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A1l. Bayesian Estimation Details

Al.a. Base model equations

For convenience, we list all model equations keeping the numbering as in the main text.

U =U; +Uf
Up = Ui = pi (U1 = Ui_y) + p5(Ur2 = Uip) + d"ogapy + £, e ~ N(0,e")
where, pi + py <1, p§ — pt < 1, and |p}§| < 1; ¢* < 0

Ut Ut 1 +5 ’ ;L* NTN(a“U - Ut* lﬂb - Ut* 17070u*)
20 = OV 4 BUUT + e, e~ N(0, 02,)

(A7)

Cf =Gy + i, " ~ N(0,02,)

gdp = gdpi + ogapy

d d
gdp} = 2gdp}_y — gdp}_o + {7, P ~ N(0,074,,)

g; = ANgdp;

g =g+l

ogap = p{(ogapi—1) + pi(ogapi—2) + a" (r{’ — rf —tp;) + N (U — Uf) + 9"
where, &7 ~ N(0,e"), p{ +p§ <1, pJ —p{ < 1, and |pJ] < 1; A9 <0
=CY +B9x4xgf +¢;7, NN(O,JZQ)

Cg Ctgl"'g 3 NN(O,O-CQ)

a—ﬁzwmq—mﬂ+£@—wmm££~Nmﬁ>

where, [pP| <1
)‘f:)‘f1+5t> Et NN(OUAp)
P Pt*1+€ s NN(O,O'p*)

m =7y = pp (m—1 = m_y) + AT (U = Uf) €, ef ~ N(0,¢")
pr=piatel, e ~ TN~ ply,1-pf4;0,05,)
where, p” is truncated so that 0 < pff < 1.
A=A 1+€t ) 5t T~ TN(=1—= A 1,0 = A3 0,0%,)
A™ is the slope of the price Phillips curve and is constrained in the interval (-1,0).

* * Tk
T =T+, & "’N(OU )

» Orx

ZF = CF + B} + 2", & ~ N(0,02,)

YU ZT

Cl =C[ +¢&, & ~N(0,02,)



Wi =nf + P + Wedge; + €}, ~ N(0,02,)
Wedge; = Wedger_1 + P, e ~ N(0,02,,)
Wy = Wi = pf (Wit = Wisy) + A (U = U) + K¢ (m — ) + e, e ~ N(0, )
py = piliters et ~TN(O—pily,1—py 17070pw)
A =ML ", e ~ TN(=1 = Ay, 0 = APy50,0%,,)

A" is the slope of the wage Phillips curve and is constrained in the interval (-1,0).

K = R e e ~ N(0,02,)

)Y KW

i =1} = p (i — my — i) N (U= UF) 4 K — ) + e, el ~ N(0, )
where, p’ is truncated so that 0 < p < 1.
ry =Cg; + D
Dy =Dy +¢f, el ~N(0,07)
=Cl +B"rf +ei", & ~ N(0,02)

Ct Ct 1_{—8 ) NN(Ovacr)

hzd = ht 1 +€t7 i ~ N(070]2)
where id = {u, ogap, p, 7, w,i}, and j = {hu, ho, hp, hw, hw, hi}



Al.b. Prior elicitation

Our prior settings are similar to those used in Chan, Koop, and Potter (2016) [CKP], Chan,
Clark, and Koop (2018) [CCK], and Gonzalez-Astudillo and Laforte (2020). As discussed in
CCK, UC models with several unobserved variables, such as the one developed in this paper,
require informative priors. That said, our priors settings for most variables are only slightly
informative. The use of inequality restrictions on some parameters such as the Phillips curve,
persistence, and bounds on u-star could be viewed as additional sources of information that elim-
inates the need for tight priors, something also noted by CKP. For the parameters for which
there is strong agreement in the empirical literature on their values, such as the Taylor-rule
equation parameters, we use relatively tight priors, such that prior distributions are centered
on prior means with small variance.

In the table below, the notation N (a, b) denotes a Normal distribution with mean a and vari-

ance b; and IG(v, S) denotes an Inverse Gamma distribution with degrees of freedom parameter
v and scale parameter S.

Table Al: Prior settings

Parameter Parameter Description Prior

a” Coefficient on interest rate gap in output gap equation | N(0,1)

o1 Persistence in output gap: lag 1 N(1.3,0.1%)

05 Persistence in output gap: lag 2 N(—0.5,0.12)

Py Persistence in UR gap: lag 1 N(1.3,0.1%)

Py Persistence in UR gap: lag 2 N(—0.5,0.12)

PP Persistence in productivity gap N(0.1,1)

¢ Relationship between r* and g* N(1,0.1)

o Persistence in interest rate gap N(0.85,0.12)

X Interest rate sensitivity to UR gap: (=2 (1 — p?)) N(-0.3,0.1%)

K Interest rate sensitivity to inflation: (0.5 * (1 — p?)) N(0.075,0.12)

A9 Output gap response to UR gap N(—-0.02,1)

ok UR gap response to output gap N(-0.02,1)

B9 Link between g* and survey N(1,0.1%)

ok Link between u* and survey N(1,0.05%)

gr Link between r* and survey N(1,0.12)

BT Link between 7* and survey N(1,0.05%)

o2, Var. of the shocks to 7* I1G(10,0.12 x 9)

ol Var. of the shocks to p* 1G(10,0.1422 x 9)

o2, Var. of the shocks to u* 1G(10,0.12 x 9)

agdp* Var. of the shocks to gdp* 1G(10,0.01% x 9)

o2 Var. of the shocks to d G(lO 0.12 x 9)

o2, Var. of the shocks to w* I1G(10,0.03% x 9)

ago Var. of the volatility — Ogap eq. I1G(10,0.707% x 9)

Tt Var. of the volatility — UR gap eq. I1G(10,0.707% x 9)

a}%p Var. of the volatility — Productivity eq. 1G(10,0.316% x 9)

o} Var. of the volatility — Price Inf. eq. 1G(10,0.3162 x 9)

or. Var. of the volatility — Wage Inf. eq. 1G(10,0.316% x 9)
Continued on next page




Table A1 — continued from previous page

Parameter Parameter Description Prior

o Var. of the volatility — Interest rate eq. 1G(10,0.316% x 9)
o3 Var. of the shocks to TVP A", Price Phillips curve I1G(10,0.04% x 9)
03 Var. of the shocks to TVP A", Wage Phillips curve I1G(10,0.042 x 9)
U?\p Var. of the shocks to TVP NP, Cyc. Productivity I1G(10,0.042 x 9)
o2, Var. of the shocks to TVP &%, PT: m to Wages 1G(10,0.042 x 9)
Ugw Var. of the shocks to TVP p?, Persist. Wage-gap 1G(10,0.042 x 9)
aﬁ,r Var. of the shocks to TVP p™, Persist. Inflation-gap 1G(10,0.042 x 9)
o Time-varying Intercept in eq. linking survey to pi-star | N(0,0.1)

Ccy Time-varying Intercept in eq. linking survey to u-star | N(0,0.1)

Cc§ Time-varying Intercept in eq. linking survey to g-star | N(0,0.1)

Ccy Time-varying Intercept in eq. linking survey to r-star | N(0,0.1)

o2 Var. of the shocks to TVP C™ 1G(10,0.12 x 9)
o2, Var. of the shocks to TVP C* I1G(10,0.12 x 9)
o2, Var. of the shocks to TVP CY 1G(10,0.12 x 9)
o2 Var. of the shocks to TVP C” 1G(10,0.1%2 x 9)
o2, Var. of the shocks to TVP Wedge I1G(10,0.12 x 9)
o2, Var. of the shocks in measurement eq. Z7, I1G(10,0.2 x 9)
o2, Var. of the shocks in measurement eq. Z*, IG(10,0.3 x 9)
agg Var. of the shocks in measurement eq. Z9, I1G(10,0.1 x 9)
o2, Var. of the shocks in measurement eq. Z", IG(10,0.2 x 9)
e Initial value of pi-star N(3,52)

ug Initial value of u-star, ¢ = 0 N(5,5%)

u* Initial value of u-star, t = —1 N(5,5%)

5 Initial value of p-star N(3,52)

wh Initial value of w-star, E(p) + E(nj) =6 N(6,52)

Dy Initial value of D, ”catch-all” component of r-star N(0,0.31622)
gdpj Initial value of gdp-star, t =0 N (750, 102)

gdp* 4 Initial value of gdp-star, t = —1 N(750,10?)




Al.c. MCMC algorithm

The estimation of our complex UC model and sampling from its joint posterior distribution
reduces to sequentially drawing from a set of conditional posterior densities, some of which are
standard and some that are non-standard.

