
 
 

Federal Reserve Bank of Cleveland Working Paper Series 
 

 
 
 

Mis-specified Forecasts and Myopia in an  
Estimated New Keynesian Model 

Ina Hajdini 

Working Paper No. 22-03 

February 2022 
 

Suggested citation: Hajdini, Ina. 2022. “Mis-specified Forecasts and Myopia in an Estimated New 
Keynesian Model.” Working Paper No. 22-03. Federal Reserve Bank of Cleveland. 
https://doi.org/10.26509/frbc-wp-202203.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Federal Reserve Bank of Cleveland Working Paper Series 
ISSN: 2573-7953 
 
Working papers of the Federal Reserve Bank of Cleveland are preliminary materials circulated to 
stimulate discussion and critical comment on research in progress. They may not have been subject to the 
formal editorial review accorded official Federal Reserve Bank of Cleveland publications. 
 
See more working papers at: www.clevelandfed.org/research. Subscribe to email alerts to be notified 
when a new working paper is posted at: www.clevelandfed.org/subscribe. 

https://doi.org/10.26509/frbc-wp-202203
http://www.clevelandfed.org/research
http://www.clevelandfed.org/subscribe


Mis-specified Forecasts and Myopia in an
Estimated New Keynesian Model∗

Ina Hajdini†

February 15, 2022

Abstract

The paper considers a New Keynesian framework in which agents form expectations based
on a combination of mis-specified forecasts and myopia. The proposed expectations formation
process is found to be consistent with all three empirical facts on consensus inflation forecasts,
namely, that forecasters under-react to ex-ante forecast revisions, that forecasters over-react
to recent events, and that the response of forecast errors to a shock initially under-shoots but
then over-shoots. The paper then derives the general equilibrium solution consistent with
the proposed expectations formation process and estimates the model with likelihood-based
Bayesian methods, yielding three novel results: (i) The data strongly prefer the combination
of autoregressive mis-specified forecasting rules and myopia over other alternatives; (ii) The
best fitting expectations formation process for both households and firms is characterized
by high degrees of myopia and simple AR(1) forecasting rules; (iii) Frictions such as habit
in consumption, which are typically necessary for models with Full-information Rational
Expectations, are significantly less important, because the proposed expectations generate
substantial internal persistence and amplification to exogenous shocks. Simulated inflation
expectations data from the estimated general equilibrium model reflect the three empirical
facts on forecasting data.
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1 Introduction

The Full-information Rational Expectations (FIRE) assumption in macroeconomics postulates

that agents understand the true underlying model of the economy and consequently have full

knowledge of the equilibrium probability distribution of economic variables. This assumption is

the workhorse of modern macro work and has brought to the field much discipline and important

insights. However, it contradicts with the ample evidence that agents, due to cognitive limitations

or information acquiring costs, often resort to simple non-model-based forecasting rules (mis-

specified forecasts) and do not appropriately take into account future payoffs/quantities (myopia).1

To date, the literature has not incorporated both departures from FIRE in an equilibrium macro

framework and has not formally tested them with macroeconomic data.

The present paper addresses this gap in the literature and makes its first contribution by jointly

introducing mis-specified forecasting rules and myopia in a New Keynesian framework. The second

contribution is to derive the Consistent Expectations equilibrium for the inflation process and test

its three implications with forecasting data evidence from the US Survey of Professional Forecasters

(SPF). The third contribution is to develop the full general equilibrium solution, while allowing

agents to perpetually learn about the equilibrium, and estimate it on US macroeconomic data with

likelihood-based Bayesian methods.2 The key novel result of the paper is that both the analysis

of the forecasting data and the likelihood-based Bayesian estimation of the full New Keynesian

model prefer the specification in which economic agents rely on a combination of autoregressive

mis-specified forecasting rules and myopia over other alternatives. Importantly, I prove that such

a combination is consistent with all three empirical facts about inflation consensus forecasting

data in the US, namely, that forecasts are positively predicted by ex-ante forecast revisions; that

is, there is under-reaction to new information at the time of forecast (Coibion and Gorodnichenko

(2015)); that forecasters over-react to information at the time of forecast (Kohlhas and Walther

(2021)); and that following a one-time shock, the impulse responses of forecast errors initially

under-shoot but then over-shoot (Angeletos et al. (2021)).3

1See for instance, Tversky and Kahneman (1973, 1974), Adam (2007), Hommes (2013); Hommes et al. (2019),
Petersen (2015), Malmendier and Nagel (2016), Ganong and Noel (2019), among others. See Related Literature for
more details.

2The literature has long shown that agents tend to focus mostly on recent observations; that is, they rely on
perpetual or constant-gain learning. For instance, Fuster et al. (2010) argue that “actual people’s forecasts place
too much weight on recent changes,” Malmendier and Nagel (2016) find significant micro evidence in favor of
constant-gain learning, and Tversky and Kahneman (1973, 1974) provide theoretical considerations.

3The three papers use various sources of forecasting data to validate the three facts. However, the US SPF data
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Agents in the private sector are assumed to be homogeneous, but endowed with imperfect

common knowledge about each other’s economic problems, shocks, and expectations formation

processes. Since agents do not understand their uniformity, they are not aware of the true model

governing the macroeconomy. As a result, they form forecasts about the endogenous variables

based on mis-specified perceived laws of motion, i.e., rules that are structurally different from the

minimum state variable solution granted under Rational Expectations. In particular, motivated

by evidence in the literature (see footnote 1), I assume that the perceived laws of motion are

of an autoregressive nature. To model myopia, I build on the idea of cognitive discounting in

Gabaix (2020), where the private sector has difficulty understanding events that are far in the

future. As agents try to form expectations about the far future, they shrink their autoregressive

forecasts toward the steady-state of the economy. Consecutively, expectations about aggregate

variables many periods ahead shrink toward steady-state values. As in Gabaix (2020), the private

sector is globally patient with respect to the variables’ steady-state equilibrium, but is myopic with

respect to their deviations from the steady-state. Differently from Gabaix (2020) where the myopic

adjustment is made to well-specified forecasting rules, in the present paper such an adjustment is

made to mis-specified forecasting rules.4

Once myopia is combined with the autoregressive forecasts, the parameters of the forecasting

rules are pinned down by the solution concept of a Consistent Expectations (CE) equilibrium, as

defined in Hommes and Sorger (1998) and Hommes and Zhu (2014). A first-order CE equilibrium

arises when the perceived unconditional mean and first-order autocorrelation coefficient/matrix

of the endogenous variable(s) coincides with the same moments as implied by the data-generating

process, i.e. the actual law of motion, of the endogenous variable(s).

To assess the relevance of the proposed expectations formation process, I start off with a partial

equilibrium New Keynesian pricing problem, where monopolistically competitive firms - which face

exogenous marginal costs - maximize their present discounted value of real profits. Motivated by

the work of Preston (2005) and Eusepi and Preston (2018), I model the implied optimal pricing rule

of each firm to be of an infinite horizon nature, and in the presence of mis-specified forecasting rules,

are their common denominator. In particular, Angeletos et al. (2021) show delayed over-shooting using forecasting
data from the US SPF, Blue Chip, and Michigan Survey of Consumers (MSC); Coibion and Gorodnichenko (2015)
rely on the same data sets, among many others, with the caveat that the term structure of the MSC data is not
particularly fit for constructing ex-ante forecasting revisions; Kohlhas and Walther (2021) use data from the US
SPF, Euro Area SPF, Livingston Survey, and MSC.

4Well-specified forecasting rules are such that they share a common structure with the minimum state variable
solution under FIRE.
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it cannot be reduced to the standard Phillips curve.5 I show that along the CE equilibrium path,

the inflation persistence is at least as high as the inertia of the marginal cost.6 Importantly, the

degree of myopia interacts with the equilibrium outcomes, and specifically, a lower (respectively,

higher) degree of myopia or, equivalently, more (respectively, less) forward-lookingness in firms’

decisions induces higher (respectively, lower) inflation persistence in equilibrium.

I then derive three testable implications for forecasting errors along the CE equilibrium path.

First, I prove that, consistent with the evidence presented in Angeletos et al. (2021), a combination

of mis-specified forecasts and myopia delivers late over-shooting of forecast errors following a one-

time shock to the marginal cost if and only if there is sufficient endogenous over-extrapolation, i.e.,

if the equilibrium persistence of inflation sufficiently exceeds that of the marginal cost. Similarly,

Angeletos et al. (2021) show that there should be over-extrapolation and sufficiently noisy informa-

tion for delayed over-shooting to be replicated theoretically. In contrast to their paper where over-

or under-extrapolation is an exogenous feature, in the present paper over-extrapolation is an en-

dogenous outcome of the CE equilibrium solution.7 Second, I prove that the proposed expectations

formation process in the present paper reflects the empirical fact that ex-post forecasting errors are

positively predicted by ex-ante forecast revisions, as found in Coibion and Gorodnichenko (2015).

The presence of myopia generally facilitates matching such evidence by slowing down the update

of forecasts as new information becomes available to forecasters. Moreover, consistent with the

findings in Coibion and Gorodnichenko (2015), myopia also ensures that inflation lags have no

predictive power over inflation forecasting errors, once one controls for ex-ante forecast revisions.8

Third, I prove that the expectations formation process reflects the empirical fact brought forward

by Kohlhas and Walther (2021) that forecasters over-react to information at the time of forecast.

Mis-specified forecasting rules give rise to over-extrapolation, regardless of the degree of myopia,

and thus guarantee that inflation at the time of forecast negatively predicts inflation forecasting
5However, when firms use well-specified forecasting rules, as in, e.g., Gabaix (2020), instead, the implied Phillips

curve coincides with the behavioral one in Gabaix (2020) if there is myopia and the standard Phillips curve under
FIRE if there is no myopia.

6When firms rely on well-specified forecasting rules, the persistence of inflation matches that of the marginal
costs.

7I further show that well-specified forecasts combined with myopia as in Gabaix (2020) or FIRE do not match
late over-shooting.

8Further, I show that mis-specified forecasts absent myopia can mirror such a fact if and only if the equilibrium
persistence of inflation coincides with the inertia of the marginal cost, which in turn can only happen if the marginal
cost has no inertia. Importantly, even if the equilibrium inflation persistence equals that of the marginal cost, the
condition for delayed over-shooting will not hold. On the contrary, the presence of myopia relaxes the constraint
and allows for ex-ante revisions to be the only significant predictor of ex-post forecasting errors without violating
the condition for delayed over-shooting.
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errors.

Evidence in favor of the proposed expectations formation process for inflation represents a

natural motivation to embed such an assumption into a full New Keynesian model with habit in

consumption and inflation indexation, similar to the one in Milani (2006).9 Bayesian estimation

of the full general equilibrium New Keynesian model on US macroeconomic data from 1966:Q1 to

2018:Q3 yields the following outcomes. First, consistent with forecasting data evidence, macroe-

conomic data strongly prefer the model whose expectations formation process is a combination

of autoregressive forecasts and myopia over the other aforementioned alternatives.10 Second, the

best-fitting expectations formation process is characterized by significant degrees of myopia and

AR(1) forecast rules. More elaborate VAR-based forecasts do not enhance the model’s fit and do

not provide additional information in terms of forecasting. Third, compared to FIRE, frictions

such as habit in consumption are significantly less important in the presence of myopia combined

with AR(1) forecasts, because such a combination strengthens the internal propagative features

of the model: autoregressive forecasts can induce excess persistence, whereas myopia can induce

excess volatility. Therefore, the proposed expectations formation process will often deliver im-

pulse response functions to demand, cost-push, and monetary shocks that are more persistent and

volatile (especially for inflation), relative to a case of no myopia or FIRE.

Finally, setting the model’s parameters to their estimated posterior mean, I simulate inflation

annual forecasting data according to the proposed expectations formation process and show that

simulated inflation annual forecast errors support the three empirical facts on consensus forecasts

as described in the preceding paragraphs.

Related Literature

The literature has shown that various assumptions on the expectations formation processes

can be consistent with forecasting data. For instance, Coibion and Gorodnichenko (2015) show

that the predictability of ex-post forecast errors by ex-ante forecast revisions is consistent only
9Similar to the partial equilibrium setting, the implied optimal consumption and pricing rules of households and

firms are of an infinite horizon nature and in the presence of mis-specified forecasting rules, they cannot be reduced
to the standard one-period-ahead Euler equation and Phillips curve, respectively. If well-specified forecasting rules
are used, the implied Euler equation and Phillips curve coincide with the behavioral ones in Gabaix (2020) if there
is myopia and the standard FIRE ones when there is no myopia.

10The second best-fitting model is the one with well-specified forecasts and myopia.
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with the assumptions of sticky information as in Mankiw and Reis (2002) and Reis (2006), or

noisy information as in, e.g., Woodford (2003a), Sims (2003), and Maćkowiak and Wiederholt

(2009).11 However, sticky or noisy information alone cannot match forecasters’ over-reaction to

recent events (Kohlhas and Walther (2021)) or forecast errors’ delayed over-shooting (Angeletos

et al. (2021)). Kohlhas and Walther (2021) rationalize the fact that consensus forecasts under-

react to new information but over-react to recent events through a theory of asymmetric attention

to procyclical variables. Nevertheless, as mentioned in Angeletos et al. (2021), asymmetric at-

tention is not reflective of forecast errors’ delayed over-shooting. Angeletos et al. (2021), on the

other hand, show that noisy information combined with exogenous over-extrapolation can match

the list of aforementioned empirical facts on forecasting data. The present paper shows that my-

opia combined with endogenous over-extrapolation matches all three empirical facts on consensus

forecasting data.12

The paper contributes with additional evidence to a rich body of literature that validates usage

of simple forecasting processes by the private sector (e.g., Tversky and Kahneman (1973, 1974),

Adam (2007), Hommes (2013); Hommes et al. (2019), Greenwood and Shleifer (2014), Petersen

(2015), and Malmendier and Nagel (2016)).13 The paper also relates to a series of papers that

discuss the analytical implications of mis-specified forecasting rules, as in Hommes and Sorger

(1998), Fuster et al. (2010, 2012), and Hommes and Zhu (2014), among others. In particular, the

paper relies on the solution concept of a first-order Consistent Expectations equilibrium, developed

by Hommes and Sorger (1998) and Hommes and Zhu (2014).

The paper shares a common idea with Gabaix (2020) about myopia being excess discount-

ing of future deviations from the steady-state. However, differently from the present paper, in

Gabaix (2020) forecasts are based on structurally well-specified rules, and as mentioned earlier,

the forecasting data evidence presented in this paper stands in favor of a combination of mis-
11See Coibion et al. (2018) as well for a review.
12While the current work focuses on representative agents model and, thus, aggregate/consensus forecasting data,

Gabaix (2020) shows that cognitive discounting (myopia) can be microfounded through noisy signals. As argued
by Gabaix (2020), a more explicit modelling of individual noisy signals would give rise to individual forecasts’
over-reaction to new individual information as documented by Bordalo et al. (2020).

13Experimental evidence in Adam (2007), Hommes (2013); Hommes et al. (2019) and Petersen (2015), among
others, shows that agents are commonly not model-based rational and that they tend to use simple forecasting rules.
Using MSC micro data on inflation expectations, evidence in Malmendier and Nagel (2016) shows that expectations
are history dependent not model-based rational. From a psychological standpoint, Tversky and Kahneman (1973,
1974) argue that when trying to solve complex problems, people tend to employ a limited set of heuristics. Moreover,
simpler processes generate on average smaller out-of-sample forecasting errors compared to AR(p) for p > 1 or
VARs, especially for inflation series (see, for example, Atkeson and Ohanian (2001) and Stock and Watson (2007)).
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specified forecasting rules and myopia. Evidence of myopia presented in the current work further

contributes to recent developments in the empirical literature in favor of myopic agents (see, for

instance, Ganong and Noel (2019), who show that the only model that could rationalize household

behavior given a predictable decrease in income in the data was one with myopic/short-sighted

agents).

