human capital from the skill bias of technology frontiers, we employ

two measures of school quality. �e �rst is Schoellman’s (2012) measure based on immigrants in

the United States. �is measure re�ects the wage premium in the US labor market for education

received in the immigrants’ countries of origin. Because the wage premia are for the US labor

market, their variation re�ects the quality of schooling in the country of origin rather than the

market-speci�c factors of technology and schooling scarcity. Speci�cally, le�ing c denote the

country of origin, we assume that the long-run aggregate labor input in the US is given by:

HUS =
⎡
⎢
⎢
⎣
∑
i∈S (

∑
c∈C

bi,U S qi,c Li,c)

"−1
" ⎤
⎥
⎥
⎦

"
"−1

.

�is formulation assumes that immigrants from di�erent countries are perfect but potentially

unequal substitutes. �e implied US wage premium is,

mUS
c = � + �q,c ,

where mUS
c and �q,c are each speci�c to a worker’s country of origin; � is a constant re�ecting

the schooling scarcity and the skill bias of accessible technology in the US (see Appendix E for

derivations). Going forward, we keep the country subscript implicit and refer to US immigrant

Mincer return asmUS
. Schoellman (2012) estimatesmUS

for 131 countries of origin using the 2000

decennial census. Merging his data with PWT 9.1 yields a sample with 116 countries.

Our second measure is based on the test scores from the Programme for International Stu-

dent Assessment (PISA). PISA strives to evaluate educational systems around the world by testing

the scholastic abilities of 15-year-old students along three dimensions: mathematics, science, and

reading. We construct a school quality measure based on the micro-level data on test results

provided by the OECD for the 2015 wave of tests. �e results reported here use test scores for

mathematics.
23

We measure school quality by the ratio of the country test score to the modal

grade year for those taking the test.
24

Expressing the result, which is in units of standardized

23
We pick mathematics because the content is more comparable across countries and because it correlates more

strongly with average educational a�ainment across countries. Measures based on other �elds do not vary systemat-

ically with income per worker. Following our later discussion, this implies a lower role for human capital and larger

role for skill-biased technology frontier.

24
Test takers from the same country can be in di�erent grades due to the di�ering age at which they begin school.

We use this variation to construct an alternative measure and summarize the results in Appendix F.
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test score, in terms of school quality �q , which is in wage units, requires a market value for the

test score. We calibrate this value to US estimates of the wage return to standardized test score.

To that end, we �rst divide the marginal test score a�ributable to a year of schooling by the

standard deviation of the test score in the United States—this translates schooling quality into

units of the standard deviation of US test scores. We then multiply by 15 percent, the wage re-

turn to a unit standard deviation of ability in the US as estimated by Lange (2007) using data on

the Armed Forces �ali�cation Test for the 1979 cohort of the National Longitudinal Survey of

Youth.
25

Merging the PISA-based school quality measures with PWT 9.1 yields a sample with 62

countries.

Given measures of school quality, we can infer the relationship between income and skill

bias of technology frontier (�b). To do so, we �rst rearrange equation (8) to back out a country’s

total e�ciency gain from schooling (�q + �b) implied by its Mincer return (m), scarcity (x), and a

particular value of substitutability ("):

�q + �b = (
"

" − 1)
m − (

1
" − 1)

x. (14)

We calculate the right-hand side, denoted as �̃z("), using our cross-country sample. �is allows

us to infer the skill bias of technology frontiers by �̃z(")−�q given each measure of school quality.

Panel a in Figure 9 contrasts Schoellman’s (2012) school quality measure on the vertical axis

against log GDP per worker, where variables are normalized to set the predicted value for the

poorest country equal to zero. �e red solid line, which shows the ��ed values from a linear

regression, displays a positive relationship between a country’s income and its school quality.

Speci�cally, each log point increase in income is associated with 1.5 percentage points higher �q
(with a standard error of 0.2). Panel b shows the sca�er plot and ��ed lines for the PISA-based

school quality measure. Under this measure, a one log point higher income is associated with 0.7

percentage points higher �q (with a standard error of 0.2).

Figure 9 also shows the inferred �b gap between rich and poor countries. �e black dashed

lines show the ��ed values of �̃z(") projected on income for " = 1.5 and " = 4, respectively

(controlling for year �xed e�ects). �e gap between the red solid line and each black dashed

line gives an inferred relationship between �b and income. As discussed in Section 4.1, lower

25
Lange (2007) estimates the return to ability in a Mincerian wage regression for workers with di�erent levels

of work experience. We pick the return for older workers (Figure 2), which be�er re�ects the impact of ability

on worker productivity. �e wage return to ability is known to be slightly lower among younger workers due to

employer uncertainty regarding worker ability (Altonji and Pierret, 2001).
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Figure 9: Measured School �ality vs. Implied �̃z(")

(a) Schoellman (2012)
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(b) PISA Test Scores
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Notes: Figure plots measures for school quality (�q) against ln(GDP) per worker across countries. Panel a shows

the immigrant-based measure from Schoellman (2012), and Panel b shows the test-score-based measure calculated

from PISA. Variables are normalized to set the predicted value for the poorest country to zero. �e solid red lines

depict the linear ��ed values for school quality. �e black dashed lines depict the projection of �̃z(") on log GDP per

worker for " = 1.5 and 4 respectively.

substitutability widens the gap of e�ciency gain from schooling. Although we do observe a

positive relationship between school quality and income, the gradient would need to be about

an order of magnitude steeper to align with the slope implied by " = 1.5, where a log point

increase in income is associated with 17 percentage points higher �̃z(1.5) (standard error 1.2).

