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The relationship between inflation and predictors such as unemployment is poten-

tially nonlinear with a strength that varies over time, and prediction errors may 

be subject to large, asymmetric shocks. Inspired by these concerns, we develop a 

model for inflation forecasting that is nonparametric both in the conditional mean 

and in the error using Gaussian and Dirichlet processes, respectively. We discuss 

how both these features may be important in producing accurate forecasts of infla-

tion. In a forecasting exercise involving CPI inflation, we find that our approach has 

substantial benefits, both overall and in the l eft tail, with nonparametric modeling 

of the conditional mean being of particular importance.
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1 Introduction

As reviewed in studies including Stock and Watson (2007) and Faust and Wright (2013), infla-

tion forecasting is fraught with challenges. Structural economic models and simple economic

reasoning imply that inflation should be forecastable with a range of indicators, including mea-

sures of domestic and international economic activity, import prices or exchange rates, cost

measures such as wage growth, and oil prices. Other work has explored forecasting inflation

with forward-looking financial indicators, such as bond yields. Over some periods and in some

studies, some of these variables have yielded some success in improving the accuracy of inflation

forecasts. However, by now a body of work has established that simple inflation forecasts from

the unobserved components model of Stock and Watson (2007) and the inflation gap model of

Faust and Wright (2013) are very difficult for another specification to beat. These specifica-

tions improve inflation forecasts by accounting for a time-varying trend in inflation. But adding

other information does little to help inflation forecasts. For example, models motivated by the

Phillips curve to include indicators of economic activity or marginal costs of production cannot

consistently improve on these simple univariate benchmarks.1

Although most of the literature alluded to has focused on parametric linear models of in-

flation, other work has examined the predictability of inflation using nonlinear or nonparametric

models. For example, some work has suggested that the nonlinear effects of economic activity

on inflation kick in as the economy becomes very strong, such that economic expansions fail

to produce much of a rise in inflation until such times. Babb and Detmeister (2017) provide

a useful review of the literature on nonlinear Phillips curves. A fast-growing literature evalu-

ates the use of machine learning techniques for macroeconomic forecasting, with random forests

(see Breiman (2001) and, e.g., Masini, Medeiros, and Mendes (2021), for a survey) performing

particularly well, also during crisis times, in a variety of studies and for key variables such as

GDP growth and inflation; see, e.g., Goulet Coulombe (2020), Goulet Coulombe, et al. (2020),

Goulet Coulombe, Marcellino, and Stevanovic (2021), and Medeiros, et al. (2021).

While these papers adopt classical methods, Bayesian techniques are also available. Jochmann

(2015) proposes an infinite hidden Markov model and applies it to model US inflation dynamics.

This model endogenously selects the number of regimes and, for US data, finds a secular decline

in inflation volatility and around 7 distinct inflation regimes. In a recent paper, Clark, et al.

(2021) use multivariate Bayesian additive regression tree (BART) models to forecast several

1Although the Phillips curve does not appear to be broadly successful in out-of-sample forecasting of inflation,
studies have documented some patterns in inflation dynamics consistent with the Phillips curve. One such pattern,
documented in Stock and Watson (2010), is that inflation regularly falls around recessions.
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US macroeconomic aggregates (including inflation), with particular interest in forecasting tail

risks. For inflation, BART models improve upon linear models in turbulent periods such as the

COVID-19 pandemic.

One shortcoming of BART (and in fact many nonparametric techniques such as Gaussian

processes or kernel methods) is that the shocks are assumed to be Gaussian. If there is empirical

evidence of non-Gaussian features such as heavy tails in the innovations, the flexibility of these

nonparametric models could imply that the conditional mean captures this and the model would

thus erroneously suggest nonlinear relationships between inflation dynamics and predictors of

inflation.2 These considerations motivate the models we propose in this paper.

In this paper, we consider models of inflation that combine nonparametric specifications

of the conditional mean and nonparametric specifications of the innovation to inflation. We

model the conditional mean using a flexible and analytically tractable Gaussian process (GP)

regression. This specification is capable of capturing nonlinearities in the relationship between

inflation and its predictors. To avoid overfitting, we introduce a subspace shrinkage prior (Shin,

Bhattacharya, and Johnson, 2020) that shrinks the GP regression toward a linear subspace in a

data-driven manner. The resulting model can be interpreted as a convex combination between

a GP regression and either a linear (estimated by OLS) or a factor model (when principal

components rather than the original regressors are used to define the linear subspace). To

capture fat tails, possible asymmetries, and other non-Gaussian features that might determine

inflation dynamics, we introduce a Dirichlet process mixture (DPM) model to estimate the

unknown shock distribution. This mixture model allows us to capture unobserved heterogeneity

in a very flexible manner and is thus capable of handling situations such as the pandemic. To

assess which of these features improves inflation forecasts, we also consider variants that treat

the conditional mean as linear or the error term as Gaussian. In addition, we allow for error

specifications with either constant variances or stochastic volatility.

After developing proper Markov chain Monte Carlo (MCMC) estimation algorithms, we

use all of the models to forecast quarterly consumer price inflation (CPI) in the US, using various

sets of predictors. We evaluate out-of-sample forecasts over a long sample of 1980 through 2021,

on the basis of the accuracy of point forecasts, density forecasts, and tail risk forecasts.

Our results confirm the benefits of our flexible, nonparametric models. Over the 1980

to 2021 period, our nonparametric models achieve some gains in the accuracy of point and

density forecasts relative to the common benchmark of the univariate model of Stock and Watson

2This problem is closely related to the critique raised by Sims (2001) about the model stipulated in Cogley
and Sargent (2001).
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(2007). These models achieve sizable gains during the volatile 2020-21 period of the pandemic.

The primary gains to flexible nonparametric modeling come from nonlinear modeling of the

conditional mean, through Gaussian processes. Although a large set of variables in some settings

offers an advantage, it does not do so uniformly; most of the gains to nonparametric modeling

can be achieved with a moderately sized set of variables. In exercises that drill deeper into the

properties of predictive distributions, our nonparametric models are also shown to yield gains

in predicting left-tail risks to inflation. They are more challenged in capturing time variation

in the right tail, which may have to do with the prevalence of low and stable inflation for much

of the sample. Although the sample is small, the models seem to better capture the right tail

of the predictive distribution of inflation during the pandemic period. We also show that our

proposed models yield predictive distributions that sometimes display asymmetry, related to the

literature on inflation at risk; see, e.g., Lopez-Salido and Loria (2020).

The paper proceeds as follows. Section 2 presents our models and estimation algorithms.

Section 3 describes the data and design of the forecasting exercise and presents results. Section 4

summarizes results for a robustness check with an alternative measure of inflation that excludes

food and energy. Section 5 concludes.

2 A fully nonparametric model for forecasting inflation

Models used for macroeconomic forecasting involve assumptions about the functional and dis-

tributional form of the conditional mean and the form of the error process, respectively. In this

paper we use nonparametric forms for both of these, and it is in this sense that we refer to

our model as fully nonparametric. For the conditional mean, we use a GP prior and for the

error distribution a DPM model. In this section, we define our model, discuss its properties,

and introduce MCMC methods that allow for computationally efficient Bayesian inference and

prediction, with additional details presented in Appendix A.

Our model assumes that inflation in time t, yt, depends on a vector of K appropriately

lagged predictors, xt, in a possibly nonlinear way:

yt = f(xt) + εt. (1)

Here, f : RK → R denotes an unknown and potentially nonlinear function. In the next sub-

section, we focus on f . Then we present our nonparametric treatment of εt.
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2.1 Nonparametric modeling of the conditional mean using GPs

Learning the unknown function f can be achieved through many different techniques such as

Bayesian additive regression trees (Chipman, George, and McCulloch, 2010), B-splines (Shin,

Bhattacharya, and Johnson, 2020), or (deep) neural networks (Nakamura, 2005; Goulet Coulombe,

2022). In this paper, we propose approximating the unknown function f using a GP regres-

sion. This approach places a GP prior on the function f . This implies a Gaussian prior on

f = (f(x1), .., f(xT ))
′ of the form:

f ∼ N (0,K), (2)

with K being a T × T kernel matrix with typical element k(xt,xτ ) for times t and τ .

GP priors are nonparametric in the sense that they do not assume a particular form

for f ; instead, they are interpreted as a prior over all functions that might fit the data. In

essence, the T elements in f are treated as unknown parameters. The likelihood defined by (1)

is over-parameterized, but the use of prior information given in (2) can be used to overcome this

concern.

A textbook introduction to GPs is given in Rasmussen and Williams (2006). A recent

macroeconomic application is Hauzenberger, et al. (2021), who also provide further intuition

and explanation of GPs in an economic context. As compared to other approaches, GPs can be

applied to data sets including many covariates without introducing additional parameters (and

hence remaining relatively parsimonious). Another key advantage is that the computational

burden is little affected by the number of covariates but depends largely on the number of

observations. This makes GP regression well suited to quarterly macroeconomic data where T

is relatively small.

Function estimation through GPs relies heavily on the particular choice of the kernel.

Suitable kernels allow for capturing many different functional shapes and dynamics for the

function f . In principle, many choices for K are possible. In a time-series context, kernels

can be developed for capturing low-frequency movements or abrupt breaks. In this sense, they

can approximate the behavior of unobserved component models and successfully extract trend

inflation. There is also a way of specifying them that leads to a specific form of a neural network;

see Lee, et al. (2017). But the most common choice, which we also adopt in some cases, is the

Gaussian kernel. A typical element of K under a Gaussian kernel is given by:

k(xt,xτ ) = ξ × exp

(
−ϕ

2
||xt − xτ ||2

)
, (3)
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with ξ, ϕ ∈ R+ denoting the hyperparameters of the kernel. This Gaussian kernel captures the

idea that similar values for xt and xτ should be associated with similar values for f(xt) and

f(xτ ). The distance between two values of xt and xτ is measured in squared exponential terms.