This work also shares common insights with the literature that posits that imperfect common

knowledge can explain observed persistence better than its FIRE counterpart (see, e.g., Milani

(2006, 2007), Slobodyan and Wouters (2012a), Hommes et al. (2019)). The novelty of the present

paper, however, is the finding that myopia is an important ingredient in improving the fit of the

model.14 Relatedly, while a model set in a FIRE framework with a rich set of frictions as in

Smets and Wouters (2003, 2007) can fit the data pretty well, this paper shows that a combination

of autoregressive mis-specified forecasts and myopia is powerful in replicating the characteristics

of business cycle fluctuations, with a diminished need for mechanical frictions. Even though

this paper is fundamentally distinctive from Angeletos and Huo (2021), the empirical evidence

presented here stands in favor of their analytical result that myopia and “anchoring of the current

outcome to the past outcome” can be a substitute for mechanical persistence.15

The paper is also related to that body of literature that estimates general equilibrium New

Keynesian models free of the FIRE assumption, as in, for instance, Del Negro and Eusepi (2011),

Slobodyan and Wouters (2012a,b), Ormeño and Molnár (2015), Rychalovska (2016), Cole and

Milani (2019), and Gaus and Gibbs (2018). Differently, the present paper estimates the model

conditional on the novel combination of autoregressive mis-specified forecasts and myopia. Mis-

specified, due to imperfect common knowledge, the partial equilibrium and full New Keynesian

models share the same infinite horizon structure as in Preston (2005).16

The rest of the paper is organized as follows. Section 2 describes the expectations formation

process in a New Keynesian pricing problem. Section 3 derives a number of implications about

inflation forecast errors and tests them with evidence from US SPF data. Section 4 nests the
14In fact, the economy constrained to no myopia resembles to a certain extent the one under FIRE - consistent with

recent laboratory experimental findings in Evans et al. (2019) showing that short-horizon forecasts are characterized
by more substantial deviations from FIRE than long-horizon forecasts.

15Angeletos and Huo (2021) prove the equivalence between a FIRE model with incomplete information and
another FIRE model with myopia along with “anchoring of the current income to the past outcome, as if there was
habit.” In contrast, in this paper, backward-looking components are an attribute of autoregressive mis-specified
forecasting rules due to imperfect common knowledge, whereas myopia is realized through an adjustment process
to mis-specified forecasting rules.

16See Eusepi and Preston (2018) as well for a review.

6



expectations formation process in a full New Keynesian model and presents the main Bayesian

estimation results accompanied by a series of implications. Section 5 re-evaluates the three empir-

ical facts about consensus forecasting errors with expectations data simulated from the estimated

general equilibrium model. Section 6 concludes.

2 Mis-specified Forecasts and Myopia

In what follows, I integrate a combination of mis-specified autoregressive forecasting rules and

myopia into a partial equilibrium New Keynesian pricing problem and solve for the CE equilibrium.

Apart from describing the expectations formation process, this section builds the foundation for

deriving a number of testable implications for inflation forecasting data in the succeeding section.

The rationale for focusing on a pricing problem and therefore expectations about inflation, instead

of other macroeconomic variables, is due to their availability in survey data as well as due to

their particular importance for macroeconomics. Moreover, since testing implications of various

expectations assumptions on inflation forecasting data is the benchmark in the literature, I can

naturally compare the present paper’s expectations process with other alternatives.

2.1 New Keynesian Pricing

Following Woodford (2003b) and Galí (2008), I assume the economy is populated by a continuum

of monopolistically competitive firms, j ∈ [0, 1]. Each firm produces a differentiated good, but

faces the same isoelastic demand schedule

yjt =

(
Pjt

Pt

)−ζ

yt (1)

where ζ > 1 is the elasticity of substitution among the differentiated goods, Pjt is the price set

by the jth firm, Pt is the aggregate price level, and yt is the aggregate output level. The pricing

problem is subject to Calvo price stickiness: each period firms cannot adjust their price with some

constant probability α ∈ (0, 1). Every firm then chooses its current optimal price P ∗
jt that will

maximize its present discounted value of real profits

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+h

(
P ∗
jt

Pt

yj,t+h −mct+hyj,t+h

)
(2)
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where Ẽjt is a generic subjective expectations operator that satisfies the law of iterative expec-

tations and standard probability rules; Qt+h is a generic stochastic discount factor; m̂ct is the

marginal cost; π̂t is inflation; β ∈ (0, 1) is a predetermined discount factor. The log-linearized

first-order condition of each firm’s pricing problem is given by17

p̂∗jt = Ẽjt

∞∑
h=0

(αβ)h ((1− αβ)m̂ct+h + αβπ̂t+h+1) (3)

where p̂∗jt = log(P ∗
jt/Pt) is the log-linear optimal price in deviation from the aggregate price P̂t.

The marginal cost is exogenous and it evolves according to

m̂ct = ρm̂ct−1 + εt, εt ∼ N (0, σ2
ε) (4)

with ρ ∈ (0, 1). Each firm faces the same problem as stated in (2), is subject to the same marginal

cost shock, and is endowed with the same beliefs about the future evolution of inflation and

marginal costs; hence, they will all choose the same optimal price p̂∗t . However, firms are endowed

with imperfect common knowledge, which impedes them from understanding their homogeneity;

that is, each individual firm is not aware that every other firm relies on the same optimal pricing

rule in (3). As shown in the subsequent subsections, this implies that the optimal pricing rule in

(3) cannot be used to make inferences about future deviations of inflation from its steady-state.

Consequently, firms do not understand the true structure of the law of motion for inflation, and

(3) - once aggregated - will not produce the standard Phillips curve. For simplicity purposes only,

I assume that firms understand that marginal costs evolve according to (4).18 Since firms are

assumed to be homogeneous, from now on, I drop the subscript j.

2.2 Myopia

Let Ẽ⋆
t π̂t+h denote the forecast about future inflation - in deviation from its steady-state - prior

to myopic adjustment. Ẽ⋆
t could be associated with a well-specified forecasting rule that would be

the minimum state variable solution under RE, or it could otherwise be linked to a mis-specified

forecasting rule such that forecasts are formed based on a rule that is structurally different from

the minimum state variable solution under RE. To model myopia, I build on the idea of cognitive
17See Appendix A for more details.
18This assumption can be easily relaxed, without altering the main results of the paper.
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discounting of Gabaix (2020), where (well- or mis-specified) forecasts about future inflation and

marginal cost in deviations from their steady-state values are discounted by a cognitive discount

factor, n ∈ (0, 1]. The parameter n defines the degree of myopia, such that a higher (respectively,

lower) n relates to firms being more (respectively, less) forward-looking with respect to future

fluctuations around the steady-state equilibrium. In particular,

Ẽt

 π̂t+h

m̂ct+h

 = nhẼ⋆
t

 π̂t+h

m̂ct+h

 (5)

As myopia increases, i.e., n decreases, the expected value of π̂t+h gets closer to 0, or the expected

value of future inflation approaches its steady-state. Moreover, for n ∈ [0, 1), as the forecasting

horizon h increases, the myopic adjustment becomes more severe. For n = 1 myopia is shut down.

Substituting for Ẽt

[
π̂t+h m̂ct+h

]′
in (3), the optimal pricing decision becomes

p̂∗t = Ẽ⋆
t

∞∑
h=0

(αβn)h ((1− αβ)m̂ct+h + αβnπ̂t+h+1) (6)

Differently from Gabaix (2020), who assumes that the myopic adjustment happens to the well-

specified forecasting rule about future deviations of inflation from its target, the present paper

assumes instead that the myopic adjustment occurs with respect to a mis-specified forecast about

inflation. I describe the structure of mis-specified forecasts in what follows.

2.3 Mis-specified Forecasts

As mentioned earlier, firms are assumed to understand the process of the exogenous disturbances

they are subject to; therefore, absent myopia, they correctly forecast the marginal cost,

Ẽ⋆
t m̂ct+h = ρhm̂ct (7)

On the other hand, due to imperfect common knowledge, firms do not understand that every other

firm in the economy faces the same optimal pricing rule as in (3). As a consequence, they do not

use the aggregated version of (6) to make inferences about Ẽ⋆
t π̂t+h. Leveraging on a large body

of evidence showing that economic agents form forecasts based on simple autoregressive rules (see

for instance, Adam (2007), Hommes and Zhu (2014), and Malmendier and Nagel (2016), among

9



others), I assume that inflation forecasts are based on an AR(1) process,19

π̂t = δ + γ(π̂t−1 − δ) + ϵt (8)

where δ ∈ R is the perceived unconditional mean of inflation, γ ∈ (−1, 1) is the perceived uncon-

ditional first-order autocorrelation of inflation, and ϵt is perceived to follow a white noise process.

The value of ϵt is unknown when firms forecast future inflation, therefore

Ẽ⋆
t π̂t+h = δ(1− γh+1) + γh+1π̂t−1 (9)

As shown in the following section, the pair (δ, γ) will be pinned down using the solution concept

of a Consistent Expectations Equilibrium. In other words, the only “free” behavioral parameter is

n, which defines the degree of myopic adjustment to mis-specified forecasts.

2.4 Consistent Expectations Equilibrium

Aggregating equation (6) delivers an expression for inflation,

π̂t = Ẽ⋆
t

∞∑
h=0

(αβn)h (κm̂ct+h + βn(1− α)π̂t+h+1) (10)

where κ = (1 − αβ)(1 − α)/α. To reiterate, equation (10) cannot reduce to the standard one-

step-ahead Phillips curve, because each firm - unaware that all the other firms set their optimal

price according to (6) - cannot deduce that the dynamic equation for inflation is given by (10).

Consequently, they do not form expectations about future inflation based on the expression for

inflation in (10).

Remark 1: Equation (10) reduces to the Phillips curve of the behavioral New Keynesian model

as in Gabaix (2020), π̂t = κm̂ct + βnEtπ̂t+1, if firms understand their homogeneity. In that case,

Ẽ∗
t is associated with a well-specified forecasting rule; that is, the structure of the forecasting

rule is the same as the minimum state variable solution under RE. Therefore, firms can use their

own optimal condition in (6) to form expectations about inflation, and the infinite-horizon New
19Note that (8) is structurally different from the minimum state variable solution of the partial equilibrium

pricing model. Specifically, that would be π̂t =
(1−α)(1−αβ)

α(1−βρ) m̂ct.
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Keynesian Phillips curve reduces to the one-step-ahead Phillips curve.20

Remark 2: From Remark 1, it follows that equation (10) reduces to the standard Phillips curve,

π̂t = κm̂ct + βEtπ̂t+1, only if the expectations operator Ẽ∗
t is associated with a well-specified

forecasting rule and there is no myopia (n = 1).

Substituting for Ẽ⋆
t m̂ct+h and Ẽ⋆

t π̂t+h in (10) delivers the actual law of motion for inflation:

π̂t = βnδ

(
1− α

1− αβ
− (1− α)γ2

1− αβnγ

)
+

κ

1− αβρn
m̂ct +

βn(1− α)γ2

1− αβnγ
π̂t−1 (11)

Firms believe (8) is a valid perceived law of motion for inflation if and only if its parameters, which

represent the perceived unconditional mean (δ) and first-order autocorrelation (γ), are consistent

with the same moments from the data-generating process for inflation in (11). Coefficients δ and

γ in equilibrium are pinned down through the solution concept of a CE equilibrium, as defined by

Hommes and Zhu (2014):

Definition 1 A pair (δ∗, γ∗), where δ∗ and γ∗ are real numbers with γ ∈ (−1, 1), is a first-

order Consistent Expectations equilibrium if the stationary stochastic process defined by (11) has

unconditional mean δ∗ and the stationary stochastic process defined by (11) has unconditional

first-order autocorrelation coefficient γ∗.

Along the RE equilibrium, firms would be matching the perceived distribution of inflation

with its actual/realized distribution. Along the CE equilibrium, however, firms are only match-

ing certain perceived unconditional moments of the distribution with the actual unconditional

moments.

20Specifically, let Ẽ⋆
t = Et be the RE operator. From (10),

Etπ̂t+1 = κEtm̂ct+1 + nβ(1− α)Etπ̂t+2 + Et

∞∑
h=1

(αβn)h (κm̂ct+h + βn(1− α)π̂t+h+1)

Hence,

π̂t = κm̂ct + βn(1− α)Etπ̂t+1 + Et

∞∑
h=1

(αβn)h (κm̂ct+h + βn(1− α)π̂t+h+1)︸ ︷︷ ︸
αβnEtπ̂t+1

= κm̂ct + βnEtπ̂t+1

11



Proposition 1 Let the data-generating process for inflation be described by equation (11). Then,

there exists a unique Consistent Expectations equilibrium (δ∗, γ∗), where δ∗ = 0 and γ∗ ∈ [ρ, 1).

Proof. See Appendix C.1.

Proposition 1 shows that in the partial equilibrium pricing problem, the CE equilibrium exists,

it is unique, and that, importantly, it generates a higher inflation persistence relative to the case

of well-specified forecasting rules (with or without myopia), i.e., γ∗ ≥ ρ. Given the CE equilibrium

(δ∗, γ∗) as described in Proposition 1, the mis-specified forecast and actual law of motion of inflation

along the CE equilibrium path are, respectively

Ẽ⋆
t π̂t+h = (γ∗)h+1π̂t−1 (12)

π̂t =
κ

1− αβρn︸ ︷︷ ︸
a

m̂ct +
βn(1− α)(γ∗)2

1− αβn(γ∗)︸ ︷︷ ︸
b

π̂t−1 (13)

Corollary 1 Consider the actual law of motion for inflation along the CE equilibrium defined by

(13). Then, the following statements are true.

i) Higher price stickiness (higher α) leads to lower γ∗ in equilibrium.

ii) A higher degree of myopia (lower n) leads to lower γ∗ in equilibrium.

Proof. See Appendix C.2.

Corollary 1 shows that the price stickiness and degree of myopia play an important role in the

occurrence of endogenous over-extrapolation. Specifically, as prices become stickier the depen-

dence of current inflation on backward-looking expectations drops, thus leading to lower inflation

persistence in equilibrium. Furthermore, as firms become more forward-looking with respect to fu-

ture fluctuations of inflation around its steady-state value, the persistence of inflation well exceeds

the inertia of the marginal cost. Note that the CE solution for inflation in (13) differs structurally

from the one where the forecasting rules remain well-specified (with or without myopia), which

describes inflation as a linear function of the marginal cost shock only, i.e.,

π̂t =
κ

1− βρn
m̂ct (14)

When firms are appropriately forward-looking, i.e., n = 1, the inflation solution in (14) is the one

implied under full-information RE. On the other hand, when firms are absolutely myopic toward
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the future (n = 0), the CE solution for inflation in (13) collapses to the one in (14). Mis-specified,

due to the nature of the expectations formation process, the actual law of motion for inflation

in equilibrium resembles the one that would be derived under RE in a setting with inflation

indexation/backward-looking pricing (even though these features are missing in this Section’s

setup).

3 Forecasting Data Evidence

To assess the empirical relevance of the proposed expectations formation process in Section 2, I

derive three testable implications for forecasting errors and show that US SPF inflation data are

consistent with the combination of mis-specified forecasts and myopia.

3.1 Delayed Over-shooting

Angeletos et al. (2021) have brought forward evidence that the impulse response function (IRF)

of annual inflation forecasting errors, following a supply or demand shock, is initially positive

but turns negative at some later point in time. The authors define this phenomenon as de-

layed over-shooting.21 The present paper shows that a combination of myopia with autoregres-

sive mis-specified forecasts delivers delayed over-shooting if there is sufficient endogenous over-

extrapolation. This result differs from Angeletos et al. (2021), who show that a model with

exogenous over-extrapolation and noisy information can replicate this fact.

Proposition 2 Let Ik,h be the impulse response function of the h-period-ahead forecasting error

at period (t+ k) for k ∈ {0, 1, 2, ...} with respect to a one-time shock to the marginal cost εt, i.e.,

Ik,h =
∂(π̂t+k − Ẽt+k−hπ̂t+k)

∂εt
(15)

Let the expectations formation process be a combination of autoregressive mis-specified forecasting

rules and myopia. Then,

i) There will be delayed over-shooting for any parameterization that yields b ≥ ρ.

ii) For b < ρ, delayed over-shooting occurs if ρh+1 < nh(γ∗)h+1.
21I refer the reader to Section 5 in Angeletos et al. (2021) for a description of their IRF estimation methodologies,

as well as Figures 3 and 4 for a visualization of their results.
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Proof. See Appendix C.3.

Proposition 1 showed that γ∗ ≥ ρ; therefore, the condition for delayed over-shooting is satisfied

if there is sufficient endogenous over-extrapolation, i.e., if γ∗ >> ρ. Note that for n = 1, delayed

over-shooting is always satisfied, since the condition from Proposition 2 translates into γ∗ > ρ,

which, from the analysis in the previous section, is always the case. On the contrary, if n = 0, the

condition for late over-reaction fails to hold.

Figure 1 visualizes the results of Proposition 2 for the annual inflation forecast errors (h = 3)

along the CE equilibrium. Importantly, the figure also speaks to the intuition for why sufficiently

high over-extrapolation leads to late over-shooting. Given the backward-looking nature of the

expectations formation process, following a one-time shock to the marginal cost, expectations

pick up with a lag. Consequently, the momentum in the response of inflation will be reflected in

expectations at a later point in time, after the response of inflation has started dissipating (note

the difference in the timing when the blue and red lines reach their peak in panels (b) and (c) of

Figure 1). The more persistent inflation is in equilibrium, i.e., the more over-extrapolation there

is, the more amplified the forecasts and hence the higher is the likelihood they exceed ex-post

realized inflation as its response approaches 0.