Collect all the time-invariant model parameters into 6:

(U U 2 2 u 2 2 2 g 9 .r 2 2 2 2 2 2
0= (p17p2aahua¢UuO’u*aﬁ 7Uzu7o-cu7o-gdp*7p17p27a 7>‘gvO-hO’O-zg’O-cgvﬁg’ppvo-hwo-p*vo-)\ﬂ-a
2 2 2 2 2 T 2 2 2 2 2 P\ et 2 2 2 2 ro 2
Upﬂ_70'h7r70'7r*,O'Z7r,O'C7r,/B 70-w*)0-hw70-pw70-,\w70-/gw7p ))‘ 7"i 70—hi70-27"’0-67‘70-wlr’ﬁ 7Ud)

We denote e as representing all other model parameters.

L p(U*[Y,e) 2. p(gdp*|Y,e) 3. p(P*[Y,e) 4. p(r*[Y,e) 5. p(w*|Y,e) 6. p(r*|Y,e)
7. p(AP|Y,e) 8. p(p”|Y,e) 9. p(A"|Y,e) 10. p(p”|Y,e) 11. p(A\*|Y,e) 12. p(k™|Y,e)
13. p(h?, ™, ", h|Y,8) 14, p(C*,C9,C7,CT, Wedge|Y,s) 15. p(D|Y,e) 16. p(d]Y,e)

Step 1. Derive the conditional distribution p(U*|Y,e)

The derivation of this distribution is most complex because the information about U* comes
from eight sources (i.e., model equations). Below, we derive an expression for each of the eight
sources.

The first source is the state equation of U*. We rewrite it in a matrix notation as follows,

HU* = oy + € &% ~ N(0,Qu), where Qe = diag(w?,,02,,...,02,) (38)
where,
Uy 1 0 0 0
0 -1 1 0 0
=] 0| m=|0 -1 1 0
0 0 0 -1 1

That is, the prior density for U* is given by

p(U*|of;,) o _%(U* - H_lau)/H,Q;»}H(U* — H o) + gus(U*, 07,)

where,
ay <U* < by, fort=1,..,T, and

(o () () Eon(e (52 (2525)

The second source of information comes from the unemployment measurement equation. Rewrite



the equation in a matrix notation,

KU =p + KU* +e% e~ N(0,Q,), where Q, = diag(e,e"2, ... &) (39)

and,
Pi(Us — Ug) + py(U_1 — U*y) 10 0 0
p3(Uo — Ug) -t 10 -0
Ly = 0 . K, = —pg _qu 1 o 0
0 0 —py —pp 1

Ignoring any terms not involving U*, we have
log p(U|U*,e) x —%(U — Ky, — U*)’K;QJIKU(U — Ky, — U¥)

The third source of information comes from the inflation measurement equation. Rewrite the
equation in a matrix notation,

Z=AU*+e" " ~N(0,Q), where Qp = diag(e"l,e"?, .. ") (40)
where,
2 = (m —mf) = pi (w1 — 7)) = AfUL
Z = (z1,..., 21) and A™ = diag(—\], ..., —\T})
Ignoring any terms not involving U*, we have
log p(r|U*, U, 7, h™, pP, @) x —%(Z — A"U*)'Q; 1 (Z — A™U¥)

The fourth source of information comes from the productivity measurement equation. Rewrite
the equation in a matrix notation,

MP = APU*+ 8 &P ~ N(0,Qp), where Qp = diag(ehzly,ehg, ...,ehl%) (41)
where,
my = (P, — Pf) — pP'(Pio1 — Pry) = MU,
MY = (my,...,mp) and AY = diag(—=\], ..., —AL)
Ignoring any terms not involving U*, we have

lOg p(P‘U*’Ua P*ahpvppv.) X _%(MP - APU*)/QIDI(MP - APU*)



The fifth source of information comes from the wage measurement equation. Rewrite the
equation in a matrix notation,

MY = AYU* 4% &% ~ N(0,Qy), where Q, = diag(e",e"? ..., eh7) (42)
where,

my = (Wy = W) = pfV (Wier = Wi y) = NV Uy — &Y (m — ),
M® = (m¥,..,m¥%) and AY = diag(— A}V, ..., = A})

Ignoring any terms not involving U*, we have

log p(W|U*, W, W*,h* pV e) x —%(M“’ — APUHY QL (MY — AYU)

The sixth source of information comes from the output gap measurement equation. Rewrite
the equation in a matrix notation,

M9 = ANU* +&9 9~ N(0, Qgap), where Qpgap = diag(e't, ez, ... ")
where,

(43)

m{ = ogap; — p{(ogapi—1) — p§(ogapi—a) — XU, — a” (1 — 17),

M9 = (m!

g ..om¥) and A9 = diag(—)N9, ..., —\9)

(m

Ignoring any terms not involving U*, we have

log p(ogap|U*,U,e) x —%(Mg - AgU*)’Qgglap(Mg — AIU™)

The seventh source of information comes from the Taylor-type rule measurement equation.
Rewrite the equation in a matrix notation,

el ~ N(0,Q;), where Q; = dz’ag(ehi,ehg, e ehg‘)
where,

(44)

mit =1 —mf —

ri— (i1 —w o — 1) — K (m — ) — XU,
M = (oo and T% = diag(~N, ..., ~ )

Ignoring any terms not involving U*, we have

log p(i|U*,U,m,e) oc —&(M™ —TWU*)'Q; (MW — TU*)

The eighth source of information comes from the measurement equation that links surveys



to U*. Rewrite the equation in a matrix notation,
FU = BUU* + ™ &% ~ N(0,Q.,), where Q. = diag(a?,, ...,0%,) (45)
where,
fit =2y = ¢,
F = (fso f1)
Ignoring any terms not involving U*, we have

log p(Z"|U*,U,7,e) x —%(F“ — BUUNQ N FY — guU™)

Combining the above eight conditional densities we obtain,

log p(U*|Y,e) —%(U* — U*)/Dai(U* — U*) + gux(U*, 02,)

» s

where,
Dy, = (H'Qu'H + K,Q; K, + A7 Q7™ + AV QpIAY + AYQpL A9 + T/ 1T 4
APQRIAP + (84)2050) 7

U* = Dy.(H'Qpba + K Q Ko (U — K tpy) + AT Q7N Z + AV MY + AY + A9 QgL M9+
FM/QZ-_IMM + AP’Q]—DIMP + BuQ;ulFu)
The addition of the term g,.(U*,02,) leads to a non-standard density. Accordingly, we sam-
ple U* using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N (U *, Dy4) using the precision-based algorithm (of Chan
and Jeliazkov, 2009) that are then accepted or rejected based on the accept-reject Metropolis-
Hastings (ARMH) algorithm (discussed in Chan and Strachan, 2012).

Step 2. Derive the conditional distribution p(gdp*|Y,e)

The information about gdp* comes from five sources. Below, we derive an expression for each
of these sources.

The first source is the state equation of gdp*. We rewrite it in a matrix notation as follows,

Hggdp* = Qgdpx + Sgdp* Sgdp* ~ N(O’ dip*)v where dip* = diag(wgdp*’ U;dp*7 ceey O-zdp*)
(46)

where,

10



. i 1 0 0 0 --- 0
gdp0+Agdp0 -2 1 0 0 .0

—gglpo 1 -2 1 0 --- 0

Qgdps = ' o Ha=1¢9 1 21 ... 0
0 0 --- 0 1 -2 1

Hs is a band matrix with unit determinant and hence is invertible.