Given the strength of the empirical relationship between school quality and income, skill bias of

the technology frontier, �b , must account for much of the immense e�ciency gap between rich

and poor countries.
26

Under an elasticity of 4, by contrast, a log point increase in income is only associated with 2.7
percentage points higher �̃z (standard error 0.3). In turn, a one log point higher income predicts

1.2 percentage points higher �b given Schoellman’s school quality measure and 2 percentage

points higher �b under the PISA-based measure. So, for " = 4, school quality and skill-biased

technology are roughly comparable in importance in explaining the greater e�ciency of more-

schooled workers in richer countries, with school quality somewhat more important under the

Schoellman measure and technology more important under the test-score measure.

Motivated by this, we ask to what extent cross-country income gaps would be bridged if

26
�is parallels Rossi (2022). Rossi, using a low short-run substitutability ("SR = 1.5 or 2) and an immigrant-based

school quality measure, �nds large cross-country variations in the skill bias of technology (�A).
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Table 3: Share of Income Di�erences Explained by Human Capital (%)

" 1.5 4

(1 − �) ln ℎ−z1(") 82 20

�q = mUS
18 13

�q = PISA 15 11

Notes: Shares in bo�om two rows are obtained by projecting human capital per worker, (1 − �)ℎ̃−z1 ("), on log GDP

per worker controlling for year �xed e�ects. �e row header speci�es the school quality measure used in calculating

human capital, and the column header speci�es the long-run substitutability (").

poor countries could achieve rich countries’ education a�ainment (Li) and school quality (�q)

while keeping their current skill bias of technology frontier (�b). Speci�cally, we measure human

capital, ℎ̃−z1("), purged of skill bias in technology as:

ℎ̃−z1(") =
1
L [

∑
i∈S

(e
�̂q(si−s1)Li)

"−1
"

]

"
"−1

, (15)

where school quality �̂q is predicted by the country’s income according to the projection of school

quality, measured bymUS
or PISA, on log income per worker (namely the solid red lines in Figure

9). We project (1 − �)ℎ̃−z1(") on log GDP per worker to obtain the contribution of human capital

to cross-country income di�erences.

Table 3 summarizes the contribution of human capital under " = 1.5 and " = 4. �e �rst row

repeats the results from Table 2 for the broad contribution of schooling to per capita income, re-

�ecting schooling quantity, schooling quality, or skill-biased technology. Rows 2 and 3 report the

pure contribution of schooling quantity and quality incorporating the school quality measures

from Schoellman (2012) and PISA scores respectively. Low substitutability, " = 1.5, generates a

huge gap between rich and poor countries in the relative e�ciency of workers with more school-

ing. But this gap is not justi�ed by richer countries’ advantages in years and measured quality

of schooling. For " = 1.5, the quantity and quality of schooling account for only 15-18 percent

of cross-country income di�erences, depending on the measure of schooling quality. Under our

lower bound for the elasticity, " = 4, the quantity and quality of schooling account for only 11-13

percent.

To sum up, this section contributes to the development accounting literature in two ways.

First, we bound the contribution of schooling to cross-country income di�erences by our �nd-
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ings from Section 3. Second, we apply measures of school quality to assess human capital while

keeping the skill bias of technology frontier constant across countries. We �nd that using our

lower bound on substitutability and incorporating school quality measures e�ectively caps the

contribution of human capital to income di�erences below 15 percent.

We note that how school quality varies by development also implies an upper bound on sub-

stitutability if we require rich countries’ technology frontiers to be more skill biased on average

(higher �b). To see this, recall from Figure 9 that the correlation between skill bias and income

(captured by the di�erence between the slopes of the dashed black lines and the solid red line)

is decreasing in ". For low values of ", this di�erence is positive, implying that rich countries

have more skill-biased technologies. But when schooling groups are perfect substitutes (" = ∞),

the sum of skill bias and school quality, �̃z(") = �q + �b , simpli�es to the Mincer return, which

is negatively correlated with income (see Figure 7). Since school quality, �q is increasing with

income in the data, skill bias must then decrease with income. Consequently, there is an upper

bound " < ∞ such that, for all " > ", the implied skill bias decreases with income on average, i.e.,

the dashed black line goes below the solid red line. �is implied upper bound is 6 when using

Schoellman’s school quality measure and 10 when using the PISA-based measure.
27

5 Robustness to Alternative Production Technologies

In this section, we explore the generality of our results to alternative groupings of the schooling

categories in the production function. �ese groupings allow varying degrees of substitutability

among di�erent schooling groups. For instance, the literature has o�en classi�ed workers into

college-trained versus all others. �is classi�cation assumes perfect, though possibly unequal,

substitution within these groups while allowing for imperfect substitution between them. �e

upshot of what follows is that our bounding approach is generally consistent with a lower degree

of local substitutability, that is, between a subset of schooling categories, provided a su�ciently

higher degree of substitutability is adopted among other categories in order that the overall sub-

stitutability remains high.

Nevertheless, these di�erent formulations of the long-run production function are nearly

identical in terms of their implications for development accounting: Schooling di�erences explain

27
�is parallels Hendricks and Schoellman’s (forthcoming) identi�cation for long-run substitutability. �ey as-

sume no cross-country variation in the skill bias of technology frontier, �b , and use cross-country data on Mincer

return, schooling, and school quality measures to identify substitutability and assess human capital variation. We,

on the other hand, bound substitutability from below by growth accounting and allow �b to vary with income.
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roughly a ��h of the income gaps across countries. �ey cast, however, a more nuanced role

for human capital, allowing its contribution to vary along the income distribution. We discuss

these nuances and caution against the potential pitfalls of using alternative formulations of the

production function as a general tool for policy analysis.

5.1 Bounding the Elasticity by Growth Accounting

We begin by noting that our results generalize to the following class of production functions.