Figure 1: Evolution of the IRFs of the annual forecasts and ex-post realized inflation
for various values of n. Parameterization: κ = 1, ρ = 0.7, α = 0.5, σε =

√
5. The implied

equilibrium first-order autocorrelation coefficients of inflation are, respectively from left to right,
γ∗ = 0.7 and γ∗ = 0.904, and γ∗ = 0.993.

I now turn to the other two expectations alternatives, namely, well-specified forecasting rules

absent and with myopia. Proposition 3 proves that neither of these two cases are consistent with

a flip in the sign of Ik for some k > 0.
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Proposition 3 Let Ik,h be defined as in (15). If Ẽtπ̂t+h = nhEtπ̂t+h, where Et is the RE operator,

then Ik,h ≥ 0 for any k ≥ 0. If n = 1, i.e., Ẽtπ̂t+h = Etπ̂t+h, then Ik,h = 0 for any k ≥ 0.

Proof. See Appendix C.4.

The analysis in this subsection showed that, so far, the admissible expectational assumptions

would be mis-specified forecasts with or absent myopia, i.e., combined with n ∈ (0, 1) or n = 1,

respectively.

3.2 Forecast Errors as a Function of Ex-ante Forecast Revisions

This subsection studies the structure of ex-post forecasting errors implied by mis-specified forecasts

combined with and absent myopia in more details. As derived in Section 2.4, the data-generating

process for inflation along the CE equilibrium path is given by equation (13), π̂t = am̂ct + bπ̂t−1,

where a = κ
1−αβρn

and b = βn(1−α)
1−αβγ∗ (γ

∗)2 < 1. Proposition 4 shows that ex-post inflation forecast

errors can be generally written as a function of ex-ante forecast revisions and the second lag of

inflation.

Proposition 4 Let the data-generating process for inflation be described by (13), with the expec-

tations formation process being a combination of mis-specified forecasts and myopia. Then, the

ex-post forecast error can be written as

π̂t+h − Ẽtπ̂t+h = KhFRt,t+h + Lhπ̂t−2 + εt:t+h (16)

where FRt,t+h denotes ex-ante forecast revisions; Kh = −1 + 1
nh

(
ρ
γ∗

)h+1∑h+1
j=0

(
b
ρ

)j
and Lh =

nh+1(γ∗)h+2

(
Kh −

(
b
γ∗

)(
ρ

nγ∗

)h+1∑h
j=0

(
b
ρ

)j)
. The term εt:t+h is accumulated noise, uncorre-

lated with FRt,t+h or π̂t−2.

Proof. See Appendix C.5.

The regression in (16) can be estimated through OLS since the error term, εt:t+h, is uncorre-

lated with any of the regressors. The insightful work of Coibion and Gorodnichenko (2015) has

shown that the estimate of Kh for the annual inflation forecasting data (h = 4) from the US SPF

is positive. Relatedly, they have shown that once one controls for ex-ante forecast revisions, in-

flation lags have no predictive power over ex-post forecast errors. The present paper re-estimates

equation (16) with annual (h = 3) US SPF forecasting data on the GNP/GDP deflator (1968:Q4 -
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(1) (2) (3) (4)

π̂t+3 − Ẽtπ̂t+3

Panel A: GNP/GDP Deflator Panel B: CPI Inflation(
Ẽtπ̂t+3 − Ẽt−1π̂t+3

)
1.189*** 1.195*** 0.455** 0.389***
(0.377) (0.389) (0.097) (0.123)

π̂t−2 -0.010 -0.068
(0.047) (0.066)

Constant -0.112 -0.084 -0.108 0.091
(0.127) (0.207) (0.111) (0.205)

R-squared 0.148 0.148 0.050 0.069
Observations 197 196 151 150
Newey-West standard errors in parentheses based on Barlett kernel with 6 lags.
*** Robust at 1%, ** Robust at 5%, * Robust at 10%.

Table 1: Forecasters’ under-reaction to ex-ante forecast revisions. Panel A estimates regression
in (16) with GNP/GDP inflation forecast data from 1968:Q4 to 2020:Q1. Panel B estimates
regression in (16) with CPI inflation forecast data from 1981:Q3 to 2020:Q1. In columns (2) and
(4) I control for the second lag of inflation.

2020:Q1) and CPI inflation (1981:Q3 - 2020:Q1). Results are reported in Table 1. As anticipated,

the OLS estimate of K4 is significantly positive, and there is no significant predictability of annual

inflation forecast errors by inflation realized in period (t− 2).

In the context of equation (16) in Proposition 4, this implies that for a realistic expectations

formation process Kh > 0 and Lh ≈ 0 should be feasible. Leveraging on the evidence presented

in Table 1, Proposition 5 provides conditions under which Kh > 0. Importantly, whether there is

under-reaction to ex-ante forecast revisions is tightly connected with the presence or lack thereof

of delayed over-shooting as defined in Proposition 2. If there is no delayed over-shooting, i.e.,

there is no sufficiently high over-extrapolation, forecasts are guaranteed to update slowly as new

information becomes available, leading to under-reaction of forecast errors to ex-ante forecast

revisions. In the presence of delayed over-shooting, over-extrapolation is already implied. High

levels of over-extrapolation, i.e., large (nh(γ∗)h+1 − ρh+1), impede the slow update of forecasts,

thus leading to forecasters’ over-reaction to ex-ante forecast revisions. On the contrary, sufficiently

low levels of over-extrapolation, as defined in Proposition 5, allow for slow forecast update even
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in the presence of delayed over-shooting.

Proposition 5 Consider the expression for forecasting errors in (16), where n ∈ (0, 1], and let

delayed over-shooting be defined as in Proposition 2. Let dh = bρh+1
∑h+1

j=0

(
b
ρ

)j
> 0. Then, the

following statements are true:

i) For any parameterization that leads to no delayed over-shooting in equilibrium Kh is guar-

anteed to be positive.

ii) For any parameterization that leads to delayed over-shooting, Kh > 0 if 0 < nh(γ∗)h+1 −

ρh+1 < dh.

Proof. See Appendix C.6.

As noted in Corollary 1, a lower degree of myopia lands the economy in an equilibrium char-

acterized by higher inflation persistence; so a lack of myopia can increase the degree of over-

extrapolation. Therefore, as myopia fades away, the likelihood of forecasters’ under-reaction to

ex-ante forecast revisions diminishes.

Proposition 6 Consider the expression for forecasting errors in (16), where n ∈ (0, 1] . Then,

Lh = 0 is guaranteed to occur for some n ∈
((

ρ
γ∗

)2
, 1

)
. If n = 1, Lh = 0 can happen only if

ρ = 0.

Proof. See Appendix C.7.

Proposition 6 shows that the combination of mis-specified forecasts and myopia is consistent

with the evidence in Table 1 that the second lag of inflation is insignificant in explaining forecast

errors once forecast revisions are being controlled for. On the contrary, mis-specified forecasts

absent myopia can mirror such evidence only if the marginal cost has no persistence. Importantly,

Corollary 2 shows that Lh = 1 in the case of mis-specified forecasting rules absent myopia violates

the condition for delayed over-shooting.

Corollary 2 Consider the expression for forecasting errors in (16), with n = 1. If Lh = 0, the

condition for delayed over-shooting in Proposition 2 is violated.

Proof. For n = 1, Lh = 0 only if ρ = 0. The lack of marginal cost persistence implies that inflation

will have no inertia either in equilibrium and that Ẽtπ̂t+k = 0. Hence, the impulse response function

of forecast errors to a marginal cost innovation will never exhibit delayed over-shooting.
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3.3 Forecast Errors as a Function of Current Realizations

Proposition 7 shows that ex-post forecasting errors generated under a combination of mis-specified

forecasts and myopia can be negatively predictable by inflation realized at the time of forecast.

Proposition 7 Let the data-generating process for inflation be described by (13), with the expec-

tations formation process being a combination of mis-specified forecasts and myopia. Then, the

ex-post forecast error is

π̂t+h − Ẽtπ̂t+h =Mhπ̂t + errort,t+h (17)

with Mh = bh+1−nh(γ∗)h+1

b
≤ 0. The term errort,t+h is positively correlated with π̂t, and the OLS

estimate of Mh is biased upward.

Proof. See Appendix C.8.

Note that the sign of Mh would be negative in the case of mis-specified forecasts absent myopia

as well (bh+1 − nh(γ∗)h+1 ≤ 0 for n = 1). Mis-specified forecasts induce over-reaction of forecasts

to inflation realized at the time of forecast.22 Why? The correlation between inflation in period

(t + h) and inflation in period t, conditional on the path of innovations εt:t+h, is bh+1. On the

other hand, the correlation between anticipated inflation in period (t+ h) and inflation in period

t, conditional on innovation εt, is bnh(γ∗)h+1 ≥ bh+1.

Kohlhas and Walther (2021) provide evidence that on average forecasters over-react to informa-

tion realized at the time of forecast, i.e., that the sign of Mh is negative. In particular, the authors

show that the consensus annual forecast errors for CPI inflation depend negatively on inflation at

the time of forecast, and in that case, the OLS estimate of M3 is −0.19 with a robust standard

error equal to 0.07 (estimation period 1982:Q3 to 2021:Q1). Regarding inflation measured by the

GNP/GDP deflator, the authors report a positive dependence of ex-post annual forecast errors

(h = 3) on inflation at the time of forecast for the period 1970:Q4 to 2020:Q1 (see Table C.7 in

their online appendix). However, as shown in Table 2, for the period from 1981:Q1 to 2020:Q1

the OLS estimate of M3 is instead negative and statistically significant so.
22In the case of well-specified forecasting rules and myopia, it is easy to show that

π̂t+h − Ẽtπ̂t+h = ρh(1− nh)︸ ︷︷ ︸
(+)

π̂t + errort,t+h

where errort+1,t+h is uncorrelated with π̂t. If myopia is shut down, i.e., FIRE is imposed, ρh(1− nh) = 0.
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(1) (2)

π̂t+3 − Ẽtπ̂t+3

π̂t 0.104 -0.077***
(0.067) (0.027)

Constant -0.458*** -0.214*
(0.167) (0.117)

R-squared 0.039 0.024

Time period 1968:Q4 - 2020:Q1 1981:Q1 - 2020:Q1
Newey-West standard errors in parentheses based on Barlett kernel with 5 lags.
*** Robust at 1%, ** Robust at 5%, * Robust at 10%.

Table 2: Estimates of regression (17) on US SPF GNP/GDP deflator annual forecasting data.

Therefore, an expectations formation process characterized by mis-specified forecasts and my-

opia (or absent it) would be consistent with the empirical findings of Kohlhas and Walther (2021),

which are further complemented by the results in Table 2.

3.4 Taking Stock

I now turn to the parametric region of myopia, n, and shock inertia, ρ, parameters that ensure

all three aforementioned empirical facts are matched. Figure 2 exhibits the regions where, in

equilibrium, there is under-reaction to ex-ante forecast revisions (areas in white and dark gray);

non-significant second lag of inflation once ex-ante forecast revisions are controlled for in (16) (areas

in light gray and white); and delayed over-shooting (area to the right of the dashed red curve).

Note that Proposition 2 shows that mis-specified forecasts generate over-reaction of forecast errors

to inflation realized at the time of forecast (Mh ≤ 0), regardless of the degree of myopia, forecasting

horizon, or model’s parameterization. Therefore, any parameter combination between the degree

of myopia and persistence of the marginal cost in Figure 2 guarantees that Mh ≤ 0 as defined in

(17).

Note that the condition for over-extrapolation necessitates sufficiently high endogenous over-

extrapolation, which, as shown in Figure 2, is guaranteed to occur for relatively low degrees of

myopia. Furthermore, as predicted by Proposition 5, there exists a region within the parametric

space of delayed over-shooting where forecasters over-react not only to recent inflation but also to
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Figure 2: Regions of delayed over-shooting, under-reaction to ex-ante forecast revisions, and non-
significant second lag of inflation in (16). Delayed over-shooting: region to the right of the dashed
red curve. Under-reaction to ex-ante forecast revisions: regions in white and dark gray. Non-
significant second lag of inflation in (16), L3 ≈ 0: white and light gray regions. L3 ≈ 0 (L3 ̸≈ 0) is
defined as |L3|< 0.01 (|L3|≥ 0.01). Over-reaction to current inflation occurs for all combinations
of n and ρ. Forecasting horizon: h = 3. Parameterization: α = 0.5, κ = 1, σ =

√
5.

ex-ante forecast revisions, i.e., K3 < 0. The region where all empirical facts are matched is the

area in white to the right of the red dashed curve.

Figure 3 shows how the different regions change as prices become stickier; that is, as α in-

creases. The threshold red curve shifts to the right, thus shrinking the parametric space that

guarantees delayed over-shooting. Corollary 1 proved that as prices become stickier, the equilib-

rium persistence decreases. Under such conditions, to generate sufficiently high over-extrapolation

a lower degree of myopia is necessary. The parametric region where all empirical facts are matched

allows for higher marginal cost persistence as prices become stickier. Figure 4 provides a visual

sensitivity analysis of how the different regions change as the forecasting horizon, h, increases.

The implications are very similar to the ones pertaining to Figure 3.

To summarize, the analytical analysis has revealed strong evidence in favor of a combination

of mis-specified autoregressive forecasting rules and myopia as it is consistent with all three facts
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Figure 3: Sensitivity analysis with respect to price stickiness. Interpretation of regions, the fore-
casting horizon and parameterization of the model is the same as in Figure 2.

Figure 4: Sensitivity analysis with respect to the forecasting horizon. Interpretation of regions,
the forecasting horizon and parameterization of the model is the same as in Figure 2.

concerning inflation consensus forecast data identified in the literature: forecasters’ i) delayed

over-shooting; ii) under-reaction to ex-ante forecast revisions; and iii) over-reaction to inflation

realized at the time of forecast. On the other hand, mis-specified autoregressive forecasting rules

absent myopia are consistent with delayed over-shooting and over-reaction to inflation at the time

of forecast, but stand at odds with ex-post forecast errors depending on ex-ante forecast revisions

only.

Relation to other expectations formation processes. Coibion and Gorodnichenko (2015)

show that equation (16) is consistent with the assumptions of sticky information (see e.g., Mankiw

and Reis (2002) and Reis (2006)), and noisy information (see e.g., Woodford (2003a), Sims (2003),

and Maćkowiak and Wiederholt (2009)). However, as shown by Angeletos et al. (2021), such

21



informational frictions alone are not sufficient to be consistent with all three pieces of evidence

in the literature. Specifically, some degree of over-extrapolation is necessary to fit the results

of forecasters’ over-reaction to recent events in Kohlhas and Walther (2021) and delayed over-

shooting in Angeletos et al. (2021). While in Angeletos et al. (2021) over-extrapolation is an

exogenous feature, in the present paper over-extrapolation is an organic implication of forecasters

relying on mis-specified forecasting rules about inflation that are consistent with the inflation

data-generating process up to the first-order autocorrelation. Furthermore, in the insightful paper

of Kohlhas and Walther (2021) forecasters’ under-reaction to ex-ante forecast revisions but over-

reaction to recent events are rationalized through a theory of asymmetric attention to procyclical

variables. Nevertheless, as mentioned in Angeletos et al. (2021), asymmetric attention cannot

match delayed over-shooting.

4 General Equilibrium Model

Given the evidence presented in the previous section, I nest the proposed expectations formation

process, namely, a combination of mis-specified forecasts and myopia, into an otherwise base-

line New Keynesian DSGE model with habit formation in consumption and inflation indexation.

Bayesian estimation of the model on US aggregate data seeks to mainly reveal i) the preferred

forecasting process, ii) the estimated value of the degree of myopia; and iii) the relative role of

Mis-specified forecasting rules and myopia macroeconomic fluctuations. mis-specified, setting the

model parameters to their estimated posterior mean, I simulate forecasting data and re-evaluate

the three main facts.

4.1 Basics

The model is fairly standard; hence, I delegate all details to Appendix B.

Households. There is a continuum of identical households, i ∈ [0, 1], that are unaware of

each other’s homogeneity. They consume from a set of differentiated goods, supply labor, and

invest in riskless one-period bonds.23 The consumption bundle of each household over the set

of differentiated goods, j ∈ [0, 1], is determined by the Dixit-Stiglitz aggregator. The optimal
23Bonds are assumed to be in zero net supply.