The prior density for gdp* is given by
p(gdp*|o2y,,) ox —3(gdp* — Hy ' agap.) HoQ o Ho(gdp™ — Hy ' cigaps)

The second source of information about gdp* is from the output gap measurement equation.
Rewrite in matrix form,

Hiyhoggdp = Hypoggdp® +a" T4 N i+ogmore+P €29 ~ N(0,Qogap), where Qogap = diag(eh(f, ehg, - ehOT)

(47)
where,
. 1 0 0 0 0
pi(gdpo — gdpg) + p3(9dp—1 — gdp™,) 9 1 0 o 0
g( d — aqd *) pl
P2gapo gapg 9 _ .9 1 0 0
0 P2 41
Agmore = ) Hrhog = 0 —pg —p‘tl] 1 01]-
0
0 0
r — TT U1 — Uf
To —T5 Us — U3
F=|m-r3| a=|Us—-Us
T —Tp Ur — U7

/

log p(gdplgdp*, e) o< —5(gdp—H, o (Hrnoggdp* +a" T+ Nt Agmore)) Hy oy QogapHrhog (9dp—

quhlog(Hrhoggdp* +a"r + Nu + agmore))

The third source of information comes from the unemployment gap measurement equation.
Rewrite that equation in matrix notation,

YU = Tugdp* 4% %~ N(0,Q,), where Q, = diag(e"t, e, ... ) (48)
where,

4 ) 3 - .
y 9P =y — plui 1 — pYugo — ¢tgdp, where iy = (U — UY)

11



Yol = (yy %, Ly Y

Ignoring any terms not involving gdp*, we have

log p(U|gdp*, ) oc —5(Y*9% —Tgdp*)'Q,* (V9% — T gdp*)

The fourth source of information comes from the equation linking r-star to g-star, i.e.,

ri = Clgdp; — gdp;_1) + D (49)
Rewrite this equation in matrix notation,
1* = CHgdp* + ag + D (50)
where,
agr = (—Cgdp}, 0,0, ....,0)’
Ignoring any terms not involving gdp*, we have

log p(r*|gdp*, D,e) < —%(r* — (CHgdp* + a4 + D)) (r* — (CHgdp* + a4, + D))

The fifth source of information comes from the measurement equation that links surveys to
g*. Rewrite the equation in a matrix notation,

F9 = p9(Hgdp* —ay)+e* €9~ N(0,8y), where Q4= diag(o? Tgs o Ugg) (51)

where,
iq = Zf _Ctgv F9 = (flgvvf’jq“)/
ag = (9dp,0,0,....,0)" is a T' x 1 vector.
Ignoring any terms not involving gdp*, we have

log p(Z9|gdp*, e) o< —5(F9 — BI(Hgdp* — arg))/ Q) (F9 — B9(Hgdp* — o))

Combining the above five conditional densities we obtain,
[ NV _ * Ak
log p(gdp*[Y,e) oc —3(gdp* — gdp ) D,y (gdp* — gdp')

where,

Dyaps = (HQQ 1

Hypog + TV QT + (CH)' (CH) + BIH'QZ} BIH) ™

ogap

H2Oégdp*+H Qo van(Hrhoggdp—a” T — NG — tgmore ) +1 "Ly uedp 4

gdp - ngp* (H2 dip* rhog ogap

(CH) (T —Ong—I-D) /BgH, zgng)

12



Step 3. Derive the conditional distribution p(P*|Y,e)

First, rewrite the productivity measurement eq. as

K,P =, + K,P*+e¥ el ~ N(0,Qp), where Qp = diag(eh{), e . ehg‘)

Pt (Po— Py) + AL (Uy = UY) 10 0 0
X (U2 = Us) -p5 10 0

iy = N (Us —U3) , Kp=| 0 —pf 1 0],
M (Ur = Us) 0 0 - —pp 1

Since | Kp |= 1 for any pp, Kp is invertible. Therefore, we have likelihood
p(P|P*,U,0) ~ N(Kp'up + P, (KpQp'Kp)™)
ie.,
log p(P|U,e) x —Luph? — 1(P — Kplpup — P*) KpQp' Kp(P — Kp'pp — P*),
where ¢ is a T x 1 column of ones.
Similarly, rewrite the state equation for P* as

HP* =, +e e~ N(0,Qpy), where Qp, = diag(wh,, 05, ..., 05,)

where,
Py 1 0 O 0
0 -1 1 0 0
ap = 0|, Kp=|0 -1 1 0
0 0 O -1 1

That is, the prior density for P* is given by

p(P*lo3,) o —§(P* — H o) H'QpLH(P* — Hay)

P*

(52)

Py
Py
Py

(53)

Now account for the third source of information about P* in the equation W* = P* + 7* +

Wedge + eV,

p(P*|W*, 7%, 08,,) x —3(P* — (W* — 1% — Wedge))/QI}}*(P* — (W* —7* — Wedge))

13



where,

Qws = diag(ody,. 08, s oiy,), W= Wi, W3, 7 = (n},..,75), Wedge = (Wedgeu, ..., Wedger)'
Combining the above three conditional densities we obtain,

log p(P*|Y,e) o —1(P* — P*)' Dpl(P* — P¥)

where,
Dp. = (HQplH + KpQp'Kp + Q)7

P* = Dp (H 'Qptay, + KpQp' Kp(P — Kplup) + QL (W* — 7%))

The candidate draws are sampled from N (15*, Dp,) using the precision-based algorithm.

Step 4. Derive the conditional distribution p(7*|Y,e)

The information about 7* comes from six sources. Below, we derive an expression for each
of these sources.

The first source is the inflation measurement equation. Rewrite it in a matrix notation as,

Ko = pir 4+ Kom* 4+ €™ ~ N(0,Qy), where Q = diag(e™, 2, ..., e"T) (54)
where,
P (mo — 75) + AT (Uy — UF) 1 0 0 - 0
N5 (Us — U3) 5 1 0 - 0
[l = A3(Us — U3) . K.=| 0 —p3 1 0
N (Up —UT) 0 0o - —pF 1

Since | K |=1 for any p,r, K is invertible. Therefore, we have likelihood
log p(r|U,U*, ) oc —2iph™ — L(m — (K pun + ) K Q- K — (K g 4 %))
The second source of information is from the state equation of 7*. Rewrite it in a matrix
notation,
Hr* = az+e™ €™~ N(0,Q), where Q. = diag(w?,,02,,...,02,) (55)

Tk Tk Tk

14



where,
o
0
ar=10
0
That is, the prior density for 7* is given by
p(r*|o2,) o< —5(n* — H'ay) HQ'H(x* — H o)

Now account for the third source of information about 7* in the equation W* = P* + n* +
Wedge + €™,

p(m* |W*, P*,02,,) o< —%(n* — (W* — P* — Wedge)) Q. (1 — (W* — P* — Wedge))

where,
Qws = diag(od,,. 0., s oby,), W= Wi, . ,W3), P*=(P},...,P}), Wedge = (Wedge, ..., Wedger)'

The fourth source of information is from the wage measurement equation. Rewrite in ma-
trix notation,

MYT = Xpom* 4+ ¥ ¥ ~ N(0,9,), where Q, = diag(e"’,e"2 ..., 1) (56)

where,

mi™ = wy — wy — p (w1 — wi_y) = AN (Up = Uf) — K{'m
MYT = (my™, my™, ..., mp")

-k 0 0 0

0 —k¥ 0 0

Xyr = 0 0 —KY 0
0 0 0 —kY

log p(W|r*,e) oc —2(M¥™ — Xoprem*) Qi (MY™ — X yrm™)

The fifth source is the Taylor-rule equation. Rewrite the equation in the matrix notation,

M™ = i + (K +T)7* + 68 &'~ N(0,9), where Q; = dz’ag(ehzi, e . elry  (57)
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where,

mf’ = it — piit_l — T'zk + ,01'7’:71 — )\Z(Ut — Ut*) — /iiﬂ't

T __ ) Ly T\
M™ = (m[",m3", ...,m})

1 0 0 0 -k 0 0 0 —p'm
-t 1 0 0 0 -k 0 0 0
Ku=| 0 —p 1 0], r,=| 0 0 -+ 0 |, o= 0
0 0 —pt 1 0 0 0 —& 0

log p(i|m*,m, @) o —3(M™ — (cp; + (Kni + D))/ Q7 (M™ — (ams + (Ki + D))

The sixth source of information comes from the measurement equation that links surveys to 7*.
Rewrite the equation in a matrix notation,

F™ = "1 4+ & ~ N(0,Q.r), where Q. = diag(o?,,...,02%) (58)

zm
where,

=27 = Cf,

FT=(ff, . f7)
Ignoring any terms not involving 7*, we have

log p(Z™|7*, 7, e) —%(F’T — BT QN (F™ — B7r*)

Combining the above six conditional densities we obtain,

log p(m*|Y, ) ox —1(m* — #*) DN — 7%)

Tk

where,
Dpe = (H'QAH + KO Ky + Q) + X0, Q0 Xur + (KL, + T) Q7N KL, + Tx) +
(B2~

i = Do (H'Q o + Ko Q7 Ko (1 — K i) + Qb (W — P*) + X, QMY + (K, +
I'7) Qi_l(Mm — i) + BT FT)

The candidate draws are sampled from N (7*, D+) using the precision-based algorithm.

Step 5. Derive the conditional distribution p(w*|Y,e)

16



The information about w* comes from two sources. Below, we derive an expression for each of
these sources.