H = [(z1L1)
"−1
" + H̃(z2L2, … , zSLS)

"−1
"
]

"
"−1

, (16)

where H̃ is any constant-returns-to-scale aggregator. �is class of functions covers any grouping

combinations of the higher schooling categories, with constant or varying elasticities of substi-

tution among them. It includes, among others, a two-group speci�cation where workers with

more than primary schooling are perfect substitutes for each other. �e only restriction is that

the elasticity of substitution between the lowest schooling category and the composite supplied

by other workers, H̃ , is constant at ". �e lower bound on that elasticity of substitution is the

same as our benchmark CES production function.
28

�is property is inherent in the accounting

approach adopted by Jones (2014). Various elasticities introduced by di�erent formulations of H̃
are re�ected in the relative wage term in equation (10) for inference purposes.

Next, we explore the robustness of our results to groupings of the lowest schooling cate-

gories in a nested-CES form. Formally, we study the following class of production functions.

H =
⎡
⎢
⎢
⎢
⎣
(
∑
j≤N

(zjLj)
�−1
�

)

�
�−1 ⋅

�−1
�

+ H̃(zN+1LN+1, … , zSLS)
�−1
�

⎤
⎥
⎥
⎥
⎦

�
�−1

. (17)

�is speci�cation assumes a constant elasticity of substitution, � , among the bo�om schooling

groups and a constant elasticity of substitution of � between the composite bo�om group and the

higher schooling categories. Equation (17) captures a wide variety of commonly used groupings

as special cases. If � = � = " the production function simpli�es, yielding our benchmark results.

Starting from our four distinct schooling categories, if N = 3 and � = ∞ then the speci�cation

28
Note that equation (16) also generalizes to formulations where higher schooling levels are split further into more

than 3 categories.
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yields the o�-used college versus non-college grouping that assumes all non-college workers are

perfect substitutes. N = 2 and � = ∞ produces a similar speci�cation for workers with more than

versus those with less than a high school education.

We examine the implications of our bounding assumption of no frontier regress for the

lowest schooling category, gz1 ≥ 0, for a range of possible values for � and �. Let G be the

compound group of workers with the lowest N schooling levels. Denote the total number of

workers in G by LG = ∑j≤N Lj and their average wage by wG ≡ (
1
LG )∑j≤N wjLj . With this

notation and the assumption of competitive labor markets, the human capital per worker, ℎ =
H/L, can be expressed as follows (see Appendix G for the derivation).

ℎ(�, �) = z1(
wG
w1 )

�
�−1

(
LG
L1 )

1
�−1

(
w
wG)

�
�−1

(
L
LG)

1
�−1

. (18)

Analogous to equation (10) in our benchmark speci�cation, equation (18) expresses average hu-

man capital as a function of the technology frontier associated with the lowest schooling level,

z1, elasticities of substitution, � and �, and the relevant relative wages and labor supplies.

In growth terms, we have:

gℎ(� , �) = gz1 + gℎ−z1(� , �). (19)

We employ our bounding assumption of no regress of the technology frontier, gz1 ≥ 0 to compute

the range of elasticities that are consistent with the growth rates observed in the aggregate data.

Since we have four schooling categories, the two relevant alternatives to our benchmark are

either N = 2, where workers with less than some secondary education, s1 and s2, are included in

the bo�om nest: G = {1, 2}, or N = 3, where the nest consists of those with a completed high

school education or below: G = {1, 2, 3}.
29

�e solid curves in Figure 10 show the combinations of substitution elasticities � and � for

29
�e explicit production functions are

H =
[[
(z1L1)

�−1
� + (z2L2)

�−1
� + (z3L3)

�−1
� ]

�
�−1 ⋅

�−1
� + (z4L4)

�−1
�
]

�
�−1

,

and

H =
[[
(z1L1)

�−1
� + (z2L2)

�−1
� ]

�
�−1 ⋅

�−1
� + H̃ (z3L3, z4L4)

�−1
�
]

�
�−1

.
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Figure 10: Bounding (�, �) by gz1 ≥ 0.
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Notes: Figure shows the combinations of substitution elasticities, � and � , that are consistent with the stable techno-

logical capacity associated with the bo�om schooling groups: gz1 = 0. G denotes the lowest schooling groups nested

in the production equation (17). (See footnote 29 for the explicit production functions used.)

equation (19) that are consistent with a stable technological frontier for the lowest schooling cate-

gory, bounding condition gz1 = 0. Panel (a) treats the bo�om groups as less than secondary, while

Panel (b) treats them as less than college. Combinations that are closer to the origin relative to

the curve imply a long-run contraction of the technology frontier, and thus violate our bounding

assumption. Our benchmark speci�cation is represented by the intersection of the curve with

the 45° line, where � = � = 4.

Figure 10 depicts the trade-o�s in how schooling levels are categorized versus implied sub-

stitutability. Generally, an elasticity of substitution lower than 4 among some schooling groups

is consistent with our bound only if a higher elasticity is adopted elsewhere along the schooling

distribution. In Panel (a), for instance, low substitutability, � < 4, between high school graduates

and above (groups 3 and 4) and those with less than a high school diploma (groups 1 and 2) must

be accompanied by easier substitutability between workers with a primary school education and

those with some secondary education. Even with perfect substitution within this bo�om group

(� = ∞), however, the lowest value of � that is consistent with our bound is 2.7. On the other

extreme, the lowest allowable value for � is 2.4. But it is obtainable only if higher-schooling

categories are perfect substitutes with lower-schooling categories (� = ∞).

Including more schooling categories in the bo�om group, shown in Panel (b), allows for

� = 1.4, but only if one assumes that the three bo�om groups are perfect substitutes. In our
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60-country sample, those three groups represent 90 percent of the work force on average. �us,

this requires that a large fraction of the work force be perfect substitutes. Looking at the other

extreme, the lowest permissible value for � in Panel (b) is still high at 3.7, even though � = ∞ is

adopted.