The degree of smoothness of the function depends on ϕ. Low values for this hyperparameter lead

to a smooth function, whereas higher values allow for more high-frequency variation. Note that

if xt = xτ , then Var(f(xt)) = ξ. This allows us to see that ξ controls the variance of the function

f . Since these hyperparameters are crucial for appropriately capturing inflation dynamics, we

estimate them using a Bayesian approach. This requires adequate priors. We found that values

of ξ and ϕ greater than 1 led to overfitting, and thus, we use a Uniform prior between 0 and 1

to avoid values of ξ, ϕ > 1. This choice implies that, as long as these hyperparameters are not

too large, we remain agnostic on the precise values of ξ and ϕ.

We also introduce a second version of the GP prior, which involves the concept of subspace

shrinkage; see Shin, Bhattacharya, and Johnson (2020). To motivate this addition, note that

the GP prior using the Gaussian kernel reflects a belief in smoothness. However, we might also

be interested in a prior that reflects a belief in linearity. Linearity is a subspace of the nonlinear

form of f , hence the terminology subspace shrinkage. This might be useful in and of itself (i.e.,

shrinking toward a more parsimonious model often improves forecasts), but subspace shrinkage

methods can also be used as a model selection device (i.e., they can select the linear model if

the data warrant this; see Huber and Koop (2021)).

Shin, Bhattacharya, and Johnson (2020) show how one can shrink toward a pre-specified

subspace such as the linear one in the context of a particular nonparametric model (in their

case, a B-spline regression).3 Here we adapt these methods for our purposes.

Let Φ0 = X(X ′X)−1X ′ denote the linear projection matrix of X = (x′
1, . . . ,x

′
T )

′. Sub-

space shrinkage involves modifying the prior variance, which in our case is the kernel, as follows:

K1 =
(
K−1 + (I −Φ0)/τ

2
)−1

. (4)

The GP prior in (2) is replaced by

f ∼ N (0,K1).

We stress that our GP subspace shrinkage prior is still a GP prior, but with a different choice

3It is noteworthy that Shin, Bhattacharya, and Johnson (2020), in the working paper version, also use subspace
shrinkage to force a GP regression toward a pre-specified parametric alternative.
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of kernel. Hence, the same Bayesian MCMC methods such as those for the GP prior with

Gaussian kernel described above can be used. The only addition is that we treat τ2 as an

unknown parameter. We assume that the prior on τ has a density proportional to:

p(τ) ∝ (τ2)d1−1/2

(1 + τ2)d0+d1
for τ ∈ (0,∞).

This prior reduces to the half-Cauchy distribution if d0 = d1 = 1/2, a choice we follow in this

paper (Shin, Bhattacharya, and Johnson, 2020).

The parameter τ2 plays an important role in the prior as it controls the weight on the

linear part of the model. If τ2 is large, little weight is placed on the linear model. But as τ2

decreases, the linear part receives more weight. Formally, Lemma 3.1 of Shin, Bhattacharya,

and Johnson (2020) shows that:

E(f |ω, •) = (1− ω)f + ωΦ0Y ,

with ω = 1/(1 + τ2) ∈ [0, 1] and f being the posterior mean of f for the GP process with

Gaussian kernel. This shows that the posterior fit of f under the subspace shrinkage prior

can be interpreted as a convex combination between the fit of a GP regression with kernel

K and the fit of a simple OLS regression.4 The same result also holds when interest centers

on predictive distributions, thus implying that our approach can, in a data-driven way, assess

whether inflation is better described by a linear model or whether nonlinearities in the conditional

mean are necessary.

2.2 Nonparametric modeling of the error distribution

We now turn to the modeling of the error distribution. The GP specification on the conditional

mean implies a great deal of flexibility in terms of capturing arbitrary functional relationships

between the covariates in xt and yt. However, macroeconomic time series are also subject to,

e.g., infrequent large shocks, conditional heteroskedasticity, and possible multi-modality of the

shocks. To capture such features without strong a priori assumptions, we rely on DPMs. DPMs

have long been used as a Bayesian nonparametric method for uncovering unknown distributions;

see, e.g., Escobar and West (1995). We use an implementation as in Frühwirth-Schnatter and

Malsiner-Walli (2019).

The DPM is an infinite mixture of distributions. We assume the errors to be independent

4If K > T , the inverse of X ′X does not exist. In this case, we replace Φ0 = X(X ′X)−1X ′ with Φ0 =
S(S′S)−1S′, where S denotes a small number of principal components.

6



over time

εt ∼
∞∑
j=1

wjN (µj , σ
2
j ), (5)

with
∑∞

j=1wj = 1 and wj ≥ 0 ∀ j. We use the standard stick-breaking representation of the

weights, wj , developed in Sethuraman (1994), to cast the mixture into a finite dimensional

representation. The stick-breaking representation can be interpreted as a prior on the weights

wj that depends on auxiliary quantities ξj as follows:

w1 = ξ1, wj = ξj

j−1∏
i=1

(1− ξi), for j > 1, (6)

and each ξi ∼ B(1, α) is Beta distributed with α being a hyperparameter. This hyperparameter

plays an important role in controlling the clustering behavior of the DPM, and we thus introduce

a Gamma prior α ∼ G(2, 4), a choice suggested in Escobar and West (1995).

For the component means µj we use Gaussian priors centered on zero with variance vj = 4.

Given the scale of our data, this introduces relatively little information and allows for sufficient

flexibility for capturing outliers. On the component precision σ−2
j , we use Gamma priors σ−2

j ∼

G(c0, c1) with c0 = 10 and c1 = 5. This choice ensures a proper prior with mean 2 and variance

0.4, introducing sufficient information if one of the components includes only very few (or no)

observations.

Intuitively speaking, this mixture specification soaks up any variation in yt not explained

through the GP component in the conditional mean. Since our choice of the kernel implies

that the GP captures smoothly varying trends in inflation (which are determined by xt), the

mixture model will capture transitory and possibly large shocks to the trend that can also be

asymmetric.

In our empirical work, we present results using this form for the errors. But note that

it assumes the errors to be independent over time, which is a potential drawback with time-

series data. Especially if the time series feature volatility clustering, the DPM has problems

capturing persistence in terms of the variance of a time series. Standard stochastic volatility

(SV) models capture this through a persistent latent volatility component. To get the best of

both worlds, we propose a version of the DPM that is capable of detecting volatility clusters.

Several specifications have been proposed in the literature for combining DPMs with SV; see, for

instance, Jensen and Maheu (2010, 2014). But these specifications imply that standard Kalman

filter-based algorithms are not applicable. To circumvent this issue, we consider a model, which
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we label DPM-SV, that replaces (5) with

εt ∼
∞∑
j=1

wjN (µj , σ
2
t ) (7)

and lets σ2
t follow a standard SV process, with log σ2

t evolving according to an AR(1) process.

We assume the same stick-breaking process for the weights. Thus, this model combines some of

the flexibility of the DPM with the empirically desirable properties of the SV models.

2.3 A brief sketch of the posterior simulator

Estimation of all of these models can be carried out using MCMC techniques. In Appendix A

we provide additional details on the precise steps. In principle, our MCMC algorithm samples

the infinite mixture and the associated quantities conditional on f . The precise algorithm is

based on an auxiliary representation of the mixture model. Estimation of the DPM involves

sampling the mixture weights, the auxiliary classification indicators, and the component means

and variances. For all of these steps full conditional posterior distributions take a well-known

form and can be simulated through Gibbs sampling steps. The conditional posterior of the

hyperparameter α takes no well-known form and is simulated through a Metropolis-Hastings

(MH) updating step. All of these steps are discussed in detail in Appendix A.1.

Conditional on the DPM, we can sample from the posterior of f , which takes a T -

dimensional Gaussian form. The hyperparameter τ is simulated using the slice sampler. The

parameters determining the shape of the kernel ϕ and ξ are obtained through an MH step. More

details are provided in Appendix A.2.

We carry out posterior inference by repeating the algorithm 20,000 times and discarding

the first 10,000 draws as burn-in. Based on full-sample results, the sampler mixes well, with

inefficiency factors across all parameters and latent states of the model being well below 40.

3 Forecasting US inflation using nonparametric models

This section briefly describes the data, summarizes the models and design of the forecasting

exercise, and presents results.

3.1 Data

We use quarterly data that range from 1959:Q1 to 2021:Q3 from the FRED-QD database

developed in McCracken and Ng (2020) and maintained by the Federal Reserve Bank of St.
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Louis. As a measure of medium-term inflation expectations, we also use a 5-quarters-ahead

inflation expectation from the Survey of Professional Forecasters, obtained from the website of

the Federal Reserve Bank of Philadelphia. We focus on forecasting CPI inflation, measured as

(400/h) ln(Pt+h/Pt) at horizon h = 1, 4, with results on ex food and energy inflation provided

in a robustness check.

We run all of the models, except for the unobserved components (UC) ones, which do

not include any explanatory variables, using three different data sets: one that uses only lagged

values of inflation as explanatory variables (labeled AR(1)), a moderately sized data set that

includes 29 variables, and a large one involving 169 variables (which, as indicated below, we

sometimes reduce to principal components to facilitate estimation). As detailed in Appendix B,

the set with 29 variables includes an array of major macro indicators fitting into broad categories

commonly considered as possible predictors of inflation. These include various indicators of

economic activity (e.g, growth in industrial production, growth in payroll employment, and

the unemployment rate), growth in wages and unit labor costs, producer price inflation, and

financial indicators (e.g., interest rates, stock returns, and growth in business loans).

3.2 Model summary, acronyms and design of the forecasting exercise

In our forecasting exercise, we consider a variety of different models and different data sets. We

consider four different treatments of the conditional mean, four different treatments of the error

distribution, and three different sets of variable. In all implementations, the models include one

lag of the explanatory variables. In this sub-section we list the models and define the acronyms

we use.