The first source is the nominal wage measurement equation. Rewrite it in a matrix notation as,

KW = i + Ku,W* + ¥ ¥ ~ N(0,Qy), where Q, = diag(e™t e ... ') (59)

where,
pllv(Wo—Wg)—i-)\ﬁu(Ul—Uf)—i—lﬁzlu(ﬁl—ﬂf) 1 0 0 - 0
Ay (Uz = U3) + K5 (w2 — 73) -y L 0 -0
[l = A5 (Us — U3) + k5 (w3 — 73) , Ke=| 0 —py 1 0
Xe(Ur — Us) + Wi (mp — 73) 0 0 - —pp 1

Since | Ky, |=1 for any py,, K, is invertible.
Ignoring any terms not involving w*, we have the likelihood

log p(W[W*, ) oc —3urh® — §(W — (K iy + W*)) K Q0 Koy (W — (K + W)

The second source is the state equation of W*, which describes W* as the sum of P* and

w*. This equation can be thought of as describing the prior density for W*. Rewrite it in a

matrix form.

W* = P* 4+ 7" + Wedge + ¢ " ~ N(0, Q) (60)

p(W*|P*, 7, 02,) oc —2(W* — (P* + 7% + Wedge)) QL (W* — (P* + 7* + Wedge))
Combining the above two conditional densities we obtain,

log p(W*[Y, e) o —5(W* — W) Dyl (W — 1)
where,

Dy = (K, Q' Ky + Qpt) 7!

W* = Dy (K2, (KW = ) + Qul(P* + 7))

The candidate draws are sampled from N (W*, Dy ) using the precision-based algorithm.

Step 6. Derive the conditional distribution p(r*|Y,e)

17



The information about r* comes from four sources. Below, we derive an expression for each of
these sources.

The first source is the output gap measurement equation. We rewrite it in a matrix nota-
tion as follows,

Hrhogogap = Qpgap — a’r* 4 %99 g% ~ N(O, Qogap) (61)

where,
pi(ogapo) + pj(ogap—1) +a’r1 + N Uy — UY)
p3(ogapo) + a"ra + N (U — Us)
Qogap = a"rg + N (Us — Ug)

a"rr + X(Ur — U3)
Ignoring any terms not involving r*, we have
lOg p(ogap]r*, .) X _%(Ogap*H;hlog(aogap*arr*)),HrhogQ;glapHrhog(Ogap*H;llog(aogap7ar’r*))

The second source is the state equation linking r* to g*. We rewrite it in a matrix notation as
follows,

= (CAgdp* + H e e~ N(0,94), where Q4= diag(wg, cr?l, - 02) (62)

Ignoring any terms not involving r*, the prior density for r* is given by
log p(r*]gdp*,afl,o) o —%(r* — (Agdp*)’H'Q;lH(r* — (Agdp*)

The third source is the Taylor-type rule equation. We rewrite it in a matrix notation as follows,

M"™ = api + Kpr* + 6 €'~ N(0,9Q;), where Q; = diag(ehli, e . ehiT) (63)

where,
my® =iy — plig—1 — 7} + p'wi_y — XN (U = Uf) — K (m — 7]),

o __ Tl i i/
M"™ = (mi*,my', ...,my)

—p'r 1 0 0 0

0 510 0

Qrj = 0 , Kni= 0 _pl 1 0
0 0 0 - —pi 1

Ignoring any terms not involving 7*, we have
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log p(i|r*,e) —%LThi — %(M” — (i + Kmr*))’Qi_l(M” — (api + Kgir™))

The fourth source of information comes from the measurement equation that links surveys
to 7*. Rewrite the equation in a matrix notation,

Fr=p"r"+e" &7 ~N(0,Q), where Q,, = diag(agr, ...,a;) (64)
where,
i =2 — Cf,

Fr = (f1,..., 1)
Ignoring any terms not involving r*, we have

log p(Z7|r*,e) o —L(F" — BT ) QM (F" — 57r)

Combining the above four conditional densities we obtain,

T

log p(r*[Y,e) oc —3(r* — #*) Dl (r* — i)

where,
Dy = ((—a" Qo + H Q' H + K07 Ko+ (87)(2)01) 7

ogap it T
P* = Dr*(—arﬂgg{lp(Hrhogogap— Qogap) + H/nglHCAgdp* + K;ZQ;1 (M"™ — )+ B QLET)

The candidate draws are sampled from N (#*, D,..) using the precision-based algorithm.

Step 7. Derive the conditional distribution p(A\?|Y,e)

The information about AP comes from two sources. Below, we derive an expression for each of
these two sources.

The first source is the productivity measurement equation. Rewrite it in a matrix notation,

B=XM N+ & ~N(0,9) (65)

where,

B = (p1 — pPDo, .-, PT — PPDT-1)
Pt =pt — D

i = Uy — Up

X, = diag(taq, ..., ur)

Ignoring any terms not involving AP, we have the likelihood
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log p(p|AP, @) o< —3(B — X, N)'Q, 1 (B — X, \P)

The second source of information comes from the state equation for X?. We rewrite it in a
matrix notation as follows,

HXN = 27 N(0,Qy,), where Qy, = diag(wip, a?\p, ...,aip) (66)

Ignoring any terms not involving AP, the prior density for AP is given by
log p()\p|0/2\p,9)\p) x —%()\p)’H’Q;le()\p)
Combining the above two conditional densities we obtain,

log p(A?|Y,®) oc —§(N — AP) Dy} (W — &)

where,
Dy = (H'Q H + X0, X,) ™!

NP = Do (X951 B)
The candidate draws are sampled from N (5\1’ , Dyp) using the precision-based algorithm.

Step 8. Derive the conditional distribution p(p”|Y,e)

The information about p™ comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,

7~Tt =Tt — Ty
iy = Uy — U}
II=(71,....,77)
= (t1,...,ar)

The first source is the price inflation measurement equation. Rewrite it in a matrix notation,
M+ Al =X, p" +e £~ N(0,Q) (67)
where,

)(7r = dz’ag(fro, veey 7~TT_1)
A =diag(—\], ..., —\T)

Ignoring any terms not involving p™, we have the likelihood
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log p(r|p™, @) o< —(IT — (Xnpp™ — Aw))YQ (T — (Xnp™ — ATD))

The second source comes from the state equation for p™. We rewrite it in a matrix notation as
follows,

Hp™ =™ "™ ~ N(0,Q,r), where Qur = diag(w? Wors fm, ...,O'gﬂ_) (68)

0 < pf <1fort=1,..T
Ignoring any terms not involving p™, the prior density for p™ is given by

log p(pﬂ‘gzm Qpﬂ) X _%(pﬂ),H/Q;an(pw) + gpﬂ(pﬂ, Ufzm)

Pr- 0—pi_
=S (o (5] 0 (452)

Combining the above two conditional densities we obtain,

where,

log p(p™|Y,e) o< =5 (p™ — ™) D (0™ = ™) + gpr (p™, 02y)

where,
Dpr = (H'Q H 4+ X[ Q1 X)) 7!

§™ = Dpr (XLQ7 (T + Ad))

The addition of the term gpﬁ(p”,agﬁ) leads to a non-standard density. Accordingly, we sam-
ple p™ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N (p™, D) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-
cussed in Chan and Strachan, 2012).

Step 9. Derive the conditional distribution p(A\"|Y]e)

The information about A™ comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,
77Ft = Tt — 7T£k

ﬂt = Ut - Ut*
NW = (71 — p{ 70, ..., T — p5AT—1)
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The first source is the price inflation measurement equation. Rewrite it in a matrix notation,
NW =X, A"+ &" ~N(0,Q) (69)
where,

X, = diag(tq, ..., ur)
Ignoring any terms not involving A™, we have the likelihood
log p(m|A™, @) oc —2(NW — X, A™)Q L (NW — X, A™)

The second source comes from the state equation for A™. We rewrite it in a matrix notation as
follows,
HN" =™ A N(0,Qnr), where Qg = diag(wi,, 0%, ) 0or) (70)

-1 < A} <0 for t=1,....,T
Ignoring any terms not involving A™, the prior density for A\™ is given by
log P03 Qar) ¢ =5 (AT H'Q L H(AT) + gan (A7, 03,1

where,

T
0—Af —1— AT
Dr(NT037) = = ) _log <¢ (H> -0 <H>>
t=2

O\ O\
Combining the above two conditional densities we obtain,
log p(\™|Y, @) oc —5(A™ = A™) DA™ — A7) + gar (A7, 03,)

where,
Dyr = (H'QIH + X/, Q71 X,) 7!

