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Abstract

In this paper we propose a hierarchical shrinkage approach for multi-country VAR models. In implemen-
tation, we consider three different scale mixtures of Normals priors — specifically, Horseshoe, Normal-
Gamma, and Normal-Gamma-Gamma priors. We provide new theoretical results for the Normal-Gamma
prior. Empirically, we use a quarterly data set for the G7 economies to examine how model specifications
and prior choices affect the forecasting performance for GDP growth, inflation, and a short-term interest
rate. We find that hierarchical shrinkage, particularly as implemented with the Horseshoe prior, is very
useful in forecasting inflation. It also has the best density forecast performance for output growth and the
interest rate. Adding foreign information yields benefits, as multi-country models generally improve on
the forecast accuracy of single-country models.
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1. Introduction

Since the seminal studies by Doan, Litterman, and Sims (1984) and Litterman (1986), Bayesian vector
autoregressions (VARs) have become workhorse models in macroeconomic forecasting. Reduced-form
VARs are richly parameterized, which brings the risk of overfitting the data and large uncertainty for
the future path projected by the model. It is well known that shrinkage generally improves forecasting
performance, and Bayesian methods offer an effective way to shrink parameters by using prior information.

Due to increasing international trade and financial flows in recent decades, individual countries are
more and more interlinked, which may make it helpful to use multi-country forecasting models and meth-
ods. The VAR literature includes three main approaches: (1) factor-augmented VAR models; (2) global
vector autoregressive (GVAR) models; and (3) multi-country VARs. In factor-augmented VAR models,
each country-specific VAR is augmented with “foreign variables,” constructed by using principal compo-
nents to extract common factors from all variables in foreign countries. In GVARs, used in studies such
as Pesaran, Schuermann, and Smith (2009), Cuaresma, Feldkircher, and Huber (2016), Huber (2016), and
Dovern, Feldkircher, and Huber (2016), each country-specific VAR is augmented with weakly exogenous
“foreign variables,” constructed by aggregating other countries’ variables with international trade flows as
weights. Then, country-specific models are combined to form a global model for the forecasting exercise.
In multi-country VARs, used in studies such as Canova, Ciccarelli, and Ortega (2007), Giannone and Re-
ichlin (2009), Korobilis (2016), Dées and Güntner (2017), and Koop and Korobilis (2019), variables for
multiple countries are jointly modeled, with various degrees of cross-country interactions. Shrinkage is
imposed to deal with the curse of dimensionality and is performed either by considering the panel dimen-
sion in the data or by simply treating the multi-country model as a large-scale BVAR and specifying priors
on model coefficients.

While conventional Minnesota-type priors are shown to be useful in macroeconomic forecasting and
are still widely used in the literature, other work suggests instead applying scale mixtures of Normals priors
or other alternatives on single-country BVARs. These prior specifications have advantages with respect to
the Minnesota-type prior, since they involve less hyperparameter tuning. They are also computationally
more efficient than spike-and-slab priors while enjoying similarly nice theoretical properties at the same
time. Huber and Feldkircher (2019) propose applying the Normal-Gamma prior, originally introduced by
Griffin and Brown (2010), to BVARs and show that it is beneficial for macroeconomic forecasting. Follett
and Yu (2019) use the Horseshoe prior, popular in the statistical literature (Carvalho, Polson, and Scott
(2010)), and find that it improves forecast accuracy in a single-country context. Cadonna, Frühwirth-
Schnatter, and Knaus (2020) propose a more general Normal-Gamma-Gamma prior, originated in Griffin
and Brown (2017), for time-varying parameter BVARs and find that it delivers more sparse parameter
estimates (but their study does not address forecast performance). Recently, there has been some limited
interest in applying these types of priors in multi-country VARs. Korobilis (2016) proposes the stochastic
search specification selection prior, which is a modification of the stochastic search variable selection prior
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proposed by George, Sun, and Ni (2008) applicable under some model restrictions. Korobilis finds that, to
design priors for better forecasting performance, it is important to consider the panel structure in the data.
However, the prior specifications considered there introduce dependence across equations, which makes
efficient estimation, such as the approach of Carriero, Clark, and Marcellino (2019), difficult to apply.

In this paper, we propose and examine the use of hierarchical shrinkage approaches in multi-country
VARs used for macroeconomic forecasting. In implementation, we use three different scale mixtures of
Normals priors that have been shown to be successful in single-country BVARs but have not been exam-
ined in multi-country models. These priors include the Horseshoe, Normal-Gamma, and Normal-Gamma-
Gamma specifications. The hierarchical shrinkage is able to handle the restrictions suggested in Canova
and Ciccarelli (2013) for multi-country VARs. It is shown to be computationally more efficient than the ex-
isting stochastic search specification selection prior and also delivers better forecasting performance than
the existing alternatives. We also provide some novel theoretical results for the Normal-Gamma prior.

Empirically, we work with a quarterly Group of Seven (G7) data set to examine the (point and den-
sity) forecasting ability of the new priors for three key macroeconomic variables: output growth, inflation,
and a short-term interest rate. We also compare forecasting accuracy across various models with other
specification choices. These models include: (1) country-specific VARs, either with Minnesota-type pri-
ors or hierarchical shrinkage proposed by Chan (2021); (2) country-specific factor-augmented VARs; (3)
GVARs; and (4) multi-country VARs in which shrinkage is performed either by imposing a particular
hierarchical factor structure on the model parameters or by using priors. Because stochastic volatility
(SV) has been found to be widely useful in macroeconomic forecasting with single-country models and
also improves performance in our results, we include SV in all of our model specifications. In addition,
since Cross, Hou, and Poon (2020) have raised some questions on the usefulness of scale mixtures of Nor-
mals priors in single-country macroeconomic forecasting, we consider alternative hierarchical shrinkage
approaches for a robustness check (the appendix includes these results in the multi-country context).

Our results show that hierarchical shrinkage of multi-country VARs, particularly as implemented with
the Horseshoe prior, improves macroeconomic forecast accuracy. It has outright advantages for inflation
forecasting, and the Horseshoe specification of a multi-country VAR also performs best in density forecasts
of output growth and the interest rate.1 In point forecast accuracy, the Normal-Gamma prior performs best
for output growth, whereas the factor shrinkage approach of Canova and Ciccarelli (2009) for multi-
country models performs best for the interest rate. These results indicate that, although the Normal-
Gamma-Gamma prior is more flexible than the Horseshoe prior and serves as a heavy-tailed extension
of the Normal-Gamma prior, these advantages do not yield consistently better forecasting performance.
We also find that modeling cross-country interactions achieves gains, as multi-country models generally

1Koop and Korobilis (2019) and Feldkircher, et al. (2021) also find that multi-country VARs are more beneficial for inflation
forecasting.
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outperform single-country models. As is common in the literature, we also find that models’ forecasting
performance varies over both countries and time. There are countries in which alternative models and
priors do better than our hierarchical shrinkage of a multi-country VAR implemented with the Horseshoe
prior, but there are no consistent patterns in which one of the alternatives is clearly better. In the interest of
brevity, the paper’s appendix provides results confirming that stochastic volatility is one important feature
to improve forecast accuracy in the multi-country context.

The paper is structured as follows. Section 2 briefly introduces multi-country VAR models, existing
prior specifications, and their challenges. Section 3 provides our new hierarchical shrinkage approach for
multi-country VARs, the prior specifications, and some new theoretical results. Section 4 gives a brief
summary of estimation algorithms and highlights some computational comparisons. Section 5 describes
the data, forecasting metrics, and design of our forecasting exercise. Section 6 presents the main empirical
results. Section 7 concludes. Technical details, sampling algorithms for various models, and additional
empirical results are provided in the appendix.

2. Multi-country VARs

2.1. The model

The multi-country VAR model we consider has the form

yi,t = ci + Bi(L)Yt−1 + ui,t, (1)

where i = 1, . . . ,N and t = 1, . . . ,T ; yi,t is a G × 1 vector of variables for each country i, and Yt =

(y′1,t, . . . , y
′
N,t)
′; ci is a G × 1 vector of constant terms for each i, Bi(L) =

∑p
`=1 Bi,`L`, where Bi,` are G × NG

coefficient matrices associated with lag `, ` = 1, ..., p; and ui,t is a G × 1 vector of disturbances. The lag
length is assumed to be p. Combining equations across countries, the VAR can be written in matrix form
as:

Yt = c +

p∑
`=1

B`Yt−` + ut, (2)

where c = (c′1, c
′
2, . . . , c

′
N)′, each B` has dimension NG × NG, and ut = (u′1,t, . . . , u

′
N,t)
′. For the stochastic

volatility (SV) specification, we assume that

ut = A−1H0.5
t εt, εi,t ∼ i.i.d. N(0, ING),
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where A−1 is a lower triangular matrix with diagonal elements equal to 1, and Ht is diagonal with generic
j-th element h j,t evolving as a random walk (RW):2

ln h j,t = ln h j,t−1 + e j,t, j = 1, . . . ,NG, (3)

where et = (e1,t, e2,t, . . . , eNG,t)′ and et ∼ N(0,Φ) with a full covariance matrix Φ as in Primiceri (2005).
The reduced-form error covariance matrix is Σt = A−1HtA−1′.

While some work has examined time-varying coefficient VAR models (see, e.g., Cogley and Sargent
(2005); Primiceri (2005); Koop, Leon-Gonzalez, and Strachan (2009); and D’Agostino, Gambetti, and Gi-
annone (2013)), we restrict attention to constant coefficient VAR models with stochastic volatility for two
reasons. First, time-varying coefficient VAR models are rarely used with more than 4-5 variables. This is
mainly due to computational complexity and makes recursive forecasting with MCMC methods computa-
tionally infeasible. Second, in a forecasting context, reaching parsimony (in terms of both controlling time
variation and getting rid of irrelevant regressors) in large models with time-varying coefficients remains a
challenging task.3

2.2. Existing priors

The specification in (2) can incorporate complex dynamic structures for each variable in different
countries. However, it also suffers from the curse of dimensionality due to the high dimensionality of the
parameter space. For instance, in the forecasting exercises we use data on 3 dependent variables (G = 3)
for the G7 countries (N = 7) and four lags (p = 4). A multi-country VAR with such choices would have
1,785 VAR coefficients. Thus, shrinkage is desirable.

In a single-country framework, the macro VAR literature generally relies on Bayesian shrinkage by
imposing a Minnesota-type prior (Litterman (1986)) on the VAR coefficients. Applied analogously in our
multi-country setup, the prior for B is vec

(
B
)
∼ N(vec(µ

B
),ΩB), and ΩB is set to

Var
(
B(ii)
`

)
=
λ1

`λ3
, ` = 1, . . . , p (4)

Var
(
B(i j)
`

)
=
λ2

`λ3

σ2
i

σ2
j

, ∀i , j, ` = 1, . . . , p, (5)

2The RW specification may come at the cost of generating excessively thick forecast densities. Alternatively, the SV process
(3) could be specified as an AR(1) process, and ei j,t could be assumed to be t-distributed to incorporate fat tails. However, Clark
and Ravazzolo (2015) find that these alternative specifications fail to dominate a baseline RW specification.

3To have parameter time variation in large VARs, Koop and Korobilis (2019) introduce forgetting factors, and Kapetanios,
Marcellino, and Venditti (2019) use non-parametric methods combined with stochastic coefficient constraints. Yet, both meth-
ods become computationally infeasible if combined with the commonly used stochastic volatility specification. Gefang, Koop,
and Poon (2022) develop variational Bayes methods (which utilize approximations of conventional posteriors) that permit large
models with time-varying parameters and volatilities. Empirically, since forecasts are computed recursively, we implicitly
consider the potential time variation of parameters in the model.
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where B(i j)
` denotes the element in row i and column j of the matrix B`, λ = (λ1, λ2, λ3)′ is the collection

of prior hyperparameters, and σ2
i , σ2

j are local scale parameters. For each element i of the intercept vector
c, it is common to specify an uninformative prior by setting the prior variance equal to 100 × σ2

i .
In view of the fact that the usual Minnesota-type prior ignores the panel structure in the data, Angelini,

et al. (2019) recently proposed a modified Minnesota-type shrinkage prior to carefully deal with the panel
structure. In particular, a different hyperparameter λ4 is introduced in (5) on coefficients related to other
countries’ variables. Angelini, et al. (2019) apply this approach in a forecasting exercise with a Euro area
data set and find that it provides some gains. However, this still belongs to the class of Minnesota-type
priors. This may come with costs due to parameter uncertainty, since the hyperparameters (λ1, λ2, λ3, λ4)
and local scale parametersσ2

i , σ2
j (commonly obtained from AR(1) estimates) are set to some pre-specified

values in the estimation.4

Since there are a variety of restrictions of interest in multi-country VARs, another strand of the liter-
ature suggests designing shrinkage priors to explore these restrictions. Consider the coefficient matrix Bl

defined in (2):

B` =


B11,` · · · B1N,`
...

. . .
...

BN1,` · · · BNN,`

 , ` = 1, . . . , p, (6)

where each block Bi j,`, i, j = 1, . . . ,N, has dimension G ×G. According to Canova and Ciccarelli (2013),
it is interesting to check whether certain restrictions exist and what their implications are. For example,
cross-sectional heterogeneity (CSH) exists when ∃ i, j, i , j, such that Bii,l , B j j,l for some l and ci , c j.
Dynamic interdependencies (DI) occur when at least one block Bi j,l , 0 for a given i, l and i , j.5

In a special case with one lag (p = 1) and no SV, Koop and Korobilis (2016) develop the stochastic
model specification search (SSSS) prior:

vec(BDI
i j,1) ∼ (1 − γDI

i j )N(0, τ2
i j × cDI × IG) + γDI

i j N(0, τ2
i j × IG), i, j = 1, . . . ,N, i , j (7)

vec(BCSH
ii,1 ) ∼ (1 − γCSH

ii )N(vec(B j j,1), ξ2
i j × cCSH × IG) + γCSH

ii N(vec(B j j,1), ξ2
i j × IG), i, j = 1, . . . ,N, (8)

where γDI, γCSH are indicators, τ2
i j, ξ

2
i j are prior variance parameters, and cDI, cCSH are small constants to

make prior variances smaller in the spike components. The priors in (7)-(8) provide an extension of the
stochastic search variable selection (SSVS) prior in George, Sun, and Ni (2008) to multi-country VARs.
It is the first attempt to examine the existence (or absence) of certain dependencies and homogeneities for

4Angelini, et al. (2019) also consider a conjugate Minnesota prior in which they set hyperparameters by maximizing the
marginal likelihood, as in Giannone, Lenza, and Primiceri (2015). For the non-conjugate prior, they set λ2 = 1, λ4 = 1/2, and
the others to the posterior mode of the values obtained by the methodology of Giannone, Lenza, and Primiceri (2015).

5There is one other class of possibly important restrictions: static interdependencies (SI), which occur when the covariance
matrix Σt is not block diagonal. However, it is not easy to implement these restrictions when stochastic volatility is allowed.
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coefficients in multi-country VARs. If γDI
i j = 0, the coefficients on the lags of all country j variables for

country i are set to very small values near zero. If γCSH
i j = 0, the coefficients on the lags of all country

i variables for itself are to be concentrated at coefficients related to country j. Korobilis (2016) uses
this prior in a multi-country forecasting exercise for bond yields of Eurozone countries and finds that it
performs comparably with alternative shrinkage priors.

In terms of MCMC estimation, application of the DI restrictions is relatively straightforward, while
application of the CSH restrictions is non-trivial, since we seek to use priors to push the model to-
ward equality of matrices Bii,` = B j j,` for i , j and ` = 1, . . . , p. Koop and Korobilis (2016) pro-
vide a novel solution to the problem, but it still introduces prior dependence across equations, which
also appears in the conditional posteriors, making it difficult to apply efficient algorithms as in Car-
riero, Clark, and Marcellino (2019) to estimate the model equation by equation. In addition, the pri-
ors of (7)-(8) involve tuning many hyperparameters. For example, if we specify hyper-priors to infer
γDI

i j ∼ Bernoulli(πi j), γCSH
ii ∼ Bernoulli(πii), and τ2

i j ∼ Ga(a1, ai j), ξ2
i j ∼ Ga(b1, bi j), then we need to specify

many more hyperparameters (πi j, πii, a1, b1, ai j, bi j) related to those hyper-priors. Moreover, in contrast to
the case of the scale mixtures of Normals priors we use, the theoretical properties are not known.

The next section introduces hierarchical shrinkage priors for multi-country VARs. Our priors make
efficient MCMC algorithms easy to apply, without the need to tune many hyperparameters, and with the
ability to push the model toward both CSH and DI restrictions.

3. Hierarchical Shrinkage in Multi-country VARs

The hierarchical shrinkage we consider is inspired by recent advances in the literature on scale mixtures
of Normals priors and their successful applications in single-country Bayesian VARs. Since the seminal
work by Carvalho, Polson, and Scott (2010), a variety of scale mixtures of Normals priors have been pro-
posed in the literature. These priors include the Horseshoe prior (Carvalho, Polson, and Scott (2010)), the
Normal-Gamma prior (Griffin and Brown (2010)), the Normal-Gamma-Gamma prior (Griffin and Brown
(2017)), and several other alternatives. Compared to a conventional Normal prior, these prior distributions
are spiked at the origin to provide severe shrinkage towards zero for the parameters of interest, while at
the same time they also have heavy-tails to allow little shrinkage of, say, intercept terms in (2). In addi-
tion, these priors have computational advantages compared to the spike-and-slab prior (Carvalho, Polson,
and Scott (2009)). Applications to single-country Bayesian VARs mostly focus on the Normal-Gamma
prior; see, for instance, Huber and Feldkircher (2019) and Korobilis and Pettenuzzo (2019). Follett and
Yu (2019) introduce the Horseshoe prior. These papers find that scale mixtures of Normals priors serve as
competing alternatives to Minnesota priors, in terms of both forecasting and structural analysis.