For the conditional mean, we have two versions of the Gaussian process with and without

subspace shrinkage: GP-sub and GP, respectively. We also present results assuming f is linear

and use the acronym Linear for this. This model is estimated as a nested alternative of GP-sub

with ω = 1. We also produce results for UC models that involve only a time-varying intercept

that follows a random walk. This model (with a stochastic volatility specification; see below)

serves as our main benchmark given its strong performance when forecasting quarterly inflation

(see, e.g., Stock and Watson (2007, 2010)).

For the error distribution we assess whether allowing for departures from Gaussianity and

homoskedasticity in a flexible way pays off. To do so, we consider conventional Normal errors

with constant variance (labeled Homosk.) and also with SV. The former serves as a natural

benchmark to assess the predictive gains from allowing for heteroskedasticity, whereas the latter

has been shown to be helpful in improving the accuracy of both point and density forecasts
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(Clark, 2011). These traditional assumptions on the shocks are contrasted with our comparable

nonparametric versions: the DPM and DPM-SV defined in the preceding sub-section.

This leads to 16 different models that combine a choice for the conditional mean with one

for the error distribution. We estimate and forecast with all of these. We run all of the models,

except for the UC ones, which do not include any explanatory variables, using the three different

data sets described above. These data sets are also used to form the subspace toward which

we shrink in our GP-sub models. It is worth stressing that for the large GP regressions, the

regressors enter the model in an unrestricted manner. But for the linear regression model, since

OLS estimation using all 175 regressors of the large data set is infeasible, we follow Stock and

Watson (2002) and use a linear model with the first 6 principal components being explanatory

variables. As described in Footnote 4, this also forms the subspace toward which we shrink the

large-scale GP regressions.

The design of our forecasting exercise is recursive using an expanding window of data. We

use the period from 1980:Q1 to 2021:Q3 as our forecast evaluation period and produce forecasts

for horizons h = 1 and h = 4. These forecasts are produced by lagging the elements in xt

appropriately (i.e., we compute direct forecasts).

As measures of predictive accuracy we focus on the mean squared forecast error (MSE) and

the log predictive likelihood (i.e., log score, denoted LPL). To assess tail forecasting accuracy,

we will focus on the quantile score (QS), associated with the tick loss function as in studies such

as Giacomini and Komunjer (2005):

QSp,t+h = (yt+h −Qp,t+h)(p− 1{yt+h≤Qp,t+h}),

where Qp,t+h is the forecast of quantile p, and the indicator function 1{yt+h≤Qp,t+h} has a value

of 1 if the outcome is at or below the forecast quantile and 0 otherwise.

3.3 Results

Table 1 reports MSE and average LPL (in parentheses) results for forecast horizons of 1 and 4

quarters. For the benchmark UC-SV specification, we report the MSE and LPL levels, whereas

for all other models, we report ratios of MSEs relative to the benchmark (ratios less than 1

mean a model is more accurate than the UC-SV model) and differences in average LPL relative

to the benchmark (positive entries mean a model is more accurate than the benchmark). The

table has four horizontal panels for, respectively, UC, univariate, moderately sized, and large

models. For all models we report results for linear, GP, and GP-sub specifications (except UC)
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for the conditional mean, and homoskedastic, DPM, SV, and DPM-SV for the error process.

Finally, the table has two vertical panels: the left one for a long evaluation period ranging

from 1980:Q1 until 2021:Q3, the right one for the short COVID pandemic period, ranging from

2020:Q1 to 2021:Q3. Naturally, the short length of the COVID period should be taken into

proper consideration when assessing the results, but it is of course of major interest, since most

standard econometric models had severe problems in tracking and forecasting economic variables

during this period due to their wide swings. In particular, inflation first dropped significantly,

almost to deflation, and then rebounded so strongly that it reached levels last seen in the early

1980s. In contrast, the low and stable inflation that prevailed from the early 1990s until the

Great Recession may create challenges in beating the forecast accuracy of the simple UC-SV

benchmark forecast.

Starting with the UC models, the main finding is that the pandemic led to large increases

in MSE for h = 1 but not for h = 4, while there were massive decreases in LPL for both horizons.

Among the UC specifications, the homoskedastic specification is the least accurate. Focusing on

the other UC specifications, for h = 1, there are only small differences in MSE from the various

error specifications over the long evaluation period, with some gains for DPM and DPM-SV

(about 5-7 percent) during the pandemic period, which, however, turn into large losses (up to

54 percent) for h = 4. For LPL, there are also small differences in general, but, during the

pandemic DPM and DPM-SV present some small gains, indicating that these more complex

specifications produced slightly more accurate density forecasts. Overall, it seems difficult to

consistently beat the benchmark UC-SV model with more complex specifications of the error

term.

Moving to the AR(1) models, over the full evaluation sample the linear AR(1) specification

is worse than UC-SV in terms of MSE and LPL for both h = 1 and h = 4, in line with previous

results in the literature. Interestingly, GP is overall comparable with UC-SV in terms of MSE

and LPL, with SV and DPM-SV being slightly more accurate than UC-SV for h = 4. GP-sub

is, not surprisingly, more similar to linear AR(1). During the COVID period, the linear AR(1)

is slightly to modestly better than UC-SV for h = 1 but much worse for h = 4, and the same

happens for GP-sub. Yet, GP is much better than UC-SV for both h = 1 and h = 4 and for

both MSE and LPL, with minor differences across error types. Overall, GP seems a better

univariate model than UC-SV, since it performs similarly in normal times, in particular when

complemented with SV or DPM-SV, and much better in problematic periods.

Next, we consider the role of the variables included in the moderately sized multivariate

model. Over the full evaluation sample, at the one-step-ahead horizon the linear specification
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Full hold-out period Only pandemic observations
(1980:Q1-2021:Q3) (2020:Q1 to 2021:Q3)

Homosk. DPM SV DPM-SV Homosk. DPM SV DPM-SV

Unobserved components models
h = 1 1.144 0.952 0.679 1.002 1.161 0.949 1.086 0.929

(-0.196) (0.011) (-1.063) (0.002) (0.489) (0.355) (-2.252) (0.456)
h = 4 1.072 0.96 0.595 0.997 1.58 1.366 0.601 1.541

(-0.357) (-0.237) (-0.867) (0.006) (0.337) (0.406) (-1.689) (0.21)

AR(1) models
h = 1
Linear 1.32 1.329 1.233 1.198 0.942 0.946 0.945 0.944

(-0.362) (-0.376) (-0.085) (-0.074) (0.587) (0.436) (0.597) (0.602)
GP 1.005 1.039 1.005 1.009 0.776 0.808 0.811 0.805

(0.057) (0.046) (0.262) (0.267) (0.924) (0.659) (0.789) (0.775)
GP-sub 1.372 1.429 1.307 1.285 0.906 0.89 0.914 0.913

(-0.422) (-0.486) (-0.197) (-0.143) (0.66) (0.641) (0.598) (0.64)
h = 4
Linear 1.657 1.428 1.248 1.145 1.961 1.836 1.523 1.513

(-0.739) (-0.614) (-0.502) (-0.336) (-0.359) (-0.494) (-1.427) (-0.69)
GP 1.019 1.026 0.955 0.97 0.852 0.869 0.869 0.879

(-0.044) (-0.025) (0.107) (0.135) (0.919) (0.998) (0.874) (0.941)
GP-sub 1.552 1.505 1.398 1.35 1.867 1.779 1.558 1.518

(-0.607) (-0.635) (-0.641) (-0.481) (-0.237) (-0.366) (-1.38) (-0.826)

Moderately sized models
h = 1
Linear 0.975 0.947 1.067 1.056 0.844 0.861 0.849 0.854

(0.11) (0.142) (0.095) (0.118) (0.754) (0.628) (0.682) (0.613)
GP 0.941 0.953 0.938 0.937 0.868 0.934 0.899 0.924

(0.195) (0.221) (0.333) (0.33) (0.883) (0.846) (0.739) (0.877)
GP-sub 0.925 0.943 0.996 0.95 0.879 0.925 0.89 0.908

(0.189) (0.246) (0.065) (0.321) (0.796) (0.839) (0.642) (0.728)
h = 4
Linear 1.196 1.285 0.935 0.996 1.308 1.333 1.105 1.079

(-0.24) (-0.317) (0.029) (-0.012) (0.371) (0.43) (-0.233) (-0.052)
GP 0.856 0.871 0.873 0.848 0.529 0.536 0.669 0.573

(0.171) (0.126) (0.255) (0.249) (1.193) (1.174) (1.186) (1.292)
GP-sub 0.952 0.999 0.927 0.959 0.737 0.784 0.732 0.885

(0.111) (0.059) (0.177) (0.162) (1.135) (1.061) (1.031) (1.057)

Large-scale models
h = 1
Linear 0.921 0.984 0.933 0.941 0.805 0.82 0.829 0.839

(0.117) (0.082) (0.218) (0.224) (0.886) (0.83) (0.857) (0.852)
GP 0.981 1.062 0.972 0.984 0.638 0.792 0.724 0.753

(0.126) (0.117) (0.179) (0.291) (1.217) (1.048) (1.141) (1.131)
GP-sub 0.928 1.012 0.933 0.943 0.753 0.783 0.794 0.809

(0.156) (0.118) (0.332) (0.336) (1.052) (1.008) (0.985) (0.963)
h = 4
Linear 0.883 1.058 0.888 0.922 0.779 0.874 0.769 0.749

(0.004) (0.031) (0.029) (0.02) (0.948) (1.071) (0.975) (1.031)
GP 1.046 1.128 0.947 0.959 0.684 0.724 0.624 0.622

(0.013) (-0.035) (0.254) (0.162) (1.038) (1.036) (1.302) (1.244)
GP-sub 0.927 1.085 0.843 0.875 0.747 0.731 0.717 0.726

(0.07) (-0.017) (0.247) (0.218) (1.056) (1.068) (1.299) (1.214)

Table 1: MSE and Average LPL Results. LPL results given in parentheses. Results are relative
(MSE ratios or LPL differences) to the UC-SV benchmark.