It is common in the literature to combine schooling categories a priori into two groups that

are imperfect substitutes, implicitly assuming perfect substitution within each group. If one of

these categories includes a vast majority of workers, as in Panel (b) of Figure 10, then an elasticity

of substitution on the order of 1.5 can be consistent with worldwide growth in output and human

capital because the worldwide gains in schooling have mostly occurred at lower levels, between

primary and secondary education. If these categories are assumed to be perfect substitutes, then

these gains do not translate into counterfactually high gains in output.

Speci�cations with such low degrees of local substitutability may nonetheless lead to stark

outcomes when projecting output gains from further achievements in a�ainment, especially if

schooling gains are concentrated in transitions between hard-to-substitute groups. Consider, as

an example, the extreme case in Panel (b), where all workers without college are perfect substi-

tutes, but are, as a group, hard to substitute for those with college training: � = ∞ and � = 1.4.
�e implied output growth under this speci�cation remains too large to reconcile with historical

income growth for countries with large transitions between secondary to tertiary education, such

as the United States or Japan. Given the growth rates of output and physical capital in these coun-

tries, this can only be reconciled if the technology frontier associated with the lowest schooling

group, zUS1 and zJ PN1 , contracted at annual rates of 3.6 percent and 3.4 percent respectively.
30

5.2 Revisiting Development Accounting

Despite the seemingly wide variation in degrees of substitutability depicted in Figure 10, the

implications of these alternative speci�cations for development accounting are strikingly similar

to those of our benchmark results. In Table 4, we show the average contribution of schooling

to cross-country income gaps under two extreme combinations of � and � for each production

speci�cation presented in Figure 10. �e �rst row repeats the benchmark results from Table 2. �e

next row assumes perfect substitution among the bo�om schooling categories (� = ∞) and sets

30
In a similar two-group setup with low substitutability between college and non-college workers, Caselli and

Coleman (2002) infer a drop in the technical e�ciency of non-college workers for the US since 1980. �ey interpret

this as an endogenous shi� in production technologies away from these workers—a drop in their average Ai in our

notation.
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Table 4: Share (%) of ln y Explained by (1 − �) ln ℎ−z1(� , �)

G = {1, 2} G = {1, 2, 3}

� = � = 4 20 20

� = ∞, � = � 21 25

� = �, � = ∞ 17 18

Notes: Table shows the share of income per capita that can be explained by di�erences in schooling under alternative

production function speci�cations (see text). Shares represent averages obtained by projections.

substitutability between the bo�om group and other groups to the lowest possible value (� = �)

allowed by our bounding condition. Analogously, the third row sets � = ∞ and � = � .
31

Across

di�erent speci�cations and parameter combinations, schooling di�erences explain 17-25 percent

of income di�erences across countries. �e robustness of the development accounting results

re�ects the empirical discipline imposed by our bound from growth accounting. Observed output

growth puts a limit on the productivity gains that can be a�ributed to the long-run decline in the

scarcity of schooling worldwide. When cross-country human capital di�erences are computed

in a way that is consistent with that insight from growth accounting, the results are comparable

across a wide range of production function speci�cations.

6 Conclusions

We show that growth accounting points to a long-run elasticity of substitution across school-

ing groups of four, or above. Elasticities that are signi�cantly lower imply rapid technological

regress for a large section of the workforce worldwide for 1960 to 2010, even beyond that from

technology shi�ing endogenously away from workers with less schooling due to their declining

importance. In particular, under " = 1.5 the frontier must contract by 98 percent for those without

secondary schooling, a group that averaged about 40 percent of the population for our sample of

60 countries.

�e elasticity of substitution plays an important role in several quantitative literatures. It is

obviously important for understanding the evolution of earnings inequality. It is also central to

31
With � = ∞, the corresponding values for � are 2.7 when G = {1, 2} and 1.4 when G = {1, 2, 3}. With � = ∞, the

elasticities for � are 2.4 when G = {1, 2} and 3.7 when G = {1, 2, 3}.
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the study of human capital’s role in income di�erences across countries. Klenow and Rodrigues-

Clare (1997) and Hall and Jones (1999), who treat schooling groups as perfect, but unequal, substi-

tutes, �nd that human capital di�erences are relatively small compared to the enormous di�er-

ences in worker productivities across countries. Jones (2014), Caselli (2016), and Malmberg (2018)

each allow imperfect substitution. �is implies greater di�erences in worker e�ciencies across

schooling types in rich countries than in poor ones, much greater for elasticities on the order of

" = 1.5. In turn, this yields much bigger di�erences in average worker e�ciency across countries

assuming that less-educated workers are as e�cient in rich as in poor countries.

Our bound on the elasticity implies smaller e�ciency di�erences from schooling between

rich and poor countries. To illustrate, we conduct the exercise in Jones (2014) for " = 1.5 versus

" = 4. For " = 1.5, worker e�ciency from schooling accounts for most, 82 percent of the income

di�erences between rich and poor countries, and together with physical capital it accounts for

well over 100 percent of those di�erences. By contrast, under our pro�ered value of " = 4, it

accounts for 20 percent of income di�erences, or 60 percent in combination with physical capital.