For setting up priors on the parameters associated with model (2), let βi = vec([ci, Bii,1, . . . , Bii,p]′), i =

1, . . . ,N, and let βCSH = (β1, . . . , βN)′ be the collection of coefficients related to CSH restrictions. Due to

7



the forecasting focus, we consider further splitting βCSH into three blocks:

βCSH
c =

(
c′1, c

′
2, · · · , c

′
N
)′
,

βCSH
AR =

(
diag(B11,1), diag(B22,1), . . . , diag(BNN,1), . . . , diag(B11,p), . . . , diag(BNN,p)

)
,

βCSH
o = βCSH \ {βCSH

c , βCSH
AR },

where βCSH
o includes the set of parameters related to cross-variable lags that are in βCSH and not re-

lated to the intercept terms and own lags. Similarly, let β∗il = vec([Bi1,l, . . . , Bii−1,l, Bii+1,l, . . . , BiN,l]′), i =

1, . . . ,N, l = 1, . . . , p, and let βDIi = (β∗i1, . . . , β
∗
ip)′ be the collections of coefficients related to DI restric-

tions in country i. Finally, define α as the free elements in A−1. We have N + 4 blocks of coefficients:
βCSH

c , βCSH
AR , βCSH

o , βDI1 , . . . , βDIN , α.
Using β as a generic notation for one block of coefficients, the hierarchical shrinkage we consider takes

the form:
β j ∼ N(0, λω j), ω j ∼ F , (9)

where j = 1, . . . , dim(β) and F denotes some pre-specified distribution for the local shrinkage parameter
ω j, which will be defined later. λ serves as a global shrinkage parameter, which can be specified as an
additional hyper-prior to learn the values from the data. Taking βDI1 as an example, because λ loads for
all elements in βDI1 , if λ → 0, all βDI1 are assumed to be identical (centered at zero), which implies that
there is no dynamic interdependence for country 1. It is worth mentioning that, since both local and
global shrinkage parameters are fully learned from the data, the hierarchical shrinkage approach offers
more flexibility than the conventional Minnesota prior, in which all hyperparameters are fixed at some
pre-specified values.

3.1. Choices of the priors

What remains is to specify F and hyper-priors on the global shrinkage parameters. Here we focus
on three different scale mixtures of Normals priors, since they have been applied successfully in single-
country Bayesian VARs.6

The first prior we consider is the Horseshoe prior:

β j|ω
2
j ∼ N(0, ω2

j), ω
2
j |γ

2
j ∼ G

(1
2
, γ2

j
)
, γ2

j ∼ G
(1
2
, λ

)
, (10)

where G denotes the Gamma distribution.7 We use the parameterization of the Horseshoe prior as in

6Recently, there is a growing interest in the Dirichlet-Laplace prior; see Koop, et al. (2020) for an application. However, we
do not consider it here, since the Dirichlet-Laplace prior is the scale mixture of the Laplace prior, which is not the main focus
of this paper.

7We use the parameterization of the G(a, b) distribution with pdf given by f (y) ∝ ya−1 exp(−by).

8



Armagan, Clyde, and Dunson (2011). It can be shown that the marginal distribution ofω2
j follows C+(0, 1),

where C+(0, 1) denotes a half-Cauchy distribution on R+ with scale parameter 1, and λ serves as the global
shrinkage parameter, which is the original parameterization in Carvalho, Polson, and Scott (2010) and used
in Follett and Yu (2019). The prior (10) has computational advantages, since the conditional posteriors
are conjugate (Makalic and Schmidt (2015)), making MCMC estimation straightforward. For the global
shrinkage parameter λ, we also follow Armagan, Clyde, and Dunson (2011) and set λ ∼ C+(0, 1).

The second prior we consider is the Normal-Gamma prior:

β j|ω
2
j ∼ N(0, ω2

j), ω
2
j ∼ G

(
aω,

aωκ2

2
)
. (11)

The above, with a slightly different parameterization, was first introduced in Griffin and Brown (2010)
and has recently been applied in single-country Bayesian VARs (Huber and Feldkircher (2019)) and time-
varying parameter models (Bitto and Frühwirth-Schnatter (2019)). Using Monte-Carlo simulations, Bitto
and Frühwirth-Schnatter (2019) find that aω controls the behavior in the neighborhood of the origin of
the marginal prior distribution of p(β j) and κ2 is the global shrinkage parameter. It can also be shown
that (11) simplifies to Bayesian Lasso (Park and Casella (2008)) if aω = 1 (Griffin and Brown (2010)).
To infer hyperparameter values, we follow Bitto and Frühwirth-Schnatter (2019) to set aω ∼ E(b) and
κ2 ∼ G(d1, d2), where E denotes the exponential distribution.

The final prior we consider is the Normal-Gamma-Gamma prior:

β j|τ
2
j , λ

2
j ∼ N

(
0, φ

τ2
j

λ2
j

)
, τ2

j ∼ G(a, 1), λ2
j ∼ G(c, 1), (12)

where φ = 2c/(aκ2). The above, again with a slightly different parameterization, was first introduced
in Griffin and Brown (2017). Cadonna, Frühwirth-Schnatter, and Knaus (2020) apply it to time-varying
parameter models. They show that the specification in (12) is very general and nests some commonly used
shrinkage priors. They also provide a comprehensive analysis of the properties of the Normal-Gamma-
Gamma prior. It can be shown that a controls the behavior in the neighborhood of the origin and c

controls the asymptotic tail behavior of the marginal prior distribution of p(β j). φ is the global shrinkage
parameter. Using both simulated and real macroeconomic data, they find that the specification in (12)
delivers relatively sparse solutions in time-varying parameter models. However, no attempts have been
made so far to examine its performance for macroeconomic forecasting. Following Cadonna, Frühwirth-
Schnatter, and Knaus (2020), we set 2a ∼ B(αa, βa), 2c ∼ B(αc, βc), and κ2|a, c ∼ F(2a, 2c) to learn these
hyperparameter values, where B denotes the Beta distribution and F is the standard F distribution.
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3.2. Comparisons of the priors

Theoretically, the scale mixtures of Normals priors are typically compared in terms of the concen-
tration properties at the origin and the asymptotic tail behavior. Results for the Horseshoe prior and
the Normal-Gamma-Gamma prior can be found in Carvalho, Polson, and Scott (2010) and Cadonna,
Frühwirth-Schnatter, and Knaus (2020), respectively. However, no results are available for the Normal-
Gamma prior. In the following theorem, we formally characterize the tail behavior and concentration
properties for the Normal-Gamma prior.

Theorem 1. Let β j ∼ NG(aω, κ2), whereNG is the Normal-Gamma prior parameterized as in (11). Then,

the marginal density πNG(β j) satisfies the following:

• Concentration properties: As
∣∣∣β j

∣∣∣→ 0, we have

1. if aω > 1
2 , πNG(β j) = O(1);

2. if 0 < aω < 1
2 , πNG(β j) = O

(
1

|β j|
1
2 −aω

)
;

3. if aω = 1
2 , πNG(β j) = O

(
1

log
(
|β j|

));
• Asymptotic tail behavior: As

∣∣∣β j

∣∣∣→ ∞, we have πNG(β j) = O
(
|β j|

aω−1

exp
(√

aωκ2|β j|
)).

Proof. See Appendix A. �

The results for Horseshoe, Normal-Gamma, and Normal-Gamma-Gamma priors in terms of both
asymptotic tail behavior and concentration properties are summarized in Table 1. Clearly, Normal-Gamma
and Normal-Gamma-Gamma priors share similar concentration properties, possessing unbounded density
near the origin if either 0 < aω < 1

2 or 0 < a < 1
2 . Both priors diverge to infinity with a polynomial order,

much faster than the Horseshoe prior (with a logarithmic order). For the tail behavior, it follows from
straightforward calculation that lim|β j|→∞ πNG(β)/β−2 = 0 and lim|β j|→∞ πNGG(β)/β−2 = ∞ if 0 < c < 1

2 ,
which implies that the Normal-Gamma prior has lighter tails than the Horseshoe prior, but the Normal-
Gamma-Gamma prior has heavier tails than the Horseshoe prior. The Normal-Gamma-Gamma prior is the
only one that can achieve a polynomial rate of convergence in both the tails and the origin. It extends the
Normal-Gamma prior by having heavier tails. Compared to the Horseshoe prior, it puts more probability
mass at the origin and offers more flexibility in modeling tails by the hyperparameter c.
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Table 1: Tail behavior and concentration around zero for Horseshoe, Normal-Gamma, and Normal-Gamma-Gamma priors

Tail Decay Concentration at zero

Horseshoe O
(

1
β2

j

)
O
(

log
( 1
|β j |

))
Normal-Gamma O

(
|β j |

aω−1

exp
(√

aωκ2 |β j |
) ) O(1) if aω > 1

2

O
(

1

|β j |
1
2 −aω

)
if 0 < aω < 1

2

O
(

1
log

(
|β j |

) ) if aω = 1
2

Normal-Gamma-Gamma O
(

1
β2c+1

j

)
O(1) if a > 1

2

O
(

1
|β j |

1−2a

)
if 0 < a < 1

2

O
(

1
log

(
|β j |

) ) if a = 1
2

Empirically, Cadonna, Frühwirth-Schnatter, and Knaus (2020) use Euro area macroeconomic data and
find that the Normal-Gamma-Gamma prior achieves more sparse parameter estimates than other shrinkage
priors in a time-varying parameter model framework. However, as pointed out in Giannone, Lenza, and
Primiceri (2021), sparsity does not necessarily imply good forecasting performance. As we shall see,
heavy tails in the prior distributions of the coefficients is an important feature to obtain better forecasting
performance in multi-country VARs, since the Horseshoe prior forecasts well in many cases. The extension
to the Normal-Gamma-Gamma prior is less useful. The light-tailed Normal-Gamma prior is useful for
output growth forecasts in some cases, but it is outperformed by Horseshoe and Normal-Gamma-Gamma
priors for inflation and interest rate forecasts.

3.3. Other competing models

In addition to the multi-country VARs mentioned above, we also consider several alternative models
commonly used in macroeconomic forecasting. These models include country-specific VARs with SV in
which priors are specified as either Minnesota-type or hierarchical Normal-Gamma as in Chan (2021);8

country-specific factor-augmented VAR (FAVAR) models with SV; global VAR (GVAR) with SV; and
multi-country VAR-SV with factor shrinkage as in Canova and Ciccarelli (2009). We use the country-
specific VAR-SV with Minnesota prior as the benchmark, as it is the most commonly used model in the
macroeconomic forecasting literature. A description of all the models under comparison is provided in
Table 2. More details on the specification of the various models and associated priors can be found in the
Appendix.

8We use a specification from a published paper as a competitor. In Section 6.4, we compare forecast performance to country-
specific VAR-SV with the hierarchical prior specification proposed in this paper. We find it delivers more accurate forecasts
than Chan (2021), but it is still outperformed by the multi-country VAR-SV with hierarchical shrinkage.
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Table 2: List of competing models

Model Description

CVAR country-specific VAR(p) with Minnesota prior

CVAR-H country-specific VAR(p) with hierarchical shrinkage as in Chan (2021)

CFAVAR country-specific factor-augmented VAR(p), with factors extracted from foreign variables

GVAR Global VAR(p)

CC parameters are assumed to follow an exact factor structure, as in Canova and Ciccarelli (2009)

MIN priors are Minnesota-type as in Angelini, et al. (2019)

SSSS stochastic specification search and selection prior as in Korobilis (2016)

HS hierarchical shrinkage with Horseshoe prior

NG hierarchical shrinkage with Normal-Gamma prior

NGG hierarchical shrinkage with Normal-Gamma-Gamma prior

Note: All the models include SV.

4. Estimation Algorithms

4.1. Estimation outline

We estimate all of the models listed in Table 2 using Markov Chain Monte Carlo (MCMC) methods.
All of our estimates are based on 30,000 posterior draws, with the first 10,000 discarded and the remaining
20,000 post-burn-in draws retained. This section provides a brief overview of our methods. The Appendix
and the studies cited below provide more details on algorithms and priors.

For country-specific VARs with SV and factor-augmented VARs with SV, we use the non-conjugate
Minnesota-type prior. The Gibbs sampling details of the country-specific VAR with SV are provided in
Carriero, Clark, and Marcellino (2019). The intercept and autoregressive coefficients are estimated by the
corrected triangular algorithm proposed in Carriero, et al. (2022).9 Stochastic volatility is estimated with
the algorithm in Del Negro and Primiceri (2015). For free elements in A, we use the algorithm as in Cogley
and Sargent (2005). The Gibbs sampler used in country-specific VARs with SV can be easily extended to
allow for augmented factors extracted from foreign variables. For the GVAR, we use a Minnesota-type
prior similar to Huber (2016); details of the algorithms are provided there. For the CVAR-H, CFAVAR,
and GVAR specifications, we follow Chan (2021) and put hyper-priors on the overall shrinkage parameters
related to own lags and cross-variable lags. An additional step is needed to update these parameters. In
the case of the CVAR-H model, we use the default setting as in Chan (2021), and sampling details can be
found there.

To estimate the multi-country VAR with SV and the factor shrinkage approach (the CC model), we use

9A summary of the corrected triangular algorithm is provided in Appendix C.4.
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an exact factorization as in Canova, Ciccarelli, and Ortega (2007) and Korobilis (2016). Algorithms are
provided in these papers. SV can be easily added to this model and estimated similarly as in the country-
specific case. In the case of the MIN specification that features a Minnesota-type prior, the algorithm can
be obtained similarly, but for the Minnesota-type prior we use a specification similar to Angelini, et al.
(2019). We also put a hyper-prior on the overall shrinkage parameter related to coefficients on lagged
foreign variables. Finally, for the three hierarchical shrinkage approaches (HS, NG, and NGG), the Gibbs
samplers are again very similar to those in other models, but additional blocks of sampling are needed
to update the hyperparameters. In particular, the details of the NG and NGG priors can be adapted as in
Bitto and Frühwirth-Schnatter (2019) and Cadonna, Frühwirth-Schnatter, and Knaus (2020), respectively.
For the HS prior, since we use a different parameterization, algorithms in Follett and Yu (2019) cannot be
directly applied, but sampling schemes in Armagan, Clyde, and Dunson (2011) for univariate regression
models can be extended. We provide a summary of the MCMC algorithms below.

Algorithm 1: MCMC inference for multi-country VARs with SV

Step 1: initialization;
Step 2: for i = 1, . . . ,NG do

Use the corrected triangular algorithm in Carriero, et al. (2022) to obtain posterior draws from
VAR mean coefficients (intercepts and autoregressive coefficients);

end
Step 3: Use the algorithm in Cogley and Sargent (2005) to update the free elements in A;
Step 4: Update the hyperparameters in prior error covariance matrices, with conditional posteriors
that depend on prior choices, which can found in Appendix B.2;

Step 5: Use the algorithm in Del Negro and Primiceri (2015) to update the volatilities ht and error
variance of innovations Φh.

4.2. Computational efficiency

In this section, we briefly compare the computational efficiency of the MCMC algorithms for the multi-
country VARs (note that we omit the CC specification, which is covered elsewhere in the literature). To
assess the efficiency of the algorithms, we compute the potential scale reduction factors (PSRFs) detailed
in Brooks and Gelman (1998). A value of the PSRFs below 1.1 is generally taken as an indication that
the chain has satisfactory mixing properties. In Table 3, we report average PSRFs of parameters needed
to construct forecasts and obtain predictive distributions: vec

(
B
)
, α, and vech

(
Φ
)
. We use the data set as

in our forecasting exercises (21 variables) and all models include 4 lags. As is clear, our algorithms show
satisfactory mixing and convergence properties.
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Table 3: Mixing and convergence statistics (PSRFs) for multi-country VARs with 21 variables

MIN SSSS HS NG NGG

vec
(
B
)

1.005 1.002 1.002 1.002 1.008

α 1.004 1.004 1.002 1.002 1.004

vech
(
Φ
)

1.061 1.040 1.046 1.077 1.069

Notes: The lags are set to 4 for all models except SSSS, in which we use 1 lag, to match the specification of our forecasting application.

As we discussed above, to handle CSH restrictions, the SSSS prior introduces dependence across
equations, which prevents the use of an efficient sampling algorithm for the VAR’s coefficients. Table
4 shows the computational time (in seconds) necessary to produce 10,000 draws from the posteriors of
multi-country VARs including 21 variables. For this time comparison, all models include only 1 lag.
Clearly, the specification with the SSSS prior takes much longer to estimate, roughly 5 times slower than
the other specifications. In forecasting, computations can be extremely burdensome as estimation has to
be done many times. Interestingly, the added blocks of sampling for hyperparameters in our proposed HS,
NG, and NGG methods have very small additional computational costs compared to the Minnesota-type
prior of the MIN specification.