(with alternative error specifications) yields only small to modest differences in MSE (plus or

minus 5 percent depending on the error term) with respect to UC-SV. For the same sample

and the four-steps-ahead horizon, the linear model is much less accurate, beaten by the UC-

12



SV benchmark in most cases. Over the pandemic sample, at the one-step-ahead horizon the

linear model achieves larger gains in forecast accuracy (across all error specifications), of roughly

15 percent in MSE and even larger in LPL. At the four-steps-ahead horizon, the linear model

continues to be dominated by the UC-SV baseline. Comparing these linear model results with

those for the linear AR(1) specification indicates that, under linearity, adding variables typically

improves MSE and LPL accuracy, but not enough that the resulting model consistently improves

on the UC-SV baseline, particularly at the longer forecast horizon.

With the moderately sized set of variables, the GP and GP-sub specifications consistently

improve on the forecast accuracy of the UC-SV benchmark. In the full sample, at both horizons

the MSEs of the moderately sized GP and GP-sub models are slightly to modestly lower than

those for linear regression and UC-SV, with gains with respect to the UC-SV baseline of about

5-8 percent for h = 1 and as much as 15 percent for h = 4, and small differences across error

specifications. The moderately sized GP and GP-sub models also offer small to modest gains in

LPL. In the pandemic sample, the MSE and LPL gains of the moderately sized GP and GP-sub

models are larger. For h = 4, by the MSE metric, GP is much better than not only UC-SV but

also the linear moderately sized model and the AR(1) GP specification. GP’s better performance

at h = 4 with respect to both linear and UC-SV could be due to the increased importance of

nonlinearity, in the sense that if the relationship between inflation and the explanatory variables

is nonlinear at h = 1, it will, in general, be even more nonlinear at h = 4. Overall, the

moderately sized multivariate GP specification seems so far to be the preferred model, beating

the benchmark for both MSE and LPL across both horizons and evaluation periods, with little

difference across error specifications.

Finally, we consider the larger multivariate models and, in the interest of brevity, we focus

on the large-scale GP models as compared to the moderately sized GP specifications.5 With the

nonparametric specifications, it is mostly — but not uniformly — the case that models using the

moderately sized set of variables forecast as well as or better than models with the large-scale

data set. More specifically, over the long evaluation sample, at both forecast horizons, using

the large set of variables offers no gains in MSE or LPL (in fact, for h = 4, using the large set

sometimes reduces accuracy) as compared to using the moderately sized set of variables — i.e.,

nonlinearity seems to make the larger information set redundant. But in the pandemic period,

results are more mixed, depending on the forecast horizon. For h = 1, the large-scale GP model

yields lower MSE and higher LPL as compared to the moderately sized GP model; in this case,

5The larger information set clearly helps the linear regression model when predicting inflation, in particular
during the pandemic, with few differences across error specifications.
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Figure 1: Cumulative log predictive likelihoods against the UC-SV model: Moderately sized
models

large GP-homoskedastic is best, with MSE gains of about 36 percent with respect to UC-SV.

But for h = 4, the reverse is true. For both horizons, the ranking of GP and GP-sub, and of the

various error specifications, is not clear-cut, but in general the differences are small.

Overall, we conclude from the point and density forecast evaluation that our nonparametric

models can offer gains in forecast accuracy over a long sample but particularly during the volatile

period of the pandemic. With no clear-cut ranking for the different specifications, we believe, for

the error term of the inflation model, that the primary gains to flexible nonparametric modeling

come from nonlinear modeling of the conditional mean, through GPs (without a clear advantage

or disadvantage to applying subspace shrinkage). Although a large set of variables offers an

advantage in some settings, it does not do so uniformly; most of the gains to nonparametric

modeling can be achieved with a moderately sized set of variables.
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3.4 Forecast performance over time

We now discuss additional empirical results that may shed light on some of the patterns emerging

from Table 1, and clarify additional aspects such as the sources of differences in LPLs and

the stability of the relative model performance over time. Figures 1 and 2 report cumulative

differences in LPLs with respect to the UC-SV specification for, respectively, moderately sized

and large models. In each figure, the top and bottom rows provide results for h = 1 and

h = 4, respectively. Columns 1 to 3 report results for linear, GP, and GP-sub specifications,

respectively.

Figures 1 and 2 show that the relative performance with respect to UC-SV improves

around the financial crisis, more sharply for h = 1 than for h = 4. Following the crisis, for the

GP and GP-sub models applied to both the moderately sized and the large variable sets, the

SV and DPM-SV error specifications are consistently first or second best in model fit, except in

the case of the GP-sub specification at the one-step-ahead horizon. By this measure, including

stochastic volatility in the model’s error specification improves model fit, particularly following

the financial crisis. Once again, in the GP class, the large-scale set of variables offers no clear

advantages over the moderately sized data set.

3.5 Tail forecasting performance

To assess efficacy in forecasting tail risks to inflation — both left and right tails — Figures 3

and 4 present quantile scores for GP and GP-sub specifications with, respectively, moderately

sized and large models. In this comparison, too, scores are presented as relative to the UC-SV

benchmark. The main message emerging from these figures is that the GP models are much

better in the left tail (low inflation) than in the right tail (high inflation). More specifically,

from Figure 3’s h = 1 results with the moderately sized set of variables, in the left tail, GP

is better than GP-sub, and both are 10-20 percent better than UC-SV. At the 5 percent and

10 percent quantiles, the specifications with SV and DPM-SV are most accurate. With the

moderately sized set of variables, the left-tail gains are noticeably larger for h = 4 (reaching

as much as 40 percent) than for h = 1. However, as the quantile considered moves toward the

median and into the right tail, the score performance deteriorates. Indeed, in the right tail, the

nonparametric models are less accurate than the UC-SV baseline, by 10-20 percent for GP and a

bit less for GP-sub (and as much as 40 percent at the four-quarters-ahead horizon). Results with

large models are broadly similar to those with moderately sized models: The patterns for large

models in Figure 4 and moderately sized models in Figure 3 are quite similar. Quantitatively,
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Figure 2: Cumulative log predictive likelihoods against the UC-SV model: Large-scale models

the gains in the left tail are sometimes more modest with large models than with moderately

sized ones, whereas the losses in the right tail are sometimes larger with large models than with

moderately sized ones.

These quantile scores are computed over the full hold-out period (i.e., 1980:Q1 to 2021:Q3)

and might thus mask important temporal variation in tail forecasting performance. To under-

stand whether the tail performance described above is stable over time, Table 2 reports quantile

scores (again, relative to the UC-SV model) for four subsamples: 1980-90, 1991-2000, 2001-10,

and 2011-21. For h = 1, the gains in the left tail are present in all periods except 1991-2000,

and they are often greater for large-scale GP than for moderately sized GP. Given the GP spec-

ification, there is no clear-cut ranking of the error process. For h = 4 and left-tail forecasts, the

moderately sized GP-sub is better than UC-SV in most periods and for most error specifications.

In the 1991-2000 period that stands as the exception, in most cases the benchmark UC-SV model

yields better scores compared to the GP models. Consistent with the full sample results, in the

three subsamples before 2011, in right-tail quantile scores most models are beaten by UC-SV,

sometimes with large losses. But for the 2011-21 period, patterns reverse, and most GP models
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Figure 3: Quantile scores across volatility specifications and forecast horizons: Moderately
sized models

beat the forecast accuracy of UC-SV in the right tail. In particular, in this period the large GP

and GP-sub with SV specifications are better than UC-SV for both left and right tails, with

gains of up to 5 percent in the former and 44 percent in the latter (notice the reversal with

respect to h = 1). Overall, though the full sample performance in the right tail is disappointing,

large-scale GP with SV behaves well both in the left and in the right tail in the most recent

period, with systematically better quantile scores than UC-SV.

In the empirical appendix (see Figures C3 and C4) we also show how relative cumulative

quantile scores (for p = 0.05 and p = 0.95) evolve over the hold-out period. These figures tell

a story similar to the one provided above. In particular, in the high-inflation periods (i.e., the
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Figure 4: Quantile scores across volatility specifications and forecast horizons: Large models

early 1980s and 2021) our set of nonparametric models also does well in the right tail.

3.6 Model calibration

The previous results have been based on relative model performance. To gauge how well the cor-

responding predictive densities are calibrated, Figures 5 and 6 report the Rossi and Sekhposyan

(2019) diagnostic plots for, respectively, the one-step- and four-steps-ahead predictive densities

over the 1980-2021 evaluation sample. These diagnostics provide information about whether the

predictive densities are correctly specified given the model and estimation technique specified

by the researcher. They are essentially QQ-plots that allow us to directly investigate in what
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Subsample 1980 – 1990 1991 – 2000 2001 – 2010 2011 – 2021

Moderately sized models
Gaussian process

Homosk. DPM SV DPM-SV Homosk. DPM SV DPM-SV Homosk. DPM SV DPM-SV Homosk. DPM SV DPM-SV
h = 1
0.05 0.72 0.76 0.69 0.67 1.27 1.32 1.09 1.29 0.81 0.83 0.83 0.84 0.83 0.8 0.79 0.87
0.1 0.7 0.7 0.76 0.75 1.27 1.25 1.12 1.2 0.91 0.91 0.86 0.87 0.91 0.87 0.84 0.89
0.9 1.05 1.14 0.84 1 1.42 1.54 1.16 1.44 1.06 1.03 1.19 1.12 0.99 1.06 0.98 1.01
0.95 1.17 1.27 0.95 1.17 1.38 1.49 1.13 1.48 0.93 0.96 1.06 0.99 1.1 1.18 1.16 1.17
h = 4
0.05.1 0.5 0.55 0.54 0.58 1.05 1.12 0.93 1 0.46 0.49 0.38 0.39 1.19 1.28 0.94 1.03
0.1 0.52 0.49 0.64 0.57 1 1.07 1.06 1.1 0.57 0.58 0.5 0.5 1.04 1.11 0.95 0.94
0.9 1.32 1.39 1.08 1.25 1.58 1.74 1.22 1.48 1.15 1.26 1.41 1.25 0.73 0.81 0.77 0.79
0.95 1.37 1.45 1.13 1.33 1.69 1.85 1.28 1.66 1.12 1.19 1.34 1.25 0.67 0.74 0.59 0.66