AT = Dy« (X, Q- INW)

The addition of the term gy (A", Jiw) leads to a non-standard density. Accordingly, we sam-
ple A\™ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N (5\”, D)y~) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-
cussed in Chan and Strachan, 2012).
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Step 10. Derive the conditional distribution p(p“|Y,e)

The information about p¥ comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,

u?t:wt—wj

'ELt - Ut - Ut*
w = (wlw'wa),
i = (i, .., ar)
7~Tt = Tt — ﬂ'z(

7= (T1,...,77)

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,
W+ AU+ AT = Xyppt + PV P ~ N(0,9y) (71)

where,

Xy = diag(wo, ..., Wr—1)

AV = diag(—AY, ..., = \})
AT = diag(—kY, ..., —K7)

Ignoring any terms not involving p”, we have the likelihood
log p(w]p®,#) o (@ — (Xup® — A5 — AVTR)Y Q1 (@ — (Xup® — AVi — A¥77))

The second source comes from the state equation for p*. We rewrite it in a matrix notation as
follows,

HpY =P e ~ N(0,Qpp), where Qp,y = diag(wgw,a2 ey 02) (72)

pw> pw

0 < py <1fort=1,...T
Ignoring any terms not involving p*, the prior density for p* is given by
log p(p*|0p, Qpuw) < =5 () H'Qu H (p") + gpu (0", 070)

where,
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P 0—pi
G (7. 0%) = ng( (S5)-e(522)

Combining the above two conditional densities we obtain,

w

log p(p®]Y,e) o< —5(p” = p*) Dyt (p° = p) + gpw(p™, 02,)

where,

Dpw = (H'U 0 H + X[, 0, X)) ™!
PU = Dy (X! Q1 (0 + AV + AVTR))

The addition of the term g, (p", a ) leads to a non-standard density. Accordingly, we sam-
ple p™ using an independence- chaln Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N (p™, D) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-
cussed in Chan and Strachan, 2012).

Step 11. Derive the conditional distribution p(A*|Y]e)

The information about A¥ comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,
- *
Wy = Wy — Wy
'ELt - Ut - Ut*
Ty = Ty — T}
~ ~ ~ ~ ~ ~ N/
BY = (w1 — pYwo — KT, oo, Wp — PPOT—1 — K TT)
The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,
BY = X, A" +&¥ €Y~ N(0,9Q4) (73)

where,

X, = diag(tay, ..., ur)

Ignoring any terms not involving A%, we have the likelihood

log p(w]|\¥, e) o< —L(BY — X, \¥)Q71(BY — X, \")

The second source comes from the state equation for A”Y. We rewrite it in a matrix notation as
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follows,

HX\Y =M N(0,Qny), where Oy, = diag(w?\w,a?\w, ...,a/z\w)

-1 <\ <0 for t=1,....,T
Ignoring any terms not involving A", the prior density for A\ is given by
log P(X®[0%,, Q) o — S (XY H'QLH(X®) + gau (A, 02,,)

where,

0— A 1A,
w(AY, 03 l Y (————
DN, 03,) zog( (o5 —e (2 05)

Combining the above two conditional densities we obtain,
log p(X*]Y,e) oc —2(A® — X*) DAY = X*) + grw(A?, 03,,)

where,
Dyw = (H'Q H + X051 X,)7!

A = Dyw (X! Q71 BY)

(74)

The addition of the term gy, (A\*, U?\w) leads to a non-standard density. Accordingly, we sam-
ple A\* using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N (;\w, D)w) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-

cussed in Chan and Strachan, 2012).

Step 12. Derive the conditional distribution p(x"|Y,e)

The information about k% comes from two sources. Below, we derive an expression for each of

these two sources.
First, we define some notation,

Wy = Wy — w;tk

up = Uy — Uf

Ty = T — T}

B = (wl - 011”@0 - )‘Iluﬂb "'771}T - ,O%wT—l B A%_laT),

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

B = X kY 4+ ¥~ N(0,Qy)

25
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where,

X7r = dz’ag(fn, veny 7~TT)

Ignoring any terms not involving k%, we have the likelihood

log p(w|k?,e) ox —2(B"™ — X£¥)'Q, (B — XrkY)

The second source comes from the state equation for k. We rewrite it in a matrix notation as
follows,

HRY =™ £~ N(0,Qpw), where Qup = diag(w?,, 02y, . 02) (76)
Ignoring any terms not involving ", the prior density for k% is given by

log p(K¥]o2,, Qkw) X —%(Hw)/H’Q,;}}H(nw)

Combining the above two conditional densities we obtain,

’

log p(KP|Y,e) o< —3(K¥ — &%) Db (kY — &)

KW

where,
Do = (H'Q)H + X' Q1 X))t

kY = Dyw (XL Q71 BMW)

The candidate draws are sampled from N (&Y, D,w) using the precision-based algorithm.

Step 13. Derive the conditional distribution p(h%, h°, h?, k™, h¥ h'|Y, )

Given parameters and other latent states, h%, h°, h?, h™, h",h' are conditionally independent
and so can be drawn separately. Following, Chan, Koop, and Potter (2013; 2016), we draw
hY, h° kP h™, k% h' using the accept-reject independence-chain Metropolis Hastings (ARMH)
algorithm of Chan and Strachan (2012; pages 32-34).

Step 14. Derive the conditional distribution p(C",CY9,C™ C", Wedgel|Y, )

Given parameters and other latent states, C*, C9,C™,C" are conditionally independent and
so can be drawn separately.
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Beginning with C*, the information about it comes from two sources. Below, we derive an
expression for each of these two sources.

The first source is the measurement equation linking survey expectations to U*. Rewrite it

in a matrix notation,
N =C"+ % "~ N(0,Q) (77)

where,

AV zZu zZu zu\/
N* = (n{",n3",...,n3")

O = diag(o?,, ...,02,)

Ignoring any terms not involving C*, we have the likelihood

log p(Z¥|C", e) ox —4(N** — Cu)YQZL (N — Cv)

The second source comes from the state equation for C*. We rewrite it in a matrix nota-
tion as follows,

HCY = oy + € €~ N(0,Q0), where Qe = diag(w?,, o2, ...,0%,) (78)
where,
Cy
0
Ay = 0
0

Ignoring any terms not involving C*, the prior density for C'* is given by

log p(C%02,,Qeu) x —5(C" — H vy ) H'QZ H(C" — H vy,

Combining the above two conditional densities we obtain,
log p(C"|Y, e) x —5(C" — C*) Dgu(C* — C)

where,
Dew = (H'Q H + Q) 7!

€ = Dow (H'Q5 ey + Q5IN)

The candidate draws are sampled from N (C’“, Dcw) using the precision-based algorithm.
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Following similar logic,
N(C", Dcr)
Der = (H'QG H + Q)7
C" = Dor(H'Q gy + Q2 NZT)
where,
ny" =Z{ — B'r*

zr zZr zr zZr\/
N*" = (nf",n3",...,n3")

Q. = diag(d?,,...,02,)

ey Ogp

N(C™, Der)
Dor = (H'QH + Q. 1)~!
C™ = Don (H'Qg acr + QO N7T)
where,
ny™ =2 — p*r*

P - 2T Zm zm\/
N*™ = (nf™,n3",...,n3T)

Qe = diag(azm. a2)

ey Uon

N(C9,D¢o)
Deo = (H'Q H +Q )t
C9 = Deo(H'Q7 oreg + Q2 N#9)
where,
n? = Z} + Bay — pIgdp*

29 _ (79 %9 2g\/
N# = (n7?,n5?,...,n77)

Qg = diag(azg, ey O'gg)

ag = (9dp§, 0,0, ....,0)

N(Wédga DWedge)

DWedge - (H,Q_l

wlr

H+ Q)

WeAdge = DWedge(H’Q;llrawedge + QL Nwedge)
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where,

n;uedge — Wt* _ Pt* — Ty
Nwedge = (niped9® piedoe  ppedocy
Qw* = dmg(U?U*y ) 0121;*)
Quir = diag(w?ulr? J?ylr’ B ler)

Qyedge = (Wedgeo, 0, 0, ceeny 0)/

Step 15. Derive the conditional distribution p(D|Y,e)

Given the posterior draws of r*, (, and g*, the posterior draw for D is constructed as,

D =r"—(g" (79)

Step 16. Derive the conditional distribution p(6|Y,e)

There are 41 parameters in the vector §. These parameters are drawn in 39 separate blocks
using standard regression procedures. Following notation similar to that in Chan, Koop, and
Potter (2016), we denote 6_, to refer to all parameters in 6 except the parameter z.