Table 4: Time (in seconds) taken to obtain 10,000 posterior draws for various multi-country VARs with 21 variables and 1 lag

MIN SSSS HS NG NGG

393 2077 367 324 427

5. Data and Forecast Evaluation

5.1. Data

We examine the forecast performance of the various specifications using a data set for G7 countries:
USA, UK, Germany (DEU), France (FRA), Italy (ITA), Japan (JPN), and Canada (CAN). In brief, we
build a 3-variable data set for each country at a quarterly frequency, with a sample period of 1973Q1-
2019Q4. The variables consist of real GDP growth, CPI inflation, and a short-term interest rate (the
3-month government bill rate). Table 5 presents the details of the data set along with the transformations
of the variables and the corresponding sources.10 Note that, like most other multi-country studies, we do
not consider real-time data and use data from the last available vintage, owing to the lack of availability of
real-time data for all seven countries.

10We obtain data from different sources due to data availability. In particular, the OECD provides data on real GDP growth
for Germany before 1991, and the Global Financial Database (GFD) provides very long coverage for interest rate data in many
countries.
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Table 5: Data description and variable transformation

Variable Data source Transformation

Real GDP growth OECD 4yt

CPI inflation FRED 400 log(yt/yt−1)

Interest rate GFD None

Notes: Because the OECD reports GDP growth as quarterly percent changes, we multiply the source data by 4 to obtain an approximate annual rate.
FRED refers to the database maintained by the Federal Reserve Bank of St. Louis. CPI inflation is measured with the annualized quarterly percent change
in the quarterly average level of the monthly CPI. GFD refers to the Global Financial Database, from which we obtain the 3-month government bill rate
and form the quarterly series as the average of values for the months of each quarter.

5.2. Forecast evaluation

We consider both point and density forecasts at horizons up to 12 steps (three years) ahead. Parameter
estimation and out-of-sample forecasting are done recursively, using an expanding window of data for
model estimation. The initial estimation sample runs from 1973Q1 to 1994Q4, the first available forecast
is for 1995Q1, and forecasts are generated up to 12 quarters ahead. Our last estimation sample runs from
1973Q1 to 2016Q4, yielding forecasts from 2017Q1 to 2019Q4.

For all the models considered here, the full distribution of the forecasts is not available in closed form,
and a simulation algorithm is required. At each post-burn-in draw, we compute the implied path of ŷ( j)

t+h to
generate a total of 20,000 draws from the predictive distribution.

Each point forecast is measured as the median of the predictive density. We evaluate them in terms of
root mean squared forecast error (RMSFE). Letting ŷt+h(M) be the forecast of the (scalar, for simplicity
of notation here) target variable yt+h made by model M and letting P be the total number of generated
forecasts, the RMSFE made by model M for horizon h is

RMSFEM
h =

√
1
P

∑
(ŷt+h(M) − yt+h)2. (13)

In the case of the density forecasts, we use the continuous ranked probability score (CRPS) proposed by
Gneiting and Raftery (2007), which is less sensitive to outliers than other density evaluation measures,
such as the log score. The CRPS metric for the each variable at time t for horizon h is defined as

CRPSt(F, yo
t+h) = EF

∣∣∣yd
t+h − yo

t+h

∣∣∣ − 1
2
EF

∣∣∣yd
t+h − ydd

t+h

∣∣∣, (14)

where F denotes the cumulative distribution function associated with the predictive density f , yo
t+h denotes

the observed value, and yd
t+h, ydd

t+h are independent draws from the predictive posterior distribution. Fol-
lowing Smith and Vahey (2016), we compute (14) by numerical integration methods, which are shown to
be more accurate and efficient. It is also worth mentioning that the lower the value of the CRPS, the more
accurate the predictive density is.
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Finally, to provide a statistical comparison of predictive accuracy, we apply the Diebold and Mariano
(1995) (DM) test for equal forecast accuracy. Yet, our models are nested in many cases. It is well known
that the DM test for nested models is undersized, and the results can be viewed as conservative for equal
forecast accuracy in finite samples. We follow Coroneo and Iacone (2020) to apply fixed-smoothing
asymptotics for the DM test, which is shown to deliver predictive accuracy tests that are correctly sized
even when the number of out-of-sample observations are small.

6. Empirical Results

6.1. Overall forecast performance

We first provide a summary of the forecast evaluation exercise in Table 6. As we have 7 countries and
forecasts are generated from 1 to 12 steps ahead, for each variable we have 84 forecasts from each model.
The table reports the number of cases in which each model is best, for all horizons, short horizons (h 6 6),
and long horizons (h > 6).

Based on Table 6, the results can be summarized as follows. First, our proposed hierarchical shrink-
age in multi-country VARs — used in the HS, NG, and NGG specifications — is quite helpful. This is
particularly true with the HS prior. It has the most wins for inflation in terms of both point and density
forecasts, and it is the best performing model for output growth and the interest rate in terms of density
forecasts. More specifically, for output growth, the HS prior is the best in 31 (out of 84) cases in terms of
density forecasts, compared to 15 cases for the second-best performing model, which is the multi-country
VAR with the NG prior. For inflation, the HS specification performs the best in more than half (44) of the
cases in terms of point forecasts and exactly half of the cases in terms of density forecasts. The benefits
are also more evident at long horizons, with 29 wins in point forecasts and 27 wins in density forecasts.
For the interest rate, the HS prior also has the most wins (22 cases) for density forecasts, compared to 16
cases obtained from the factor shrinkage approach of the CC specification. Second, the NG specification
is the best in nearly half (40) of the cases for output growth in terms of point forecasts, compared to 19
cases from the SSSS prior. The CC specification has the most wins for the interest rate in terms of point
forecasts. However, the NG and CC specifications do not forecast well for other variables. For instance,
for inflation at long horizons, the NG and CC specifications are never selected as best. SSSS never be-
comes the best for density forecasts of the interest rate. Third, including information across countries is
very useful particularly for output growth; the single-country CVAR and CVAR-H specifications are never
the best in point or density forecasts of output. Although the baseline single-country CVAR has the second
best forecast performance for inflation, with 13 wins in terms of point forecasts and 10 wins for density
forecasts, it is clearly outperformed by the multi-country HS specification. Regarding the CFAVAR and
GVAR specifications, they perform better for inflation than the other variables but also fall short of the
HS approach. The single-country CVAR-H specification that imposes hierarchical shrinkage works better
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for the interest rate than for output growth or inflation, but still falls short of other models, including the
multi-country HS specification.

Overall, the usefulness of hierarchical shrinkage for multi-country VARs in forecasting key macroeco-
nomic variables emerges rather clearly. In general, the HS prior is better than the other two scale mixtures
of Normals priors. As discussed in Section 3, with more hyperparameters controlling both origins and
tails, the NGG prior is theoretically more flexible than the HS prior, which also provides a heavy-tailed
extension of the NG prior. However, the theoretical advantages do not necessarily transfer to better fore-
casting performance, as it only ranks first (tied) in the case of density forecasts of the interest rate at short
horizons.

The summary results should be interpreted with care, as they are based on deterministic comparisons
(i.e., the best model could be not statistically better than the second-best model). They also ignore the
cross-country differences and the potential differences of model performance over time. Yet, they pro-
vide a broad overview of the models’ performance. More detailed results and statistical comparisons are
presented in the next subsection.
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Table 6: Summary statistics: number of cases when one model becomes the best

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth point density point density point density Inflation point density point density point density

CVAR 0 0 0 0 0 0 CVAR 13 10 7 7 6 3

CVAR-H 0 0 0 0 0 0 CVAR-H 0 2 0 2 0 0

CFAVAR 1 3 0 0 1 3 CFAVAR 8 6 3 2 5 4

GVAR 0 0 0 0 0 0 GVAR 3 10 2 3 1 7

CC 4 1 2 1 2 0 CC 0 0 0 0 0 0

MIN 5 7 1 2 4 5 MIN 8 9 8 8 0 1

SSSS 19 11 12 11 7 0 SSSS 4 3 4 3 0 0

HS 9 31 4 9 5 22 HS 44 42 15 15 29 27

NG 40 15 21 12 19 3 NG 1 2 1 2 0 0

NGG 6 16 2 7 4 9 NGG 3 0 2 0 1 0

Interest rate point density point density point density

CVAR 6 10 3 4 3 6

CVAR-H 6 13 6 9 0 4

CFAVAR 0 0 0 0 0 0

GVAR 0 1 0 1 0 0

CC 30 16 11 3 19 13

MIN 1 1 1 1 0 0

SSSS 8 0 2 0 6 0

HS 19 22 7 8 12 14

NG 10 11 8 7 2 4

NGG 4 10 4 9 0 1

Notes: See Table 2 for a list of models and Section 5.2 for the evaluation criteria.

6.2. Forecast evaluation: Cross-country differences

Building on the previous section’s overview of the forecast performance of the various model specifi-
cations, we turn now to a more quantitative assessment of forecast accuracy across models and countries.
To this end, Tables 7-9 report relative RMSFEs and CRPSs for all G7 countries at selected horizons,
h = 1, 4, 8, 12. Entries shaded in gray indicate the best performing model. RMSFEs and CRPSs in levels
from the benchmark model are reported in the appendix’s Table D.10.

Consider first the results for output growth. In general, the best performing specifications are the
multi-country VARs with scale mixtures of Normals priors (i.e., one of HS, NG, or NGG). In all but a few
cases, these specifications improve on the point and density forecast accuracy of the CVAR benchmark.
In general, hierarchical shrinkage of multi-country VARs, in particular with the HS prior, is rather a safe
option for forecasters, since it provides gains for both point and density forecasts in most of the cases.
The other specifications do not fare as well in improving on the accuracy of the benchmark. One of the
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better alternatives is the SSSS specification, which is best for a few countries at short horizons, although
in some other cases it is fairly strongly beaten by both other approaches (i.e., its performance is somewhat
uneven). The MIN specification — a multi-country VAR estimated with a Minnesota-type prior — is only
best in a few instances, all of them long-horizon forecasts for the USA. Similarly, the CC (factor-based
shrinkage of coefficients) and CFAVAR (factor-augmented single-country models) are selected as best for
no more than a few country/horizon/type of forecast combinations. Perhaps not surprisingly, the accuracy
of the CVAR-H specification (single-country with hierarchical shrinkage) is relatively similar to the CVAR
baseline, sometimes a little better and sometimes a little worse.

Moving to the inflation forecasts of Table 8, some commonalities and some different stories are both
evident. First, the multi-country HS specification continues to provide the best forecast in many cases,
particularly for Canada, France, Italy, and Japan at longer horizons, as well as for density forecasts for the
USA. Second, other competing specifications, including CFAVAR, GVAR, MIN, and SSSS, are occasion-
ally the best model, but they are relatively less accurate in other cases. For example, the SSSS specification
is the best for the USA at the 1-step-ahead and 4-steps-ahead horizons in terms of point forecasts and 4-
steps-ahead horizon in terms of density forecasts, but it does not provide gains to forecasts for Italy. Third,
results are somewhat different for the UK, perhaps because historical inflation in the UK is rather different,
with stronger peaks in the 1970s and a volatile period around the Black Wednesday crisis. In the case of
the UK, the best-performing forecasting model is the benchmark specification, with RMSFE and CRPS
ratios that exceed 1 in all but one case.

Turning to the interest rate forecasts, which are presented in Table 9, we again see similarities as well
as some different patterns. Sorting through differences across countries, the multi-country HS specification
continues to perform relatively well. For most, although not all, countries, forecasts from this model are
more accurate than the benchmark, by margins as large as 32 percent. The other two multi-country scale
mixtures of Normals priors — NG and NGG — don’t offer any clear advantages over the HS specification,
sometimes slightly to modestly improving accuracy and other times reducing accuracy (relative to the HS
prior). Of the other multi-country VAR specifications, the CC model performs better in forecasting interest
rates than output growth and inflation. For a few country/horizon combinations, the CC model is most
accurate, whereas for some others, it is notably less accurate than the CVAR benchmark. The performance
of the SSSS specification is also uneven, often much less accurate than the benchmark (e.g., for Canada)
but occasionally more accurate (e.g., 4- and 8-steps-ahead forecasts for Germany). The performance of
the GVAR is also inconsistent.
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Table 7: Out-of-sample output growth forecast performance: RMSFE and CRPS ratios in terms of CVAR benchmark, selected horizons

RMSFE Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.993 0.903 0.940 1.008 1.000 0.845 0.927 0.865 0.861 0.981 0.891 0.937 1.084 0.981 0.853 0.972 0.899 0.921

h = 4 1.007∗ 1.009 0.986∗ 1.117 0.991 0.992 0.945 0.954 0.947 0.998 0.987 0.990 1.141 0.982 0.977 0.996 0.994 0.995

h = 8 1.006 0.993 1.002 1.237 1.003 1.032 0.976 0.975 0.982 0.997 0.996 1.001 1.193∗ 1.002 1.019 0.985 0.974 0.983

h = 12 1.000 0.988 0.992 1.268 1.013 1.031 0.988 1.003 0.994 0.999 0.996 1.001 1.186 0.996 1.025 0.974 0.977 0.976

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.989 0.962 0.971 1.038 1.024 0.954 0.971 0.934 0.929 0.981 0.980 1.008 0.959 1.075 0.981 1.021 0.984 1.000

h = 4 0.991 0.991 0.996 1.190 0.977 1.032 0.933 0.908 0.920 0.999 0.986 1.017 1.070 1.007 1.010 0.957 0.935 0.952

h = 8 0.985∗ 1.002 0.996 1.290 0.993 1.117 0.931 0.919 0.924 1.004 1.002 1.027∗ 1.020 1.016 1.022∗ 0.961 0.953 0.955

h = 12 0.983 1.001 0.994 1.374 1.001 1.143∗ 0.932 0.921∗ 0.940 1.008 0.998 1.027∗ 0.967 1.020 1.003 0.971 0.980 0.980

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.005 0.983 0.993 1.128 1.014 0.948∗ 0.983 0.966 0.971 1.019 1.018 1.009 0.924 1.136 0.954 1.000 1.051 1.015

h = 4 0.991 0.986 0.996 1.122 0.988 0.978 0.978 0.954 0.966 1.003 1.002 1.005 1.075 0.974 0.943 0.949 0.930 0.936

h = 8 0.994 0.995 0.996 1.126 0.999 0.979 0.972 0.963 0.958 1.013∗ 1.006 1.002 1.099 0.981 0.959 0.972 0.965 0.961

h = 12 0.990 0.991 0.993 1.102 0.990 1.010 0.969∗ 0.960 0.956 1.007 1.002 1.001 1.206 1.001 0.959 0.989 1.003 0.988

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.989 0.972 1.010 1.080 1.027 0.921 0.977 0.936 0.947

h = 4 0.985 1.016 1.025 1.223 0.968 0.965 0.973 0.966 0.965

h = 8 0.994 1.016 1.020 1.386 0.962 0.962 0.984 1.013 0.992

h = 12 0.986 1.027∗ 1.035 1.499∗ 0.974 0.976 0.986 1.001 0.990

CRPS Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.994 0.935 0.953 1.053 0.990 0.880 0.943 0.902 0.894 0.997 0.913 0.961 1.169∗ 0.972 0.880∗ 0.974 0.933 0.947

h = 4 1.009 1.011 0.978∗ 1.167 0.989 0.971 0.943 0.956 0.951 1.008 0.989 0.991 1.332∗ 0.982 0.969 1.002 1.005 1.004

h = 8 1.005 0.994 0.996 1.314 1.020 1.017 0.981 0.986 0.993 1.008 0.997 0.998 1.432∗ 1.000 1.011 0.977 0.982 0.980

h = 12 1.005 0.989 0.989 1.390∗ 1.020 1.054 0.990 1.016 0.997 1.009 1.000 0.998 1.480∗ 0.995 1.043 0.980 1.002 0.987

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.994 0.968 0.980 1.065 1.002 0.947 0.964 0.946 0.932 0.994 0.994 1.023 0.978 1.062 0.995 1.002 1.005 0.996

h = 4 0.984 0.997 0.990 1.233 0.968 1.007 0.922 0.907 0.915 1.000 0.996 1.025 1.098 1.013 1.003 0.958 0.944 0.957

h = 8 0.974∗ 1.006 0.996 1.383 0.988 1.089∗ 0.915 0.918 0.916 0.998 1.013 1.034 1.121 1.019 1.029 0.951 0.961 0.952

h = 12 0.973∗ 0.997 0.996 1.493 0.997 1.133∗ 0.924 0.921 0.929 1.007 0.992 1.030 1.150 1.008 1.039 0.954 0.976 0.963

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.998 0.983 0.993 1.125 1.010 0.955∗ 0.979 0.969 0.960 1.031 1.020 1.008 0.976 1.114 0.970 1.000 1.055 1.018

h = 4 0.991 0.986 0.996 1.251∗ 0.990 0.978 0.973 0.952 0.958 1.008 1.005 1.003 1.149 0.971 0.945 0.944 0.937 0.947

h = 8 1.012 0.993 0.997 1.316∗ 1.009 0.973 0.974 0.972 0.959 1.013 1.004 0.998 1.245 0.986 0.977 0.968 0.975 0.976

h = 12 1.008 0.992 0.994 1.294∗ 0.995 0.987 0.970 0.975 0.959 1.013 0.999 1.004 1.384∗ 1.009 1.030 0.990 1.030 1.007