Gaussian process with subspace shrinkage

h = 1
0.05 0.79 0.8 0.79 0.78 1.32 1.4 1.43 1.43 0.88 0.87 0.77 0.74 0.99 0.98 1.01 0.99
0.1 0.76 0.79 0.8 0.79 1.29 1.35 1.5 1.39 0.93 0.94 0.85 0.88 0.98 0.96 0.98 0.98
0.9 0.95 1.01 0.86 0.82 1.27 1.5 1.12 1.12 1.02 1.03 1.48 1.22 0.92 1 0.89 0.96
0.95 1.05 1.13 0.87 0.93 1.25 1.47 0.92 1.19 0.94 0.92 1.6 1.12 1.01 1.09 1.02 1.1
h = 4
0.05 0.43 0.44 0.45 0.37 0.74 0.84 1 0.74 0.55 0.53 0.56 0.52 0.89 0.95 1.48 1.02
0.1 0.42 0.43 0.63 0.53 0.84 0.86 1.1 0.89 0.64 0.61 0.68 0.6 0.86 0.82 1.29 1
0.9 1.35 1.43 1.06 1.25 1.88 2.08 1.29 1.79 1.29 1.4 1.29 1.34 0.92 1.05 0.75 0.93
0.95 1.38 1.47 1.09 1.31 1.94 2.14 1.32 1.91 1.24 1.36 1.22 1.32 0.8 0.92 0.64 0.81

Large-scale models
Gaussian process

h = 1
0.05 0.65 0.73 0.68 0.63 1.24 1.3 1.24 1.25 0.82 0.99 0.93 0.76 0.72 0.72 0.69 0.74
0.1 0.58 0.62 0.69 0.64 1.21 1.25 1.14 1.19 0.92 1.04 0.95 0.87 0.77 0.78 0.75 0.77
0.9 1.47 1.57 1.24 1.44 1.97 2.1 1.31 1.85 1.05 1.17 1.08 1.11 0.97 1.05 0.92 1.01
0.95 1.58 1.72 1.34 1.58 1.85 2 1.27 1.83 1.05 1.17 1.01 1.13 0.96 1.01 0.96 1.03
h = 4
0.05 0.54 0.52 0.67 0.57 1.02 1.09 1.12 1.05 0.51 0.59 0.57 0.57 1.32 1.28 0.95 1.19
0.1 0.65 0.62 0.76 0.67 0.93 0.96 1.12 1.02 0.69 0.76 0.65 0.66 1.15 1.07 0.99 1.12
0.9 1.76 1.87 1.55 1.7 2.19 2.31 1.37 1.81 1.37 1.6 1.03 1.21 0.9 1.05 0.63 0.83
0.95 1.77 1.92 1.57 1.75 2.27 2.45 1.42 1.95 1.38 1.61 1 1.28 0.81 0.96 0.56 0.77
Gaussian process with subspace shrinkage

h = 1
0.05 0.66 0.67 0.6 0.65 1.1 1.08 1.04 0.93 0.85 0.83 0.95 0.92 0.69 0.73 0.74 0.72
0.1 0.58 0.58 0.6 0.58 1.09 1.03 1 0.97 0.88 0.85 0.96 0.93 0.75 0.78 0.82 0.81
0.9 1.24 1.57 1.08 1.16 1.93 2.34 1.45 1.67 0.93 1.08 0.97 0.98 1.01 1.06 0.94 1
0.95 1.35 1.73 1.19 1.3 1.8 2.19 1.36 1.58 0.94 1.1 0.92 0.97 1.01 1.08 0.99 1.07
h = 4
0.05 0.53 0.52 0.49 0.55 0.92 0.86 1.14 0.74 0.61 0.62 0.74 0.65 1.15 1.15 0.88 0.81
0.1 0.53 0.59 0.51 0.53 0.83 0.73 1.12 0.9 0.72 0.71 0.77 0.72 0.96 0.93 1 0.79
0.9 1.47 1.91 1.25 1.4 2.18 2.66 1.39 1.81 1.22 1.43 1.01 1.17 0.98 1.16 0.74 0.87
0.95 1.52 1.99 1.32 1.49 2.26 2.83 1.44 1.91 1.24 1.55 1.02 1.18 0.87 1.08 0.65 0.78

Table 2: Quantile scores relative to the UC-SV model. Averages across subsamples.

region of the predictive distribution the mis-calibration occurs. In these figures we compare

distributions for the UC-SV and GP models, including GP results under our four different error

specifications. In each plot, the solid black and dotted lines represent the benchmark of correct

specification with confidence bands.

These results indicate that the predictive densities of the GP-SV and UC-SV specifications

are closest to being correctly specified, whereas the densities of other models display some

noticeable mis-specification, likely related to the bad predictive performance in the right tail

noted above (unreported probability integral transforms yield similar patterns and conclusions).

For both horizons, the UC-SV model’s quantiles of the predictive density lay within the correct-

specification bands. With the moderately sized set of variables, at the one-step-ahead horizon

the quantiles of the predictive density also lay within the confidence band for the homoskedastic
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Notes: The red line refers to the Gaussian process regression, the blue line to the GP regression with subspace
shrinkage, and the orange line is the UC-SV model.

Figure 5: Rossi and Sekhposyan (2019) diagnostic plots for the one-quarter-ahead predictive
densities.

and SV versions of the GP model. But significant departures from correct specification occur if

the version of the GP model is changed, the forecast horizon is increased to 4, or the variable set

is changed to the large-scale set. In calibration, as in the quantile score performance presented

above, the problems seem to be in the right tail of the distribution: Departures from the correct

specification line become more prevalent and larger as the quantile moves from the left to the

right tail.
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Figure 6: Rossi and Sekhposyan (2019) diagnostic plots for the four-quarters-ahead predictive
densities.

3.7 A deeper look at the predictive densities over time

This sub-section focuses on the qualitative properties of the predictive distributions. Figure 7

graphs the evolution of right-tail quantile scores (p = 0.95) and the 10, 50 and 90th percentiles

of the predictive distribution. In the interest of brevity, we report results for the selected

specifications of the UC-SV benchmark and the GP model with DPM-SV for the moderately

sized data set, for h = 1 in the upper panel and h = 4 in the lower panel.

As shown in the panels in the left side of the figure, in most periods, the right-tail quantile

scores are lower (better) for UC-SV than for GP, but in episodes in the mid-2000s and during

the pandemic, the GP specification beats UC-SV. As shown in the panels in the right side of the
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Figure 7: Quantile scores (p = 0.95) and 10, 50 and 90th percentiles of the one-step-ahead
predictive distribution for the moderately sized data set

figure, the width between the 10 and 90th percentiles of the predictive distribution is generally

narrower for UC-SV than for GP-sub, indicating a more concentrated predictive distribution

for the former. While the bands from the UC-SV model appear to move together and preserve

symmetry in the predictive density, the bands from GP sometimes display asymmetry. Most

noticeably, around the 2008-2009 period, the model’s 10th percentile drops more than does the

90th percentile. As intended, the nonparametric specification appears to have more ability to

capture asymmetries in predictive distributions. Finally, it appears that the GP model more

accurately predicts the rise of inflation during the pandemic.

To get a better understanding of the effects of extreme events such as the financial crisis

and the pandemic on the predictive distributions, Figure 8 plots the predictive densities in some

quarters of these specific episodes. The figure provides results from the UC-SV benchmark and

the homoskedastic and DPM-SV versions of the moderately sized GP specification. In each case,

the red dot provides the actual outcome of inflation for the quarter in question.

These plots nicely illustrate that, in some quarters (especially at the beginning of the

aforementioned periods), the gains from the more flexible model stem from non-Gaussian features

(heavy tails and skewness). After one or two quarters, the GP models also seem to adjust the

point forecasts (better than the UC-SV models) and this provides further predictive gains.

Consider late 2008 and early 2009. Inflation in 2008:Q4 plummeted to roughly -9 percent,
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Figure 8: Predictive densities of GP (with DPM-SV) and UC-SV with the moderately sized
data set: 2008Q3 - 2009Q2 (left) and 2020Q1 - 2020Q4 (right)

far outside the predictive distributions based on data through 2008:Q3. In response, in the

subsequent quarter, the predictive distributions widened for all three models, and the predictive

density from both GP specifications correctly shifted to the left more so than did the predicted

densities of the UC-SV model. As another example, shown in Figure 8’s results for the first

year of the pandemic, in the second quarter of 2020 the predictive distributions of the GP

specifications correctly moved well to the left to capture inflation’s sharp fall, whereas the UC-

SV’s distribution adapted much less and implied that the inflation outcome was in the far left

tail.
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3.8 Which variables determine the predictive distribution?

In a linear regression model, the marginal effect of any predictor on inflation is simply its

regression coefficient. In our nonparametric model, the nonlinear interaction between yt+h and

xt means no such simple summary of the effect of a predictor on inflation exists. The effect can

depend on the magnitude of any or all of the predictors and can vary over quantiles. Several

recent papers (see, e.g., Crawford, et al., 2019; Woody, Carvalho, and Murray, 2021) address

this issue through linear posterior summaries that are close (according to some metric) to the

actual posterior distribution.