Substep 16.1 Derive the conditional distribution p(p“|Y,e)
Given the stationary constraints, p{ + p§ < 1, p§ — p} <1, and |p§| < 1

pt = (p¥, py)" is a bivariate truncated normal. To obtain draws from this truncated normal
distribution, an ARMH sampling algorithm is applied to the candidate draws from the proposal
density, N(p*, Dpu)-

Do = (Vi + X, 071X,

" = Dpu(V b + X, 2, (@ — ¢"0gap))

wlr

where,

szl is the prior variance and pj is the prior mean,
g U_1
Uy U

Xy =

Uur—1 Ur—2
Substep 16.2 Derive the conditional distribution p(c7 |Y,e)
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p(o7,|Y,e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
p(07,[Y, ) ~ TG (Vhuo + T35+, Shuo + 5 3 (hif — hi1)?)
t=2

Substep 16.3 Derive the conditional distribution p(¢“|Y,e)
Given the constraint ¢* < 0, the conditional distribution p(¢“|Y,e) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N(¢", Dy,) using the

precision-based algorithm, and a simple accept-reject step is applied to the candidate draws.

Rewrite the unemployment rate (gap) measurement equation in matrix notation as

Y? = ¢togap +e* &% ~ N(0,9,) (80)

where,

yp =ty — pliie—1 — pYis—2
Y? = (yf, ...,y?)’

Dy, = (V(z:u1 + ogapnglogap)_1
P = D¢U(V¢;l Pu + ogap Q1Y ?)
where,

Vd)_u1 is the prior variance and ¢ is the prior mean,

Substep 16.4 Derive the conditional distribution p(c2,|Y,e)

p(02,|Y, e) is a non-standard density because U* is a bounded random walk,

log p(o,[Y:8) & —(vuo+D)log 02— 52 ~Txllog o2, — L 3T (UF ~Up )+ guu(U",02,)
The candidate draws from p(c2,|Y,e) are obtained via the MH step with the proposal den-
sity

T
IG(Vu*O + %7 Su*O + %tZQ(Ut* - t*fl)z)

Substep 16.5 Derive the conditional distribution p(5"|Y,e)
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~

Candidate draws are sampled from N (5", Dg,,) using the precision-based algorithm.
where,
Dy = (V| + U QU™

B" = Do (V' By + U Q1 J*)

jit =z - cy
T = (G5 G5

Vﬁ_ul is the prior variance and 3§ is the prior mean for g*

Substep 16.6 Derive the conditional distribution p(c?2,|Y, e)
p(0?,|Y, e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
p(02,1Y,0) ~ IG(vauo + 5, Szuo + %t;(zg — O — BUU)?)

Substep 16.7 Derive the conditional distribution p(c2,|Y,e)
p(02,|Y, e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
p(02,|Y, ) ~ IG(Vewo + 155, Seun + 5 Y- (CF = Cp1)?)
t=2

Substep 16.8 Derive the conditional distribution p(agdp*|Y, o)

p(agdp*\Y, e) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(agdp*\Y, o) ~ IG(Vgapro + %, Sgdpr0 + (9dp™ — agaps)’ * HoHo * (gdp* — gaps)/2)

where (although they are defined above but for convenience we redefine them),

1 0 0 0 --- 0
gdpg + Agdpy 901 0 0 -0

_gélpo 1 -2 1 0 0

Qgdpr = ' ;o Ha=1¢9 1 21 0
0 0 0 1 -2 1
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Hs is a band matrix with unit determinant and hence is invertible.

Substep 16.9 Derive the conditional distribution p(p?|Y,e)
Given the stationary constraints, p] + pJ < 1, p§ — p{ < 1, and |p3| < 1

0 = (pf,p3) is a bivariate truncated normal. To obtain draws from this truncated normal
distribution, an ARMH sampling algorithm is applied to the candidate draws from the pro-
posal density, N(p9, D,g).

Dyg = (Vp_gl + ngQo_g{szpg)_l

Iag = DPQ(Vpglpg + ngQ;gltzp)/;’gap)

where,

V1 is the prior variance and p{ is the prior mean,

P9
0 0
ogapy 0
X,y = | o9ap2  ogap

ogapr-i1 ogapr-2

Y7 = ogapy — a” (ry — ri—1) — Niy)
Yogap = (ycl)gap7 ) y%qap)/

Substep 16.10 Derive the conditional distribution p(a”|Y,e)
Candidate draws are sampled from N (a", Dg,) using the precision-based algorithm.

where,

Do = (Vi 4+ X, Q1 X))t

ogap~*ar

a" = DaT(Va;lag + X(;TQ;glapJar)

JiT = ogapy — plogapi_1 — phogapi_a — N1y
Ja'r — (jilT? '--7j%r),
Xop = (71, ..y p)

’I:t:Tt—Tr

V-1 is the prior variance and af) is the prior mean for a”

Substep 16.11 Derive the conditional distribution p(\9|Y]e)
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Given the constraint A9 < 0, the conditional distribution p(A9|Y,e) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N (A9, Dy,) using the
precision-based algorithm, and a simple accept-reject step is applied to the candidate draws.
where,

Dig = (Va,' + X, Q0pep Xu) !

u*“ogap“*u

X = Dyg(Vy, "M + X250 BY)

u*“ogap

b} = ogap; — plogap;—1 — pjogap;—2 — a7y
BI = (b7, ..., b%)

Xu = dz’ag(ﬂl, ceny ﬂT)/

Ty =1y — 71}

V;gl is the prior variance and \J is the prior mean for A9

Substep 16.12 Derive the conditional distribution p(c7,|Y,e)
p(c2,]Y,e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
p(0}2m|y> .) ~ IG(VhOO + %7 ShoO + % Z (h? - ?_1)2)
t=2

Substep 16.13 Derive the conditional distribution p(agg\Y, o)
p(agg]Y, e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
p(02y|Y, @) ~ IG(vago + 5. Sego + 3 32 (27 — CF — B9gdp;_y + B2gdp})?)
t=1

Substep 16.14 Derive the conditional distribution p(a§g|Y, o)
p(a§g|Y, o) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
(02|, ®) ~ IG(vego + 15+, Seqo + %;2(0&" - CL)?)

Substep 16.15 Derive the conditional distribution p(59|Y,e)
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Candidate draws are sampled from N (Bg, Dgg) using the precision-based algorithm.
where,
Dgg = (V" + (Hgdp* — ag) Q. } (Hgdp* — ay)) ™!
B9 = Dig(V3,' B8 + (Hodp™ — ag)$2 T9)
it =2 = Cf

J9 = (479, ..., 377
ay = (gdp;,0,0,....,0)

Vﬂgl is the prior variance and ] is the prior mean for 39.

Substep 16.16 Derive the conditional distribution p(pP|Y,e)
Given the stationary constraint, |pP| < 1

PP is a truncated normal. To obtain draws from this truncated normal distribution, an AR
sampling step is applied to the candidate draws from the proposal density, N(p”, D).

i

Dyp = (V;);l + QJ_DlXpmd)_l

prod
ﬁp = Dpp(‘/pglpg + X;ron;}Ypm)d)

where,

Vp;f is the prior variance and pf, is the prior mean,
pr=F — P/

Xprod = (]507 --'aﬁT—l)/

prod _ ~ P~

Yt =Pt — >‘t Ut
d __ ¢ prod prodyy
Yp’ro - (yl 7"'7yT )

Substep 16.17 Derive the conditional distribution p(a,%p]Y, o)
p(aﬁp|Y, e) is a standard inverse-Gamma density,

Candidate draws are sampled from
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T
p(ai21p|Y’ o) ~ IG(vhpo + %v Shpo + %g;(hf —hi_1)?)

Substep 16.18 Derive the conditional distribution p(o2,|Y, e)
p(02,]Y, ) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
p(ag*\Y, ') ~ IG(Vp*O + %7 Sp*O + %t;(Pt* - t*—1)2)

Substep 16.19 Derive the conditional distribution p(c3_|Y,e)
p(03._|Y, ) is a non-standard density because of the constraints on A™,

_ T
log p(03_|Y,e) x —(vazo+1)log aiﬂ—%—%log U?\ﬂ—ﬁ S AT =M )2+ (A7, 03)

The candidate draws from p(a§W|Y, ) are obtained via the MH step with the proposal den-
sity

T
IG(var0 + 152, Sano + %;2()\? - A7 1)?)