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.991 0.987 1.009 1.127∗ 1.004 0.945 0.965 0.942 0.944

h = 4 0.989 1.024 1.024 1.319∗ 0.973 0.976 0.973 0.978 0.976

h = 8 0.987 1.024 1.022 1.506∗ 0.958 0.970 0.978 1.007 0.992

h = 12 0.990 1.033 1.035 1.628∗ 0.971 1.020 0.967 0.997 0.977

Notes: The models are detailed in Table 2. For each specification, the upper panel presents the ratios of RMSFEs relative to the CVAR benchmark. The
lower panel presents the ratios of CRPSs relative to the CVAR benchmark. Values below 1 indicate the model outperforms the benchmark and vice versa.
Gray shading indicates the best performing model. To provide a rough gauge of whether the two forecasts have significantly different accuracy, we use
a Diebold-Mariano t-statistic with fixed-smoothing asymptotics as in Coroneo and Iacone (2020). Differences in accuracy that are statistically different
from zero are denoted by an asterisk, corresponding to the 5 percent significance level.
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Table 8: Out-of-sample inflation forecast performance: RMSFE and CRPS ratios in terms of CVAR benchmark, selected horizons

RMSFE Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.000 1.005 1.019 1.037 0.979 0.998 0.978 0.962 0.965 0.999 0.996 0.988 1.136∗ 0.996 1.062 1.004 1.023 1.020

h = 4 1.000 1.019 1.037 1.063 0.931 0.996 0.937 0.965 0.956 1.010 0.950 0.955 1.237∗ 0.947 1.010 0.968 1.004 0.982

h = 8 1.001 1.053 0.990 1.134 0.934 1.086 0.901 1.024 0.934 1.027 0.914 0.925 1.580∗ 0.929∗ 1.020 0.934 0.985 0.962

h = 12 0.978 1.029 0.955 1.228 0.932 1.185 0.845 0.998 0.887 1.017 0.900 0.899 1.937 0.934 1.091 0.897∗ 0.964 0.928

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.003 0.999 1.006 1.039 0.998 1.048 0.996 1.019 0.999 1.004 0.998 1.014 1.040 1.005 1.021 1.010 1.030 1.002

h = 4 1.017 1.029 1.011 1.029 0.949 0.988 0.938 0.996 0.955 1.005 1.047 1.036 1.122 1.014 1.048 0.979 1.059 0.989

h = 8 1.009 1.058 1.011 1.252 1.006 1.041 0.932 1.058 0.971 0.980 1.081 1.049 1.261 1.090 1.177∗ 0.914 1.151 0.970

h = 12 1.017 1.082 0.990 1.535∗ 1.032 1.091 0.912 1.151 0.987 0.971 1.090 1.017 1.386 1.117 1.318 0.852 1.199∗ 0.952

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.997 0.989 0.985 1.138∗ 0.964 1.059 0.980 0.998 0.978 1.026 1.024 1.015 1.005 1.006 1.079 1.035 1.121 1.092

h = 4 1.004 1.026 0.978 1.115∗ 0.973 1.045 0.969 1.020 0.985 1.051 1.126 1.078 1.131 1.116∗ 1.192 1.130 1.363∗ 1.246

h = 8 1.008 1.026 0.968 1.256∗ 0.960 1.055∗ 0.947 1.007 0.962 1.058 1.170 1.053 1.235 1.196 1.292 1.088 1.407∗ 1.179

h = 12 1.003 1.000 0.963 1.369∗ 0.952 1.042 0.943 1.006 0.954 1.038 1.190 1.008 1.285 1.276 1.444∗ 1.036 1.489 1.151

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.016 0.970 0.976 1.060 0.955 0.953 0.967 0.973 0.961

h = 4 1.021 0.993 0.960 1.139∗ 0.975 0.943 0.973 1.010 0.982

h = 8 1.021 1.045 0.976 1.297∗ 1.024 1.018 0.980 1.040 0.993

h = 12 0.999 1.048 0.980 1.500∗ 1.018 1.021 0.967 1.017 0.966

CRPS Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.002 1.010 1.014 1.040 0.979 0.995 0.987 0.972 0.972 0.989 0.991 0.980 1.122∗ 0.982 1.057∗ 0.999 1.010 1.011

h = 4 1.003 0.991 0.993 1.088∗ 0.911∗ 0.990 0.933 0.928 0.939 1.002 0.953 0.954 1.214∗ 0.944 1.029 0.968 0.995 0.981

h = 8 1.019 1.001 0.945 1.186∗ 0.902∗ 1.086 0.886 0.978 0.910 1.016 0.900 0.916 1.534∗ 0.926∗ 1.044 0.937 0.974 0.955

h = 12 1.008 0.987 0.916∗ 1.304∗ 0.889∗ 1.186 0.849∗ 0.956 0.873∗ 1.020∗ 0.899∗ 0.893∗ 1.925∗ 0.932∗ 1.183 0.906 0.966 0.931

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.002 1.003 1.009 1.041 0.986 1.047 0.986 1.014 0.988 0.992 1.018 1.006 1.055∗ 1.013 1.030 1.019 1.069 1.023

h = 4 1.020 1.024 1.010 1.010 0.944∗ 1.006 0.930∗ 0.996 0.944 1.006 1.068 1.035 1.166∗ 1.004 1.049 0.999 1.074 1.009

h = 8 1.011 1.039 0.996 1.201 0.987 1.102∗ 0.913 1.017 0.942 0.989 1.083 1.045 1.279∗ 1.073 1.202∗ 0.919 1.115 0.961

h = 12 1.018 1.053 0.955∗ 1.469∗ 0.995 1.251∗ 0.888 1.101 0.950 0.980 1.083 0.995 1.380∗ 1.077 1.388∗ 0.847 1.142∗ 0.917

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.994 0.992 0.985 1.146∗ 0.978 1.053 0.970 1.012 0.975 1.036 1.037 1.012 1.032 1.046 1.110∗ 1.030 1.114 1.073

h = 4 1.011 1.024 0.980 1.208∗ 0.998 1.070∗ 0.961 1.026 0.976 1.043∗ 1.091 1.040 1.142∗ 1.128 1.200∗ 1.077 1.302∗ 1.170∗

h = 8 1.017 1.034 0.968 1.337∗ 0.989 1.098∗ 0.941 1.021 0.959 1.069 1.117 1.017 1.266∗ 1.181 1.319∗ 1.052 1.334∗ 1.128

h = 12 1.004 1.016 0.966 1.448∗ 0.983 1.156∗ 0.940 1.032 0.955 1.019 1.141 0.986 1.359∗ 1.187 1.489∗ 1.027 1.377∗ 1.127

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.029 0.988 0.984 1.098 0.987 0.992 0.993 1.029 0.996

h = 4 1.047∗ 1.025 0.963 1.211∗ 0.993 0.957 0.971 1.039 0.990

h = 8 1.048 1.052 0.962 1.379∗ 1.008 0.995 0.968 1.055 0.993

h = 12 1.037 1.048 0.954 1.661∗ 0.994 1.059 0.940 1.022 0.960

Notes: The models are detailed in Table 2. For each specification, the upper panel presents the ratios of RMSFEs relative to the CVAR benchmark. The
lower panel presents the ratios of CRPSs relative to the CVAR benchmark. Values below 1 indicate the model outperforms the benchmark and vice versa.
Gray shading indicates the best performing model. To provide a rough gauge of whether the two forecasts have significantly different accuracy, we use
a Diebold-Mariano t-statistic with fixed-smoothing asymptotics as in Coroneo and Iacone (2020). Differences in accuracy that are statistically different
from zero are denoted by an asterisk, corresponding to the 5 percent significance level.
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Table 9: Out-of-sample interest rate forecast performance: RMSFE and CRPS ratios in terms of CVAR benchmark, selected horizons

RMSFE Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.993 0.994 1.044 1.036 1.084 1.210 1.021 1.075 1.044 1.011 0.939 0.939 1.065 0.980 1.005 0.946 0.947 0.929

h = 4 0.968 1.025 1.042 0.938 1.141 1.382 0.987 1.044 1.038 1.059 0.853∗ 0.826∗ 1.018 0.851∗ 0.839 0.791∗ 0.739∗ 0.774∗

h = 8 0.961 1.042 1.040 0.815 1.147 1.708∗ 0.912∗ 0.985 0.970 1.080∗ 0.802∗ 0.777∗ 1.094 0.829∗ 0.953 0.727∗ 0.736∗ 0.775∗

h = 12 0.956 1.016 1.035 0.834 1.087 2.147∗ 0.830∗ 0.925 0.875∗ 1.067∗ 0.776∗ 0.763∗ 1.213 0.863∗ 1.201 0.700∗ 0.776∗ 0.789∗

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.954 0.937 0.922 0.931 0.906 1.087 0.932 0.945 0.896 0.991 0.965 0.971 1.044 0.942 1.136 0.948 1.063 0.959

h = 4 0.983 0.929 0.881 0.822 0.863∗ 1.183 0.856 0.902 0.833 0.988 0.975 0.953 0.892 0.935 1.053 0.839 0.795 0.811

h = 8 0.989 0.928 0.878 0.767 0.886∗ 1.435 0.783 0.832∗ 0.778∗ 0.953 0.971 0.945 0.741 0.972 1.106 0.779 0.762 0.763

h = 12 0.986 0.966 0.900 0.883 0.966 1.918 0.777 0.908∗ 0.821∗ 0.942 1.000 0.955 0.689 1.030 1.231 0.777 0.855 0.793

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.997 0.966 0.986 1.356 1.002 1.243 0.923 1.015 0.960 0.976 0.964 0.984 1.171 1.182 1.598∗ 0.951 1.146 0.986

h = 4 1.025 0.924 0.943 0.753 0.971 0.841 0.852 0.900 0.850 1.001 1.015 1.024 1.110 1.218 1.972∗ 0.994 1.048 1.000

h = 8 1.030 0.906 0.903 0.622 0.944 0.893 0.816 0.912 0.818 1.014 1.061 1.078 1.101 1.269∗ 2.661∗ 1.011 1.088 1.028

h = 12 1.018 0.909 0.891 0.789 0.954 1.280 0.818 0.979 0.847 1.017 1.061∗ 1.111 1.171 1.277∗ 3.521∗ 0.990 1.124 1.007

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.003 1.091 1.032 1.257∗ 1.265 1.311 1.073 1.209∗ 1.123

h = 4 0.981 1.111 1.061∗ 1.089 1.154 1.017 1.024 1.045 1.053

h = 8 0.971 1.108 1.056∗ 0.995 1.105 0.876 0.992 0.975 0.985

h = 12 0.964 1.065 1.035∗ 1.036 1.034 0.856 0.947 0.902 0.915

CRPS Canada Germany

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 1.010 1.013 1.041 1.027 1.056 1.507∗ 1.013 1.075 1.042 1.020 0.948 0.943 1.123 0.959 1.078 0.925 0.976 0.923

h = 4 0.976 0.995 1.016 0.937 1.081 1.389∗ 0.953 0.979 0.986 1.063∗ 0.863∗ 0.817∗ 1.032 0.839∗ 0.882 0.770∗ 0.739∗ 0.762∗

h = 8 0.952 1.015 1.053 0.822 1.132 1.455∗ 0.877∗ 0.915 0.906∗ 1.066∗ 0.796∗ 0.761∗ 1.002 0.809∗ 0.877 0.690∗ 0.705 0.711∗

h = 12 0.939∗ 1.004 1.084 0.804 1.100 1.584∗ 0.814∗ 0.873 0.844∗ 1.050∗ 0.761∗ 0.747∗ 1.053 0.863 1.008 0.677∗ 0.747∗ 0.721∗

France Italy

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.993 0.950 0.921∗ 1.026 0.911∗ 1.410∗ 0.908 0.957 0.887 1.023 0.958 0.965 1.035 0.934 1.135 0.934 1.053 0.948

h = 4 0.990 0.923 0.854∗ 0.853 0.834∗ 1.165 0.829∗ 0.847∗ 0.813∗ 1.021 0.983 0.962 0.901 0.928 1.006 0.838 0.782 0.803

h = 8 0.983 0.930 0.858∗ 0.752 0.873∗ 1.205 0.771∗ 0.784∗ 0.757∗ 0.975 0.981 0.949 0.737 0.974 1.010 0.785 0.754 0.761

h = 12 0.984 0.983 0.897 0.829 0.979 1.434∗ 0.775∗ 0.860∗ 0.795∗ 0.954 1.030 0.979 0.675 1.051 1.098 0.774 0.833 0.787

Japan UK

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.987 0.998 0.980 1.624∗ 1.077 1.477∗ 0.980 1.146 1.041 0.984 1.005 1.004 1.405∗ 1.255∗ 1.884∗ 0.987 1.228∗ 1.043

h = 4 1.016 0.959 0.958 1.087 1.005 1.054 0.912 1.022 0.939 1.002 1.038 1.055∗ 1.175 1.260 1.789∗ 1.026 1.134 1.055

h = 8 1.011 0.938 0.933 0.926 0.972 1.084 0.867 0.994 0.891 1.017 1.080 1.108∗ 1.146 1.360∗ 2.073∗ 1.036 1.144 1.070

h = 12 0.973 0.910 0.905 1.065 0.957 1.323 0.831 0.994 0.868 1.021 1.085∗ 1.140∗ 1.150 1.386∗ 2.321∗ 1.019 1.172 1.054

USA

CVAR-H CFAVAR GVAR CC MIN SSSS HS NG NGG

h = 1 0.996 1.118 1.040 1.383∗ 1.313∗ 1.358∗ 1.069 1.209∗ 1.115

h = 4 0.968 1.167 1.071∗ 1.132 1.207 1.054 1.047 1.053 1.074

h = 8 0.960 1.189 1.067 0.994 1.174 0.961 1.041 1.008 1.034

h = 12 0.946 1.127 1.044 0.982 1.076 0.999 0.981 0.910 0.944

Notes: The models are detailed in Table 2. For each specification, the upper panel presents the ratios of RMSFEs relative to the CVAR benchmark. The
lower panel presents the ratios of CRPSs relative to the CVAR benchmark. Values below 1 indicate the model outperforms the benchmark and vice versa.
Gray shading indicates the best performing model. To provide a rough gauge of whether the two forecasts have significantly different accuracy, we use
a Diebold-Mariano t-statistic with fixed-smoothing asymptotics as in Coroneo and Iacone (2020). Differences in accuracy that are statistically different
from zero are denoted by an asterisk, corresponding to the 5 percent significance level.
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6.3. Investigating forecast performance over time

We have so far conducted a comprehensive evaluation of how different model specifications and prior
choices affect forecast accuracy in the multi-country context, finding that multi-country VARs with hierar-
chical priors, in particular, the HS prior, are very helpful in forecasting inflation, as well as output growth
and the interest rate. To get a better understanding of the source of the gains, we evaluate the models’ fore-
casting performance over time. We plot in Figures 1-6 the cumulative sums of both RMSFEs and CRPSs
at the selected horizons of 1,4,8, and 12 periods over the evaluation sample, averaged (arithmetic mean)
across countries. Different colors with corresponding markers indicate different model specifications. The
most recent Great Recession-financial crisis period (2007Q1-2009Q4) is highlighted in gray. For illustra-
tion, we only report results obtained from the benchmark and multi-country VARs with the three different
scale mixtures of Normals priors (HS, NG, and NGG).

We first examine results obtained for output growth (Figures 1-2). The Great Recession-financial crisis
clearly has a large effect on RMSFE and CRPS accuracy; all models’ cumulative RMSFEs and CRPSs
markedly increase after 2008. Before the crisis, the single-country CVAR benchmark performs similarly to
multi-country VARs with hierarchical shrinkage and even does slightly better at long horizons. However,
hierarchical shrinkage applied to multi-country VARs tends to be more beneficial after the crisis, which is
particularly evident in the 4- and 8-steps-ahead density forecasts. Overall, in these aggregated measures,
the NG specification is the best at short horizons, but the HS specification is better at long horizons, for
both point and density forecasts.

When we compare the performance for inflation forecasts (Figures 3-4), there are several differences.
First, compared to the results for output growth, we do not see as sharp an increase in cumulative RMSFEs
and CRPSs during and after the financial crisis. There is some increase, but not as large as in the case of
output growth forecasts. Second, when averaged across countries, before the crisis these models’ forecast-
ing performance is very similar at the 1-step-ahead horizon; after the crisis, the NG prior specification is
slightly less accurate than the others. However, as the forecast horizon increases, the multi-country VAR
with the HS prior becomes relatively more accurate, in both point and density forecasts. The light-tailed
NG prior is clearly the worst among the three different scale mixtures of Normals priors and even worse
than the single-country CVAR benchmark, particularly at longer horizons.

Moving to interest rate forecasts (Figures 5-6), the effects of the Great Recession-financial crisis are
clear at multi-step forecast horizons, but less dramatic than for output growth forecasts. As interest rates in
all G7 countries hit their effective lower bound, all models have difficulties in capturing the abrupt changes
in short-term interest rates. At the 1-step-ahead horizon, the performance of the models is broadly similar,
with the exception of the light-tailed NG prior; although comparable to others, the HS specification has
slightly better accuracy. As the forecast horizon increases, the benefits obtained from the multi-country
VARs with hierarchical priors become more evident; these specifications clearly outperform the single-
country CVAR benchmark. The HS prior is better than the more flexible NGG prior, while the NG prior
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is clearly the worst among the three scale mixtures of Normals priors.
To conclude, we confirm that hierarchical shrinkage in multi-country VARs, especially coupled with

the HS prior, delivers more accurate and robust forecasts over time for all three target variables. In these
results aggregated across countries, for output growth, the NG prior is more preferable at short horizons,
but the HS prior does better at long horizons. Gains are mainly obtained in the post-crisis evaluation period.
For inflation, gains from the multi-country VAR with the HS prior are more evident as the forecast horizon
increases. For the short-term interest rate, all models show difficulties in obtaining accurate forecasts as
the horizon increases. Hierarchical shrinkage in multi-country VARs is generally better than the single-
country benchmark as the horizon increases, and the HS prior tends to be more beneficial than the other
scale mixtures of Normals priors.