In this paper, we follow a similar approach to Woody, Carvalho, and Murray (2021). Our

aim is to approximate the quantiles of the predictive distribution Qp,t+h using a linear and

possibly sparse regression model. For each p, we solve the following optimization problem:

β∗
p = argmin

βp

T∑
t=t0

(
Qp,t+h − β′

pxt

)2
+ λ

K∑
j=1

|βp,j |, (8)

where t0 marks the beginning of the hold-out period, βp = (βp,1, . . . , βp,K)′ is a linear set of

coefficients, and λ ≥ 0 is a penalty term that controls the trade-off between model fit and parsi-

mony. This is a LASSO problem, and we decide on λ through cross-validation. Notice that for

each quantile we search for a linear representation that minimizes the squared errors between

the quantile forecast and the linear predictor. This closely resembles a standard quantile regres-

sion model and, if repeated for every p, provides us with a linearized version of the predictive

distribution that is simple to interpret.

p = 0.05 0.1 0.5 0.9 0.95

h = 1 0.65 0.65 0.65 0.65 0.65
h = 4 0.39 0.47 0.66 0.61 0.65

Notes: The R2 values are computed based
on βp obtained from solving the minimization
problem in Equation 8.

Table 3: Quantile and horizon-specific R2 values

Empirically, we focus on the GP model, with DPM-SV, for the moderately sized data set,

one of the preferred specifications for predicting US inflation based on the previous analysis.

Table 3 presents the R2 of the corresponding quantile-specific linear regression. The table shows

that the fit of the linearized version of the predictive distribution is reasonably good — at

least for the purpose of capturing key covariates, although not necessarily for capturing the

distributional complexities we have emphasized — in particular for h = 1. At this forecast
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Figure 9: Predictive variable relevance over quantiles: Moderately sized GP regression with
DPM-SV

horizon, we observe only little differences in R2 across quantiles. When we focus on h = 4, the

explanatory power of the regression decreases (especially at the lower tails) but remains solid

as an approximation. Specifically, while the R2 is just below 0.4 for p = 0.05, it increases to

around 0.65 for p = 0.95. This indicates that when we focus on four quarters ahead, the linear

model captures a significant portion of low-frequency movements in not only the left tail but

also the right tail. In this respect, the linear model proves to be a useful approximation to our

flexible nonparametric specification for the purpose of capturing key covariates.

Figure 9 reports the estimated coefficients of the significant variables in the quantile-

LASSO model (after standardizing all variables so that coefficients are comparable across re-

gressors). Several interesting findings emerge. First, inflation expectations are consistently

helpful, particularly so for h = 4 and in the center and right tail of the distribution. Second, the

autoregressive lag does not matter for h = 4, and for h = 1 it is only relevant in the middle and

left tail of the distribution. Third, lagged inflation and inflation expectations are the variables

with the largest coefficients, in line with the New Keynesian Phillips curve. The latter also

suggests a role for real and labor market variables, and we find that for h = 1, hours worked

matter in the center and right tail of the distribution, but they appear with a negative sign.
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However, employment has the correct sign for h = 4 and is relevant for the left tail of the pre-

dictive distribution of inflation. Fourth, some financial indicators are also relevant, in particular

corporate and term spreads for h = 1 and in the left tail, where business loans also enter with

a positive sign and the S&P500 with a negative one. Fifth, PPI information is particularly

useful in the right tail, for both h = 1 and h = 4. This can proxy for cost-push factors, such

as increases in the prices of energy or imported goods. Finally, and in summary, for h = 1,

lagged and expected inflation are particularly relevant for the left tail of the predictive distri-

bution of inflation, together with a set of financial indicators. In the right tail expected but not

lagged inflation matters, together with PPI and hours worked. For h = 4, fewer indicators are

relevant: expectations and employment in the left tail, and expectations and PPI in the right

tail. Overall, while our flexible nonparametric models capture the time-varying complexities of

inflation’s predictive distribution, the predictive distributions can be related to modest numbers

of indicators commonly thought to have predictive content for inflation.

4 Forecasting core inflation

As a robustness check, we assess whether our model is also able to compete with the UC-

SV benchmark when the focus is on core CPI (i.e., CPI excluding food and energy) inflation.

This exercise is considerably harder for the models we propose (which are designed to capture

non-systematic, higher-frequency movements in inflation), since core CPI inflation excludes the

volatile food and energy components.

Table 4 shows the results for core CPI inflation. In these results, as in the results for

headline inflation, the MSE for the benchmark UC-SV model is much higher in the pandemic

period than in the full sample at the one-step-ahead horizon, whereas at the four-steps-ahead

horizon, the MSE is more stable across samples. But for both horizons, the LPL for the bench-

mark model drops substantially in the pandemic period compared to the full sample. In the full

sample, using core rather than headline inflation reduces the advantages of the GP and GP-sub

specifications compared to the UC-SV benchmark. Among these models, the SP specification

with SV applied to the moderately sized set of variables fares best over the full sample, about

the same as the benchmark in MSE and LPL accuracy for h = 1 and modestly to solidly more

accurate for h = 4. Over the pandemic sample, most models beat the UC-SV benchmark in

both MSE and LPL. In particular, the GP models offer gains larger than those found over the

long sample, with the SV specification again best with GP. In this sample, by the MSE metric,

gains are larger for h = 4 (as large as 33 percent) than for h = 1. In addition, over the pan-
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Full hold-out period Only pandemic observations
(1980:Q1-2021:Q3) (2020:Q1 to 2021:Q3)

Homosk. DPM SV DPM-SV Homosk. DPM SV DPM-SV

Unobserved components models
h = 1 1.467 0.985 0.417 0.986 1.147 0.95 1.077 0.965

(-1.084) (-0.392) (-0.275) (-0.076) (-1.296) (1.469) (-4.868) (0.62)
h = 4 1.471 1.065 0.396 1.001 1.934 1.289 0.395 1.54

(-0.957) (-0.819) (-0.156) (-0.187) (0.82) (1.42) (-2.211) (1.296)

AR(1) models
h = 1
Linear 2.194 1.844 1.321 1.439 0.96 0.928 0.89 0.929

(-1.066) (-0.758) (-0.398) (-0.499) (3.424) (3.399) (2.998) (3.107)
GP 2.285 1.937 1.405 1.515 0.92 0.913 0.917 0.887

(-1.048) (-0.809) (-0.419) (-0.55) (3.482) (3.34) (3.062) (3.165)
GP-sub 2.228 1.885 1.355 1.475 0.966 0.894 0.922 0.912

(-1.05) (-0.787) (-0.383) (-0.514) (3.439) (3.301) (3.131) (3.089)
h = 4
Linear 2.366 2.003 1.339 1.448 1.914 1.385 0.711 0.732

(-1.205) (-0.914) (-0.573) (-0.648) (1.013) (1.455) (1.538) (1.68)
GP 2.47 2.139 1.382 1.534 2.127 1.6 0.689 0.942

(-1.205) (-0.976) (-0.585) (-0.669) (0.974) (1.349) (1.934) (1.958)
GP-sub 2.379 2.01 1.365 1.529 1.932 1.681 0.734 0.787

(-1.182) (-0.916) (-0.566) (-0.673) (1.03) (1.278) (1.192) (1.636)

Moderately sized models
h = 1
Linear 1.168 1.228 1.362 1.321 0.827 0.845 0.913 0.924

(-0.391) (-0.448) (-0.515) (-0.44) (3.108) (2.842) (0.854) (1.677)
GP 1.043 1.074 0.997 1.009 0.954 0.98 0.939 0.974

(-0.269) (-0.322) (0.059) (-0.072) (3.079) (3.414) (2.753) (3.633)
GP-sub 1.012 1.038 1.079 1.036 0.908 0.934 0.877 0.915

(-0.271) (-0.335) (-0.427) (-0.064) (2.9) (2.883) (-3.484) (3.465)
h = 4
Linear 1.196 1.385 1.044 1.044 1.274 1.4 0.977 1.266

(-0.562) (-0.711) (-0.626) (-0.435) (1.492) (1.341) (-1.449) (0.795)
GP 0.933 1.012 0.837 0.848 0.805 0.899 0.671 0.679

(-0.3) (-0.384) (0.052) (-0.148) (1.914) (1.869) (2.161) (2.045)
GP-sub 0.969 1.052 0.81 0.928 0.949 1.02 0.77 1.015

(-0.313) (-0.425) (0.021) (-0.107) (1.902) (1.792) (2.166) (2.013)

Large-scale models
h = 1
Linear 1.11 1.182 1.134 1.115 0.873 0.976 0.936 0.949

(-0.45) (-0.414) (-0.208) (-0.221) (3.283) (2.436) (3.298) (3.346)
GP 1.117 1.175 1.017 1.069 0.851 0.921 0.845 0.856

(-0.366) (-0.44) (-0.12) (-0.21) (3.571) (3.505) (1.572) (3.599)
GP-sub 1.053 1.201 0.976 1.026 0.845 0.897 0.856 0.86

(-0.347) (-0.443) (-Inf) (-0.123) (3.373) (3.479) (-Inf) (3.044)
h = 4
Linear 0.999 1.241 1.042 1.039 0.744 1.147 0.884 0.97

(-0.529) (-0.502) (-0.356) (-0.344) (1.727) (1.817) (1.822) (1.874)
GP 1.201 1.251 1.012 1.07 0.909 0.972 0.62 0.661

(-0.522) (-0.578) (-0.091) (-0.321) (1.675) (1.656) (1.896) (1.889)
GP-sub 0.994 1.236 0.843 0.923 0.765 0.747 0.706 0.734

(-0.451) (-0.56) (-0.04) (-0.21) (1.782) (1.744) (2.068) (2.044)

Table 4: MSE and Average LPL Results for Core Inflation. LPL results given in parentheses.
Results are relative (MSE ratios or LPL differences) to the UC-SV benchmark.

demic, there is some additional advantage to using the large-scale variable set as compared to

the medium-scale data set.
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5 Conclusions

Forecasting inflation is hard, partly due to the changing, and often vanishing, relationship be-

tween it and its predictors and partly due to the occasionally large and asymmetric shocks

that hit the inflation process. The model developed in this paper, being nonparametric in the

conditional mean and in the error distribution, is designed to address these challenges.