Substep 16.20 Derive the conditional distribution p(a§W|Y, o)

p(J%W\Y, e) is a non-standard density because of the constraints on p™,

Sor — T
log p(o5,|Y, @) o —(Vpmo+1)log o5 — 22 =I5 log of — 5 3oy (PF = PF1)* + 9pm (P7, 07)

The candidate draws from p(U§W|Y, ) are obtained via the MH step with the proposal den-
sity

T
IG(VpWO + %7 SpT(O + %t;(pg - p?—fl)2)

Substep 16.21 Derive the conditional distribution p(c7_|Y,e)
p(0?_|Y,e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
p(o2 Y, ) ~ IG(Vhro + 152, Spro + 5 S (AT — BT 1)?)
t=2
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Substep 16.22 Derive the conditional distribution p(c2,|Y,e)
p(02,|Y,e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
p(07|Y,0) ~ IG(vmio + 154, Srao + 5 3 (7f = m/_1)?)
t=2

Substep 16.23 Derive the conditional distribution p(c2.|Y,e)
p(02.]Y, e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T

p(J§W|Y7 .) ~ IG(VZWO + %7 Sz7r0 + % E(ZZT - Ctﬂ' — ﬁﬂ’]T*)Q)
t=1

Substep 16.24 Derive the conditional distribution p(c2 |Y,e)
p(o2 |V, e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
p(azrr’Y7 .) ~ IG(VCWU + %7 Sc7r0 + %t;(czr - Czr_l)Q)

Substep 16.25 Derive the conditional distribution p(57|Y,e)
Candidate draws are sampled from N (B”, Dg,) using the precision-based algorithm.
where,
Dgr = (V3 +7¥Q e~
™ = Dpr(Vy,' 55 + m*' Q1 I*T)

jit =27 - CF
T = (G, e )

Vﬁ;l is the prior variance and 3§ is the prior mean for 3"

Substep 16.26 Derive the conditional distribution p(c2,|Y,e)

p(c2,|Y,e) is a standard inverse-Gamma density,
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Candidate draws are sampled from

T
p(0-12u*|}/7 .) ~ IG(Vw*O + 4T51a5w*0 + % Z(w? - 77;; - Pt*)2)
t=2

Substep 16.27 Derive the conditional distribution p(c7 |V, e)
p(o7,]Y,e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
P(0hY. ) ~ IG(Whwo + 55+ Shuo + 3 X5 (M — b 1)?)
t=2

Substep 16.28 Derive the conditional distribution p(azw|Y, o)

p(azw|Y, e) is a non-standard density because of the constraints on p",

Sow T— T
S =i log =g 3 (P i) 0pu (P 07

log p(agle o) x —(Vpuwo+1)log agw—

The candidate draws from p(azw\Y, ) are obtained via the MH step with the proposal den-
sity

T
IG(prO + %7 Spw() + %tg(pq{u - :07151)—1)2)

Substep 16.29 Derive the conditional distribution p(c3,|Y,e)
p(03,]Y, ) is a non-standard density because of the constraints on A%,

S _ T
log p(03,]Y,e) x —(Vawo+1)log aiw—ﬁ—%log aiw—ﬁ Sy A=Y )20 (A, 03,

The candidate draws from p(a?\w\Y, e) are obtained via the MH step with the proposal density

T
IG(VAwO + %7 S/\wO + %t;(A;ﬁU - %0—1)2)

Substep 16.30 Derive the conditional distribution p(c2,|Y,e)

The candidate draws are obtained from

T
IG(VHMO + %) Skwo + %t;(’i:ﬁu - ’iy}fl)2)
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Substep 16.31 Derive the conditional distribution p(p’|Y,e)

Given the constraint |p’| < 1, the conditional distribution p(p’|Y,e) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N(p°, D,;) using the
precision-based algorithm, and a simple accept-reject step is applied to the candidate draws.

where,

Dpi = (V' + X, 07 X ,0) !
P = DV o+ X, M)

i . -
my =iy — 7w — ) — Ny — K'Ty

MPE = (mf, ... mbry

. . ;
Xpi = (ig = 75 — 18y e iT—1 — Tp_q — T5_q)

v

i Lis the prior variance and pb is the prior mean for p*

Substep 16.32 Derive the conditional distribution p(\!|Y,e)

The candidate draws are sampled from the proposal distribution N (5\1, D);) using the precision-
based algorithm.

where,
Dy = (Vi + X3, X)) 7!
N = Dy (Vi N+ X3, 97 TMY)
iy =iy — 7 =i = p (i = my ) — K

M = (m3t, ...,mpP)
X\ = (le, ...,fLT),

V)\;.l is the prior variance and A} is the prior mean for Y
Substep 16.33 Derive the conditional distribution p(x‘|Y,e)

The candidate draws are sampled from the proposal distribution N (&, D,;) using the precision-
based algorithm.

where,
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Dyi= (V' + X0 X))

Kt~ "1

i = Dwi(Vy 'K + X, M)

Rt~ "1

* 5

Kl 2 * (s * * 7
mit =iy — 7 —rf — ptlie1 — T — i) — A
Kl __ K1 K1)/
M" = (mf{*,...,mh)

Xm‘ = (7~r1, ceny ﬁ'T)/

Vﬁzl is the prior variance and kg is the prior mean for

Substep 16.34 Derive the conditional distribution p(c7,|Y,e)
p(a%”-|Y, e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T . .
p(od,|Y,e) ~ IG(vhio + 152, Shio + 5 22(71% —hi_y)?)
t—

Substep 16.35 Derive the conditional distribution p(c2.|Y,e)
p(02,]Y, e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
p(UET’Y, .) ~ IG(VZTO + %7 Ser + % Z(Z{ - C{ - Brr;fk)Q)
t=1

Substep 16.36 Derive the conditional distribution p(c2.|Y,e)

p(02.|Y,e) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
P(U?AY, o) ~ IG(Vero + %v Sero + %t;(ctr - Ctr—l)2>

Substep 16.37 Derive the conditional distribution p(3"|Y,e)
Candidate draws are sampled from N (BT, Dg,) using the precision-based algorithm.

where,

Dg, = (Vﬁ_rl + Q)
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B'r — DBT(VB—TIIBS + T*/QZ_TI‘]ZT)

=2 -
= (G I

V.,

ﬁ;l is the prior variance and £ is the prior mean for 3"

Substep 16.38 Derive the conditional distribution p(c?|Y,e)
p(c3]Y, ) is a standard inverse-Gamma density,

Candidate draws are sampled from

T
p(o3|Y, ) ~ IG(va + L32, Sao + 3 3 (D — Di—1)?)
=2

Substep 16.39 Derive the conditional distribution p(c2, |Y,e)

p(02,.|Y, ) is a standard inverse-Gamma density,

Candidate draws are sampled from

wlr

T
p(a2,|Y, ) ~ IG(vyiro + 52, Swiro + 3 S (Wedge, — Wedge,—1)?)
=2
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A1l.d Marginal likelihood computation

Bayesian model comparison is based on the marginal likelihood (marginal data density) metric.
In computing marginal likelihood for various models, we use the approach proposed by CCK,
which decomposes the marginal density of the data (e.g., inflation) into the product of predic-
tive likelihoods. This approach allows us to separately compute marginal data density for each
variable of interest: inflation, nominal wages, interest rate, real GDP, the unemployment rate,
and labor productivity. The variable-specific marginal densities prove quite useful because they
allow for deeper insights about the source of the deficiencies, which in turn helps differentiate
models at a more disaggregated level.

Specifically, the marginal data density of the variables of interest is computed as follows,

T
p? X7, M) = T Wl 1yl X,y i M) (81)
t=3
where, 7 = PCE inflation (7), unemployment rate(ur), real GDP(gdp), labor productivity(prod),

nominal wage inflation(wage), nominal short-term interest rate(int);
p(Yi Y141, X1, ;» M;) is the predictive likelihood for variable j, and X7 is a set of covariates that
influences variable j in model M;. For example, in the case of the short-term interest rate, the
covariates in the Base model include ur, w, gdp, and survey data, whereas in the Base-NoSurv
model, the covariates will not include the survey data.

To compute the overall marginal data density of Y = (y™,y"",y99P, yProd qwage int)! for
model M;,
p(Y | X5, Mi) = p(y™|XT, M;) x p(y™" | X1, My) x p(y?™ | X{%, M)...
xp(y?" [ XPTO M) x p(y 9| X9, My) x ply™ | X, M;) (82)

A2. Prior Sensitivity Analysis

In the paper, we noted that our prior settings are similar to those used in CKP, CCK, and
Gonzalez-Astudillo and Laforte (2020). As discussed in CCK, UC models with several unob-
served variables, such as the one developed in this paper, require informative priors. That said,
our priors settings for most variables are only slightly informative. The use of inequality restric-
tions on some parameters such as the Phillips curve, persistence, and bounds on u-star could be
viewed as additional sources of information that eliminate the need for tight priors, something
also noted by CKP. For the parameters for which there is a strong agreement in the empirical
literature on their values, such as the Taylor-rule equation parameters, we use relatively tight
priors, such that prior distributions are centered on prior means with small variance. So besides
the prior on the Taylor-rule equation parameters, all other priors settings are taken from related
papers.