22



demand of the ith household for the jth good is given by

cit(j) =

(
Pjt

Pt

)−ζ

cit (18)

where Pjt is the price of the jth good and ζ > 1 is the elasticity of substitution among the

differentiated goods. Each period, the household receives labor income and dividends from the

monopolistically competitive firms, and it maximizes its expected lifetime utility with respect to

the deviation of current consumption from a stock of internal habits in consumption, labor supply,

and bonds, subject to its budget constraint. The problem each household faces is

max
cit,Hit,Bit

Ẽit

∞∑
h=0

βhξt+h

(
(cit − ηci,t−1)

1−σ

1− σ
− ψ

H1+φ
it

1 + φ

)
(19)

s.t.
Rt−1

πt
bi,t−1 = bit − wtHit − dit + cit (20)

where β ∈ (0, 1) is the discount factor; 0 ≤ η < 1 measures the degree of habit in consumption; σ

is the inverse intertemporal elasticity of substitution; Ẽit is the expectations operator described in

the previous section; ξt is a preference shock; Hit is labor supply; Rt−1 is the gross return on the

past period’s real bond choice bi,t−1; wt is the real wage and dit denotes real dividends from firms.

Solving the household’s optimization problem, log-linearizing around the steady-state equilib-

rium, and applying the myopic adjustment process delivers

x̂t =
η

1 + nηυ
x̂t−1 + n

υ − nβη(1− β)(1− η)

1 + nηυ
Ẽ⋆

t x̂t+1 +
βn2(1− β)(1− η)(1− nβη)

1 + nηυ
Ẽ⋆

t

∞∑
h=0

(βn)hx̂t+h+2

− Ẽ⋆
t

∞∑
h=0

(βn)h
1− βη

σ(1 + nηυ)

(
R̂t+h − π̂t+h+1 − êt+h

)
(21)

where x̂t is the output gap and υ = (1− β + βη). The variable êt is a demand shock assumed to

follow an AR(1) process

êt = ρeêt−1 + σeε
e
t , ε

e
t ∼ N (0, 1) (22)

with ρe ∈ [0, 1).

Firms. The problem of the monopolistically competitive firms is similar to what was described

in Section 2, with the major difference that the marginal cost is now endogenous. The jth firm
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combines exogenously given technology, zt, with labor input, hjt, to produce output yjt as follows

yjt = zth
ah
jt (23)

where ah ∈ (0, 1]. As in Section 2, firms cannot adjust their price each period with probability

α ∈ [0, 1). However, if the jth firm cannot optimize its price in period t, it can still adjust it

according to the following indexation rule (see Christiano et al. (2005)),

Pjt = Pj,t−1π
ρπ
t−1 (24)

where 0 ≤ ρπ < 1 measures the degree of indexation to past inflation. Each firm will choose its

optimal price P ∗
jt that maximizes the present discounted value of real profits, i.e.,

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+h

(
P ∗
jt

Pt+h

(
Pt+h−1

Pt−1

)ρπ

yj,t+h − wt+hhj,t+h

)
(25)

s.t.

yjt =

(
P ∗
jt

Pt

)−ζ

yt (26)

where Qt+h is a generic stochastic discount factor. The aggregate price level is linked to the

aggregate optimal price level P ∗
t as described below

Pt =

[
α

(
Pt−1

(
Pt−1

Pt−2

ρπ
))1−ζ

+ (1− α)(P ∗
t )

1−ζ

] 1
1−ζ

(27)

Solving the firm’s optimization problem, log-linearizing around the steady-state equilibrium, and

applying the myopic adjustment process, one derives the aggregate supply as follows24

π̂t =
1

1 + nβρπ(1− α)
(ρππ̂t−1 − κητx̂t−1) +

κ(ω + τ(1− nηβ(α− η))

1 + nβρπ(1− α)
x̂t +

1

1− αβnρu
ût

+
nβ

1 + nβρπ(1− α)
Ẽ⋆

t

∞∑
h=0

(αβn)h ((1− α)(1− αβnρπ)π̂t+h+1 + κ(αω + τ(α− η)(1− αβnη)x̂t+h+1)

(28)

where τ = σ
1−βη

, κ = (1−α)(1−αβ)
α(1+ωζ)

; ω = 1+φ−ah
ah

. The variable ût is a cost-push shock assumed to

24I assume that households share the same degree of myopia, n. This is an assumption that can be easily relaxed.
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follow an AR(1) process,

ût = ρuût−1 + σuε
u
t , ε

u
t ∼ N (0, 1) (29)

with ρu ∈ [0, 1).

Monetary policy. The central bank controls nominal interest rates through a standard Taylor

rule that reacts to deviations of inflation from its target π̄, and deviations of the output gap xt

from its steady-state, while smoothing the interest rate path with some degree ρr ∈ [0, 1). The

log-linearized policy rule is

R̂t = ρrR̂t−1 + (1− ρr)ϕππ̂t + (1− ρr)ϕxx̂t + σvε
v
t , ε

v
t ∼ N (0, 1) (30)

Model in matrix form. Let Θ = {α, β, n, σ, κ, η, ρπ, ω, ϕπ, ϕx, ρr, ρe, ρu, σe, σu, σv}. Then the

model can be compactly written in matrix form as

A0(Θ)St = A1(Θ)St−1 + Ẽ⋆
t

∞∑
h=0

(F (Θ))hA2(Θ)St+h+1 +B(Θ)Et (31)

where St =
[
x̂t π̂t R̂t êt ût

]′
is the state vector; Et =

[
εet εut εvt

]′
is the exogenous shock

vector; and A0, A1, A2, B and F are coefficient matrices. The aggregate economy in (31) nests

two model specifications, namely, i) n ∈ (0,1): this is the novel specification of the paper, where

a realistic value for n is provided through Bayesian inference in Section 4.3; and ii) n = 1: in

this case, agents take into account an infinite horizon of autoregressive forecasts about deviations

from the steady-state to make optimal decisions, exhibiting no myopia at all.25

4.2 SAC Learning

Households and firms learn to use autoregressive forecasting rules to form expectations about

future endogenous variables, i.e., output gap, inflation and nominal interest rates, nested in S1:3,t

S1:3,t = δt−1 + γt−1(S1:3,t−1 − δt−1) + ϵt (32)
25Preston (2005) and Milani (2007) have used a model similar to (31) with n = 1 to investigate implications of

adaptive learning in an infinite horizon learning setting (see Eusepi and Preston (2018) as well for an extensive
review).
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where δt−1 is the mean of S1:3,0:t−1 series; γt−1 represents the first-order correlation matrix between

S1:3,0:t−2 and S1:3,1:t−1 series; and ϵt is a white noise process. The formulation in (32) nests

commonly used forecasting rules, such as AR(1) and VAR(1) processes, for which I will estimate

the model. The forecast of S1:3,t+h conditional on information about S1:3,t−1, available at the

beginning of period t is

Ẽ⋆
tS1:3,t+h = δt−1 + (γt−1)

h+1(S1:3,t−1 − δt−1) (33)

Households and firms update their forecasting rules using sample autocorrelation coefficient (SAC)

learning. This procedure was first introduced in economics by Hommes and Sorger (1998) and it

relies on the Yule-Walker equations combined with sample estimates of autocorrelation coefficients;

that is, δt and γt are recursively updated according to

δt = δt−1 + ι(S1:3,t − δt−1)

γt = γt−1 + ι ((S1:3,t − δt−1)(S1:3,t−1 − δt−1)
′ − γt−1(S1:3,t − δt−1)(S1:3,t − δt−1)

′)η−1
t

ηt = ηt−1 + ι ((S1:3,t − δt−1)(S1:3,t − δt−1)
′ − ηt−1)

(34)

where ηt is the second moment matrix and ι is the gain parameter that nests the two types of

learning. With constant-gain learning, ι = ῑ is a constant parameter and it mimics a situation

where a rolling window of data with length approximately equal to 1
ῑ

is used to revise moments.

With decreasing gain learning, on the other hand, ι = 1
t+1

and all available historical data are used

to update. The former approach is preferred because it has been universally found to improve

empirical fit and the literature has shown that agents focus on recent observations when updating

forecasting rules.26

26See for example, Del Negro and Eusepi (2011), Ormeño and Molnár (2015), Rychalovska (2016), Cole and
Milani (2019), and Gaus and Gibbs (2018), among many others. Furthermore, Fuster et al. (2010) claim that
“actual people’s forecasts place too much weight on recent changes.” Malmendier and Nagel (2016) find significant
micro evidence in favor of constant-gain learning. See Tversky and Kahneman (1973, 1974) as well for theoretical
considerations. Additionally, the evolution of beliefs under decreasing-gain learning depends on the length of data,
whereas constant-gain learning is robust to it.
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4.3 Bayesian Estimation

Incorporating (32) into (31) yields the state-space representation of the model, described by

St = C0(Θ,γt−1)∆t−1 + C1(Θ,γt−1)St−1 + C2(Θ)Et (35)

Yt − Ȳ = PSt (36)

together with the dynamic system in (34), where ∆t =
[
δ′
t 01x2

]′
, Yt =

[
xobst πobs

t Robs
t

]′
is

the vector of observables, P is a matrix mapping model variables to the observables, and Ȳ is a

vector containing the observables’ mean. I use quarterly data on real GDP, real potential GDP

as reported by the US Congressional Budget Office, the GDP deflator, and the federal funds rate

from 1968 to 2018, extracted from the Federal Reserve Economic Data (FRED). The output gap

is measured as the log difference between real GDP and potential GDP.27 I refer the reader to

Appendix D for more details on data preparation. The state-space form of the model in (34)-

(36) is a Gaussian system; hence, I evaluate the likelihood function using the Kalman filter. The

posterior distribution then is computed as

p(Θ | Y1:T ) ∝ p(Y1:T | Θ)p(Θ) (37)

where p(Y1:T | Θ) is the data likelihood and p(Θ) the prior distribution of parameters. I use the

Metropolis-Hastings algorithm to generate two blocks with 360,000 draws each and discard the

first 60000 draws from the posterior distribution. In terms of the initiation of beliefs, I evaluate

moments of the pre-sample data from 1960 to 1965 and use them as the initial learning parameters,

δ0 and γ0, for the Kalman filter procedure.28

I fix the discount factor β = 0.99. For most of the parameters, I set priors commonly used

in the literature, as in, for instance, Milani (2007), Smets and Wouters (2007), and Herbst and
27Bayesian inference when the HP-filtered series of output are used as a measure of potential output produces

similar results. Estimates are provided by the author upon request.
28Forecasting rules that rely on past aggregate variables only have a slight advantage over rules that include

shocks as well. Since beliefs are tied to moments from the data, the natural choice is to match initial beliefs to
pre-sample data moments. This makes the estimation’s vulnerability to initial beliefs - commonly faced in models
with forecasting rules that depend on shocks - disappear.

To give an idea of the different approaches used to generate initial beliefs when the forecasting process depends
on shocks, Milani (2007) estimates initial conditions on pre-sample data; Milani (2007) treats initial beliefs as
parameters and estimates them along with the model’s structural parameters; and Slobodyan and Wouters (2012a,b)
initiate beliefs at the implied moments of the FIRE solution, apart from the other two aforementioned methods.
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Parameters pdf mean standard deviation
Calvo parameter α B 0.5 0.2
Degree of myopia n U 0.5 1/

√
12

Inverse IES coefficient σ G 2 0.5
Phillips curve elasticity κ B 0.3 0.15
Habit in consumption η U 0.5 1/

√
12

Inflation indexation ρπ U 0.5 1/
√
12

Elasticity mc ω N 0.8975 0.4
Feedback to x ϕx N 0.5 0.25
Feedback to π ϕπ N 1.5 0.25
Interest rate smooth ρr B 0.5 0.2
Autocorr. e ρe U 0.5 1/

√
12

Autocorr. u ρu U 0.5 1/
√
12

Std. εe σe IG 0.1 2
Std. εu σu IG 0.1 2
Std. εv σv IG 0.1 2
Gain parameter ῑ G 0.035 0.015

Table 3: Priors

Schorfheide (2016). Priors are given in Table 3. The Calvo parameter, α, is following a beta prior

with mean 0.5 and standard deviation 0.2. The prior for n follows a non-informative uniform

distribution with mean 0.5 and standard deviation of 1/
√
12. The inverse intertemporal elasticity

of substitution (IES) coefficient, σ, follows a gamma distribution with mean 2. The Phillips curve

elasticity with respect to current output follows a beta prior with mean 0.3 and standard deviation

0.15. Habit in consumption and inflation indexation parameters follow a uniform distribution with

mean 0.5. Elasticity of inflation with respect to marginal cost follows a normal prior with mean

0.8975 and standard deviation 0.4. Policy reaction coefficients toward deviations of inflation and

output from their steady-state values are normally distributed with mean 1.5 and 0.5, respectively,

and share the same standard deviation of 0.25. The interest rate smoothing parameter follows

a beta distribution with mean 0.5 and standard deviation 0.2. The autocorrelation of all shocks

follows a beta distribution with mean 0.5 and standard deviation 0.2. The standard deviation of

all shocks follows an inverse gamma distribution with mean 0.1 and standard deviation 2. Mis-

specified, the learning gain parameter follows a gamma distribution prior with mean 0.035 and

standard deviation 0.015.
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4.3.1 Posterior Distribution

Table 4 reports characteristics of the posterior distribution under FIRE, well-specified forecasts

and myopia, constant-gain SAC learning with AR(1) forecasting rules combined with myopia or

absent it.29 Data fit is judged based on the evaluation of the log marginal data likelihood, computed

through the modified harmonic mean method in Geweke (1999).30 Generally, the presence of

myopia ensures a better fit of the US macroeconomic data for both specifications with well- and

mis-specified forecasting rules. I will then compare the fit of the other specifications relative to the

one where well-specified forecasts are combined with myopia; that is, that specification will be the

benchmark for model fit comparison purposes. The model where households and firms combine

learning of AR(1) mis-specified forecasting rules with myopia (column 4 in Table 4) fits the data

best. Specifically, values in parentheses in the last row of Table 4 report the Bayes factor value of

the model specification relative to the benchmark specification: the log of the Bayes factor for the

model with mis-specified forecasts and myopia is higher than 3. According to Kass and Raftery

(1995), a factor magnitude whose natural log is higher than 3 denotes strong evidence in favor

of the model with superior fit. On the other hand, the Bayes factor for the model with FIRE as

well as the one with AR(1) forecasting rules absent myopia is much less than unity. Thus, both

of these model specifications fit the data worse than the benchmark and, as a result, worse than

mis-specified forecasts combined with myopia.

The posterior mean estimate of the parameter capturing the degree of myopia, n, is significantly

different from 1, showing evidence in favor of considerable cognitive discounting of expected future

fluctuations in the US economy. The posterior mean of n is around 0.186 for the model with well-

specified forecasting rules and 0.693 for the model with AR(1) mis-specified forecasts. In the model

specifications with mis-specified forecasting rules, one can separately identify the Calvo parameter,

α, and price elasticity with respect to marginal costs, κ. In particular, the posterior mean of the

Calvo parameter is estimated to be 0.35 for the model with myopia and 0.85 for the model absent
29Posterior distributions are generally well-behaved. I rely on the method proposed by Brooks and Gelman

(1998) to analyze convergence statistics.
30Bayes’ theorem implies that p(Yt) =

∫
p(Yt | Θ)p(Θ)dΘ, which is impossible to compute analytically. The

Modified Harmonic Mean (MHM) method of Geweke (1999) is evaluated using the posterior distribution draws,

p(Yt) ≈

[
1

M −M0

M∑
m=M0+1

f(Θm)

p(Yt|Θm)p(Θm)

]−1

where M is the total number of draws, M0 is the number of discarded draws, and f(.) is the density of a truncated
normal distribution.
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myopia. Note that the specification with no myopia necessitates much higher price stickiness

relative to the case with myopia. The implied expected price duration for the benchmark and no

myopia specifications is, respectively, 4.6 and 20 months on average. The former is in accordance

with findings in Bils and Klenow (2004) that, for most goods, prices change on average once every

4 months, while the latter generates too much price stickiness. The elasticity with respect to

marginal costs is generally higher in the presence of myopia. At the posterior mean, κ ≈ 0 under

FIRE and κ = 0.002 for well-specified forecasts with myopia, whereas for mis-specified forecasts

with and absent myopia, respectively, κ = 0.012 and κ = 0.004.

The model estimated under FIRE requires significantly higher degrees of habit in consumption

(with a posterior mean of η = 0.939), relative to all of the other three assumptions about expecta-

tions, to fit US macro data. On the other hand, the posterior mean of η for the benchmark model

is 0.577, and for the model specifications with mis-specified forecasts η ≈ 0.4. The degree of infla-

tion indexation, ρπ, is estimated to be around 0.3 - 0.4 for the model specifications absent myopia.

In the presence of myopia, quite some degree of inflation indexation is necessary at the posterior

mean (ρπ = 0.881 for mis-specified forecasts and ρπ = 0.862 for well-specified forecasts), but there

is no need for a persistent cost-push shock (ρu ≈ 0.03). The specification with no myopia, on the

contrary, requires much less inflation indexation (ρπ ≈ 0.3 at the posterior mean), but it needs a

persistent cost-push shock (ρu ≈ 0.5).