Figure 1: The figure presents cumulative sums (taken over time and averaged across countries) of RMSFEs for output growth forecasts at selected horizons:
h = 1, 4, 8, 12. The models are detailed in Table 2.
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Figure 2: The figure presents cumulative sums (taken over time and averaged across countries) of CRPSs for output growth forecasts at selected horizons:
h = 1, 4, 8, 12. The models are detailed in Table 2.

Figure 3: The figure presents cumulative sums (taken over time and averaged across countries) of RMSFEs for inflation forecasts at selected horizons:
h = 1, 4, 8, 12. The models are detailed in Table 2.

25



Figure 4: The figure presents cumulative sums (taken over time and averaged across countries) of CRPSs for inflation forecasts at selected horizons:
h = 1, 4, 8, 12. The models are detailed in Table 2.

Figure 5: The figure presents cumulative sums (taken over time and averaged across countries) of RMSFEs for interest rate forecasts at selected horizons:
h = 1, 4, 8, 12. The models are detailed in Table 2.
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Figure 6: The figure presents cumulative sums (taken over time and averaged across countries) of CRPSs for interest rate forecasts at selected horizons:
h = 1, 4, 8, 12. The models are detailed in Table 2.

6.4. Some robustness checks

In this subsection, we conduct several robustness checks of our main results presented above. We
focus on the multi-country VAR with the Horseshoe prior (the HS specification), since overall it delivers
the best forecast performance. In the interest of space, we briefly summarize the main findings; the details
of the results can be found in Appendix D.

Prior grouping of coefficients. As a check of the baseline prior’s grouping of coefficients, we consider
three alternative groupings of coefficients compared to the one used in the main results. First, we group all
coefficients related to CSH together (HS-CSH) and assume that the priors of elements in vec(βCSH) follow
(9). Second, we do not make any attempt to search for restrictions but instead group both the intercepts
and all autoregressive coefficients together (HS-A) and assume that all coefficients follow the same prior
distributions as in (9). This has been examined in the single-country Bayesian VAR context by Cross,
Hou, and Poon (2020), who find that scale mixtures of Normals priors do not improve the forecasting
accuracy compared to conventional Minnesota priors. Finally, we group coefficients based on equations
(HS-E) by assuming that priors for coefficients in each equation of (1) are the same. The equation-based
shrinkage priors are more often seen in single-country Bayesian VARs. Follett and Yu (2019) and Huber
and Feldkircher (2019) use this type of specification for the HS and NG priors, respectively. Cadonna,
Frühwirth-Schnatter, and Knaus (2020) also propose an equation-wise specification for single-country
time-varying parameter VARs.

In Tables D.1-D.3, we report summary statistics on the percentage of gains for the alternative specifi-
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cations described above compared to the specifications we use in the main results for all horizons, short
horizons (h 6 6), and long horizons (h > 6). The results can be summarized as follows. First, the
HS-CSH, HS-A, and HS-E priors all improve forecast accuracy for the interest rate, especially at long
horizons, with average gains of more than 10 percent. Even though neither HS-A nor HS-E considers
the underlying structure of model parameters, for the interest rate they forecast better than the HS-CSH
specification. Second, these three alternatives are not helpful in forecasting output growth. The average
gains are all negative, and they lead to loss of forecast accuracy in more than 75 percent of all cases. The
HS-A prior has the overall worst forecast performance for output growth, and while output growth forecast
performance from HS-CSH and HS-E is roughly similar, these approaches are outperformed by the HS
specification used in the main results. Third, for inflation, the HS-CSH prior delivers forecast performance
similar to our HS specification. The average gains are close to zero; in around half of all cases, the gains
are positive. However, the HS-A and HS-E specifications generally reduce forecast accuracy (with HS-A
the worst alternative), with impacts that are negative in more than 70 percent of all cases, and average
losses of roughly 2 percent. Overall, these results suggest that it is not possible to improve our overall
results by modifying our baseline grouping of coefficients.

Stochastic volatility. As another check, we also assess whether stochastic volatility is useful to improve
forecast accuracy in the multi-country context. We modify the distributional assumption of ut in (2) by
assuming that ut ∼ i.i.d. N(0,Σ). We specify a Normal prior for the VAR’s coefficients and an Inverse
Wishart prior for Σ and use the corrected triangular algorithms proposed in Carriero, et al. (2022) to
estimate and forecast. In Table D.4, we provide summary statistics on the percentage differences in the
accuracy of forecasts from the models with and without SV. The results clearly indicate the usefulness
of stochastic volatility. The constant volatility models are outperformed by stochastic volatility models
for all horizons and all target variables. The benefits are particularly evident in forecasting inflation and
the interest rate. For inflation, introducing stochastic volatility in multi-country VARs delivers gains in
all cases at long horizons, and average gains are large: 34 percent for point forecasts and 27 percent
for density forecasts. For the interest rate, stochastic volatility is more beneficial at short horizons. The
average gains are around 12 (20) percent for point (density) forecasts, and gains are positive in nearly 80
(85) percent of cases for point (density) forecasts.

Estimation scheme. There is a long debate on the relative forecast performance of rolling and expand-
ing window (recursive scheme) estimation in the forecasting literature. While rolling window estimates
can be more robust to structural breaks, expanding window parameter estimates can be more efficient,
helping forecast precision. In Table D.5, we compare point and density forecasts from rolling and recur-
sive schemes, taking as a benchmark the recursive scheme used in the paper’s main results. The rolling
scheme results use a window of 22 years of data, corresponding to the size of the sample used to generate
the first forecast observation in our main results. On average, the rolling scheme forecasts are slightly
better than the recursive forecasts, but the two methods perform broadly similarly. Compared to the re-
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cursive baseline, average gains to the rolling scheme are small and generally not statistically significant.
By looking at the percentage of cases in which a given method outperforms the other, it appears that the
rolling scheme does relatively better for inflation, for point forecasts for output growth, and interest rate
forecasts at long horizons.

Univariate forecasting benchmarks. To understand the relative merits of our models with respect to
univariate models, which are often tough benchmarks in the forecasting literature, we compare forecasts
from the HS specification to those from univariate models with SV. We choose AR(p) models for output
growth and the interest rate, with p = 2 and 4 lags, respectively, following Clark and Ravazzolo (2015).
For inflation, we choose an unobserved component model with SV as in Chan (2018). Table D.6 provides
summary statistics for these accuracy comparisons. In these results, the multi-country HS specification
yields more accurate forecasts of inflation and the interest rate. The average gains for the interest rate
exceed 7 percent. Gains are positive in more than 90 percent of cases for density forecasts of inflation.
For output growth, average gains from the HS specification are small but still positive. Overall, our main
results based on a single-country VAR baseline still obtain when the baseline is changed to common
univariate models.

Effective lower bound on interest rates. Since the 2007-2009 financial crisis put interest rates in all
G7 countries at the effective lower bound for a number of years, one concern is that our reduced-form
VAR models may forecast interest rates to be much higher than actual rates.11 In Figures D.1 and D.2, we
present point forecasts and associated 95 percent interval forecasts of the interest rate for all G7 countries
obtained from the multi-country VAR with the Horseshoe prior (the HS specification) at horizons of 1
and 12 steps, respectively. We find that the ELB does not seem to be a major concern for short horizon
(1-step-ahead) forecasts, as our model is able to track the true interest rate rather well even during the ELB
period. However, some bias in the forecasts emerges during the ELB period when we look at 12-steps-
ahead forecasts. Our model generally predicts the interest rate to be higher than the actual rate. While
more evident in the ELB period, the problem is present even before the ELB period. However, in the case
of Japan, we see that our model forecasts the interest rate to be much higher than the true value early in the
sample, but the forecasts gradually decline and are able to track the realized values fairly well for much of
the sample. We conclude from these results that the ELB has some impact on our interest rate forecasting
results — as it likely will for most any VAR — but does not necessarily entirely distort them.

Directional forecasts. To provide a rough gauge on whether our forecasting models are also able
to predict turning points, we use the nonparametric test developed by Pesaran and Timmermann (1992)
to assess directional forecast performance for (1-step-ahead) changes in output growth. In Table D.7,
we report test statistics and associated p-values for all 7 countries from both the multi-country VAR-SV

11Japan hit the ELB earlier than other countries. The short-term interest rate in Japan remains around zero in the entire
forecast evaluation period.
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model with the Horseshoe prior and the single-country VAR-SV benchmark. The results show that, except
for Canada, for the multi-country VAR-SV with Horseshoe prior, the test strongly rejects the null of no
predictability. However, for the single-country VAR-SV benchmark, we cannot reject the null for all 7
countries. This provides clear evidence that the multi-country VAR-SV model with Horseshoe prior also
has better predictive power for the directional forecasts of output growth.

Alternative hierarchical shrinkage in country-specific VAR-SV. In the previous subsections, we used
the Minnesota-type adaptive hierarchical prior in Chan (2021), a published prior specification, as a com-
petitor to the multi-country VAR-SV with hierarchical shrinkage. However, when comparing it to the
results presented in previous subsections, there are some differences in terms of both specification and
estimation. First, Chan (2021) uses the Normal-Gamma prior, but our preferable prior choice is the Horse-
shoe prior. Second, Chan (2021) introduces additional pre-specified hyperparameters as in the standard
Minnesota-type prior, but in our specification all local scale parameters are learned from the data. Finally,
Chan (2021) estimates the model in structural form, but we estimate the models in reduced form.

As a robustness check, we estimate country-specific VAR-SV models in reduced form with hierarchi-
cal shrinkage. We use the Horseshoe prior as specified in (10) with three groups of coefficients as in the
standard Minnesota-type prior: intercepts, coefficients related to own lags, and cross variable lags. We
compare forecasts with CVAR-H as in Chan (2021) and HS as we use in the main results. Tables D.8
and D.9 provide summary statistics for these accuracy comparisons. Clearly, our hierarchical prior spec-
ification provides more accurate forecasts compared to Chan (2021). The average gains are large (more
than 7.5 percent) for interest rate forecasts. Gains are positive in at least more than 75 percent of cases.
When comparing forecasts with multi-country VAR-SV combined with HS, we find that the multi-country
VAR-SV achieves positive average gains in nearly all cases (except point forecasts for interest rates at
short horizons). Gains are more evident for density forecasts of inflation and interest rate forecasts at
long horizons. These results further confirm the benefits of adding foreign information to country-specific
VAR-SV models.

7. Conclusions

In this paper, we use hierarchical shrinkage in multi-country Bayesian VARs and examine its macroe-
conomic forecasting ability. In implementation, we consider three different scale mixtures of Normals
priors, namely the Horseshoe prior, the Normal-Gamma prior, and the Normal-Gamma-Gamma prior,
which have been shown to benefit macroeconomic forecasting in single-country settings. We also provide
some new theoretical results for the Normal-Gamma prior. Empirically, we compare the forecast accu-
racy with country-specific VARs, country-specific factor-augmented VARs, global VARs, and alternative
shrinkage approaches for multi-country VARs that have been used in the macroeconomic forecasting lit-
erature. All of our models include stochastic volatility, which is helpful to forecast accuracy. We confirm
the benefits of enlarging single-country information sets to include information across countries. Hierar-
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chical shrinkage in the multi-country VAR model with the Horseshoe prior has the overall best forecast
performance.
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Cadonna, Annalisa, Sylvia Frühwirth-Schnatter, and Peter Knaus (2020), “Triple the Gamma — a unifying
shrinkage prior for variance and variable selection in sparse state space and TVP models,” Econometrics,
8, 1–36, https://doi.org/10.3390/econometrics8020020.

Canova, Fabio, and Matteo Ciccarelli (2009), “Estimating multicountry VAR models,” International Eco-

nomic Review, 50, 929–959, https://doi.org/10.1111/j.1468-2354.2009.00554.x.

(2013), “Panel vector autoregressive models: A survey,” in VAR Models in Macroeconomics

– New Developments and Applications: Essays in Honor of Christopher A. Sims, 32 of Ad-
vances in Econometrics: Emerald Group Publishing Limited, 205–246, https://doi.org/10.1108/
S0731-9053(2013)0000031006.

Canova, Fabio, Matteo Ciccarelli, and Eva Ortega (2007), “Similarities and convergence in G-7 cycles,”
Journal of Monetary Economics, 54, 850–878, https://doi.org/10.1016/j.jmoneco.2005.10.
022.

31

https://doi.org/10.1016/j.ijforecast.2018.12.004
https://doi.org/10.1111/1468-0262.00273
https://doi.org/10.1016/j.jeconom.2018.11.006
https://doi.org/10.1016/j.jeconom.2018.11.006
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.3390/econometrics8020020
https://doi.org/10.1111/j.1468-2354.2009.00554.x
https://doi.org/10.1108/S0731-9053(2013)0000031006
https://doi.org/10.1108/S0731-9053(2013)0000031006
https://doi.org/10.1016/j.jmoneco.2005.10.022
https://doi.org/10.1016/j.jmoneco.2005.10.022


Carriero, Andrea, Joshua Chan, Todd E. Clark, and Massimiliano Marcellino (2022), “Corrigendum to:
Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors,” Journal of

Econometrics, forthcoming, https://doi.org/10.1016/j.jeconom.2021.11.010.

Carriero, Andrea, Todd E. Clark, and Massimiliano Marcellino (2019), “Large Bayesian vector autore-
gressions with stochastic volatility and non-conjugate priors,” Journal of Econometrics, 212, 137–154,
https://doi.org/10.1016/j.jeconom.2019.04.024.

Carvalho, Carlos M., Nicholas G. Polson, and James G. Scott (2009), “Handling sparsity via the horse-
shoe,” in Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics,
73–80: PMLR, April, https://proceedings.mlr.press/v5/carvalho09a.html.

(2010), “The horseshoe estimator for sparse signals,” Biometrika, 97, 465–480, https://doi.
org/10.1093/biomet/asq017.

Chan, Joshua C.C. (2017), “Notes on Bayesian macroeconometrics,” http://joshuachan.org/
papers/BayesMacro.pdf.

(2018), “Specification tests for time-varying parameter models with stochastic volatility,” Econo-

metric Reviews, 37, 807–823, https://doi.org/10.1080/07474938.2016.1167948.

(2021), “Minnesota-type adaptive hierarchical priors for large Bayesian VARs,” International

Journal of Forecasting, 37, 1212–1226, https://doi.org/10.1016/j.ijforecast.2021.01.
002.

Clark, Todd E., and Francesco Ravazzolo (2015), “Macroeconomic forecasting performance under al-
ternative specifications of time-varying volatility,” Journal of Applied Econometrics, 30, 551–575,
https://doi.org/10.1002/jae.2379.

Cogley, Timothy, and Thomas J. Sargent (2005), “Drifts and volatilities: Monetary policies and outcomes
in the post WWII US,” Review of Economic Dynamics, 8, 262–302, https://doi.org/10.1016/j.
red.2004.10.009.

Coroneo, Laura, and Fabrizio Iacone (2020), “Comparing predictive accuracy in small samples using
fixed-smoothing asymptotics,” Journal of Applied Econometrics, 35, 391–409, https://doi.org/
10.1002/jae.2756.

Cross, Jamie L., Chenghan Hou, and Aubrey Poon (2020), “Macroeconomic forecasting with large
Bayesian VARs: Global-local priors and the illusion of sparsity,” International Journal of Forecast-

ing, 36, 899–915, https://doi.org/10.1016/j.ijforecast.2019.10.002.

32

https://doi.org/10.1016/j.jeconom.2021.11.010
https://doi.org/10.1016/j.jeconom.2019.04.024
https://proceedings.mlr.press/v5/carvalho09a.html
https://doi.org/10.1093/biomet/asq017
https://doi.org/10.1093/biomet/asq017
http://joshuachan.org/papers/BayesMacro.pdf
http://joshuachan.org/papers/BayesMacro.pdf
https://doi.org/10.1080/07474938.2016.1167948
https://doi.org/10.1016/j.ijforecast.2021.01.002
https://doi.org/10.1016/j.ijforecast.2021.01.002
https://doi.org/10.1002/jae.2379
https://doi.org/10.1016/j.red.2004.10.009
https://doi.org/10.1016/j.red.2004.10.009
https://doi.org/10.1002/jae.2756
https://doi.org/10.1002/jae.2756
https://doi.org/10.1016/j.ijforecast.2019.10.002
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Appendix A. Proof of Theorem 1

In the following proof, the notation ∼ indicates asymptotic equivalence. We say that a is asymptotically
equivalent to b if a/b = O(1).

As shown in equation (14) of Bitto and Frühwirth-Schnatter (2019), the marginal density for β j ∼

NG(λ, κ), given λ, κ, can be expressed as
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where Kp(·) is the modified Bessel function of the second kind of index p. Let us first consider the
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where Ip(·) is the modified Bessel function of the first kind with index p. By 9.6.7 in Abramowitz and
Stegun (1965), as

∣∣∣β j

∣∣∣→ 0,

I 1
2−λ

(√
λκ

∣∣∣β j

∣∣∣) ∼
(

1
2

√
λκ

∣∣∣β j

∣∣∣) 1
2−λ

Γ
(3

2 − λ
)

Iλ− 1
2

(√
λκ

∣∣∣β j

∣∣∣) ∼
(

1
2

√
λκ

∣∣∣β j

∣∣∣)λ− 1
2

Γ
(3

2 − λ
) .