Our preferred elasticity of 4 does still imply that workers with more schooling are consid-

erably more e�cient in richer countries. In fact, we show that an elasticity of 4 is consistent

with both be�er quality of schooling in richer countries, as measured based on international test

scores or the earnings of immigrants to the United States from Schoellman (2012), and a more

skill-biased technology frontier in richer countries as in Caselli and Coleman (2006) and Rossi

(2022).
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Appendix

A Data Appendix

Sections 3 through 5 use cross-country panel data on schooling a�ainments and estimated Mincer

returns. �e data on educational a�ainment by country are from Barro and Lee (2013) posted

online at h�p://www.barrolee.com/. �e data include 153 countries with a�ainments reported

at �ve-year intervals from 1950 to 2010. It contains population frequency distributions over 7

educational categories by broad age groups. We restrict our population sample to those ages 25

to 54. We associate each a�ainment category with years of schooling using UNESCO Institute

for Statistics (h�p://data.uis.unesco.org/) data on the duration of educational categories (in 2010)

for each country. Our benchmark case divides workers into four groups: i) completed primary

or less, ii) some secondary schooling, iii) completed secondary, and iv) at least some tertiary. To

measure scarcity, for each country in each year, we regress the (log) size of the population in

each schooling category on the years of schooling for that category. For our 104-country sample

for Section 4, the average shares by group are respectively 83 percent, 9 percent, 6 percent, and

3 percent in 1965 (weighted by population), and they become 38 percent, 31 percent, 23 percent,

and 8 percent in 2010.

�e data on the Mincer return are obtained from Psacharopoulos and Patrinos (2018), who

compile 1,120 estimates of Mincer wage equations, from micro data on workers’ wages, ages and

education, for 139 countries going back before 1960. We use what Psacharopoulos and Patrinos

(2018) label the overall Mincerian private return (column G in Annex 2 to their paper.) In cases

where multiple Mincer estimates are available for a country at the same �ve-year intervals, we

use the average of those estimates.

�e growth and income accounting in 3 and 4 also requires information on real GDP per

worker and capital stock per worker for each country in each year. �ese data are obtained from

Penn World Table 9.1 (Feenstra et al., 2015). For growth accounting, we use rgdpna and rnna

for real GDP and capital stock, respectively (i.e., real variables valued at constant 2011 national

prices) so that variables are comparable across time with each country. For cross-country income

accounting, we use rgdpo and cn for real GDP and capital stock (i.e., real variables valued at

PPPs) so that variables are comparable across countries. We then divide the levels of real income

and capital stock by emp to obtain their per worker value.
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Merging data from Barro and Lee (2013) and Psacharopoulos and Patrinos (2018) with data

from the Penn World Table results in an unbalanced panel sample of 367 observations for 104

countries spanning 1960 to 2010 with data on both a�ainment and the Mincer return to schooling.

For the growth accounting results in Section 3, we further require a country to be observed at

three or more of the intervals, yielding a smaller sample with 60 countries and 298 observations.
A1

Figure A1 describes the panel structure of our sample. Panel a depicts the number of countries for

each �ve-year interval. It shows that our observations are mainly concentrated between 1975 and

2010. Panel b shows the frequency distributions of observations per country. Forty-�ve countries

have less than 2 observations and hence are not used for growth accounting. �e remaining

countries have at least 3 observations during the sample period.

Figure A2 plots the distribution of schooling scarcity (Panel a) and Mincer return (Panel

b) in our merged sample. Each light (gray) circle indicates an observation in the 60-country

growth accounting sample, and each dark (blue) dot indicates an additional observation of the

105-country income accounting sample. As described in Section 3.1, scarcity trends downward

due to increased educational a�ainment worldwide, while Mincer return stays stable over time.

�ese pa�erns are consistent in both samples.

In Section 4.3, we consider two measures of schooling quality across countries. First, we em-

ploy Schoellman’s (2012) estimates of a country’s schooling quality in 2000 based on US earnings

of immigrants who received all or most of their schooling in their country of birth. Schoell-

man’s (2012) supplementary data (reported in his Table A1) include school quality estimates for

131 countries in 2000. We merge this sample with the Penn World Table 9.1 to obtain GDP per

worker. �e merged sample has 116 countries and is used in Section 4.3. �ere are 51 countries

for which we also have estimates of schooling scarcity and Mincer returns in the home countries

in 2000.

Our second measure is based on standardized test scores across countries, more precisely on

the gradient of the test score with respect to years of schooling by country. �e testing is over-

seen by the Programme for International Student Assessment (PISA). �ese tests are given to

students age 15 in three areas: mathematics, science, and reading. We construct two school qual-

ity measures based on the micro-level data from the 2015 wave of the test, as discussed in Section

4.3.
A2

(We discuss our preferred measure in the text, the alternate only in Section F below.) �ese

data are available from the OECD (h�ps://www.oecd.org/pisa/data/). We map these test scores

A1
We drop observations through 1990 for countries that were formerly held in the Soviet Union.

A2
See the OECD “PISA 2015 Results in Focus” ( h�ps://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf).
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Figure A1: Sample Counts across Years and Countries

(a) Counts per Year

0

20

40

60

N
um

be
r o

f C
ou

nt
rie

s

1960 1970 1980 1990 2000 2010

Growth acc. sample
Level acc. sample

(b) Counts per Country

0

5

10

15

20

N
um

be
r o

f C
ou

nt
rie

s

0 2 4 6 8 10
Number of Observations per Country

GA sample
NOT in GA sample

Notes: �e light (gray) solid line in Panel a shows the total number of observations for each year in the 105-country

sample used for income accounting; �e dark (blue) dashed line shows the total number of observations for each

year for the 60-country sample used for growth accounting (GA sample). Panel b shows the number of observations

per country in the sample.

Figure A2: Scarcity and Mincer Return in Main Samples
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Notes: Figures depict the sample distribution of scarcity and Mincer return across time in our sample. Each light

(gray) circle indicates an observation in the 60-country sample used for growth accounting; each dark (blue) dot

indicates an observation in the 105-country sample but not used for growth accounting. �e plot thickens with time

as data become available on more countries.
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to their implications for wages based on the relationship between wage rates and a standardized

test score in the US as estimated by Lange (2007) for the 1979 cohort of the National Longitudinal

Survey of Youth (NLSY, see h�ps://www.bls.gov/nls/nlsy79.htm) using Armed Forces �ali�ca-

tion Tests. �ere are 51 countries from the PISA data for which we can obtain schooling scarcity

and Mincer returns from our main sample.