The inverse elasticity of intertemporal substitution, σ, at the posterior mean is estimated to

be around 2 for all specifications except the one with mis-specified forecasts and no myopia, where

the estimate increases to around 3.9. Given the separable utility preferences for households, σ

coincides with the relative risk aversion coefficient; hence, forward-lookingness is associated with

a higher degree of risk aversion.

Policy parameters are generally robust across specifications, with the posterior mode estimates

of policy’s reaction to the output gap being between 0.3 and 0.4, reaction to inflation around 1.5,

and the interest rate smoothing parameter being close to 0.9. The posterior mean of ω is around

0.8 and 1 across the different specifications.

The posterior mean values for the learning gain parameter ῑ are 0.076 when n ∈ (0, 1) and

0.033 for n = 1, which further implies that a rolling window of about 13 and 33 quarters is used

to update the forecasting process in the presence and absence of myopia, respectively.

Myopia plays a central role in determining how much of the observed inertia is due to autore-
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gressive forecasting rules. The posterior mean estimate of the demand shock autocorrelation in

the model with mis-specified forecasts and myopia is about 0.83 and it is significantly lower than

its estimate of 0.98 in the model with mis-specified forecasts and no myopia. Furthermore, at the

estimated posterior mean the demand shock is less persistent under FIRE (ρe ≈ 0.61) relative to

the specification in column (4) with ρe ≈ 0.83. On the other hand, demand shock innovations

are significantly less volatile under mis-specified forecasts than under FIRE: the posterior mode

estimate for the innovation to the demand shock is 1.35 for the former and about 6.4 for the latter.

The standard deviation of the monetary shock is generally robust across models at an estimated

posterior mode of 0.2.

31



Well-specified Forecasting Rules AR(1) Mis-specified Forecasting Rules

(1) (2) (3) (4)

no myopia, n = 1 myopia, n ∈ (0,1) no myopia, n = 1 myopia, n ∈ (0,1)

Parameters mean 5% 95% mean 5% 95% mean 5% 95% mean 5% 95%

α - - - - - - 0.853 0.576 0.99 0.346 0.121 0.619
n - - - 0.186 0 0.401 - - - 0.693 0.464 0.862
σ 2.356 1.356 3.448 2.045 1.166 2.843 3.855 2.898 4.944 2.185 1.463 3.028
κ 0.000 0.000 0.000 0.004 0.001 0.008 0.004 0.002 0.008 0.012 0.006 0.021
η 0.939 0.906 0.973 0.577 0.336 0.899 0.421 0.264 0.657 0.400 0.243 0.589
ρπ 0.387 0.077 0.680 0.887 0.834 0.940 0.331 0.003 0.94 0.861 0.695 0.980
ω 1.022 0.461 1.562 0.862 0.206 1.470 0.877 0.199 1.573 0.824 0.189 1.463
ϕx 0.351 0.224 0.484 0.420 0.234 0.600 0.399 0.233 0.61 0.413 0.251 0.622
ϕπ 1.485 1.184 1.785 1.449 1.134 1.759 1.42 1.148 1.695 1.455 1.146 1.783
ρr 0.888 0.858 0.919 0.915 0.886 0.945 0.914 0.882 0.943 0.916 0.885 0.944
ρe 0.609 0.544 0.671 0.723 0.391 0.940 0.981 0.949 0.997 0.826 0.680 0.929
ρu 0.495 0.412 0.574 0.020 0.000 0.045 0.449 0.006 0.862 0.036 0.002 0.107
σe 6.399 5.715 7.114 3.568 1.357 6.904 0.189 0.075 0.399 1.350 0.614 2.320
σu 0.012 0.012 0.012 0.214 0.150 0.272 0.174 0.047 0.347 0.350 0.300 0.405
σv 0.209 0.192 0.226 0.208 0.191 0.224 0.208 0.192 0.225 0.209 0.193 0.226
ῑ - - - - - - 0.033 0.004 0.065 0.076 0.043 0.117

Log marg. data dens.
Modified Harmonic Mean -520.27 -264.20 -284.35∗ -258.16*

Bayes factor (e−262.11) (1) (e26.19) (e6.04)

Table 4: Posterior distribution of the model for various assumptions on expectations. Values in parentheses denote the Bayes factor
of the model relative to the benchmark model with well-specified forecasts and myopia. The asterisk denotes strong evidence in favor
of the model relative to the benchmark one.
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Table 5 re-estimates the model under FIRE, while fixing the standard deviations of the in-

novations to the estimated posterior mean under mis-specified forecasts and myopia. FIRE then

delivers much higher estimates of inflation indexation (ρπ ≈ 0.7) and the cost-push shock is esti-

mated to be almost a random walk process. Habit in consumption is estimated to be about 0.3,

close to the estimate under mis-specified forecasts and myopia in Table 4, but the estimate of the

demand shock persistence is lower than the one found under mis-specified forecasts and myopia.

Overall, myopia and autoregressive mis-specified forecasts substitute for other frictions, such

as habit in consumption and cost-push shock persistence, while being consistent with the evidence

from forecasting data.

FIRE

Parameters mean 5% 95%
σ 2.966 1.560 4.301
κ 0.127 0.073 0.1781
η 0.302 0.185 0.421
ρπ 0.699 0.314 1.000
ω 0.835 0.259 1.395
ϕx 0.058 0.014 0.098
ϕπ 2.188 1.989 2.389
ρr 0.790 0.764 0.816
ρe 0.478 0.431 0.525
ρu 0.994 0.987 1.000

Table 5: Posterior distribution of the model under FIRE. The standard deviations of the shock
innovations to the estimated posterior mean under mis-specified forecasts and myopia, i.e., σe =
1.35, σu = 0.209, and σv = 0.076.

Figure 5 plots the historical evolution of the mis-specified forecast coefficients in the model with

mis-specified forecasts and myopia, with parameters set at their posterior mode and 90 percent

highest posterior density values. As shown in Figure 5, recessionary periods, indicated by the

shaded gray areas, have been historically associated with a decrease in the perceived mean and

first-order autocorrelation of the output gap. On the other hand, there is a shift in the way agents

perceive moments of inflation and nominal interest rates during recessions, in the early 1980s.

Before the early 1980s, recessions were associated with increasing beliefs about the mean and
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Figure 5: Evolution of the AR(1) forecast coefficients in the model with myopia. The black and
dotted curves plot perceived moments for structural parameters set at their estimated posterior
mode and 90 percent highest posterior density, respectively. Gray areas indicate recessionary
periods as reported by the National Bureau of Economic Research.

first-order autocorrelation of inflation and nominal rates. On the contrary, during and after the

Great Moderation, economic turmoils are characterized by a decrease in beliefs about the mean and

first-order autocorrelation of inflation and nominal interest rates. Therefore, the well-documented

contrast between the US macroeconomy during the 1970s and the Great Moderation period is

similarly mirrored in agents’ perceptions about moments of inflation and nominal interest rates.31

Another interesting observation from Figure 5 is that the implied beliefs about the annualized

mean of inflation over the last decade have been particularly steady at 2 percent.

4.3.2 VAR(1) Forecasting Rules

To investigate the model’s performance when agents learn to use more sophisticated, yet mis-

specified, forecasting rules, I re-estimate the model with VAR(1) forecasting rules and myopia

under constant-gain learning.

The characteristics of the posterior distribution of parameters are exhibited in Table 6. Esti-
31See, for instance, Bianchi (2013) and references therein, for a discussion on the differences between the two

periods.
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Parameters mean 5% 95%
α 0.344 0.116 0.608
n 0.704 0.407 0.898
σ 2.015 1.384 2.732
κ 0.010 0.004 0.018
η 0.372 0.230 0.612
ρπ 0.878 0.740 0.986
ω 0.824 0.217 1.436
ϕx 0.415 0.251 0.638
ϕπ 1.449 1.133 1.789
ρr 0.915 0.883 0.945
ρe 0.854 0.685 0.945
ρu 0.047 0.002 0.127
σe 1.109 0.409 2.374
σu 0.352 0.295 0.418
σv 0.208 0.192 0.225
ῑ 0.072 0.044 0.102

Log marginal data density
Modified Harmonic Mean -255.41

Table 6: Posterior distribution for the model with VAR(1) forecasting rules combined with myopia.

mates of parameters are very much similar to the ones found in Table 4 for AR(1) forecasting rules,

and the log marginal data density is 2.75 units below the measure for AR(1) rules. According to

Kass and Raftery (1995), this would be positive, not strong, evidence in favor of VAR(1) forecasts.

Moreover, as Figure 6 shows, when agents engage in constant-gain learning of a VAR(1) forecasting

process, the perceived first-order correlation between any two distinct aggregate variables is esti-

mated to fluctuate around 0, whereas the perceived first-order autocorrelation fluctuates around a

strictly positive value. Therefore, using more elaborate forecasting rules, such as VAR(1), will not

add any significant information to households and firms in terms of forecasting on average, and

it will not enhance the model’s fit of the data. Moving forward then, I remain focused on AR(1)

forecasting rules.

4.3.3 Impulse Response Functions

Computing IRFs under SAC learning is slightly complicated because the response of aggregates

to any shock depends on the perceived first-order autocorrelation prior to the economy being

shocked. Furthermore, the response of the perceived mean and first-order autocorrelation to
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Figure 6: Evolution of the VAR(1) forecast coefficients in the model with myopia. The black and
dotted curves plot implied beliefs for structural parameters set at their estimated posterior mode
and 90 percent highest posterior density, respectively. Grey areas indicate recessionary periods as
reported by the National Bureau of Economic Research.

shocks, which - differently from, e.g., FIRE - enters the model’s solution non-linearly, evolves

jointly with the response of aggregates. To make the IRFs comparable across time periods and

expectations’ assumptions, I assume that the economy prior to the shock is at its steady-state.32

Figure 7 plots the three-dimensional IRFs of the output gap, inflation, and nominal interest rates

to a one standard deviation demand, cost-push, and monetary shock, calibrated at the estimated

posterior means of the model with AR(1) mis-specified forecasting rules combined with myopia.

The three-dimensional IRFs show that the response of aggregates to various fundamental shocks

depends on the perceived persistence of the underlying variable prior to the shock.

Figure 8 plots the IRFs projected on the [response - periods of response] plane to get an idea

of the change in the magnitude of aggregates’ response to shocks over the years. An interesting

observation is that since the late 1980s, the response of the output gap to monetary shocks has

increased, while the reaction of inflation to the same shocks has subsided.33

32Consecutively, the perceived mean of the aggregates is set to 0, whereas the prior perceived first-order auto-
correlations each period are set to their values as implied by the model.

33This outcome would be consistent with the idea that the slope of the Phillips curve has flattened over recent
decades.
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Figure 7: Three-dimensional impulse response functions to a one standard deviation positive
demand, cost-push, and monetary shock for the model with mis-specified forecasts and myopia.
Parameters are set at their estimated posterior mean as shown in Table 6. X axis: periods of
response; y axis: estimation periods; z axis: impulse response function.

Figure 8: Impulse response functions to a one standard deviation demand, cost-push, and monetary
shock in the model with mis-specified forecasts and myopia, projected on the [response - periods
of response] plane.
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(a)

(b)

Figure 9: Average impulse response functions to a one standard deviation positive demand, cost-push and monetary shock. Solid
blue: mis-specified forecasts and myopia. Dashed blue: mis-specified forecasts and no myopia. Dashed black: well-specified forecasts
and myopia. Solid black: FIRE.
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To compare the IRFs across different assumptions about expectations, Figure 9 plots the

average impulse responses of the output gap, inflation, and nominal interest rates for FIRE, well-

specified forecasts with myopia, and mis-specified forecasts with and absent myopia to a one

standard deviation demand, cost-push, and monetary shock. Parameters are set at their posterior

mean as reported in Table 4. Due to the presence of habit in consumption and inflation indexation,

all four specifications about expectations deliver hump-shaped responses. The left panel exhibits

IRFs for mis-specified and well-specified forecasts combined with myopia, which are at the same

time the two best performing assumptions on expectations in terms of model fit. Mis-specified

forecasting rules deliver a more amplified response of the output gap and inflation to monetary

shocks, as well as a more persistent response of both variables to demand shocks. Similarly, relative

to FIRE the model under SAC learning with myopia generates significantly more persistent and

volatile response functions of the output gap and inflation, especially to demand and monetary

shocks.

5 Implications for Forecasting Errors

In this final section, I revisit the three empirical facts about inflation consensus forecasting errors

analyzed in Section 3. Setting the model parameters to the posterior mean as found in Table

4, I generate the implied annual inflation forecast errors as well as their impulse responses to a

demand, cost-push, and monetary shock over the estimation period of 1966:Q1 - 2018:Q3.

Figure 10: Three-dimensional impulse response functions of annual inflation forecasting errors
to a one standard deviation positive demand, cost-push, and monetary shock in the model with
mis-specified forecasts and myopia. In red: (response periods,time) plane.
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Delayed over-shooting. Figure 10 plots the three-dimensional IRFs of annual inflation fore-

casting errors to demand, cost-push, and monetary shocks over the estimation period. Following

a positive demand or cost-push shock, annual inflation forecast errors start positive but they turn

negative after a few periods. The evolution of inflation and its annual forecast averaged across the

estimation period in Figure 11 confirms this. On the other hand, following a monetary shock, the

inflation forecast errors are initially negative and they turn positive at some later period. This

is still consistent with delayed over-shooting: when the monetary shock hits the economy, the

response of inflation is higher in absolute value relative to its forecast, but as shown in Figure

11, after a number of periods the response of annual forecasts becomes more negative (larger in

absolute value) than ex-post realized inflation.

Figure 11: Impulse response functions of annual inflation forecasting errors to a one standard de-
viation positive demand, cost-push, and monetary shock in the model with mis-specified forecasts
and myopia, averaged across the estimation period. In blue: Ex-post realized inflation. In dashed
black: annual inflation forecast.

Under-reaction to ex-ante forecast revisions, over-reaction to current inflation. I

estimate the following two regressions with simulated annual forecasting data over the Bayesian

estimation period.

π̂t+3 − Ẽtπ̂t+3 = c+K4(Ẽtπ̂t+3 − Ẽt−1π̂t+3) +Ozzt−2,t + errort,t+4 (38)

π̂t+3 − Ẽtπ̂t+3 = c+M3π̂t +Ozzt−1,t + errort+1,t+4 (39)

where zt−2,t refers to a set of control variables in periods (t − 2), (t − 1), and t. The error terms

in (38) and (39) are uncorrelated with any of the regressors. Since the data-generating process for
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inflation is much more complex than the one studied in the first part of the paper, the structure

of inflation forecast errors is also more complicated. Specifically, inflation forecast errors may

(theoretically) depend on other variables apart from aggregate inflation at the time of forecast or

current and past forecasts. Therefore, the two estimates of interest, namely, K̂3 and M̂3, might

suffer from omitted variable bias if one does not control for other variables that affect annual

inflation forecast error data simulated through the full New Keynesian model. In Appendix E, I

derive the set of relevant controls for both regressions. In other words, the first equation is an

extended version of the main regression in Coibion and Gorodnichenko (2015), whereas the second

one is an extended version of the main regression in Kohlhas and Walther (2021).

Ex-ante forecast revisions Current inflation

(1) (2) (3)

π̂t+3 − Ẽtπ̂t+3

Ẽtπ̂t+3 − Ẽt−1π̂t+3 2.442***
(0.261)

π̂t 0.267 -1.002**
(0.441) (0.456)

Constant 0.523*** 0.362* 0.749***
(0.164) (0.192) (0.163)

Controls

R-squared 0.765 0.757 0.612

Time period 1966:Q1 - 2018:Q3 1966:Q1 - 2018:Q3 1981:Q1 - 2018:Q3
Newey-West standard errors in parentheses.
*** Robust at 1%, ** Robust at 5%, * Robust at 10%.

Table 7: Estimates of regressions in (38) and (39) on simulated forecasting data. Model parameters
are set at the posterior mean for the model with mis-specified forecasts and myopia as documented
in Table 4.

As reported in Table 7, annual inflation forecast errors depend positively on ex-ante inflation

forecast revisions, speaking to forecasters’ under-reaction to revisions. With respect to the fact that

forecasters over-react to information at the time of forecast, I find results that are consistent with

the US SPF data on the GNP/GDP deflator (note that inflation in the DSGE model is measured
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through the GDP deflator). Specifically, US SPF forecast errors of the GNP/GDP deflator reflect

under-reaction to inflation at the time of forecast over the full sample from 1968:Q4 to 2018:Q3,

but there is over-reaction for the data from 1981:Q1 to 2018:Q3 (see Table 2). The estimates of

M in columns (2) and (3) in Table 7 reflects that.