37



Thus,

πNG(β j) ∼
(√
λκ

)λ+ 1
2

√
π2λ−

1
2 Γ(λ)

∣∣∣β j

∣∣∣λ− 1
2 ×

1
2
π ×

1
sin

(
(λ − 1

2 )π
) × ((1

2

√
λκ

∣∣∣β j

∣∣∣) 1
2−λ

Γ
(3

2 − λ
) −

(
1
2

√
λκ

∣∣∣β j

∣∣∣)λ− 1
2

Γ
(3

2 − λ
) )

= C −
(
√
λκ)2λ × ( 1

2 )2λ√π

sin
(
(λ − 1

2 )π
)
Γ(λ)Γ(λ + 1

2 )

( 1∣∣∣β j

∣∣∣ )1−2λ

= O
(( 1∣∣∣β j

∣∣∣ )1−2λ
)
.

Finally, if λ = 1
2 , by 9.6.8 in Abramowitz and Stegun (1965),

K0

(√1
2
κ
∣∣∣β j

∣∣∣) ∼ − log
(√1

2
κ
∣∣∣β j

∣∣∣).
Then,

πNG(β j) ∼

√
1
2κ

π
× − log

(√1
2
κ
∣∣∣β j

∣∣∣) = O
( 1
log

(∣∣∣β j

∣∣∣) ).
We now move to the asymptotic tail behavior. By 9.7.2 in Abramowitz and Stegun (1965), as

∣∣∣β j

∣∣∣→ ∞,

Kλ− 1
2

(√
λκ

∣∣∣β j

∣∣∣) ∼ √
π

2
√
λκ

∣∣∣β j

∣∣∣e−√λκ|β j|.

Then,

πNG(β j) ∼
(√
λκ

)λ+ 1
2

√
π2λ−

1
2 Γ(λ)

∣∣∣β j

∣∣∣λ− 1
2

√
π

2
(
√
λκ)−

1
2
∣∣∣β j

∣∣∣− 1
2 exp

(
−
√
λκ

∣∣∣β j

∣∣∣)
= O

( ∣∣∣β j

∣∣∣λ−1

exp
(√
λκ

∣∣∣β j

∣∣∣)
)
,

which completes the proof.
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Appendix B. Model specifications and priors

Appendix B.1. Country-specific VARs

The country-specific VAR(p) model — denoted the CVAR specification in the paper’s results — is
specified as

yi,t = ci +

p∑
l=1

Bi,lyi,t−l + ui,t (B.1)

ui,t = A−1
i H0.5

i,t εi,t, εi,t ∼ i.i.d. N(0, IG), (B.2)

where i = 1, . . . ,N, t = 1, . . . ,T , and the dimension of yi,t, ui,t and εi,t is G × 1. A−1
i is a lower triangular

matrix with diagonal elements equal to 1. Hi,t is diagonal with generic j-th element hi j,t evolving as a
random walk (RW):

ln hi j,t = ln hi j,t−1 + ei j,t, j = 1, . . . ,G, (B.3)

where eit ∼ N(0,Φi) with a full covariance matrix Φi as in Primiceri (2005).
Letting Bi = [ci, Bi,1, . . . , Bi,p]′, the priors are specified as:

vec(Bi) ∼ N(0,ΩBi
)

vec(Ai) ∼ N(0,ΩAi
)

Φi ∼ IW(Q0,W0).

For the prior variances of the autoregressive coefficient matrices, we set them as in the Minnesota prior:

ΩB(mn)
i,l

=


λ1
lλ3

1
σ2

n
for the coefficients on own lags

λ2
lλ3

σ2
m
σ2

n
for the coefficients on cross-variable lags

λ0σ
2
m for the intercept,

(B.4)

where m, n = 1, . . . ,G. λ1 measures the overall tightness to coefficients related to own lags. λ2 is related
to cross-variable shrinkage. We assume Gamma priors for these two hyperparameters: λ1 ∼ G(1, 0.04),
λ2 ∼ G(1, 0.042). λ3 determines the additional shrinkage for coefficients associated with higher order
lags and is set to 2 (quadratic decay). The scale parameters σ2

m, σ2
n are obtained from univariate AR(1)

regressions. We elicit an uninformative prior for the intercept by setting λ0 = 100. In the case of the free
elements in the contemporaneous matrix Ai, we set the prior mean to 0 and the prior variance to be non-
informative: ΩAi

= 10 × I. Finally, as in the previous section, we follow the literature and set a modestly
informative prior for Φ: Φ ∼ IW(Q0,W0), where Q0,W0 take very conservative values: W0 = 0.01 × I and
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Q0 = G + 2.12

For the country-specific VAR with hierarchical shrinkage (CVAR-H), we follow exactly the approach
in Chan (2021). Following Chan, the reduced-form model (B.1) is expressed in structural form

Aiyi,t = c̃i +

p∑
l=1

B̃i,lyi,t−l + H0.5
i,t εi,t,

where c̃i = Aci, B̃i,l = ABi,l, and the innovations ei j,t in (B.3) are assumed to be independent across variables
(equation j = 1, . . . ,G of the VAR for country i): ei j,t ∼ N(0, σ2

ei j
). The priors are specified as

βi, j|λ1, λ2, ψi, j,Ci, j ∼ N(0, 2λi, jψi, jCi, j),

where λi, j equals λ1 if βi, j are related to own lags but equals λ2 for coefficients related to cross-variable
lags. Ci, j are specified according to

Ci,l =

 1
lλ3

1
σ2

n
for the coefficients on own lags

1
lλ3

σ2
m
σ2

n
for the coefficients on cross-variable lags


and ψi, j are assumed to follow a Gamma prior:

ψi, j ∼ G(νψ, νψ/2),

with an additional hyper-prior on νψ ∼ G(1, 1). For σ2
ei j

, priors are assumed to be σ2
ei j
∼ IG(5, 0.04).

In Section 6.4, we also consider a version of model (B.1)-(B.2) with hierarchical shrinkage and Horse-
shoe prior. Similarly to the definitions of Section 3, let βc, βAR, and βo be the coefficients related to
intercept, own lags, and cross-variable lags, and let βi, j be the jth elements in the coefficient block i, where
i = {c, AR, o}. In this case, we replace the prior specification in (B.4) by assuming that βi, j follows (10),
where the global shrinkage parameter λ differs in each coefficient block.

Appendix B.2. Factor-augmented country-specific VARs

The factor-augmented country-specific VAR (CFAVAR) takes the form:yi,t

Ft

 = ci +

p∑
l=1

Bi,l

yi,t−l

Ft−l

 + ui,t

Y∗t = ΛFt + εt

Ft =

q∑
l=1

ΠlFt−l + vt, vt ∼ i.i.d. N(0,Σv),

12See, e.g., D’Agostino, Gambetti, and Giannone (2013) and Clark and Ravazzolo (2015).
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where Y∗t = (y′1,t, . . . , y
′
i−1,t, y

′
i+1,t, y

′
N,t)
′ is the collection of foreign variables. Ft is an r × 1 vector of weakly

exogenous unobservable factors representing foreign information, which affect the variables in country i

via the loadings B∗i,l, i = 1, . . . ,N, l = 1, . . . , p. Factors are estimated (recursively, as forecasting moves
forward in time and the estimation sample expands) by principal components (see, e.g., Stock and Watson
(2002a) and Stock and Watson (2002b)) and assumed to follow a VAR process with lag length q. In the
VAR for [yi,t, Ft], the innovation vector ui,t includes the stochastic volatility structure previously indicated
in the country-specific VAR’s equation (B.2).

Priors for ci and Bi,l are specified in the same way as in the country-specific VARs. The same hyper-
priors are imposed on (λ1, λ2), which are the overall tightness parameters on coefficients related to own
lags and cross-variable lags. We specify the maximum number of factors and lag length to be rmax = 4 and
qmax = 4, respectively. The number of factors is determined by the IC2 information criterion of Bai and Ng
(2002), and the number of lags is determined by the Bayesian Information Criterion (BIC). The VAR for
the factors is separately estimated by Bayesian methods with non-informative priors. Specifically, letting
π = vec([Π1, . . . ,Πq]′), we specify π ∼ N(0, 100× Ir2q). Following Korobilis (2016), Σ̂v is fixed at the OLS
estimate to streamline computations (it also eliminates the uncertainty associated with covariance matrix
estimation).

Appendix B.3. Global VARs

A GVAR model consists of a number of country-specific equations that are combined to form a global
model. Assuming that the global economy consists of N + 1 countries, in the first step, we estimate the
following country-specific VARX model for every country i = 0, 1, ...,N:

yi,t = ci +

p∑
l=1

Bi,lyi,t−l +

p∗∑
l=0

B∗i,ly
∗
i,t−l + ui,t, (B.5)

ui,t = A−1
i H0.5

i,t εi,t, εi,t
i.i.d.
∼ N(0, IG), (B.6)

where t = 1, ...,T , yi,t is a G×1 vector of endogenous variables in country i, ci is a G×1 vector of intercept
terms, Bi,l(l = 1, ..., p) denotes the G×G matrix of parameters associated with lagged endogenous variables
and B∗i,l(l = 0, 1, ..., p∗) is the matrix of parameters associated with contemporaneous and lagged weakly
exogenous variables. The weakly exogenous foreign variables y∗i,t are constructed as a weighted average
of the endogenous variables in other countries:

y∗i,t =

N∑
j=0

wi, jy j,t (B.7)

and the weights satisfy the following two restrictions: wi,i = 0 and
∑N

j=0 wi, j = 1. Weights are constructed
from standardized bilateral trade flows. The data are available from Mohaddes and Raissi (2020).
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In the second step, N + 1 country-specific VARX models are stacked to form a global model, which is
given by

Gyt = c +

Q∑
q=1

Hqyt−q + ut, (B.8)

where yt = (y′1,t, ..., y
′
N,t)
′, Q = max(p, p∗), and G and Hq are both NG × NG dimensional coefficient

matrices. Details on how to solve the global model can be found in Pesaran, Schuermann, and Smith
(2009) and Huber (2016).

Priors for ci and Bi,l are specified in the same way as in the CFAVAR. More specifically, ci and Bi,l

follow the same specification as in (B.4). For the prior on the elements of B∗i,l, means are set to zero and
variances are defined as: λ4

σ2
m
σ2

n
, where σ2

m, σ
2
n are obtained from univariate AR(1) regressions. We assume

a Gamma prior for λ4 ∼ G(1, 0.022). Both p and p∗ are set to 4.

Appendix B.4. Multi-country VARs

Appendix B.4.1. Factor shrinkage approach

The factor shrinkage approach used with the CC specification relies on the VAR written in system
form. We define Xt = ING ⊗ x′t , where xt = (1,Y ′t−1, . . . ,Y

′
t−p)′, βi is the k × 1 vector containing coefficients

related to each i, k = NGp + 1, and β = (β′1, . . . , β
′
N)′ is the NGk × 1 vector containing all coefficients.

Write the VAR as
Yt = Xtβ + ut, (B.9)

where ut ∼ i.i.d. N(0,Σt).
Canova and Ciccarelli (2009) assume that the vector of coefficients β can be expressed as:

β =

F∑
i=1

Ξiθi (B.10)

where Ξ = [Ξ1, . . . ,ΞF] are known matrices and θ = (θ′1, . . . , θ
′
F)′ is a low dimensional vector (dim(θ) < K,

where K = kNG) of unknown parameters, and θ1, . . . , θF are mutually orthogonal.13

We consider the factorization used in Canova, Ciccarelli, and Ortega (2007) and Canova and Ciccarelli
(2013). We assume F = 4. θ1 is a scalar factor that is common across all countries, θ′2 = (θ2,1, . . . , θ2,N)′

is an N × 1 vector of country-specific factors, θ′3 = (θ3,1, . . . , θ3,G)′ is a G × 1 vector of variable-specific
factors and θ′4 = (θ4,1, . . . , θ4,p−1)′ is a (p− 1)× 1 vector of lag-specific factors.14 Ξ1, . . . ,Ξ4 are assumed to

13A more general form is β =
∑F

i=1 Ξiθi +e, where e ∼ N(0,Σ⊗σ2I) is an approximation error uncorrelated with ut. However,
most of the literature assumes an exact factorization (σ2 = 0); see, for example, Canova, Ciccarelli, and Ortega (2007); Canova
and Ciccarelli (2009); Dées and Güntner (2017). Koop and Korobilis (2019) estimate σ2 by a forgetting factor approach and
find that it is very small (< 0.01). In some limited checks, we found that considering the approximation error harms forecasting
performance.

14To avoid collinearity with θ1, θ4 can contain at most p − 1 components.
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be known with elements associated with the corresponding original parameters equal to 1 and 0 otherwise.
For example, consider a multi-country VAR model in (1) with N = 2,G = 2, p = 1. In this case, Ξ1 is a
20 × 1 vector of ones, and Ξ2 and Ξ3 take the form:

Ξ2
20×2

=


ι1 0
ι1 0
0 ι2

0 ι2

 , Ξ3
20×2

=


ι3 0
0 ι4

ι3 0
0 ι4

 ,

where ι1 = (0, 1, 1, 0, 0)′, ι2 = (0, 0, 0, 1, 1)′, ι3 = (0, 1, 0, 1, 0)′, and ι4 = (0, 0, 1, 0, 1)′. Thus, we can
rewrite (B.9) as:

Yt = Xtβ + ut

= Xt(Ξθ) + ut = X̃tθ + ut. (B.11)

In this case, dim(θ) = N + G + p. By construction, the X̃t’s are linear combinations of the original
right-hand-side variables in (B.9), and the parameterization above can capture comovement across lagged
variables.

To incorporate SV, we decompose Σt as Σt = A−1HtA′−1, where A is lower diagonal with diagonal
elements equal to 1, and the diagonal elements in Ht evolve according to (B.3).

We specify the priors for θ, A, and Φ as (independent), Normal, Normal, and Inverse Wishart, respec-
tively:

θ ∼ N(0,Ωθ), a ∼ N(0,Ωa), Φ ∼ IW(Q0,W0), (B.12)

where a denotes the vector of free elements in A. The prior mean for θ is set to zero, and the prior
covariance matrix Ωθ is assumed to be diagonal. Letting ωθi, j be the elements in Ωθ associated with the jth
elements in θi, where i = 1, . . . , 4, then

ω
θi, j

=


NG∑
m=1

σ2
m i = 1, 2, 3

NG∑
m=1

σ2
m

l2 , i = 4, l = 2, . . . , p

.


The prior mean for a is set to 0, and the prior variance is set to Ωa = 10 × I. Q0,W0 are specified as
Q0 = NG + 2, W0 = 0.01 × I.

Appendix B.4.2. Prior specifications for other models

For the approach in Angelini, et al. (2019) and the hierarchical shrinkage considered in this paper, the
prior for free elements in A is assumed to be Normal with zero mean and variance equal to 10 × ING. The
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prior for Φ takes the form Φ ∼ IW(Q0,W0), and Q0,W0 are specified as Q0 = NG + 2, W0 = 0.01 × I.
For the prior in (B.4), σ2

i , σ2
j are obtained from univariate AR(1) regressions. The prior for the inter-

cept is assumed to be uninformative by setting the prior variance equal to 100 × σ2
i , where σ2

i is again
from a univariate AR(1) regression. The hyper-priors on overall shrinkage parameters are specified in the
same way as in country-specific VARs. For the additional hyperparameter λ4 controlling the tightness for
coefficients related to cross-variable lags for foreign countries, we use a prior of λ4 ∼ G(1, 0.022).

For the SSSS prior, we follow Korobilis (2016) exactly. For (7) and (8), we set ξ2
i j = τ2

i j = 4 and
cDI = cCSH = 0.0025. The priors for indicators are specified as

γDI
i j ∼ Bernoulli(πDI

i j ), πDI
i j ∼ B(1, 1)

γCSH
i j ∼ Bernoulli(πCSH

i j ), πCSH
i j ∼ B(1, 1).

For the Horseshoe prior, no more prior specifications are needed. For the Normal-Gamma prior, recall
that we specify aω ∼ E(b) and κ2 ∼ G(d1, d2). We set b equal to the number of coefficients in each block
and elicit a non-informative prior for κ2 by setting d1 = d2 = 0.01. For the Normal-Gamma-Gamma prior,
recall that 2a ∼ B(αa, βa), 2c ∼ B(αc, βc), and we set αa = αc = 2, βa = βc = 1.

Appendix B.5. Univariate models

For AR(p)-SV models applied to each scalar output growth or interest rate variable, generally denoted
yt, we have

yt = c +

p∑
`=1

ρ`yt−` + ut,

ut = h0.5
t vt, vt

i.i.d.
∼ N(0, 1),

log ht = log ht−1 + et, et
i.i.d.
∼ N(0, σ2

e).

As in Clark and Ravazzolo (2015), lag length is set to 2 for output growth and 4 for the interest rate.
Letting θ = (c, ρ1, . . . , ρp)′, we specify the following priors:

θ ∼ N(0,V), σ2
e ∼ IG(vh, S h), log h0 ∼ N(a0, b0).