Table A1 lists the countries represented in the empirical results, denoting each exercise for

which a country could be utilized.

B Employment-Based Measure of School Scarcity

In our calculations of scarcity, we rely on the population shares of schooling from Barro and Lee

(2013), whereas the wage equation in (7) stipulates the relative shares of schooling in the work

force. �e International Labor Organisation (ILO, h�ps://ilostat.ilo.org/) provides employment

share by schooling for 121 countries and for the years 1990 to 2018. For most countries, however,

data are only available a�er 2002, which is too recent to line up with the estimated Mincer returns

from Psacharopoulos and Patrinos (2018) and hence is not applicable to our main analysis. We

therefore use schooling population shares from Barro and Lee (2013) in our analysis.

To gauge the di�erence between the two measures, we compare employment-based scarcity

calculated from the ILO to the population-based scarcity calculated from Barro and Lee (2013) for

recent years. Figure A3 shows that the two measures closely align, being concentrated along

the dashed 45-degree line with an almost perfect correlation of 0.98, implying that substituting

population shares of schooling for employment shares imparts no signi�cant bias.

C Scarcity under Di�erent Grouping Rules

Our benchmark re�ects the four schooling groups as listed above. But we consider the sensitivity

of measured scarcity to the following alternative groupings:

(a) 2 Groups : less than tertiary; some tertiary or more.

(b) 2 Groups : less than secondary; some secondary or more.

(c) 3 Groups: less than secondary; some or complete secondary; some tertiary and above.

4
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Table A1: List of Countries in Sample

60 countries for growth and development accounting

Argentina Denmark Iran Panama Sweden

Australia Ecuador Israel Peru Switzerland

Austria Egypt Italy Philippines Taiwan

Bolivia Finland Japan Poland �ailand

Brazil France Kenya Portugal Tunisia

Bulgaria Germany Latvia South Korea Turkey

Canada Ghana Malaysia Romania USA

Chile Greece Mexico Slovenia Uganda

China Guatemala Netherlands South Africa United Kingdom

Colombia Hungary Nicaragua Spain Tanzania

Costa Rica India Norway Sri Lanka Venezuela

Cyprus Indonesia Pakistan Sudan Viet Nam

44 countries for development accounting only

Albania Cote d’Ivoire Ireland Mongolia Singapore

Algeria Croatia Jamaica Morocco Slovakia

Bangladesh Czech Republic Jordan Namibia Tajikistan

Belgium Dominican Republic Kazakhstan Nepal Ukraine

Belize El Salvador Kuwait New Zealand United Arab Emirates

Botswana Estonia Kyrgyzstan Niger Uruguay

Cambodia Gambia Malawi Paraguay Zambia

Cameroon Honduras Maldives Russia Zimbabwe

Hong Kong Iraq Malta Rwanda

Notes: Table lists the 104 countries whose Mincer return, schooling distribution, and GDP per worker are observed

at least once between 1960-2010. �e top panel lists the 60 countries used for growth accounting in Section 3 as

well as development accounting in Section 4. �e second panel lists the other countries used only for development

accounting.
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Figure A3: Employment and Population Measures of Scarcity
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Notes: Schooling scarcity in population (x) re�ects authors’ calculations based on Barro and Lee (2013). Scarcity in

work force is calculated based on data from the International Labor Organisation (ILO). Dashed red line depicts the

45◦ line.

(d) 6 Groups: less than complete primary; complete primary; some secondary; complete sec-

ondary; some tertiary; complete tertiary.

Figure A4 compares the schooling scarcity calculated under each alternative to our bench-

mark with 4 groups. �e dashed red lines depict the 45◦ lines. Scarcity measured across three or

six levels, Panels c and d, is each similar to that from our four groups. �e groupings into two

levels, Panels a and b, both diverge from our benchmark, but in di�erent directions re�ecting

the choice of cuto�. With fewer categories, a larger share of schooling variations are manifested

within-group, muting variations in measured scarcity both across countries and over time. �is is

especially true for only two groups, most notably when the cuto� is further from median school-

ing as in Panel a. Because of that loss of information on scarcity, we can expect the relationship

between scarcity and the Mincer return to appear more blurred, favoring even higher values of

substitutability than what we pro�er here.

�e takeaway from Figure A4 is that distinctions between primary and secondary and be-

tween secondary and tertiary schooling are both important components of scarcity. So, at a

minimum, three groupings are necessary to capture variations in scarcity relevant to Mincer re-

turns. Also, with three-plus groups, skewness of the schooling distribution, and thus schooling

scarcity, varies separately from mean years. �is allows us to control for a�ainment as a proxy

for schooling quality and technology bias while relating Mincer returns to scarcity.

6



Figure A4: Scarcity with Di�ering Number of Groups versus Benchmark 4 Group Scarcity.
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(c) 3 groups
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Notes: Schooling scarcity in population (x) re�ects authors’ calculations based on Barro and Lee (2013). Red dash

lines depict the 45◦ lines.
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D Deriving the Long-Run Elasticity of Substitution

As in Caselli and Coleman (2006) we consider an economy with a large number of competitive

�rms, with labor and capital supplied elastically. �e representative �rm solves the optimization

problem:

max
{Li ,Ai},K

K�H 1−� −∑
i∈S

wiLi − RK,

subject to the technological frontier

∑
i∈S

(
i Ai)
! ≤ B,

where e�ective labor input, H , aggregates labor over skill groups

H = [∑
i∈S

(AiqiLi)

"
SR
−1

"
SR

]

"
SR"

SR
−1 . (A1)

An equilibrium consists of factor prices {wi}i∈S and R and allocations {Li , Ai}i∈S and K such that

input markets clear subject to �rms’ having optimized at those prices.