6 Concluding Remarks

The present paper simultaneously incorporates two of the most prominent deviations from the

FIRE assumption, namely, mis-specified forecasts and myopia in a unified New Keynesian frame-

work that is amenable to macroeconomic data. The first part of the paper focuses on a partial

equilibrium pricing problem, derives a number of implications, and tests them with evidence from

the US SPF inflation forecasting data. The second part of the paper embeds the same departures

from FIRE in a full New Keynesian model with habit in consumption and inflation indexation,

derives the general equilibrium solution under sample autocorrelation coefficient learning, and

estimates the model using Bayesian methods.

The paper underscores three novel results. First, both estimation approaches speak strongly in

favor of the model in which agents use mis-specified forecasts and myopia over a number of other

alternatives. Importantly, a combination of mis-specified forecasting rules and myopia is consistent

with consensus inflation forecasts’ i) delayed over-shooting; ii) under-reaction to ex-ante forecast

revisions and no reaction to inflation lags; and iii) over-reaction to recent events. Second, the

best fitting expectations formation process for both households and firms is characterized by high

degrees of myopia and simple AR(1) forecasts, and more elaborate VAR(1) rules do not add

any useful information to private agents. Third, the estimated high degree of myopia - in the

presence of mis-specified forecasts - generates substantial internal persistence and amplification to

exogenous shocks.

The current paper lays solid ground in service to future research. A salient feature of forecasting

data that has not been accounted for in the present paper is heterogeneity. Therefore, one potential

extension would be to allow for heterogeneity in the degree of myopia, as well as in the structure of

forecasting rules. Another potential avenue would be to re-examine ex-post forecast errors, while

allowing forecasters’ perpetual learning of mis-specified forecasting rules.
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Appendix

A Partial Equilibrium New Keynesian Pricing Problem

Firms face nominal rigidities a la Calvo: they cannot reset the price with probability α ∈ (0, 1)

each period. Every firm seeks to maximize the present discounted value of real profits, i.e.,

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+h

(
P ∗
jt

Pt+h

yj,t+h −mct+hyj,t+h

)
(A.1)

where Qt is a generic stochastic discount factor; P ∗
jt is the optimal price set by the jth firm; Pt

is the aggregate price level; yjt is the demand for the jth firm’s good; mct is the marginal cost;

β ∈ (0, 1) is a deterministic discount factor. The demand each firm faces and the aggregate price

level are given by

yjt =

(
P ∗
jt

Pt

)−ζ

yt Pt =

[∫ 1

j=0

P 1−ζ
jt

] 1
ζ−1

(A.2)

where ζ > 1 is the elasticity of substitution among the differentiated goods. Substituting for yj,t+h

into (A.1), we have

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+h

((
P ∗
jt

Pt+h

)1−ζ

−
(
P ∗
jt

Pt+h

)−ζ

mct+h

)
yt+h (A.3)

The first-order condition with respect to P ∗
jt is

P ∗
jt

Pt

=
ζ

ζ − 1

Ẽjt

∑∞
h=0(αβ)

hQt+hyt+hmct+hπ
ζ
t,t+h

Ẽjt

∑∞
h=0(αβ)

hQt+hyt+hπ
ζ−1
t,t+h

(A.4)

where πt,t+h = Pt+h

Pt
=
∏h

l=0 πt+l. Due to Calvo pricing, the aggregate price level in (A.2) can be

rewritten as

Pt =
[
αP 1−ζ

t−1 + (1− α)(P ∗
t )

1−ζ
] 1

ζ−1 (A.5)

Assume that the steady-state for inflation is π̄ = 1. From (A.5), we have that in the steady-

state, P ∗/P = 1. Then, from the optimality condition in (A.4) it follows that in the steady-state

equilibrium m̄c = ζ−1
ζ

. Log-linearizing the first-order condition around steady-state values and
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dropping the subscript j, since every firm has the same optimality condition, we have

p̂∗t = Ẽt

∞∑
h=0

(αβ)h ((1− αβ)m̂ct+h + αβπ̂t+h+1) (A.6)

where p̂∗t = P̂ ∗
t − P̂t and π̂t+1 =

Pt+1

Pt
is inflation in period (t+ 1).

B DSGE Model

Households. There is a continuum of identical households, i ∈ [0, 1], that consume from a set of

differentiated goods, supply labor, and invest in riskless one-period bonds. First, households solve

for the optimal allocation of consumption across differentiated goods, produced by monopolistically

competitive firms j ∈ [0, 1], i.e.,

min
cit(j)

∫ 1

j=0

Pjtcit(j)dj

s.t.

cit =

[∫ 1

j=0

cit(j)
ζ−1
ζ dj

] ζ
ζ−1

(B.1)

and

Pt =

[∫ 1

j=0

P 1−ζ
jt

] 1
1−ζ

(B.2)

where ζ is the elasticity of substitution among the differentiated goods. The corresponding La-

grangian is

Lit = min
cit(j)

∫ 1

j=0

Pjtcit(j)dj + χit

cit − [∫ 1

j=0

(cit(j))
ζ−1
ζ dj

] ζ
ζ−1


where χit is the Lagrangian multiplier for the Dixit-Stiglitz consumption aggregator in (B.1). The

first-order condition is

cit(j) =

(
χit

Pjt

)ζ

cit (B.3)

Plugging the expression for cit(j) above into (B.1) and rearranging terms,

χit =

[∫ 1

j=0

P 1−ζ
jt dj

] 1
1−ζ

This implies further that

cit(j) =

(
Pjt

Pt

)−ζ

cit (B.4)
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Equation (B.4) defines the optimal demand of the ith household for the jth good. The intertemporal

problem for the household is to

max
cit,Hit,Bit

Ẽit

∞∑
h=0

βhξt+h

(
(ci,t+h − ηci,t+h−1)

1−σ

1− σ
− ψ

H1+φ
i,t+h

1 + φ

)

with budget constraint satisfying

Rt−1Bi,t−1 = Bit −WtHit −
∫ 1

j=0

Dit(j)dj +

∫ 1

j=0

Pjtcit(j)dj

where Hit is labor supply; Rt−1 gross return on nominal bond choice, Bi,t−1; Wt nominal wage;

Dit(j) nominal dividends from the jth firm; and ξt a preference shock. Households internalize their

optimal demand for good j into their intertemporal maximization problem, therefore

∫ 1

j=0

Pjtcit(j)dj = Ptcit

The budget constraint can be rewritten as

Rt−1Bi,t−1 = Bit −WtHit −Dit + Ptcit (B.5)

where
∫ 1

j=0
Dit(j)dj = Dit. The first-order conditions (FOC) with respect to consumption, bonds,

and hours, respectively, are

ξt(cit − ηci,t−1)
−σ − βηẼitξt+1(ci,t+1 − ηcit)

−σ = λit (B.6)

λit = βẼitRt
λi,t+1

πt+1

(B.7)

ψξtH
φ
it = λitwt (B.8)

where wt =
Wt

Pt
is the real wage.

Firms. There is a continuum of household-owned monopolistically competitive firms, j ∈ [0, 1],

that optimize with respect to price and labor demand. The production technology of each firm is

yjt = zth
ah
jt (B.9)

where zt and hjt are a technology shock and labor demand, respectively, and 0 < ah ≤ 1. The
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price optimization problem is subject to Calvo price stickiness as in Appendix A. Differently from

Appendix A, if firms cannot optimize the price they can still adjust prices according to

Pj,t+h = Pj,t+h−1(πt+h−1)
ρπ = Pjt

(
Pt+h−1

Pt−1

1−ζ)ρπ

(B.10)

where 0 ≤ ρπ < 1. Given the price aggregator in (B.2) and the nominal rigidities firms face, we

have

Pt =

[
α

(
Pt−1

(
Pt−1

Pt−2

)ρπ)1−ζ

+ (1− α)(P ∗
t )

] 1
1−ζ

(B.11)

Each firm chooses the optimal price that will maximize the present discounted value of real profits

such that the demand for its good is satisfied, and then hire the optimal amount of labor hours

that will minimize production costs. Using backward induction, I solve the cost minimization

problem first,

Ljt = min
hjt

wthjt +mcjt(yjt − zth
ah
jt ) (B.12)

where mcjt is the real marginal cost of production. The FOC with respect to labor reads

mcjt =
wt

ahzth
ah−1
jt

(B.13)

The intermediate firms’ problem is

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+h

(
P ∗
jt

Pt+h

(
Pt+h−1

Pt−1

)ρπ

yj,t+h − wt+hhj,t+h

)
(B.14)

Aggregating cit(j) across households in (B.3), we have that the demand faced by the jth firm is

yjt =

(
P ∗
jt

Pt

)−ζ

yt (B.15)

Substituting for yjt and wt in the pricing problem becomes

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+hyt+h

((
P ∗
jt

Pt+h

)1−ζ (
Pt+h−1

Pt−1

)ρπ(1−ζ)

− ahmcj,t+h

(
P ∗
jt

Pt+h

)−ζ (
Pt+h−1

Pt−1

)−ρπζ
)

(B.16)
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The first-order condition with respect to P ∗
jt reads

Ẽjt

∞∑
h=0

(αβ)hQt+hπ
−ρπζ
t−1,t+h−1P

ζ−1
t+h yt+h

(
ahζmcj,t+hPt+h − (ζ − 1)P ∗

jtπ
ρπ
t−1,t+h−1

)
= 0 (B.17)

Monetary Policy. The central bank controls nominal interest rates through a Taylor rule that

reacts to inflation and output gap deviations from their steady-state values, with some interest

rate smoothing, i.e.,

Rt

R̄
=

(
Rt−1

R̄

)ρr (πt
π̄

)(1−ρr)ϕπ
(xt
x̄

)(1−ρr)ϕx

eσvεvt , εvt ∼ N (0, 1) (B.18)

where xt is the output gap; π̄ and x̄ denote the inflation target and output gap steady-state value,

respectively; ρr ∈ [0, 1).

Steady-state Equilibrium. I calculate steady-state values:

ξ̄ = 1 z̄ = 1 v̄ = 1 (B.19)

π̄ = βR̄ = 1 (B.20)

λ̄ = ȳ−σ(1− βη) (B.21)

w̄ =
ψ

1− βη
(H̄)φ(C̄)σ (B.22)

d̄ = C̄ − 1− β

β
b̄− w̄H̄ (B.23)

ȳ = h̄ah (B.24)

m̄c =
ζ − 1

ahζ
(B.25)

where b̄ = B̄
P̄

and d̄ = D̄
P̄

denote steady-state bond holdings and dividends in real terms.

B.1 Log-linearized Model

Households. Log-linearizing (B.6) and (B.7) around steady-states generates

ĉcit = Ẽitĉci,t+1 −
1− βη

σ
Ẽit(R̂t − π̂t+1) +

1

σ
Ẽit (ĝt − ĝt+1) (B.26)
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where ĉcit = ĉit − ηĉi,t−1 − βηẼit(ĉi,t+1 − ĉit) and ĝt = ξ̂t − βηξ̂t+1. One can make inferences about

Ẽitĉci,t+1 by iterating the Euler equation above, i.e.,

ĉci,t+1 = Ẽi,t+1ĉci,t+2 −
1− βη

σ
Ẽi,t+1(R̂t+1 − π̂t+2) +

1

σ
Ẽi,t+1(ĝt+1 − ĝt+2)

So,

Ẽitĉci,t+1 = ẼitẼi,t+1ĉci,t+2 −
1− βη

σ
ẼitẼi,t+1(R̂t+1 − π̂t+2)−

1

σ
ẼitẼi,t+1(ĝt+1 − ĝt+2)

= Ẽitĉci,t+2 −
1− βη

σ
Ẽit(R̂t+1 − π̂t+2)−

1

σ
Ẽit(ĝt+1 − ĝt+2)

where the second equality is an application of the law of iterative expectations. Plugging expec-

tations into the log-linear individual Euler equation, we get

ĉcit = Ẽitĉci,t+2 −
1− βη

σ
Ẽit

t+1∑
h=0

(R̂t+h − π̂t+h+1) +
1

σ
Ẽit

t+1∑
h=0

(ĝit+h − ĝt+h+1)

Similarly, the h-periods-ahead forwardly iterated Euler equation reads

ĉcit = Ẽitĉci,t+h −
1− βη

σ
Ẽit

h−1∑
l=0

(R̂t+l − π̂t+l+1) +
1

σ
Ẽit

t+k−1∑
h=0

(ĝt+h − ĝt+h+1) (B.27)

It is worth noting that if households knew that everyone is subject to the same preference shocks,

and that they all have the same preferences over consumption and labor, then they would know

that in the infinite future, consumption is expected to be at its steady-state, implying that

limh→∞ Ẽitĉci,t+h = 0. This would further imply that households would use the one-step-ahead

Euler equation, as under RE. However, households have imperfect knowledge about the rest of

the population, and one needs to combine (B.27) with the infinitely forward iterated household’s
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budget constraint in (B.5):

Bi,t−1 =
Bit

Rt−1

− WtHit

Rt−1

− Dit

Rt−1

+
Ptcit
Rt−1

= ẼitRRt−1,tBi,t+1 − Ẽit

t+1∑
h=0

RRt−1,t+h(Wt+hHi,t+h +Di,t+h) + Ẽit

t+1∑
h=0

RRt−1,t+hPt+hci,t+h

= ...

= lim
τ→∞

ẼitRRt−1,t+hBi,t+h+1 − Ẽit

∞∑
h=0

RRt−1,t+h(Wt+hHi,t+h +Di,t+h) + Ẽit

∞∑
h=0

RRt−1,t+hPt+hci,t+h

= Ẽit

∞∑
h=0

Ft−1,t+hPt+hci,t+h − Ẽit

∞∑
h=0

RRt−1,t+h(Wt+hHi,t+h +Di,t+h)

where RRt−1,t+h =
∏t+h

l=t−1
1
Rl

. To get the last equality I impose the appropriate no-Ponzi con-

straint, i.e., limh→∞ ẼitRRt−1,t+hBi,t+h+1 = 0. To write everything in real terms, I divide by Pt−1

and get

bi,t−1 = Ẽit

∞∑
h=0

RRt−1,t+hπt−1,t+hci,t+h − Ẽit

∞∑
h=0

RRt−1,t+hπt−1,T (wt+hHi,t+h + di,t+h) (B.28)

The log-linearized version of the iterated budget constraint is:

b̄b̂i,t−1 = Ẽit

∞∑
h=0

R̄Rt−1,t+hπ̄t−1,t+hc̄(R̂Rt−1,t+h + π̂t−1,T + ĉi,t+h)

− Ẽit

∞∑
h=0

R̄Rt−1,t+hπ̄t−1,t+hw̄H̄(R̂Rt−1,t+h + π̂t−1,t+h + ŵt+h + Ĥi,t+h)

− Ẽit

∞∑
h=0

R̄Rt−1,t+hπ̄t−1,t+hd̄(R̂Rt−1,t+h + π̂t−1,t+h + d̂i,t+h)

Using (B.21), R̄Rt−1,t+hπ̄t−1,t+h = π̄h+1

R̄h+1 = βh+1. Substituting for R̄Rt−1,t+hπ̄t−1,t+h and optimal

labor supply, the final log-linearized iterated budget constraint is

b̄b̂i,t−1 =

(
c̄+ w̄H̄

σ

φ

)
Ẽit

∞∑
h=0

βh+1ĉi,t+h − w̄H̄
1 + φ

φ
Ẽit

∞∑
h=0

βh+1ŵt+h − d̄Ẽit

∞∑
h=0

βh+1d̂i,t+h

+ (c̄− w̄H̄ − d̄)Ẽit

∞∑
h=0

βh+1(R̂Rt−1,t+h + π̂t−1,t+h)

(B.29)
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Next, recall that ĉcit = ĉit − ηĉi,t−1 − βηẼit(ĉi,t+1 − ηĉit), from which it follows that

ĉit = ĉcit + ηĉi,t−1 + βηẼit(ĉi,t+1 + ηĉit) (B.30)

Substituting for ĉi,t+h into (B.29), I rewrite the intertermporal budget constraint as

b̄b̂i,t−1 =

(
c̄+ w̄H̄

σ

φ

)
Ẽit

∞∑
h=0

βh+1 (ĉci,t+h + ηĉi,t+h−1 + βη(ĉi,t+h+1 − ĉi,t+h))

− w̄H̄
1 + φ

φ
Ẽit

∞∑
h=0

βh+1ŵt+h − d̄Ẽit

∞∑
h=0

βh+1d̂i,t+h

+ (c̄− w̄H̄ − d̄)Ẽit

∞∑
h=0

βh+1(R̂Rt−1,t+h + π̂t−1,t+h)

(B.31)

From (B.27), one can isolate Ẽitĉci,t+h and substitute for it into (B.29):

b̄b̂i,t−1 = β(c̄+ w̄H̄
σ

φ
)