V is assumed to be diagonal with elements equal to θ1
`θ2

, ` = 1, . . . , p, for autoregressive coefficients and
100 × σ̂2

y for the intercept. θ1 is set to 0.04, θ2 is set to 2, and σ̂2
y is obtained from a univariate AR(1)

regression. We use a modestly informative prior for σ2
e to control the time variation by setting vh equal to

2 and S h to 0.04. For the prior on initial conditions, we set a0 = 0 and b0 = 10.
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For the UCSV model, we have

yt = τt + ε
y
t , ε

y
t ∼ N(0, eht),

τt = τt−1 + ετt , ε
τ
t ∼ N(0, egt),

ht = ht−1 + εh
t , ε

h
t ∼ N(0, ω2

h),

gt = gt−1 + ε
g
t , ε

g
t ∼ N(0, ω2

g),

with initial conditions τ0, h0 and g0 as unknown parameters. We can rewrite the above UCSV model in
the non-centered parameterization:

yt = τt + e
1
2 (h0+ωhh̃t)ε̃

y
t ,

τt = τt−1 + e
1
2 (g0+ωgg̃t)ε̃τt ,

h̃t = h̃t−1 + ε̃h
t ,

g̃t = g̃t−1 + ε̃
g
t ,

where h̃0 = g̃0 = 0 and ε̃y
t , ε̃τt , ε̃h

t , and ε̃g
t are all i.i.d. N(0, 1). We assume Normal priors for all model

parameters: ωh ∼ N(0, 0.22), ωg ∼ N(0, 0.22), h0 ∼ N(0, 10), g0 ∼ N(0, 10), and τ0 ∼ N(0, 10).

Appendix C. Algorithms

Appendix C.1. Algorithms for VARs with Minnesota-type prior

For all the country-specific VARs, country-specific factor-augmented VARs, global VARs, and multi-
country VARs with Minnesota prior, the MCMC samplers follow almost exactly the steps in Carriero,
et al. (2022), but an additional step is needed to update prior tightness parameters. We highlight three
issues related to the sampler, and refer interested readers to Appendix A.3 in their paper for other details.

Step 1: Update β|·. We update the coefficients equation by equation, as in the corrected triangular
algorithm in Carriero, et al. (2022). Details can be found in Appendix C.5.

Step 2: Update λi|·, i = 1, 2, 4. Let S λi , i = 1, 2, 4, be the collection of all indexes such that parameters
associated with the overall shrinkage parameters belong to this set. It can easily be shown that, with a
Gamma prior, λi ∼ G(1, ci), conditional posteriors follow a Generalized Inverse Gaussian distribution:

λi|· ∼ GIG
(
1 −

dim(S λi)
2

, 2ci,
∑

(i, j)∈S λi

β2
i, j

2Ci, j

)
.

The density of x ∼ GIG(p, a, b) is given by f (x) ∝ xp−1 exp
(
−(ax+b/x)/2

)
. dim denotes the dimension of

the set, and Ci, j are the prior local variance parameters (the elements in (B.4) without an overall shrinkage
parameter).
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Step 3: Update the volatility. For the volatility estimation, let ũt = Aut denote the rescaled residuals.
The elements of ũt obey the following process:

ln ũ2
i j,t = ln hi j,t + ln ε2

i j,t, i = 1, . . . ,N, j = 1, . . . ,G.

So, together with state equation (B.2), we have a non-linear and non-Gaussian state space system. To get
the volatility estimates, we use the KSC algorithm, first introduced in Kim, Shephard, and Chib (1998)
and detailed for VAR models in Del Negro and Primiceri (2015). We use a 10-state mixture of Normals to
approximate the distribution of non-Gaussian errors ln ε2

i j,t. The details of approximation are provided in
Table 1 of Omori, et al. (2007).

Step 4: Update the free elements in A. This can be done with the equation-by-equation approach of
Cogley and Sargent (2005) or with the joint approach of Chan (2017). For the latter, letting a denote the
free elements in A, it can be shown that a can be interpreted as the coefficients from the regression:

ut = Kta + et, et ∼ N(0,Dt),

where Dt = diag(h1,t, . . . , hNG,t), and Kt is given as

Kt =



0 0 0 0 0 · · · · · · 0

−u1t 0 0 0 0 · · · · · ·
...

0 −u1t −u2t 0 0 · · · · · ·
...

...
. . .

. . . · · · · · · 0
0 · · · · · · · · · 0 −u1t · · · −u(NG−1)t


.

This permits drawing a jointly. Given the prior a ∼ N(0,Ωa), the posterior is also Gaussian a|β, h,Φ,Y ∼

N(µa,Ωa), where

Ωa = (Ω−1
a + K′H−1K)−1

µa = ΩaK′H−1u.

This algorithm can be more efficient than the equation-by-equation approach, because a is updated jointly.
However, the band matrix Kt does not have a fixed bandwidth (the number of non-zeros elements increases
with model size). Thus, letting n denote the number of variables in the model, the complexity of this
algorithm is still O

(
n3), and the estimation quickly becomes computationally demanding as the model size

increases. Accordingly, for country-specific models, which are small (n = N = 3), we use this algorithm
to update a. But for multi-country models, which are large (n = NG = 21), we use the algorithm of Cogley
and Sargent (2005) to draw a equation by equation.
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Step 5: Update Φ|·. Since we elicit a conditionally conjugate prior, the conditional posterior takes the
same form, which can be shown to be:

Φ|· ∼ IW
(
Q0 + T,W0 +

T∑
t=1

(
log(ht) − log(ht−1)

)(
log(ht) − log(ht−1)

)′)
.

Appendix C.2. Algorithm for multi-country VAR with factor shrinkage

Most of the steps of the algorithm for the CC specification follow from the previous section, except
that we have to adapt step 1’s treatment of the VAR’s coefficients. With the transformation, we see that
given θ ∼ N(0,Ωθ), the conditional posterior θ|Y, a, h,Φ is multivariate Normal, N(µθ,Ωθ), with moments:

Ωθ = (Ω−1
θ + Z̃′Σ̃−1Z̃)−1

µθ = ΩθZ̃′Σ̃−1Y,

where Y, Z̃ are stacked versions of Yt, Z̃t and Σ̃ = diag(Σ1, . . . ,ΣT ).

Appendix C.3. Algorithms for multi-country VARs with hierarchical shrinkage

As in Algorithm 1 in the main text, the MCMC estimation involves 5 steps. The only new step com-
pared to above is to update the prior variance parameters and associated hyperparameters. We provide
details of the conditional posterior distributions for these parameters. In Section 6.4, we also estimate
country-specific VAR-SV specifications with hierarchical shrinkage and Horseshoe prior. The algorithm
follows exactly the ones described below.

First, consider the Horseshoe prior:

β j|ω
2
j ∼ N(0, ω2

j), ω
2
j |γ

2
j ∼ G

(1
2
, γ2

j
)
, γ2

j ∼ G
(1
2
, λ

)
,

and λ ∼ C+(0, 1). It follows from straightforward calculation that

ω2
j |· ∼ GIG(0, 2γ2

j , β
2
j),

where GIG(p, a, b) denotes the Generalized Inverse Gaussian distribution with pd f given by f (x) ∝
xp−1 exp

(
− (ax + b/x)/2

)
. For the conditional posterior of γ2

j |·, since the Gamma distribution is conjugate
for the Gamma likelihood function, we have that

γ2
j |· ∼ G

(
1, λ + ω2

j
)
.

Updating λ|· follows the same steps as above since the prior admits the hierarchical representation: λ ∼
G
( 1

2 , ξ
2), ξ2 ∼ G

(1
2 , 1

)
.
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Second, consider the Normal-Gamma prior:

β j|ω
2
j ∼ N(0, ω2

j), ω
2
j ∼ G

(
aω,

aωκ2

2
)
,

and aω ∼ E(b) and κ2 ∼ G(d1, d2). It follows similarly as in the Horseshoe prior that

ω2
j |· ∼ GIG

(
aω − 0.5, aωκ2, β2

j
)
.

The conditional posterior for aω|· is not available in closed form. We use adaptive Random Walk Metropolis-
Hastings algorithms as in Roberts and Rosenthal (2009) with acceptance probability given by

min
{

1,
p(aω,new)aω,new

p(aω)aω
∏

j

p(β j|aω,new, κ2)
p(β j|aω, κ2)

}
,

where the marginal prior is given by

p(β j|aω, κ2) =

(√
aωκ2)aω+ 1

2

√
π2aω− 1

2 Γ(aω)

∣∣∣β j

∣∣∣aω− 1
2 Kaω− 1

2

(√
aωκ2

∣∣∣β j

∣∣∣),
and K(·) denotes a modified Bessel function of the second kind. At each iteration i, a new value aω,new is
proposed according to

log aω,new = log aω + ε j, ε j ∼ N(0, σ2(i)
ψ j

). (C.1)

The variance of the increments is fixed at 1 for the first 50 iterations, and then updated by

logσ2(i+1)
aω = logσ2(i)

aω +
1
iq (α̂ − α∗), (C.2)

where α̂ is the estimated acceptance probability of current draws and α∗ is the desired acceptance proba-
bility. The parameter q controls the degree of vanishing adaption, which is necessary to make the adaptive
algorithm valid.15 This algorithm leads to an average acceptance rate that converges to α∗. Following
Griffin and Brown (2017), we set q = 0.55, α∗ = 0.3. Then updating κ2|· is quite straightforward since it
again follows a Gamma distribution:

κ2|· ∼ G
(
Maω + d1, d2 + aω

∑
j

ω2
j

)
,

15This means that the variances of increments are fixed as i → ∞. Two conditions are provided in equations (1.1) and (1.2)
of Roberts and Rosenthal (2009). The condition in equation (1.2) in their paper is generally satisfied provided that ψ is bounded
above.
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where M denotes the number of parameters in each block.
Finally, consider the Normal-Gamma-Gamma prior:

β j|τ
2
j , λ

2
j ∼ N

(
0, φ

τ2
j

λ2
j

)
, τ2

j ∼ G(a, 1), λ2
j ∼ G(c, 1),

where φ = 2c/(aκ2), 2a ∼ B(αa, βa), 2c ∼ B(αc, βc), and κ2|a, c ∼ F(2a, 2c). We proceed as in Cadonna,
Frühwirth-Schnatter, and Knaus (2020). As we use marginalized distributions in each step to improve
sampling efficiency, the steps described below are not interchangeable.

Step a: Update a|·. Use the prior p(β j|λ
2
j , a, c), marginalized w.r.t. τ2

j , to draw a|· via an adaptive
Random Walk Metropolis-Hastings algorithm on z = log

(
a/(0.5 − a)

)
. The variance of the increments is

updated as in the Normal-Gamma case. At each iteration m, letting a∗ be the candidate draw and a(m−1) be
the previous draw, the acceptance probability is given by

min
{

1,
qa(a∗)

qa(a(m−1))

}
, qa(a) = p(a|·)a(0.5 − a).

Letting m be the number of parameters in each block, log qa(a) is given by

log qa(a) = a
(
− m log 2 +

m
2

log κ2 −
m
2

log c +
1
2

∑
j

log λ2
j +

1
2

∑
j

log β2
j

)
+

5
4

m log a + m
a
2

log a − m log Γ(a + 1)

+
∑

j

log Ka− 1
2

(
β j

√
λ2

jκ
2a/c

)
− logB(a, c) + a

(
log a + log

( κ2

2c
))
− log a − (a + c) log

(
1 +

aκ2

2c

)
+ (αa − 1) log(2a) − (βa − 1) log(1 − 2a)

+ log a + log(0.5 − a).

Step b: Update τ2
j |·. This step is simple, as the conditional posterior is again GIG:

τ2
j |· ∼ GIG

(
a −

1
2
, 2,

λ2
jβ

2
j

φ

)
.

Step c: Update c|·. Use the prior p(β j|τ
2
j , a, c), marginalized w.r.t. λ2

j , to draw c|· via an adaptive
Random Walk Metropolis-Hastings algorithm on z = log

(
c/(0.5 − c)

)
. The variance of the increments is

updated as in the Normal-Gamma case. At each iteration m, letting c∗ be the candidate draw and c(m−1) be
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the previous draw, the acceptance probability is given by

min
{

1,
qc(c∗)

qc(c(m−1))

}
, qc(c) = p(c|·)c(0.5 − c).

Letting m be the number of parameters in each block, log qc(c) is given by

log qc(c) = m log Γ(c + 0.5) − m log Γ(c + 1) +
m
2

log c

− (c + 0.5)
(∑

j

log
(
4cτ2

j + β2
jκ

2a
)
−

∑
j

log(4cτ2
j)
)

− logB(a, c) − (a − 1) log c − (a + c) log
(
1 +

aκ2

2c
)

+ (αc − 1) log(2c) + (βc − 1) log(1 − 2c)

+ log c + log(0.5 − c).

Step d: Update λ2
j |·. This step is simple; the conditional posterior is G:

λ2
j |· ∼ G

(1
2

+ c,
β2

j

2φτ2
j

+ 1
)
.

Step e: Update κ2|·. Notice that the prior of κ2 admits the following hierarchical representation: κ2|a ∼

G(a, d2), d2|a, c ∼ G
(
c, 2c

a

)
. Then updating κ2|· involves first sampling from

d2|· ∼ G
(
a + c, κ2 +

2c
a

)
,

then sampling from (m is the number of parameters in each block)

κ2|· ∼ G
(m

2
+ a,

a
4c

∑
j

λ2
j

τ2
j

β2
j + d2

)
.

Appendix C.4. Corrected triangular algorithm

Consider an n-variable reduced-form VAR(p) model as in Carriero, et al. (2022):

yt = Π′xt + A−1Λ0.5
t εt, εt

i.i.d.
∼ N(0, In),

where t = 1, . . . ,T , xt is an (np + 1) × 1 dimensional vector containing the lags of yt and an intercept,
Π = (Π0,Π1, . . . ,Πp)′ is an (np + 1) × n matrix of coefficients, A−1 is a unit lower triangular matrix, and
Λ0.5

t is diagonal with the log of the generic j-th element following a random walk process.
Defining ỹt = Ayt with generic j-th element ỹ j,t = y j,t + a j,1y1,t + · · ·+ a j, j−1y j−1,t, consider the triangular
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representation of the system:

ỹt = AΠ′xt + Λ0.5
t εt = A(x′tΠ)′ + Λ0.5

t εt,

which can be expressed as the following system of equations:

ỹ1,t = x′tπ
(1) + λ0.5

1,t ε1,t

ỹ2,t = a2,1x′tπ
(1) + x′tπ

(2) + λ0.5
2,t ε2,t

ỹ3,t = a3,1x′tπ
(1) + a3,2x′tπ

(2) + x′tπ
(3) + λ0.5

3,t ε3,t

...

ỹn,t = an,1x′tπ
(1) + · · · + an,n−1x′tπ

(n−1) + x′tπ
(n) + λ0.5

n,t εn,t,

where π( j) denotes the coefficients of the j-th equation. Clearly, π( j) appears not only in equation j but also
in equations j + 1 through n. Letting z j+l,t = ỹ j+l,t −

∑ j+l
i, j,i=1 a j+l,ix′tπ

(i), for l = 0, ..., n − j, and ai,i = 1,
consider the following system of equations:

z j,t = x′tπ
( j) + λ0.5

j,t ε j,t

z j+1,t = a j+1, jx′tπ
( j) + λ0.5

j+1,tε j+1,t

...

zn,t = an, jx′tπ
( j) + λ0.5

n,t εn,t.

Then, using the above triangular representation, the full conditional posterior of π( j)|· follows immediately
from standard Bayesian linear regression results (assuming that prior means are zero):

π( j)|· ∼ N
(
µπ( j) ,Ωπ( j)

)
,

where

Ω
−1
π( j) = Ω−1

π( j) +

n∑
i= j

a2
i, j

T∑
t=1

1
λi,t

xtx′t

µπ( j) = Ωπ( j) ×
( n∑

i= j

ai, j

T∑
t=1

1
λi,t

xtzi,t

)
,

with ai,i = 1.

51



Appendix C.5. Algorithms for SSSS prior

The algorithms described in Appendix A.3 of Korobilis (2016) can be easily extended to our case
with SV. Only step 1 has to be modified. In particular, let Y = (y1 · · · yT )′, xt = (1, y′t−1)′, and X =

(x1 · · · xT )′, and write the model as
Y = XB + U,

where U = (u1 · · · uT )′. The sampler involves the following steps:
Step a: Update vec(B)|·. It can be shown that

vec(B)|· ∼ N
(
Γ × µB,DB

)
,

where

DB =
(
V +

T∑
t=1

(
Σ−1

t ⊗ x′t xt
))−1

, µB = DB

(
vec

( T∑
t=1

xty′tΣ
−1
t

))
.

The diagonal matrix V contains prior variances; details of constructing the indicator matrix Γ can be found
in Korobilis (2016).

Steps b,c,d,e: These follow exactly as in steps 2,3,4,5 in Korobilis (2016).
Steps f,g,h: Update free elements in A, stochastic volatility, and related parameters. These steps follow

the corresponding steps used for the multi-country VAR with the Minnesota-type prior.

Appendix C.6. Algorithms for country-specific VAR with hierarchical shrinkage

We follow exactly the algorithms described in Chan (2021). Estimation for the intercept, autoregressive
coefficients, free elements in A, and stochastic volatility is very similar to the algorithms used in this paper.
It is worth mentioning that, as in Chan (2021), the model has been first transformed to structural form, and
then estimation is performed equation by equation. For hyperparameters related to the Normal-Gamma
prior, since a slightly different parameterization is used there, the updating of hyperparameters is slightly
different. The conditional posterior for ψi, j|· is also GIG, but with a slightly different parameterization.
An independent Metropolis-Hastings algorithm is used to update νψ|·. We refer the reader to Section 4 and
Appendix B in that paper for more details.