We next show the condition for a symmetric equilibrium with an interior solution. It enables

us to characterize the equilibrium with the �rst-order conditions of a representative �rm. �en

we derive the long-run elasticity of substitution, which parallels Hendricks and Schoellman’s

(forthcoming) treatment.

D.1 Symmetric Equilibrium with Interior Solution

We want to show that !−"SR +1 > 0 is a su�cient condition for a symmetric equilibrium with an

interior solution. A symmetric equilibrium means all �rms choose the same technology bundles,

and an interior solution means Ai > 0 for all i ∈ S.

First we denote Di = Ai! and rewrite the �rm’s optimization problem over technologies, for

given values of K > 0 and Li > 0, for all i ∈ S, as:

max
{Di}S

K�
[∑
i∈S

D
"

SR
−1

!"
SR

i (qiLi)

"
SR
−1

"
SR

]

(1−�)"
SR"

SR
−1 −∑

i∈S
wiLi − RK,
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subject to

∑
i∈S


i!Di ≤ B.

�e constraint set is convex without additional restrictions on parameters. Now suppose ! −
"SR + 1 > 0. �en ("SR − 1)/!"SR < 1 because "SR > 1. Under this condition, the objective function

is strictly quasi-concave, so the existence and uniqueness of a global maximizer is guaranteed.

Additionally, because the marginal pro�t of investing in Di goes to in�nity when Di goes to zero,

the solution must have Ai > 0 for all i ∈ S. �e symmetry of equilibrium is directly implied

because all �rms face the same optimization problem with unique solutions.

D.2 Long-Run Elasticity of Substitution

Rearranging the �rst-order condition with respect to Ai for each i ∈ S gives:

Ai = 

−!"

SR

!"
SR
−"

SR
+1

i (qi Li)

"
SR
−1

!"
SR
−"

SR
+1Q

"
SR

!"
SR
−"

SR
+1 , (A2)

where Q = (1 − �)K�H 1/"
SR
−� /(�!) and � is the Lagrangian multiplier. Note that (A2) can also be

wri�en as:

(
i Ai)
!
= (Ai qi Li)

"
SR
−1

"
SR Q,

for each i ∈ S. Summing up both sides of the equation across skill groups, we have

Q = BH
1−"

SR"
SR .

Substituting for Q in (A2) and le�ing bi = B
1
! /
i , gives the optimal choice of technology:

Ai = (
qi Li
H )

"
SR
−1

!"
SR
−"

SR
+1
bi

!"
SR

!"
SR
−"

SR
+1 . (A3)

Plugging the optimal technology choice into the labor input aggregator (A1), we get:

H =
[
∑
i∈S

(qi bi Li)

!"
SR
−!

!"
SR
−"

SR
+1

]

"
SR
−1

"
SR

H
1−"

SR

!"
SR
−"

SR
+1 .
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Rearranging the equation to solve for H , we can rewrite the aggregator as:

H =
[
∑
i∈S

(qi bi Li)

!"
SR
−!

!"
SR
−"

SR
+1

]

!"
SR
−"

SR
+1

!"
SR
−!

�is gives the long-run elasticity of substitution:

" =
!"SR − "SR + 1
! − "SR + 1

.

Under the assumption ! − "SR + 1 > 0, this long-run elasticity is �nite and positive.

Now we can derive the wage-schooling relationship when technology choices are endoge-

nized. Equating group si’s wage to its marginal product gives:

wi =
)Y
)H

H
1
"̃ (Ai qi)

"
SR
−1

"
SR Li

−1
"

SR .

Substituting for the optimal technology choice, equation (A3), yields:

wi =
)Y
)H

H
1
" (qi bi)

"−1
" L

−1
"
i , (A4)

which is equivalent to the �rst-order condition derived from the long-run aggregator.

D.3 Technology Choice and Wage Shares

In equilibrium, the e�ciency of workers in schooling group i can be wri�en as a function of the

group’s quality qi , its technology frontier bi , and its earnings as a share of the total labor income

of the economy. Substituting the optimal choice of technology (A3) into the de�nition of ei gives

ei = Ai qi = qi bi [
qi bi Li
H ]

"
SR
−1

!"
SR
−"

SR
+1
.
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�en we substitute in the long-run labor aggregator H and relabel the parameters.

ei = qi bi

⎡
⎢
⎢
⎢
⎣

qi bi Li

[∑j∈S (qj bj Lj)
"−1
"
]

"
"−1

⎤
⎥
⎥
⎥
⎦

1
! (

"−1
" )

= qi bi
⎡
⎢
⎢
⎣

(qi bi Li)
"−1
"

∑j∈S (qj bj Lj)
"−1
"

⎤
⎥
⎥
⎦

1
!

= qi bi (
wi Li

∑j∈S wj Lj)

1
!
= qi bi (

wi Li
wL )

1
!

�e last row is implied by the long-run wage equation (A4).

E Immigrant Mincer Return and Cross-Country Human Capital

�ere are two sources of e�ciency associated with a schooling level: human capital accumulated

from the schooling (�q) and the level of technology accessible with that schooling (�b). In this

paper, we follow Schoellman (2012) by using the Mincer returns that he estimates for immigrants

in the United States as a measure of �q for the immigrants’ country of origin. �e intuition is

that technology re�ects a worker’s current location, while human capital from schooling was

determined by the e�ciency of schooling in the country where that investment took place, that

being the worker’s home country.

To see this, consider the following aggregator extended from (6), where workers in the

United States from di�erent home countries c ∈ C are perfect substitutes provided they have the

same educational a�ainment.