(
1

1− β
ĉcit + ηẼit

∞∑
h=0

(ĉi,t+h−1 + β(ĉi,t+h+1 − ηĉi,t+h))

)

+
β(c̄+ σ

φ
)

σ(1− β)
Ẽit

∞∑
h=0

βh
(
(1− βη)(R̂t+h − π̂t+h+1)− (ĝt+h − ĝt+h+1)

)
− w̄H̄

1 + φ

φ
Ẽit

∞∑
h=0

βh+1ŵt+h − d̄Ẽit

∞∑
h=0

βh+1d̂i,t+h

+ (c̄− w̄H̄ − d̄)Ẽit

∞∑
h=0

βh+1(R̂Rt−1,t+h + π̂t−1,t+h)

Isolating ĉcit, one retrieves the individual demand in terms of ĉcit,

ĉcit =
b̄(1− β)

β(c̄+ w̄H̄ σ
φ
)
b̂i,t−1 − η(1− β)Ẽit

∞∑
h=0

βh (ĉi,t+h−1 + β(ĉi,t+h+1 − ηĉi,t+h))

+
1− β

c̄+ w̄H̄ σ
φ

Ẽit

∞∑
h=0

βh

(
w̄H̄(1 + φ)

φ
ŵt+h + d̄d̂i,t+h

)
− β(1− βη)

σ
Ẽit

∞∑
h=0

βh(R̂t+h − π̂t+h+1)

− β

σ
Ẽit

∞∑
h=0

βh(ĝt+h − ĝt+h+1)−
β(1− β)(c̄− w̄H̄ − d̄)

c̄+ w̄H̄ σ
φ

Ẽit

∞∑
h=0

βh(R̂Rt−1,t+h + π̂t−1,t+h)

(B.32)

Let wc =
w̄H̄(1+φ)

φ(c̄+w̄H̄ σ
φ
)

and dc = d̄
c̄+w̄H̄ σ

φ
. Define

ˆ̃yt = ŷt − ηŷt−1 (B.33)
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Aggregating equation (B.32), imposing market clearing conditions such that ĉt = ŷt = wcŵt+dcd̂t,

ĉct = ŷyt, (c̄− w̄H̄ − d̄) = 0, and b̂t = 0 (since households are homogeneous) one gets

ˆ̃yt = (1−β+βη)Ẽt
ˆ̃yt+1+Ẽt

∞∑
h=0

βh

[
β(1− η)(1− β)Ẽt

ˆ̃yt+h+2 −
1− βη

σ
(R̂t+h − π̂t+h+1)−

1

σ
(ĝt+h − ĝt+h+1)

]
(B.34)

Let x̂t = ŷt − ŷnt be the output gap with ŷnt being the potential level of output. Further, let
ˆ̃xt = x̂t − ηx̂t−1. Rewriting equation (B.34) in terms of the output gap yields the aggregate

demand equation:

ˆ̃xt = (1− β + βη)Ẽt
ˆ̃xt+1 + Ẽt

∞∑
h=0

βh

(
β (1− β) (1− η)ˆ̃xt+h+2 −

1− βη

σ

(
R̂t+h − π̂t+h+1 − êt+h

))
(B.35)

and êt = σ
1−βη

(
(ŷnt+1 − ηŷnt − ĝt+1)− (ŷnt − ηŷnt−1 − ĝt)

)
is such that

êt = ρeêt−1 + σeε
e
t , ε

e
t ∼ N (0, 1) (B.36)

Applying the myopic adjustment to (B.35), the aggregate demand is rewritten as

ˆ̃xt = n(1−β+βη)Ẽ⋆
t
ˆ̃xt+1+Ẽ⋆

t

∞∑
h=0

(βn)h
(
n2β (1− β) (1− η)ˆ̃xt+h+2 −

1− βη

σ

(
R̂t+h − π̂t+h+1 − êt+h

))
(B.37)

mis-specified, substituting for ˆ̃xt = (x̂t − ηx̂t−1) delivers

x̂t =
η

1 + nηυ
x̂t−1 + n

υ − nβη(1− β)(1− η)

1 + nηυ
Ẽ⋆

t x̂t+1 +
βn2(1− β)(1− η)(1− nβη)

1 + nηυ
Ẽ⋆

t

∞∑
h=0

(βn)hx̂t+h+2

− Ẽ⋆
t

∞∑
h=0

(βn)h
1− βη

σ(1 + nηυ)

(
R̂t+h − π̂t+h+1 − êt+h

)
(B.38)

where υ = (1− β + βη).

Firms. Log-linearizing firms’ optimal price condition, we get,

P̂ ∗
jt − P̂t = Ẽjt

∞∑
h=0

(αβ)h [(1− αβ)m̂cj,t+h + αβ(π̂t+h+1 − ρππ̂t+h−1)] (B.39)
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Define p̂∗jt = P̂ ∗
jt − P̂t. The marginal cost of the jth firm is given by

m̂cj,t+h = ŵt +
1

ah
ẑt +

1− ah
ah

ŷt − ζ
1− ah
ah

p̂∗jt (B.40)

(
1 + ζ

1− ah
ah

)
p̂∗jt = Ẽjt

∞∑
h=0

(αβ)h
[
(1− αβ)

(
ŵt+h +

1

ah
ẑt+h +

1− ah
ah

ŷt+h

)
+ αβ(π̂t+h+1 − ρππ̂t+h−1)

]
(B.41)

From (B.10), p̂∗jt = P̂ ∗
jt − P̂t =

α
1−α

(π̂t − ρππ̂t−1) =
α

1−α
ˆ̃πt. Since all firms face the same optimal

pricing condition above, I drop the subscript j. Define ût to be a supply shock that captures

deviations of the empirical output gap from the theoretically relevant gap, assumed to follow an

AR(1) process

ût = ρuût−1 + σuε
u
t , ε

u
t ∼ N (0, 1) (B.42)

Then, the aggregated optimal pricing rule can be written as

ˆ̃πt = κ

(
ωx̂t +

σ

1− ηβ
ˆ̃xt

)
+Ẽt

∞∑
h=0

(αβ)h
(
καβ

(
ωx̂t+h+1 +

σβ(α− η)

α(1− ηβ)
ˆ̃xt+h+1

)
+ β(1− α)ˆ̃πt+h+1 + ût+h

)
(B.43)

where κ = (1−α)(1−αβ)
α(ah+ζ(1−ah)

and ω = (1 + φ− ah). Applying the myopic adjustment yields

ˆ̃πt = κ

(
ωx̂t +

σ

1− ηβ
ˆ̃xt

)
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
καβn

(
ωx̂t+h+1 +

σ(α− η)

α(1− ηβ)
ˆ̃xt+h+1

))
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
nβ(1− α)ˆ̃πt+h+1 + ût+h

) (B.44)

Substituting for ˆ̃πt = π̂t − ρππ̂t−1 and ˆ̃xt = x̂t − ηx̂t−1,

π̂t =
1

1 + nβρπ(1− α)
(ρππ̂t−1 − κητx̂t−1) +

κ(ω + τ(1− nηβ(α− η))

1 + nβρπ(1− α)
x̂t +

1

1− αβnρu
ût

+
nβ

1 + nβρπ(1− α)
Ẽ⋆

t

∞∑
h=0

(αβn)h ((1− α)(1− αβnρπ)π̂t+h+1 + κ(αω + τ(α− η)(1− αβnη)x̂t+h+1)

(B.45)

where τ = σ
1−βη

.

Monetary Policy. The log-linearized version of the policy rule is

R̂t = ρrR̂t−1 + (1− ρr)ϕππ̂t + (1− ρr)ϕxx̂t + σvεt (B.46)
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Model in Matrix Form. The aggregate economy model in matrix form is described by

A0(Θ)St = A1(Θ)St−1 + A02(Θ)Ẽ⋆
tSt+1 + Ẽ⋆

t

∞∑
h=0

F hA12(Θ)St+h+2 +B(Θ)Et (B.47)

where St =
[
x̂t π̂t R̂t êt ût

]′
; Et =

[
εet εut εvt

]′
; Θ = {α, β, n, σ, κ, η, ρπ, ω, ϕπ, ϕx, ρr, ρe, ρu, σe, σu, σv},

F is a zero matrix, with only the first two diagonal entries equal to βn and αβn, respectively.

Using results from the previous subsection, the perceived law of motion (PLM) in matrix form

can be written as

St = ∆t−1 + Γt−1(St−1 −∆t−1)︸ ︷︷ ︸
PLM for aggregate endo var’s

+ HSt−1︸ ︷︷ ︸
PLM for the shocks

+ϵ̃t (B.48)

where δt =
[
δ′
t 01x2

]′
; Γt =

 γt 03x2

02x3 02x2

; H is a diagonal matrix with diagonal equal to[
01x3 ρe ρu

]′
; ϵ̃t =

[
ϵ′t σeε

e
t σuε

u
t

]′
. The forecast of the state vector h ≥ 1 periods ahead

is described by

Ẽ⋆
tSt+h = ∆t−1 + Γτ−t+1

t−1 (St−1 −∆t−1)︸ ︷︷ ︸
forecast of endo var’s

+ HhSt︸ ︷︷ ︸
forecast of shocks

(B.49)

Plugging (B.49) into (B.47), we get the actual law of motion:

Ã0(Θ)St = Ã1(Θ)∆t−1 + Ã2(Θ,Γt−1)St−1 +BEt (B.50)

where

Ã0 = A0 − A02H −

(
∞∑
h=0

F hA12H
h

)
H

Ã1 = A02(I − Γ2
t−1)∆t−1 +

∞∑
h=0

F hA12 −

(
∞∑
h=0

F hA12Γ
h
t−1

)
Γ2

t−1

Ã2 = A1 + A02Γ
2
t−1 +

(
∞∑
h=0

F hA12Γ
h
t−1

)
Γ3

t−1

The infinite sums are defined as follows

∞∑
h=0

F h = (I − F )−1
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vec

(
∞∑
h=0

F hA12H
h

)
= (I −H ⊗ F )−1A12(:)

vec

(
∞∑
h=0

F hA12Γ
h
t−1

)
= vec(A12 + FA12Γt−1 + F 2A12Γ

2
t−1 + ...)

= (I ⊗ I + Γ′
t−1 ⊗ F + (Γ′

t−1)
2 ⊗ F 2 + ...)

= (I − Γ′
t−1 ⊗ F )−1A12(:)

The last equality uses the Kronecker product property that (Γ′
t−1 ⊗F )(Γ′

t−1 ⊗F ) = (Γ′
t−1)

2 ⊗F 2.

B.2 Aggregate Demand and Supply under Well-specified Forecasting

Rules

In this subsection, I derive the equilibrium conditions when Ẽ⋆
t is associated with well-specified

forecasting rules. Consider the aggregate demand

ˆ̃xt = nυẼ⋆
t
ˆ̃xt+1 + Ẽ⋆

t

∞∑
h=0

(βn)h
(
n2β (1− β) (1− η)ˆ̃xt+h+2 −

1− βη

σ

(
R̂t+h − π̂t+h+1 − êt+h

))
(B.51)

Then,

Ẽ⋆
t
ˆ̃xt+1 = nυẼ⋆

t
ˆ̃xt+2 + Ẽ⋆

t

∞∑
h=0

(βn)h
(
n2β

(
υ − η)ˆ̃xt+h+3 −

1− βη

σ

(
R̂t+h+1 − π̂t+h+2

)
− êt+h

))
(B.52)

from which

Ẽ⋆
t

∞∑
h=0

(βn)h
(
n2β(υ − η)ˆ̃xt+h+3 −

1− βη

σ

(
R̂t+h+1 − π̂t+h+2 − êt+h

))
= Ẽ⋆

t
ˆ̃xt+1 − nυẼ⋆

t
ˆ̃xt+2

(B.53)

Substituting for the expression in the left-hand side in the equation above into the original aggre-

gate demand in (B.51) and setting Ẽ⋆
t ≡ Et, we have

ˆ̃xt = nEt

(
(1 + βη)ˆ̃xt+1 − nβηˆ̃xt+2

)
− σ

1− βη
(R̂t − Etπ̂t+1) +

σ

1− βη
êt (B.54)

If n = 1, then the equation above coincides with the standard Euler equation derived under FIRE.
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Similarly, consider the aggregate supply,

ˆ̃πt = κ
(
ωx̂t + τ ˆ̃xt

)
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
καβn

(
ωx̂t+h+1 +

τ(α− η)

α
ˆ̃xt+h+1

))
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
nβ(1− α)ˆ̃πt+h+1 + ût+h

) (B.55)

Hence,

Ẽ⋆
t
ˆ̃πt+1 = κ

(
Ẽ⋆

t

(
τ ˆ̃xt+1 + ω

∞∑
h=0

(αβn)hx̂t+h+1

)
+ κβnτ(α− η)Ẽ⋆

t

∞∑
h=0

(αβn)h ˆ̃xt+h+2

)

+ Ẽ⋆
t

∞∑
h=0

(αβn)h
(
nβ(1− α)ˆ̃πt+h+2 + ût+h

) (B.56)

Isolating τωẼ⋆
t

∑∞
h=0(αβn)

hx̂t+h+1 from (B.56), substituting for it into (B.55), and setting Ẽ⋆
t ≡ Et,

we have
ˆ̃πt = κωx̂t + τEt

ˆ̃xt − βηnˆ̃xt+1) + nβEthatπ̃t+1 + ût (B.57)

If n = 1, then the equation above coincides with the standard Phillips curve derived under FIRE.

C Proofs

C.1 Proposition 1

Let the data-generating process for inflation be given by π̂t = am̂ct+ bπ̂t−1, where a = κ
1−αβρn

and

b = βn(1−α)
1−αβnγ∗ (γ

∗)2. Then, one can show that

F (γ) =
E(π̂tπ̂t−1)

E(π̂2
t )

=
b+ ρ

1 + ρb
(C.1)

For a CE equilibrium to exist, we must have that F (γ) = γ for at least one value of γ ∈ (0, 1).

Moreover, F (γ) is an increasing function of γ, with F (0) = ρ > 0 and F (1) = βn(1−α)+ρ(1−αβn)
1−αβn+ρβn(1−α)

,

where ρ ≤ F (1) < 1. Therefore, F (γ) crosses the 45° line at least once; that is, a CE equilibrium

is guaranteed to exist. Since F (γ) ≥ ρ, it follows that γ∗ ∈ [ρ, 1).

To show that the CE equilibrium is unique, I show that F (γ) is convex whenever it intersects

with the 45°line, i.e., whenever (C.1) holds. Note that F (γ) is an increasing function of γ, such

that F (0) = ρ and F (1) < 1. Therefore, if multiple fixed points existed for γ ∈ [0, 1), it must be
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that at least one fixed point, F (γ), is concave.

F ′′(γ) |γ=γ∗ = (1− ργ∗)
b′′(1 + ρb)− ρ(b′)2

(1 + ρb)2
(C.2)

where b′ = ∂b/∂γ and b′′ denotes the second-order partial derivative of b w.r.t. γ. Therefore,

F ′′(γ = γ∗) > 0 ⇐⇒ b′′ > ρ(b′)2

1+ρb
. One can show that

b′′ =
2βn(1− α)

(1− αβnγ∗)3
(C.3)

Then,

b′′ − ρ(b′)2

1 + ρb
=

2βn(1− α)

(1− αβnγ∗)3
− ρ(βnγ∗(1− α))2(2− αβnγ∗)2

(1− αβnγ∗)3(1− αβnγ∗ + βnρ(1− α)(γ∗)2)

=
βnγ∗(1− α)

(1− αβnγ∗)3(1− αβnγ∗ + βnρ(1− α)(γ∗)2)︸ ︷︷ ︸
(+)

×
(
2(1− αβnγ∗) + 2(βnρ(1− α)(γ∗)2)− ρβn(γ∗)2(1− α)(2− αβnγ∗)2

)︸ ︷︷ ︸
G(γ)

(C.4)

Hence, the sign of F ′′(γ = γ∗) is determined by the sign of G(γ), which is always positive.