Appendix C.7. Algorithms for univariate models

We use the algorithms as described in Clark and Ravazzolo (2015) to estimate AR(p)-SV models. The
steps to draw intercept and autoregressive parameters follow from standard linear regression results. To
estimate stochastic volatility and related parameters, we follow the procedures described in Section 7.1 in
Chan (2017). For the UCSV model, we estimate it in non-centered parameterization and then transform
back to the centered parameterization to perform predictive simulation. Estimation details can be found in
Appendix B in Chan (2018) and in Section 7.2 in Chan (2017).
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Appendix D. Additional empirical results

Table D.1: Comparison of HS-CSH and baseline HS: descriptive statistics for all horizons

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.229 -1.999 -0.623 -1.236 -1.836 -2.761 Mean -0.204 0.087 -1.018 -0.759 0.610 0.933

Median -1.053 -2.029 -0.610 -1.183 -2.209 -3.580 Median 0.325 0.264 0.287 0.077 0.349 0.639

Min -6.251 -7.402 -3.926 -5.022 -6.251 -7.402 Min -8.772 -7.086 -8.772 -7.086 -6.593 -5.164

Max 3.282 3.078 2.128 2.284 3.282 3.078 Max 10.556 10.025 3.519 4.223 10.556 10.025

% > 0 32.143 28.571 35.714 28.571 28.571 28.571 % > 0 57.143 55.952 54.762 52.381 59.524 59.524

%p <= 0.05 0 2.381 0 2.381 0 2.381 %p <= 0.05 0 1.190 0 2.381 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 7.951 6.192 3.960 2.191 11.942 10.193

Median 6.169 5.192 3.180 1.804 10.788 8.174

Min -4.416 -5.618 -4.416 -5.618 0.337 0.383

Max 28.668 23.514 21.308 14.492 28.668 23.514

% > 0 90.476 86.905 80.952 73.810 100 100

%p <= 0.05 8.333 10.714 2.381 2.381 14.286 19.048

Notes: ”HS-CSH” is the multi-country VAR model in which all the parameters related to CSH restrictions follow the same Horseshoe prior specification.
The table provides summary statistics for the performance of this alternative model compared to the multi-country HS specification. Descriptive statistics
include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the
competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone
(2020).

Table D.2: Comparison of HS-A and baseline HS: descriptive statistics for all horizons

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.592 -3.194 -1.386 -2.642 -1.798 -3.746 Mean -2.180 -1.956 -2.282 -2.190 -2.079 -1.721

Median -1.626 -3.109 -1.160 -2.488 -2.434 -4.376 Median -2.037 -1.909 -1.173 -1.290 -2.533 -3.450

Min -7.806 -12.719 -7.806 -10.600 -7.287 -12.719 Min -12.187 -10.419 -12.187 -10.419 -9.568 -8.276

Max 4.116 3.688 2.804 3.197 4.116 3.688 Max 9.258 10.280 3.404 4.276 9.258 10.280

% > 0 33.333 28.571 33.333 28.571 33.333 28.571 % > 0 28.571 25 28.571 21.429 28.571 28.571

%p <= 0.05 1.190 4.762 2.381 4.762 0 4.762 %p <= 0.05 0 0 0 0 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 10.697 10.033 4.370 3.699 17.023 16.367

Median 9.769 10.128 4.496 3.532 17.011 16.445

Min -7.071 -10.052 -7.071 -10.052 6.479 7.464

Max 25.761 26.416 17.567 15.201 25.761 26.416

% > 0 90.476 86.905 80.952 73.810 100 100

%p <= 0.05 21.429 38.095 9.524 23.810 33.333 52.381

Notes: ”HS-A” is the multi-country VAR model in which all the parameters follow the same Horseshoe prior specification. The table provides summary
statistics for the performance of this alternative model compared to the multi-country HS specification. Descriptive statistics include average, median,
minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the competing models are
statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone (2020).
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Table D.3: Comparison of HS-E and baseline HS: descriptive statistics for all horizons

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.154 -2.286 -1.212 -2.101 -1.095 -2.470 Mean -1.756 -2.309 -2.332 -2.680 -1.181 -1.939

Median -1.454 -2.461 -1.105 -1.768 -1.608 -2.767 Median -1.109 -2.087 -1.109 -2.370 -1.036 -1.991

Min -7.244 -10.132 -7.244 -9.228 -6.265 -10.132 Min -13.790 -15.398 -13.790 -15.398 -9.156 -10.805

Max 4.161 3.987 3.126 3.642 4.161 3.987 Max 11.063 9.459 3.316 4.634 11.063 9.459

% > 0 33.333 28.571 38.095 28.571 28.571 28.571 % > 0 26.190 26.190 28.571 30.952 23.810 21.429

%p <= 0.05 0 1.190 0 2.381 0 0 %p <= 0.05 0 3.571 0 7.143 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 11.280 10.700 4.059 3.313 18.501 18.087

Median 10.568 10.984 2.596 2.770 16.977 17.372

Min -7.634 -11.672 -7.634 -11.672 6.737 7.870

Max 34.537 28.239 25.968 19.593 34.537 28.239

% > 0 83.333 82.143 66.667 64.286 100 100

%p <= 0.05 13.095 20.238 2.381 9.524 23.810 30.952

Notes: ”HS-E” is the multi-country VAR model in which all the parameters in each equation follow the same Horseshoe prior specification. The table
provides summary statistics for the performance of this alternative model compared to the multi-country HS specification. Descriptive statistics include
average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the competing
models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone (2020).

Table D.4: Comparison of Horseshoe priors with and without SV: descriptive statistics for all horizons

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.852 -3.445 -0.893 -2.525 -2.811 -4.364 Mean -22.974 -19.720 -11.820 -12.712 -34.127 -26.727

Median -1.962 -3.434 -1.123 -2.603 -2.722 -4.309 Median -16.394 -15.737 -7.538 -8.186 -24.002 -19.492

Min -9.097 -11.549 -6.032 -8.837 -9.097 -11.549 Min -98.999 -69.770 -56.606 -52.922 -98.999 -69.770

Max 5.197 4.580 5.197 4.580 2.362 0.835 Max 4.018 0.548 4.018 0.548 -7.184 -7.248

%> 0 28.571 19.048 38.095 28.571 19.048 9.524 %> 0 4.762 1.190 9.524 2.381 0 0

%p <= 0.05 3.571 5.952 0 2.381 7.143 9.524 %p <= 0.05 15.476 15.476 16.667 16.667 14.286 14.286

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -9.429 -13.515 -12.149 -20.332 -6.709 -6.698

Median -7.592 -6.062 -8.375 -14.525 -7.590 -2.534

Min -57.608 -73.394 -57.608 -73.394 -27.100 -47.395

Max 10.402 14.686 9.970 11.987 10.402 14.686

%> 0 26.190 28.571 21.429 14.286 30.952 42.857

%p <= 0.05 11.905 28.571 16.667 42.857 7.143 14.286

Notes: The table provides summary statistics for the performance of the alternative model with SV compared to the multi-country HS specification with
SV. Descriptive statistics include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in
which the forecasts from the competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics
as in Coroneo and Iacone (2020).
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Table D.5: Comparison of Horseshoe priors with expanding versus rolling windows: descriptive statistics for all horizons

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.095 0.342 1.229 0.707 0.960 -0.023 Mean 3.268 1.872 3.989 2.046 2.546 1.698

Median 0.849 0.160 1.102 0.528 0.759 0.002 Median 3.006 1.788 3.533 2.128 2.742 1.208

Min -1.632 -1.930 -1.632 -1.930 -0.688 -1.772 Min -1.479 -3.063 -1.318 -2.326 -1.479 -3.063

Max 7.256 4.464 7.256 4.464 3.948 3.023 Max 10.905 5.850 10.905 5.495 7.575 5.850

%> 0 83.333 54.762 80.952 59.524 85.714 50 %> 0 92.857 85.714 95.238 88.095 90.476 83.333

%p <= 0.05 3.571 4.762 7.143 9.524 0 0 %p <= 0.05 0 0 0 0 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.928 1.330 0.539 -0.077 3.317 2.738

Median 1.435 0.461 -0.338 0.043 3.237 1.713

Min -6.350 -6.095 -6.350 -6.095 -2.769 -4.450

Max 12.168 12.503 9.226 9.878 12.168 12.503

%> 0 59.524 57.143 47.619 50 71.429 64.286

%p <= 0.05 10.714 4.762 7.143 0 14.286 9.524

Notes: The table provides summary statistics for the performance of the HS model estimated with a rolling approach relative to the paper’s baseline
recursive approach. Descriptive statistics include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the
percentage gains in which the forecasts from the competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-
smoothing asymptotics as in Coroneo and Iacone (2020).

Table D.6: Comparison with univariate models with HS baseline featuring SV: descriptive statistics for all horizons

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 0.535 0.732 0.290 0.396 0.779 1.067 Mean 1.279 3.874 0.252 0.927 2.306 6.822

Median -0.513 -0.461 -0.342 -0.406 -0.750 -0.744 Median 2.022 3.073 1.740 1.213 2.572 7.117

Min -3.642 -4.655 -3.616 -3.813 -3.642 -4.655 Min -13.484 -7.475 -13.484 -7.475 -11.329 -3.670

Max 7.571 10.119 5.646 6.972 7.571 10.119 Max 13.247 17.693 6.875 7.681 13.247 17.693

%> 0 38.095 40.476 40.476 42.857 35.714 38.095 %> 0 70.238 77.381 59.524 64.286 80.952 90.476

%p <= 0.05 13.095 14.286 11.905 7.143 14.286 21.429 %p <= 0.05 0 8.333 0 0 0 16.667

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 8.982 7.799 8.442 7.370 9.522 8.227

Median 10.504 10.207 8.651 8.779 14.056 16.663

Min -19.264 -28.167 -15.896 -22.757 -19.264 -28.167

Max 28.698 29.027 24.232 25.927 28.698 29.027

%> 0 78.571 63.095 85.714 69.048 71.429 57.143

%p <= 0.05 11.905 25 9.524 23.810 14.286 26.190

Notes: This table presents descriptive statistics on comparisons of forecasting performance for the multi-country VAR-SV model with the Horseshoe
prior (the paper’s HS specification) relative to univariate models with SV. For output growth and the interest rate, we use an AR(p)-SV model, with p = 2
for output growth and p = 4 for the interest rate. For inflation, we use an unobserved component model with SV, as in Chan (2018). Descriptive statistics
include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the
competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone
(2020).
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Figure D.1: The figures present 1-step-ahead short-term interest rate forecasts for all G7 countries. The blue line and shaded areas are point forecasts and
associated 95 percent forecast intervals. The black line shows the true values.

Figure D.2: The figures present 12-steps-ahead short-term interest rate forecasts for all G7 countries. The blue line and shaded areas are point forecasts and
associated 95 percent forecast intervals. The black line shows the true values.
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Table D.7: Directional forecast: 1-step-ahead changes in output growth

CAN DEU FRA ITA JPN UK USA

HS -0.380 6.715 2.508 5.870 7.556 8.174 9.225

(0.648) (0.000) (0.006) (0.000) (0.000) (0.000) (0.000)

CVAR -2.183 0.421 -2.928 -2.307 -2.318 -1.668 -3.797

(0.986) (0.337) (0.998) (0.990) (0.990) (0.952) (0.999)

Notes: This table presents test statistics and associated p-values for directional predictive performance of 1-step-ahead changes in output growth from
multi-country VAR-SV model with Horseshoe prior and single-country VAR-SV benchmark. The test statistics are computed according to equation (6)
in Pesaran and Timmermann (1992).

Table D.8: Comparison with hierarchical country-specific VARs featuring SV: HS prior versus Chan (2021), descriptive statistics for all horizons

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.778 2.238 1.525 1.924 2.032 2.552 Mean 2.944 3.462 1.520 2.027 4.369 4.896

Median 1.947 1.876 1.412 1.737 1.951 2.556 Median 2.174 2.881 0.924 2.124 4.364 4.747

Min -3.041 -3.547 -3.041 -3.547 -1.975 -0.621 Min -2.281 -1.249 -2.281 -1.249 -1.583 -0.724

Max 6.223 6.509 6.223 6.509 5.940 6.200 Max 9.802 10.208 6.099 6.701 9.802 10.208

%> 0 79.762 84.524 83.333 85.714 76.190 83.333 %> 0 80.952 86.905 76.190 83.333 85.714 90.476

%p <= 0.05 17.857 14.286 11.905 11.905 23.810 16.667 %p <= 0.05 1.190 22.619 2.381 11.905 0 33.333

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 9.936 9.228 8.174 7.606 11.699 10.851

Median 11.195 10.659 8.529 8.511 14.053 13.219

Min -0.939 -0.742 -0.939 -0.742 1.082 -0.365

Max 20.896 21.690 20.896 17.718 20.696 21.690

%> 0 97.619 90.476 95.238 95.238 100 85.714

%p <= 0.05 30.952 30.952 11.905 14.286 50 47.619

Notes: This table presents descriptive statistics on comparisons of forecasting performance for the hierarchical shrinkage in the country-specific VAR-SV
model with the Horseshoe prior (the paper’s HS specification) relative to the hierarchical shrinkage with the Normal-Gamma prior as in Chan (2021).
Descriptive statistics include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which
the forecasts from the competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in
Coroneo and Iacone (2020).
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Table D.9: Comparison of country-specific VAR-SV and baseline multi-country VAR-SV with HS: descriptive statistics for all horizons

All horizons h 6 6 h > 6 All horizons h 6 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.134 1.341 1.537 1.758 0.731 0.924 Mean 1.429 2.286 0.825 1.189 2.034 3.382

Median 0.775 1.152 1.064 1.201 0.617 0.968 Median 1.964 2.600 1.951 2.344 1.964 3.497

Min -4.553 -3.130 -4.553 -2.116 -2.354 -3.130 Min -13.569 -10.703 -13.569 -10.703 -11.219 -9.106

Max 5.461 5.745 5.461 5.745 3.937 5.032 Max 13.926 15.588 7.518 8.836 13.926 15.588

%> 0 72.619 73.810 85.714 80.952 59.524 66.667 %> 0 78.571 75 73.810 69.048 83.333 80.952

%p <= 0.05 3.571 8.333 7.143 16.667 0 0 %p <= 0.05 4.762 15.476 0 4.762 9.524 26.190

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.627 1.764 -0.253 0.435 3.506 3.093

Median 1.030 3.074 -1.630 2.123 3.445 4.184

Min -12.774 -16.290 -11.779 -15.435 -12.774 -16.290

Max 19.525 20.786 18.605 20.046 19.525 20.786

%> 0 55.952 60.714 38.095 57.143 73.810 64.286

%p <= 0.05 23.810 33.333 7.143 23.810 40.476 42.857

Notes: This table presents descriptive statistics on comparisons of forecasting performance for the country-specific VAR-SV model and multi-country
VAR-SV model with the Horseshoe prior (the paper’s HS specification). Descriptive statistics include average, median, minimum, maximum, percentage
of cases in which gains are above 0, and the percentage gains in which the forecasts from the competing models are statistically different according to the
Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone (2020).
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Table D.10: Loss function levels for the benchmark CVAR specification

RMSFE CRPS

Output growth h = 1 h = 4 h = 8 h = 12 h = 1 h = 4 h = 8 h = 12

CAN 2.319 2.712 2.637 2.647 1.245 1.466 1.419 1.402

DEU 3.592 3.595 3.569 3.470 1.832 1.805 1.798 1.764

FRA 1.630 2.068 2.116 2.144 0.892 1.115 1.134 1.149

ITA 2.539 2.985 2.964 2.935 1.335 1.580 1.553 1.515

JPN 4.185 4.167 4.156 4.251 2.208 2.187 2.159 2.261

UK 2.070 2.542 2.509 2.534 1.080 1.311 1.282 1.287

USA 2.335 2.548 2.594 2.542 1.266 1.364 1.393 1.367

Inflation h = 1 h = 4 h = 8 h = 12 h = 1 h = 4 h = 8 h = 12

CAN 1.870 1.722 1.816 1.809 0.998 1.006 1.060 1.085

DEU 1.140 1.277 1.377 1.376 0.663 0.743 0.814 0.794

FRA 1.118 1.410 1.439 1.456 0.618 0.783 0.848 0.875

ITA 0.934 1.498 1.690 1.777 0.503 0.830 0.946 1.005

JPN 1.652 1.797 1.846 1.858 0.891 0.978 1.015 1.023

UK 0.982 1.215 1.384 1.358 0.542 0.701 0.778 0.813

USA 2.151 2.227 2.223 2.193 0.988 1.102 1.185 1.160

Interest rate h = 1 h = 4 h = 8 h = 12 h = 1 h = 4 h = 8 h = 12

CAN 0.474 1.327 2.130 2.588 0.231 0.704 1.187 1.502

DEU 0.323 1.068 1.795 2.202 0.162 0.589 1.083 1.374

FRA 0.416 1.298 2.083 2.445 0.192 0.675 1.182 1.419

ITA 0.461 1.502 2.518 3.190 0.234 0.777 1.393 1.817

JPN 0.177 0.740 1.342 1.577 0.068 0.278 0.536 0.676

UK 0.418 1.233 1.884 2.289 0.189 0.630 1.012 1.295

USA 0.353 1.188 2.076 2.644 0.173 0.648 1.205 1.588
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