HUS =
⎡
⎢
⎢
⎣
∑
i∈S (

∑
c∈C

bi,U S qi,c Li,c)

"−1
" ⎤
⎥
⎥
⎦

"
"−1

.

Note that immigrant workers work with US technology, so they share a common technology

frontier, bi,U S . On the other hand, the human capital gain from schooling, qi,c , depends on the

workers’ country of origin because immigrant workers accumulated human capital in their home

country. �e wage for such an immigrant worker is:

wi,c = (
)Y
)HUS

HUS
1
"
)(

∑
c
bi,U S qi,c Li,c)

−1
"

bi,U S qi,c . (A5)
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Let mUS
c be the Mincer return estimated in the US labor market across immigrants from

country c. Taking natural logs and projecting on si for both sides of equation (A5) gives

mUS
c = [�b,U S +

1
"
x̃US]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�

+�q,c , (A6)

where x̃US is the scarcity of more-educated workers in the US in terms of e�ciency units, obtained

by projecting − ln (∑c bi,U S qi,c Li,c) on si . Equation (A6) shows that the cross-country variation

in �q,c can be captured by the cross-(home)-country variation of immigrants’ Mincer return mUS
c .

In the main text we refer to mUS
c as mUS

, keeping the country subscript implicit.

F An Alternative PISA-Based School�ality Measure

Our benchmark quality measure implicitly assumes that the test score prior to schooling is zero. If

richer countries have be�er pre-school training, then the measure is biased up for these countries.

To relax this assumption, we construct a second measure of quality.

In the PISA data, students from the same country will be in di�erent grades when taking

the test if the age at which they begin school depends on the month of birth or di�ers across

schools, for instance, across regions. We use this variation in schooling to construct an alternative

measure. In each country, we regress the test score on the grade year in which the test was taken,

controlling for gender. We restrict the sample to native-born students who never repeated a grade.

�e coe�cient on the grade year gives the test-score return to a year of schooling and forms the

basis of our second measure. As with our �rst measure, we divide the resulting per-school-year

score by the standard deviation of US test scores and valorize it at 15 percent.

Figure A5 contrasts the alternative PISA-based measure against log GDP per worker. On av-

erage, a one log point higher income is associated with a 1.4 percentage-point increase in �q (with

a much larger standard error of 0.7). �e gradient is similar to that of Schoellman’s immigrant-

based measure, and hence their implied �b variation and human capital are alike (see Panel a of

Figure 9). We prefer the benchmark measure because of its lower standard error.
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Figure A5: PISA-Based School �ality Measure vs. Implied �̃z(")

φq + φb (ε = 1.5)
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Notes: Figure plots the alternative PISA-based school quality measure against log GDP per worker. Variables are

normalized to set the predicted value for the poorest country to zero. �e solid red line depicts the OLS ��ed values

for school quality. �e dashed black lines depict the projections of �̃z(") on income for " = 1.5 and 4. Data on

income per worker are from PWT 9.1. �̃z(") re�ects authors’ calculation based on data from Barro and Lee (2013)

and Psacharopoulos and Patrinos (2018).

G Growth Accounting Equations with Nested-CES Production

Let G be the compound bo�om group that consists of the �rst N schooling groups. Consider the

nested-CES labor aggregator:

H = [(zGLG)
"−1
" + H̃(zN+1LN+1, ..., zSLS)

"−1
"

]

"
"−1

, (A7)

where H̃ (⋅) is constant return to scale, LG = ∑j≤N Lj , zG ≡ ZG/LG and

ZG ≡
[
∑
j≤N

(zjLj)
�−1
�

]

�
�−1

. (A8)

�e wage for each schooling group i > N is

wi = (
)Y
)H )H

1
" H̃

−1
" H̃ ′

i zi . (A9)

On the other hand, the wage for each group j ≤ N is:

wj = (
)Y
)H )H

1
" ZG

"−�
"� zj

�−1
� Lj

−1
� . (A10)
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Taking the average among the �rst N groups, we get:

wG ≡ (
1
LG)∑

j≤N
wjLj = (

)Y
)H )H

1
" zG

"−1
" LG

−1
" . (A11)

Now apply (A9) and (A11). We can write the overall average wage as:

w =
1
L (

wGLG +∑
i>N

wiLi)
=
1
L (

)Y
)H )H

1
"
[(
zGLG)

"−1
" + H̃

−1
" ∑
i>N

H̃ ′
i ziLi]

=
1
L (

)Y
)H )H

1
"
[(zGLG)

"−1
" + H̃

"−1
"
] ,

(A12)

where ∑i>N H̃ ′
i ziLi = H̃ because H̃ (⋅) is constant return to scale (Euler’s homogeneous function

theorem). Combining the previous two equations, we have:

wL
wGLG

=
⎡
⎢
⎢
⎣
1 + (

H̃
zGLG)

"−1
" ⎤
⎥
⎥
⎦
.

Now turning back to the aggregator (A7), we can get an equation parallel to (10)

ℎ ≡
H
L
= zG (

LG
L )

⎡
⎢
⎢
⎣
1 + (

H̃
zGLG)

"−1
" ⎤
⎥
⎥
⎦

"
"−1

= zG (
w
wG)

"
"−1

(
L
LG)

1
"−1

. (A13)

Likewise, combining equations (A10) and (A11), we have:

wGLG
w1L1

=
[
1 + ∑

2≤j≤N
(
zjLj
z1L1)

�−1
�

]
,

which, in turn, gives:

zG =
ZG
LG

= z1(
L1
LG)[

1 + ∑
2≤j≤N

(
zjLj
z1L1)

�−1
�

]

�
�−1

= z1(
wG
w1 )

�
�−1

(
LG
L1 )

1
�−1

. (A14)

Combining (A13) and (A14) gives equation (18).
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