In our empirical work, we have shown that the model is capable of producing accurate

point and density forecasts. These forecasts are often more precise than the ones obtained from

simpler alternatives such as the UC-SV model or a linear regression model. This forecasting

performance is driven by a superior overall performance in the left tail and the center of the

distribution. However, the performance in the right tail is somewhat weaker. This is mainly

driven by slightly inflated predictive intervals during the Great Moderation. In the high-inflation

period of the early 1980s and during the second year of the pandemic, our model also improves

upon the UC-SV model in the right tail.

Given that the model works well in turbulent times, it might also work well for forecasting

time series that are subject to rapid mean shifts and changing volatilities such as exchange rates

or asset prices. Moreover, the univariate nature of the model implies that we do not model

dynamic interdependencies between variables. Since our framework is highly scalable, it would

be straightforward to extend it to the VAR case and use it for structural analysis.
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A Full conditional posterior simulation

In this section we discuss our posterior simulation algorithm. With some exceptions, the pa-

rameters and states of the model can be sampled through Gibbs updating steps. In cases where

the full conditionals are not of a well-known form, we rely on Metropolis-Hastings updates to

simulate from the target distribution.

A.1 Posterior simulation of the Dirichlet process mixture

We start by discussing the posterior simulation steps of the DPM first. This algorithm closely

follows the one discussed in Frühwirth-Schnatter and Malsiner-Walli (2019). Notice that (5) can

be written as:

εt|δt = j ∼ N (µj , σ
2
j ), (A.1)

with δt denoting a latent variable that assigns each observation to one of the components. δt

is specified such that Prob(δt = j) = wj and we let δ = (δ1, . . . , δT )
′ denote a T−dimensional

classification vector. In terms of full-data vectors, the DPM can be written as follows:

ε = µ+ η, η ∼ N (0T ,Σ),

with ε = (ε1, . . . , εT )
′,µ = (µδ1 , . . . , µδT ) and Σ = diag(σ2

δ1
, . . . , σ2

δT
).

To simulate from the posterior of the DPM, we iterate between the following steps (con-

ditional on knowing f):

• We start by sampling the weights ξi conditional on the classification indicators and the

remaining model parameters and latent states. Let ξK = 1 (where J is a truncation level

for the number of mixture components). The sticks ξ1, . . . , ξJ−1 are simulated from a

sequence of Beta distributions:

ξj |δ ∼ B

1 + Tj , α+

J∑
i=j+1

Ti

 , (A.2)

where Tj =
∑T

t=1 I(δt = j) denotes the number of observations associated with cluster j,

with I(•) denoting an indicator function that equals 1 if its argument is true. Draws of

ξ1, . . . , ξJ−1 are then used to construct the weights w1, . . . , wJ−1 using the stick-breaking

formula in (6).
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• Next we sample the classification indicators on a t−by−t basis using slice sampling (Kalli,

Griffin, and Walker, 2011). We do this in two steps. First, we sample an auxiliary quantity

ut|δt ∼ U(0, ϖδt) with ϖj = (1 − κ)κj−1 and κ = 0.8. In the second step, the indicators

are simulated from a discrete distribution with the probability that δt = j (j = 1, . . . , J)

being proportional to:

Prob(δt = j|•)I(ut < ϖj)

ϖj
× wjN (ϵt|µj , σ

2
j ).

The • notation indicates conditioning on all remaining coefficients and latent states of the

model.

• The posterior of α is obtained through a Metropolis-Hastings step (see Frühwirth-Schnatter

and Malsiner-Walli, 2019).

• The component mean µj (j = 1, . . . , J) is simulated from:

µj |• ∼ N (µj , vj)

with

vj = (Tj + v−1
j )−1,

µj = vj

T∑
t=1

(εt × I(δt = j)) .

• We simulate the component-specific error variances from an inverse Gamma-distributed

posterior:

σ2
j |• ∼ G−1

(
Tj + c0, c1 +

∑T
t=1[(εt − µδt)

2I(δt = j)]

2

)
.

Finally, we obtain the truncation level J such that 1−
∑J

j=1wj < min(u1, . . . , uT ).

In case we use the stochastic volatility specification, the sampling step for the component-

specific variances is replaced with the algorithm proposed in Kastner and Frühwirth-Schnatter

(2014).
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A.2 Posterior simulation of the GP regression

Conditional on µ and Σ, we need to sample f and the parameter controlling the weight put on

the subspace shrinkage prior τ2:

• The full conditional posterior of f is a T -dimensional Gaussian distribution:

f |• ∼ N (f ,V )

where

V = K1 −K1(K1 +Σ)−1K ′
1,

f = K1(K1 +Σ)−1(y − µ).

• We sample from the posterior of τ2 using a slice sampler (Shin, Bhattacharya, and Johnson,

2020). In the first step, we sample a uniformly distributed random variable u ∼ U(0, r)

with r = (τ−2+1)−(d0+d1)2 and set r∗ = u−(d0+d1)−1 −1. In the next step, we simulate yet

another auxiliary quantity ζ from a truncated Gamma distribution with bounds 0 and r∗:

ζ|• ∼ G0,r∗

(
d0 +

T −K

2
,
f ′(I −Ψ0)f

2

)
.

A draw of τ2 is then obtained by setting τ2 = 1/ζ.

• We estimate ϕ and ξ jointly using a random walk Metropolis-Hastings updating step.
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B Data

Mnemonic Description Trans M L

INFEXP 5-quarter-ahead inflation expectations from the Survey of Professional Forecasters 1 x x
GDPC1 Real Gross Domestic Product 5 x x
PCECC96 Real Personal Consumption Expenditures 5 x x
FPIx Real private fixed investment 5 x x
GCEC1 Real Government Consumption Expenditures and Gross Investment 5 x x
INDPRO IP:Total index Industrial Production Index (Index 2012=100) 5 x x
CUMFNS Capacity Utilization: Manufacturing (SIC) (Percent of Capacity) 1 x x
PAYEMS Emp:Nonfarm All Employees: Total nonfarm (Thousands of Persons) 5 x x
CE16OV Civilian Employment (Thousands of Persons) 5 x x
UNRATE Civilian Unemployment Rate (Percent) 2 x x
AWHMAN Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing (Hours) 1 x x
CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing 2 x x
CLAIMSx Initial Claims 5 x x
GDPCTPI Gross Domestic Product: Chain-type Price Index 6 x x
CPIAUCSL Consumer Price Index for All Urban Consumers: All Items 6 x x
PPIACO Producer Price Index for All Commodities 6 x x
WPSID61 Producer Price Index by Commodity Intermediate Materials: Supplies & Components 6 x x
WPSID62 Producer Price Index: Crude Materials for Further Processing 6 x x
COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour (Index 2012=100) 5 x x
ULCNFB Nonfarm Business Sector: Unit Labor Cost (Index 2012=100) 5 x x
CES0600000008 Average Hourly Earnings of Production and Nonsupervisory Employees: 6 x x
FEDFUNDS Effective Federal Funds Rate (Percent) 2 x x
BAA10YM Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury 1 x x
GS10TB3Mx 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market 1 x x
CPF3MTB3Mx 3-Month Commercial Paper Minus 3-Month Treasury Bill, secondary market 1 x x
M2REAL Real M2 Money Stock 5 x x
BUSLOANSx Real Commercial and Industrial Loans, All Commercial Banks 5 x x
CONSUMERx Real Consumer Loans at All Commercial Banks 5 x x
S.P.500 S& P’s Common Stock Price Index: Composite 5 x x

PCDGx Real personal consumption expenditures: Durable goods 5 x
PCESVx Real Personal Consumption Expenditures: Services 5 x
PCNDx Real Personal Consumption Expenditures: Nondurable Goods 5 x
GPDIC1 Real Gross Private Domestic Investment 5 x
Y033RC1Q027SBEAx Real Gross Private Domestic Investment: Fixed Investment: Nonresidential Equipment 5 x
PNFIx Real private fixed investment: Nonresidential 5 x
PRFIx Real private fixed investment: Residential 5 x
A014RE1Q156NBEA Shares of gross domestic product: Gross private domestic investment: Change in private inventories 1 x
A823RL1Q225SBEA Real Government Consumption Expenditures and Gross Investment: Federal 1 x
FGRECPTx Real Federal Government Current Receipts 5 x
SLCEx Real government state and local consumption expenditures 5 x
EXPGSC1 Real Exports of Goods and Services 5 x
IMPGSC1 Real Imports of Goods and Services 5 x
DPIC96 Real Disposable Personal Income 5 x
OUTNFB Nonfarm Business Sector: Real Output 5 x
OUTBS Business Sector: Real Output 5 x
IPFINAL IP:Final products Industrial Production: Final Products (Market Group) (Index 2012=100) 5 x
IPCONGD IP:Consumer goods Industrial Production: Consumer Goods (Index 2012=100) 5 x
IPMAT Materials (Index 2012=100) 5 x
IPDMAT Durable Materials (Index 2012=100) 5 x
IPNMAT Nondurable Materials (Index 2012=100) 5 x
IPDCONGD Durable Consumer Goods (Index 2012=100) 5 x
IPB51110SQ Durable Goods: Automotive products (Index 2012=100) 5 x
IPNCONGD Nondurable Consumer Goods (Index 2012=100) 5 x
IPBUSEQ Business Equipment (Index 2012=100) 5 x
IPB51220SQ Consumer energy products (Index 2012=100) 5 x
IPMANSICS Industrial Production: Manufacturing (SIC) (Index 2012=100) 5 x
IPB51222S Industrial Production: Residential Utilities (Index 2012=100) 5 x
IPFUELS Industrial Production: Fuels (Index 2012=100) 5 x
USPRIV All Employees: Total Private Industries (Thousands of Persons) 5 x
MANEMP All Employees: Manufacturing (Thousands of Persons) 5 x
SRVPRD All Employees: Service-Providing Industries (Thousands of Persons) 5 x
USGOOD All Employees: Goods-Producing Industries (Thousands of Persons) 5 x
DMANEMP All Employees: Durable goods (Thousands of Persons) 5 x
NDMANEMP All Employees: Nondurable goods (Thousands of Persons) 5 x
USCONS All Employees: Construction (Thousands of Persons) 5 x
USEHS All Employees: Education & Health Services (Thousands of Persons) 5 x
USFIRE All Employees: Financial Activities (Thousands of Persons) 5 x
USINFO All Employees: Information Services (Thousands of Persons) 5 x
USPBS All Employees: Professional & Business Services (Thousands of Persons) 5 x
USLAH All Employees: Leisure & Hospitality (Thousands of Persons) 5 x
USSERV All Employees: Other Services (Thousands of Persons) 5 x
USMINE All Employees: Mining and logging (Thousands of Persons) 5 x
USTPU All Employees: Trade, Transportation & Utilities (Thousands of Persons) 5 x
USGOVT All Employees: Government (Thousands of Persons) 5 x
USTRADE All Employees: Retail Trade (Thousands of Persons) 5 x
USWTRADE All Employees: Wholesale Trade (Thousands of Persons) 5 x
CES9091000001 All Employees: Government: Federal (Thousands of Persons) 5 x
CES9092000001 All Employees: Government: State Government (Thousands of Persons) 5 x
CES9093000001 All Employees: Government: Local Government (Thousands of Persons) 5 x
CIVPART Civilian Labor Force Participation Rate (Percent) 2 x
UNRATESTx Unemployment Rate less than 27 weeks (Percent) 2 x
UNRATELTx Unemployment Rate for more than 27 weeks (Percent) 2 x
LNS14000012 Unemployment Rate - 16 to 19 years (Percent) 2 x
LNS14000025 Unemployment Rate - 20 years and over, Men (Percent) 2 x
LNS14000026 Unemployment Rate - 20 years and over, Women (Percent) 2 x
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FRED.Mnemonic Description Trans M L