G(γ) = 2(1− αβnγ∗) + βnρ(1− α)(γ∗)2(2− 4 + 4αβnγ∗ − (αβnγ∗))

= 2(1− αβnγ∗)(1− βnρ(1− α)(γ∗)2) + αβ2n2ρ(1− α)(γ∗)3)(2− αβnγ∗) ≥ 0
(C.5)

C.2 Corollary 1

Consider F (γ), with F (γ) as defined in (C.1). Since the CE equilibrium is unique, γ∗, following

a change in price stickiness or myopia, will change in the same direction as F (γ). Taking the

first-order partial derivative with respect to α of F (γ) yields

∂F (γ)

∂α
=

1− ρ2

(1 + ρb)2
∂b

∂α︸︷︷︸
(−)

< 0 (C.6)
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Similarly, taking the first-order partial derivative with respect to n of F (γ) yields

∂F (γ)

∂n
=

1− ρ2

(1 + ρb)2
∂b

∂n︸︷︷︸
(+)

< 0 (C.7)

C.3 Proposition 2

The actual law of motion for inflation along the CE equilibrium is π̂t = am̂ct + bπ̂t−1, and the

forecast about next period’s inflation along the equilibrium path is Ẽtπ̂t+1 = n(γ∗)2π̂t−1. Hence,

the h-period-ahead forecasting error about inflation in period (t + k), following a one-time shock

εt in period t, is

π̂t+k − Ẽt+k−hπ̂t+k = am̂ct+k + bπ̂t+k−1 − n(γ∗)2π̂t+k−h−1

= aρkεt + ab(ρk−1 + bρk−2 + ...+ bk−1)εt − anh(γ∗)h+1(ρk−h−1 + ...+ bk−h−1)εt

= aρk−h−1

(
ρh+1 + bρh

(
1 + ...+

(
b

ρ

)h

+ ...+

(
b

ρ

)k−1
))

− aρk−h−1

(
nh(γ∗)h+1

(
1 + ...+

(
b

ρ

)k−h−1
))

εt

= aρk−h−1

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
εt

(C.8)

The effect of εt > 0 on the forecasting error for k = 0 is positive; hence, forecasters under-react

on impact. Moreover, limk→∞ ρk−h−1 = 0, and therefore the forecasting error will eventually

dissipate at some point in the future. The question remains whether, as k → ∞, we approach the

0 forecasting errors from below (delayed over-shooting) or above. Given that a > 0 and ρ > 0,

delayed over-shooting is guaranteed to occur if

lim
k→∞

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
< 0 (C.9)

One can easily show that (bh+1 − nh(γ∗)h+1) < 0. Then, if b > ρ, we have that

lim
k→∞

(
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

= −∞
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so

lim
k→∞

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
= −∞ (C.10)

On the other hand, if b < ρ, we have that limk→∞
(
bh+1 − nh(γ∗)h+1

)∑k−h−1
j=0

(
b
ρ

)j
= ρ(bh+1−nh(γ∗)h+1)

ρ−b
,

so

lim
k→∞

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
=
ρ(ρh+1 − nh(γ∗)h+1)

ρ− b
(C.11)

Hence, when b < ρ, delayed over-shooting is guaranteed to exist if ρh+1 < nh(γ∗)h+1. Mis-specified,

to show that the two conditions stated above are sufficient for late over-response, we have to show

that if the forecast error response turns negative, it will never become positive. Showing this

proves that if the forecast error impulse response approaches 0 from above in the limit as k → ∞,

it has never been negative before. Suppose there exists k∗ ≥ 1, such that for k ≥ k∗,

Ik,h =
∂(π̂t+k − Ẽt+k−hπ̂t+k)

∂εt
= aρk−2

((
b2 − n(γ∗)2

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ(b+ ρ)

)
< 0 (C.12)

Since (bh+1 − nh(γ∗)h+1) < 0, as k increases the impulse response of forecast errors becomes more

negative, and the sign of Ik,h can never flip as k increases.

C.4 Proposition 3

I will first show that Ik,h ≥ 0 when myopia is combined with well-specified forecasting rules.

As shown in the main text, the aggregated optimal pricing rule in this case can be written as

π̂t = κm̂ct + βnEtπ̂t+1, and the solution for inflation is π̂t = a0m̂ct, where a0 = κ
1−βnρ

. Therefore,

Ik,h = a0m̂ct+k − a0ρ
hm̂ct+k−h = a0(ρ

k − nρk)εt ≥ 0 (C.13)

for any k ≥ 0. From here, it follows that if n = 1, i.e., if we impose well-specified forecasts absent

myopia (FIRE), Ik,h = 0 for any k ≥ 0.
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C.5 Proposition 4

Again, let the data-generating process for inflation be given by π̂t = am̂ct+bπ̂t−1, where a = κ
1−αβρn

and b = βn(1−α)
1−αβnγ∗ (γ

∗)2. The forecast error at horizon h ≤ 1 is

π̂t+h − Ẽtπ̂t+h = am̂ct+h + bπ̂t+h−1 − nh(γ∗)h+1π̂t−1

= aρh+1m̂ct−1 + abm̂ct+h−1 + b2π̂t+h−2 − nh(γ∗)h+1(am̂ct−1 + bπ̂t−2) + f(εt, ..., εt+h)

= a(ρh+1 + bρh + ...+ bhρ− nh(γ∗)h+1)m̂ct−1 + bh+1π̂t−1 − bnh(γ∗)h+1π̂t−2 + εt:t+h

=

(
ρh+1

h∑
j=0

(
b

ρ

)j

− nh(γ∗)h+1

)
(π̂t−1 − bπ̂t−2) + bh+1π̂t−1 − bnh(γ∗)h+1π̂t−2 + εt:t+h

=

(
ρh+1

h+1∑
j=0

(
b

ρ

)j

− nh(γ∗)h+1

)
π̂t−1 − bρh+1

h∑
j=0

(
b

ρ

)j

π̂t−2) + εt:t+h

=

(
−1 + n

(
ρ

nγ∗

)h+1 h+1∑
j=0

(
b

ρ

)j
)

︸ ︷︷ ︸
Kh

Ẽtπ̂t+h −
b

γ∗

(
ρ

nγ∗

)h+1 h∑
j=0

(
b

ρ

)j

Ẽt−1π̂t+h + εt:t+h

= Kh(Ẽtπ̂t+h − Ẽt−1π̂t+h) + nh(γ∗)h+1

(
Kh −

b

γ∗

(
ρ

nγ∗

)h+1 h∑
j=0

(
b

ρ

)j
)
π̂t−2

(C.14)

where εt:t+h is a linear function of εt, ..., εt+h.

C.6 Proposition 5

i) Suppose the conditions for lack of delayed over-shooting are satisfied, i.e., b < ρ and nh(γ∗)h+1 <

ρh+1. Then,

Kh =
(−nh(γ∗)h+1 + ρh+1) + ρhb+ ...+ bh+1

nh(γ∗)h+1
> 0 (C.15)

ii) Now suppose the conditions for delayed over-shooting are satisfied, i.e., either b > ρ, or

nh(γ∗)h+1 > ρh+1 if b < ρ.

Kh =
−nh(γ∗)h+1(ρ− b) + ρh+2 − bh+2

nh(γ∗)h+1(ρ− b)
(C.16)

Consider b > ρ first. Then, Kh > 0 if nh(γ∗)h+1 < bh+2−ρh+2

b−ρ
, or put differently if

nh(γ∗)h+1 − ρh+1 <
bh+2 − ρh+2

b− ρ
− ρh+1 = bρh+1

h+1∑
j=0

(
b

ρ

)j

(C.17)
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Note that b > ρ implies that nh(γ∗)h+1 − ρh+1 > 0. Now consider b < ρ and nh(γ∗)h+1 > ρh+1.

Kh > 0 if 0 < nh(γ∗)h+1 < bh+2−ρh+2

b−ρ
, which is the exact same condition as in (C.17).

C.7 Proposition 6

Define Lh(n) = nh+1(γ∗)h+2

(
Kh − b

γ∗

(
ρ

nγ∗

)h+1∑h
j=0

(
b
ρ

)j)
. Then,

Lh(n) = nh+1(γ∗)h+2

(
−1 +

(
n− b

γ∗

)(
ρ

nγ∗

)h+1 h∑
j=0

(
b

ρ

)j

+ n

(
b

nγ∗

)h+1
)

(C.18)

Lh(1) = (γ∗ − b)(ρ(ρh + ρh−1b+ ...+ bh)− γ∗((γ∗)h + (γ∗)h−1b+ ...+ bh)

= (γ∗ − b)
(
ρ(ρh + ρh−1b+ ...+ bh

)
− γ∗

(
(γ∗)h + (γ∗)h−1b+ ...+ bh

)
= (γ∗ − b)

h+1∑
j=1

bh+1−j(ρj − (γ∗)j) ≤ 0

(C.19)

where the last inequality follows from the fact that γ∗ ≥ ρ and γ∗ > b. Note that Lh(1) = 0 if

and only if γ∗ = ρ. Consider n =
(

ρ
γ∗

)2
, which is less than unity for any ρ ∈ (0, 1). I show that

Lh

((
ρ
γ∗

)2)
> 0. Define b0 = β(1−α)

1−αβnγ∗ (γ
∗)2, such that b0n = b. Then, we have

Lh

((
ρ

γ∗

)2
)

= ρh+1ρ
2(γ∗)h+1

(
(γ∗)h(γ∗ − b0)− ρh−1((γ∗)2 − b0ρ)

)
+ (b0ρ)

h+1b(γ∗ − ρ)

(γ∗)2∗h+1((γ∗)2 − b0ρ)

= ρh+1ρ
2(γ∗)h+1

((
(γ∗)h−1 − ρh−1

)
((γ∗)2 − b0)) + b0(γ

∗)h−1(1− γ∗)
)

(γ∗)2∗h+1((γ∗)2 − b0ρ)

+ ρh+1 (b0ρ)
h+1b(γ∗ − ρ)

(γ∗)2∗h+1((γ∗)2 − b0ρ)
≥ 0

(C.20)

where the last inequality follows from the fact that (γ∗)2 > b0 and (γ∗)2 > b0ρ. Note that

Lh

((
ρ
γ∗

)2)
= 0 if and only if γ∗ = ρ.

In the case of mis-specified forecasting rules absent myopia, it is easy to see from the expression

for Lh(1) above that Lh(1) = 0 if and only if γ∗ = ρ, which can be achieved only if ρ = 0.
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C.8 Proposition 7

As before,

π̂t+h − Ẽtπ̂t+h = am̂ct+h + bπ̂t+h−1 − nh(γ∗)h+1π̂t−1

= aρh
h−1∑
l=0

(
b

ρ

)l

m̂ct + bhπ̂t − nh(γ∗)h+1π̂t−1 + εt+1:t+h

= aρh
h−1∑
l=0

(
b

ρ

)l

m̂ct + bhπ̂t −
nh(γ∗)h+1

b
(π̂t − am̂ct) + εt+1:t+h

=
bh+1 − nh(γ∗)h+1

b︸ ︷︷ ︸
Mh

π̂t + errort,t+h

(C.21)

where εt+1:t+h is a function of εt+1, ..., εt+h, and errort,t+h = a

[
ρh
∑h−1

l=0

(
b
ρ

)l
+ nh(γ∗)h+1

b

]
m̂ct +

εt+1:t+h. It is straightforward to see that bh+1 < nh(γ∗)h+1 for any h ≥ 1. Suppose we try to

estimate

π̂t+h − Ẽtπ̂t+h = c+mhπ̂t + errort,t+h (C.22)

using OLS. We then have that m̂OLS
h = Mh + a

[
ρh

h−1∑
l=0

(
b

ρ

)l

+
nh(γ∗)h+1

b

]
E(π̂tm̂ct)
E(π̂2

t )︸ ︷︷ ︸
(+)

. Hence,

Mh = mOLS
h − a

[
ρh
∑h−1

l=0

(
b
ρ

)l
+ nh(γ∗)h+1

b

]
E(π̂tm̂ct)

E(π̂2
t )

< mOLS
h . Kohlhas and Walther (2021) show

that the OLS estimate of mh for the annual CPI inflation forecast in the US SPF data is signif-

icantly negative. Therefore, the true estimate of Mh implied by a combination of mis-specified

forecasts and myopia is even more negative than the OLS estimate.

D Data

I use quarterly data from 1966 to 2018. All data are extracted from FRED and described as

follows

yt = 100ln

(
GDPC1t
POPindex,t

)

ypotentialt = 100ln

(
GDPPOTt
POPindex,t

)
xobst = yt − ypotentialt
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πobs
t = 100ln

(
GDPDEFt

GDPDEFt−1

)
Robs

t =
Fundst

4

where

• GDPC1 – Real GDP, Billions of Chained 2012 Dollars, Seasonally Adjusted Annual Rate.

• POPindex = CNP160V
CNP160V1992Q3

.

• CNP160V – Civilian non-institutional population, thousands, 16 years and above.

• GDPPOT – Real potential GDP, Billions of Chained 2012 Dollars, as reported by the US

Congressional Budget Office.

• GDPDEF – GDP-Implicit Price Deflator, 2012 = 100, Seasonally Adjusted.

• Funds – Federal funds rate, daily figure averages in percentages.

E Forecast Errors for More Complicated Data-Generating

Processes

The purpose of this section is to get a sense of the variables one should control for when regressing

ex-post forecast errors on current inflation or current and past inflation forecasts, such that the

omitted variable bias is limited as much as possible. Hence, I think of a simpler, non-time-varying

process describing the dynamics of the state vector, relative to the one in (35), i.e., let

St = D1St−1 +D2Et (E.1)

where St and Et are as defined in the main text. Hence, the h-period-ahead forecast error is given

by

St+h − ẼtSt+h = Dh
1St − nhΓh+1St−1 + Et+1:t+h (E.2)

where Et+1:t+h is a function of the i.i.d. demand, cost-push, and monetary innovations from period

(t+ 1) to (t+ h), and Γ is a diagonal matrix. Isolating the inflation forecast error yields

π̂t+h − Ẽtπ̂t+h = (Dh
1 )πSt − nhγh+1

π π̂t−1 + Et+1:t+h (E.3)
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where (Dh
1 )π is the second row of matrix Dh

1 (since inflation is positioned second in the state vector

St). We have that

(Dh
1 )πSt = f(π̂t, x̂t−1, π̂t−1, R̂t−1, et−1:t, ut−1:t, ε

v
t−1:t) (E.4)

and

π̂t+h − Ẽtπ̂t+h = g(π̂t, x̂t−1, π̂t−1, R̂t−1, et−1:t, ut−1:t, ε
v
t−1:t) (E.5)

where f(.) and g(.) are linear functions. Therefore, to minimize biases coming from omitted

variables from regressing equation (17), I control for the first lag of the output gap, inflation, and

nominal rates, and the current and first lag of the demand, cost-push, and monetary shock.

To find out the relevant controls for the regression in (38) the inflation ex-ante forecast revisions

can be written as

Ẽtπt+h− Ẽt−1πt+h = nhγh+1
π (π̂t−1−nγπ̂t−2) = ff(x̂t−2, π̂t−2, R̂t−2, et−2:t−1, ut−2:t−1, ε

v
t−2:t−1) (E.6)

where ff(.) is a linear function. Further, I rewrite the ex-post inflation forecast error as

π̂t+h − Ẽtπ̂t+h = gg(x̂t−2, x̂t−2, R̂t−2, et−2:t, ut−2:t, ε
v
t−2:t)

= gg(Ẽtπt+h − Ẽt−1πt+h, x̂t−2, R̂t−2, et−2:t, ut−2:t, ε
v
t−2:t)

(E.7)

where gg(.) is a linear function. Therefore, to minimize biases coming from omitted variables in

regression (38), I control for the second lag of the output gap and nominal rates, as well as for the

current, first, and second lags of the demand, cost-push and monetary shock.

Table 8 exhibits a full report on the estimates of (38) and (39) after the added control variables.
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Ex-ante forecast revisions Current inflation

(1) (2) (3)
π̂t+3 − Ẽtπ̂t+3

Ẽtπ̂t+3 − Ẽt−1π̂t+3 2.442***
(0.261)

π̂t 0.267 -1.002**
(0.441) (0.456)

x̂t−1 0.220*** -0.021
(0.073) (0.057)

π̂t−1 0.208 1.102***
(0.415) (0.369)

R̂t−1 -0.089*** -0.044
(0.032) (0.038)

x̂t−2 0.212***
(0.079)

R̂t−2 -0.114***
(0.024)

êt 0.125*** 0.062 0.202***
(0.039) (0.057) (0.056)

ût 1.740*** 0.967 4.294***
(0.175) (1.358) (1.328)

εvt 0.708 0.545 0.622**
(0.454) (0.371) (0.254)

êt−1 0.021 -0.075 0.015
(0.037) (0.056) (0.051)

ût−1 -0.056 -0.127 -0.343*
(0.199) (0.250) (0.199)

εvt−1 -0.212 0.308 -0.085
(0.224) (0.305) (0.188)

êt−2 -0.084
(0.062)

ût−2 -0.003
(0.162)

εvt−2 0.647*
(0.358)

Constant 0.523*** 0.362* 0.749***
(0.164) (0.192) (0.163)

R-squared 0.765 0.757 0.612

Time period 1966:Q1 - 2018:Q3 1961:Q3 - 2018:Q3 1981:Q1 - 2018:Q3
Newey-West standard errors in parentheses.
*** Robust at 1%, ** Robust at 5%, * Robust at 10%.

Table 8: Estimates of regressions in (38) and (39) on simulated forecasting data w/
added controls. 64
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