UEMPLT5 Number of Civilians Unemployed - Less Than 5 Weeks (Thousands of Persons) 5 x
UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks (Thousands of Persons) 5 x
UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks (Thousands of Persons) 5 x
UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over (Thousands of Persons) 5 x
AWOTMAN Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing (Hours) 2 x
HWIx Help-Wanted Index 1 x
HOUST Housing Starts: Total: New Privately Owned Housing Units Started 5 x
HOUST5F Privately Owned Housing Starts: 5-Unit Structures or More 5 x
PERMIT New Private Housing Units Authorized by Building Permits 5 x
HOUSTMW Housing Starts in Midwest Census Region (Thousands of Units) 5 x
HOUSTNE Housing Starts in Northeast Census Region (Thousands of Units) 5 x
HOUSTS Housing Starts in South Census Region (Thousands of Units) 5 x
HOUSTW Housing Starts in West Census Region (Thousands of Units) 5 x
RSAFSx Real Retail and Food Services Sales (Millions of Chained 2012 Dollars) 5 x
AMDMNOx Real Manufacturers’ New Orders: Durable Goods (Millions of 2012 Dollars) 5 x
AMDMUOx Real Value of Manufacturers’ Unfilled Orders for Durable Goods Industries 5 x
BUSINVx Total Business Inventories (Millions of Dollars) 5 x
ISRATIOx Total Business: Inventories to Sales Ratio 2 x
PCECTPI Personal Consumption Expenditures: Chain-type Price Index 6 x
PCEPILFE Personal Consumption Expenditures Excluding Food and Energy 6 x
GPDICTPI Gross Private Domestic Investment: Chain-type Price Index 6 x
IPDBS Business Sector: Implicit Price Deflator (Index 2012=100) 6 x
DGDSRG3Q086SBEA Personal consumption expenditures: Goods 6 x
DDURRG3Q086SBEA Personal consumption expenditures: Durable goods 6 x
DSERRG3Q086SBEA Personal consumption expenditures: Services 6 x
DNDGRG3Q086SBEA Personal consumption expenditures: Nondurable goods 6 x
DHCERG3Q086SBEA Personal consumption expenditures: Services: Household consumption expenditures 6 x
DMOTRG3Q086SBEA Personal consumption expenditures: Durable goods: Motor vehicles and parts 6 x
DFDHRG3Q086SBEA Personal consumption expenditures: Durable goods: Furnishings and durable household equipment 6 x
DREQRG3Q086SBEA Personal consumption expenditures: Durable goods: Recreational goods and vehicles 6 x
DODGRG3Q086SBEA Personal consumption expenditures: Durable goods: Other durable goods 6 x
DFXARG3Q086SBEA Personal consumption expenditures: Nondurable goods: Food and beverages purchased for off-premises consumption 6 x
DCLORG3Q086SBEA Personal consumption expenditures: Nondurable goods: Clothing and footwear 6 x
DGOERG3Q086SBEA Personal consumption expenditures: Nondurable goods: Gasoline and other energy goods 6 x
DONGRG3Q086SBEA Personal consumption expenditures: Nondurable goods: Other nondurable goods 6 x
DHUTRG3Q086SBEA Personal consumption expenditures: Services: Housing and utilities 6 x
DHLCRG3Q086SBEA Personal consumption expenditures: Services: Health care 6 x
DTRSRG3Q086SBEA Personal consumption expenditures: Transportation services 6 x
DRCARG3Q086SBEA Personal consumption expenditures: Recreation services 6 x
DFSARG3Q086SBEA Personal consumption expenditures: Services: Food services and accomodations 6 x
DIFSRG3Q086SBEA Personal consumption expenditures: Financial services and insurance 6 x
DOTSRG3Q086SBEA Personal consumption expenditures: Other services 6 x
CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Energy 6 x
WPSFD49207 Producer Price Index by Commodity for Finished Goods 6 x
WPSFD49502 Producer Price Index by Commodity for Finished Consumer Goods 6 x
WPSFD4111 Producer Price Index by Commodity for Finished Consumer Foods 6 x
PPIIDC Producer Price Index by Commodity Industrial Commodities 6 x
WPU0561 Producer Price Index by Commodity for Fuels and Related Products and Power 5 x
OILPRICEx Real Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma 5 x
PPICMM Producer Price Index: Commodities: Metals and metal products: Primary nonferrous metals 6 x
CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel 6 x
CPITRNSL Consumer Price Index for All Urban Consumers: Transportation 6 x
CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care 6 x
CUSR0000SAC Consumer Price Index for All Urban Consumers: Commodities 6 x
CES2000000008x Real Average Hourly Earnings of Production and Nonsupervisory Employees: Construction 5 x
CES3000000008x Real Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing 5 x
TB3MS 3-Month Treasury Bill: Secondary Market Rate (Percent) 2 x
TB6MS 6-Month Treasury Bill: Secondary Market Rate (Percent) 2 x
GS1 1-Year Treasury Constant Maturity Rate (Percent) 2 x
GS10 10-Year Treasury Constant Maturity Rate (Percent) 2 x
AAA Moody’s Seasoned Aaa Corporate Bond Yield (Percent) 2 x
BAA Moody’s Seasoned Baa Corporate Bond Yield (Percent) 2 x
TB6M3Mx 6-Month Treasury Bill Minus 3-Month Treasury Bill, secondary market (Percent) 1 x
GS1TB3Mx 1-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market 1 x
GS5 5-Year Treasury Constant Maturity Rate 2 x
TB3SMFFM 3-Month Treasury Constant Maturity Minus Federal Funds Rate 1 x
T5YFFM 5-Year Treasury Constant Maturity Minus Federal Funds Rate 1 x
AAAFFM Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate 1 x
M1REAL Real M1 Money Stock 5 x
NONREVSLx Total Real Nonrevolving Credit Owned and Securitized, Outstanding 5 x
REALLNx Real Real Estate Loans, All Commercial Banks 5 x
TOTALSLx Total Consumer Credit Outstanding 5 x
TOTRESNS Total Reserves of Depository Institutions 6 x
NONBORRES Reserves Of Depository Institutions, Nonborrowed 7 x
DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding Owned by Finance Companies 6 x
DTCTHFNM Total Consumer Loans and Leases Outstanding Owned and Securitized by Finance Companies 6 x
INVEST Securities in Bank Credit at All Commercial Banks 6 x
TABSHNOx Real Total Assets of Households and Nonprofit Organizations 5 x
EXSZUSx Switzerland / U.S. Foreign Exchange Rate 5 x
EXJPUSx Japan / U.S. Foreign Exchange Rate 5 x
EXUSUKx U.S. / U.K. Foreign Exchange Rate 5 x
EXCAUSx Canada / U.S. Foreign Exchange Rate 5 x
S.P..indust S& P’s Common Stock Price Index: Industrials 5 x
S.P.div.yield S& P’s Composite Common Stock: Dividend Yield 2 x

Table B1: Data overview. The column ’Trans’ refers to the transformation codes according to
the ones discussed in McCracken and Ng (2020). An ’X’ in the column labeled M or L marks
inclusion of a variable in the moderate or large data set.

C Additional Empirical Results
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Figure C1: Cumulative QS(0.05) against the UC-SV model: Moderately sized models
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Figure C2: Cumulative QS (0.05) against the UC-SV model: Large models

36



(a) 1-quarter-ahead

0.
5

1.
0

1.
5

2.
0

2.
5

Linear

Homosk.
DPM
SV
DPM−SV

1980 1986 1993 1999 2005 2011 2017

GP

1980 1986 1993 1999 2005 2011 2017

GP−sub

1980 1986 1993 1999 2005 2011 2017

(a) 4-quarters-ahead

0.
5

1.
0

1.
5

2.
0

2.
5

Linear

Homosk.
DPM
SV
DPM−SV

1980 1986 1993 1999 2005 2011 2017

GP

1980 1986 1993 1999 2005 2011 2017

GP−sub

1980 1986 1993 1999 2005 2011 2017

Figure C3: Cumulative QS (0.95) against the UC-SV model: Moderately sized models
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Figure C4: Cumulative QS (0.95) against the UC-SV model: Large models
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