Here, we examine the sensitivity of loosening the priors on the variances of the shocks to
pi-star, p-star, u-star, and r-star (i.e., for the process D). Specifically, we double the prior mean
of the variances from 0.01 to 0.03. Table A2 reports the posterior estimates. The top panel
reports the posterior estimates from the main text to facilitate easy comparison, and panel (B)
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reports the posterior estimates of re-running the Base model with these new prior values. It is
worth noting that these new prior values are too loose to estimate Base-NoSurv feasibly; panel
C reports results for prior values that are less loose. The results for p-star are as expected. In
the paper, we noted that the prior view primarily shapes p-star, and we see that manifested
here too; prior (E(o7,)) and posterior (E(o},|Data)) are fairly identical. Similar evidence is
seen in the case of r-star (i.e., D) for the Base-NoSurv model. For pi-star, u-star, and r-star (in
the case of Base), the differences in the posterior mean estimates’ between the two panels are
small. In fact, the posterior mean estimates from the runs with looser priors are pushed toward
values that are closer to the prior mean estimates used in the main paper, lending credibility

to our default priors settings used in the main paper.

Table A2: Parameter Estimates

Panel A: From the main paper, where prior E(02.) = E(02.) = E(c%) = 0.1? and E(O’Z*) =0.142

Parameter | Parameter description Posterior estimates
Base Base-NoSurv
Mean 5% 95% | Mean 5% 95%
o2, Variance of the shocks to 7* | 0.1192 0.100%> 0.140% | 0.118% 0.0822 0.1622
o2 Variance of the shocks to p* | 0.1422 0.110° 0.180% | 0.140% 0.108%  0.1782
o2, Variance of the shocks to «* | 0.093% 0.079% 0.1062 | 0.121> 0.103%2  0.1392
o’ Variance of the shocks to d | 0.094> 0.078% 0.112% | 0.100> 0.076>  0.128?
!
Panel B: Prior sensitivity, where prior E(02.) = E(c2.) = E(c3%) = E(O'g*) =0.1732
Parameter | Parameter description Posterior estimates
Base Base-NoSurv
Mean 5% 95% | Mean 5% 95%
o2, Variance of the shocks to 7* | 0.143% 0.1242 0.1632 — — —
05* Variance of the shocks to p* | 0.1722 0.134%> 0.2142 — — —
o2, Variance of the shocks to u* | 0.1022 0.090% 0.1152 — — —
o2 Variance of the shocks to d | 0.122% 0.106* 0.140% | — — —
Panel C: Prior sensitivity, where prior E(02.) = E(c2.) = E(c3) = E(O’g*) =0.142
Parameter | Parameter description Posterior estimates
Base Base-NoSurv
Mean 5% 95% | Mean 5% 95%
o2, Variance of the shocks to 7* | 0.1322 0.114%2 0.150% | 0.152% 0.1162  0.1962
o2 Variance of the shocks to p* | 0.144% 0.1122 0.181% | 0.138% 0.107>  0.1732
o2, Variance of the shocks to v* | 0.105%2 0.0922 0.117% | 0.133% 0.1142  0.1522
o2 Variance of the shocks to d | 0.1122  0.0952 0.1292 | 0.139% 0.107>  0.175
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A3. MCMC Convergence Diagnostics

In this section, we document the diagnostic properties of our MCMC algorithm in the Base
model. Following Primiceri (2005), Koop, Leon-Gonzalez, and Strachan (2010), and Korobilis
(2017), we report the autocorrelation functions of the posterior draws (10th and 50th order
sample autocorrelation), inefficiency factors (IFs), and convergence diagnostics (CD) of Geweke
(1992).1

One of the most common metrics examined to assess the efficiency of the MCMC sampler
is to look at the autocorrelation function of the draws, which indicates how well the chain is
mixing. Low autocorrelations are preferred to high because the lower the autocorrelation, the
closer the draws are to being independent and the higher the efficiency of the algorithm. The
plots shown in the top panel of Figure Al correspond to 10th and 50th order autocorrelations
in the draws, and as can be seen, they indicate very low autocorrelation. In the case of 50th
order autocorrelation, except for a couple of them, most indicate correlation close to zero, and
in the case of the 10th order except for a few, most indicate correlation below 0.2.

The inefficiency factor related to the autocorrelation functions is the inverse of Geweke’s
(1992) relative numerical efficiency measure (RNE). It is computed using the following formula,
(1+2>72, pi), where p; refers to the k — th order autocorrelation of the chain. The middle
panel in Figure A1l plots the IF for the model parameters. The values lower than or close to 20
are considered desirable. As shown, in the case of the Base model, most of the IFs are below 20.
(Note: IFs are computed using the default setting in LeSage’s toolbox: estimation of spectral
density at frequency zero uses a tapered window of 4%.)

As discussed in Koop, Leon-Gonzalez, and Strachan (2010), to assess whether the MCMC
sampler has converged, a rough rule of thumb is to look at the CDs and see whether 95% of
them are less than 2. If they are, then convergence is likely achieved. Based on the plots in
Figure A1 (third panel), most CDs are within +/- 2.

We also note that the results are fairly identical to the different initial conditions of the
chain (picked randomly) and to a significantly lower number of simulations (and burn-in). For
example, a run using 320K posterior draws with a burn-in of the first 300K and retaining all
the remaining draws provides similar inference. However, the MCMC convergence properties
favor higher simulations because it allows for a greater degree of thinning.

Overall, these diagnostic measures give us confidence in the good convergence properties of
our MCMC algorithm in our Base model.

In computing some of these metrics, we have benefitted from the Matlab toolbox developed by James P.
LeSage. A detailed explanation, including intuition for these convergence diagnostics, is provided in Koop (2003;
pages 67-68) and Chan et al. (2019; page 209).
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Figure Al: MCMC Diagnostics of Base Model
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A4. Forecasting Results I: Base vs. Base-NoSurv and Base vs.
Benchmarks

Base vs. Base-NoSurv

Table A3 presents the results from comparing the out-of-sample forecasting performance (both
point and density) between the two models over the forecast evaluation sample spanning 1999Q1
through 2019Q4. The forecast evaluation is based on real-time data vintages and uses a recur-
sively expanding estimation window, where each recursive run uses an additional quarterly data
point in the estimation sample.? Accordingly, we devise a systematic approach to adjusting the
prior on the scale parameters of the inverse gamma distributions defining the variances of the
stars. We multiply the scale parameter with the factor = (% —1) (#N—T))’ where N is
the total sample size from 1959Q4 through 2019Q4, and T refers to the number of data points
in a given data vintage. At the end of the sample, the factor = 1 because T = N. The forecast
accuracy (point and density) is computed from one quarter ahead to 20 quarters out. Partly
due to our focus on the medium-term horizon and partly in the interest of space, we report
accuracy metrics for 4, 8, 12, 16, and 20 quarters ahead. We evaluate the forecast accuracy
using real-time data; specifically, we treat the “actual” as the third release of a given quarterly
estimate.® For instance, in the case of real GDP, the third estimate for 2018Q4 corresponds to
the GDP data available in late 2019Q1. The point forecast accuracy is assessed using the root
mean squared error (RMSE) metric, and the density forecast accuracy is evaluated using the
log predictive score (LPS). The statistical significance of the point forecast accuracy is gauged
using the Diebold-Mariano and West test and, in the case of the density forecast, accuracy is
based on the likelihood-ratio test of Amisano and Giacomini (2007).

The top panel of the table reports the results corresponding to the point forecast accuracy,
while the lower panel reports results for the density forecast accuracy. The numbers reported
in the table correspond to relative RMSE ~RMSE Base relative to RMSE of Base-NoSurv — in
the point forecast comparison, and relative mean LPS — LPS Base minus LPS Base-NoSurv —
in the case of the density forecast comparison. Hence, numbers less than one in the top panel
suggest that the point forecast accuracy of the Base forecast is more accurate on average, and
positive numbers in the bottom panel suggest that the density forecast accuracy of the Base
forecast is more accurate than that of the Base-NoSurv forecast.

As is evident by the numbers reported in the table, except for the point forecast accuracy of
the shadow federal funds rate, the evidence generally favors the Base model as more accurate
than Base-NoSurv. The evidence in support of the Base model is strongest for PCE inflation
and nominal wage inflation. In the case of the unemployment rate and real GDP growth, both
models perform comparably. In the case of the shadow federal funds rate, the Base-NoSurv
model outperforms the Base model in point forecast accuracy. However, this improved point
forecast accuracy of the fed funds rate does not translate into improved density forecast accu-
racy. In the case of real GDP growth, even though the point forecast accuracy between the
two models is similar on average, the density forecasts from the Base-NoSurv model are slightly
more accurate than those from the Base model for forecast horizons up to h=8Q.

2Going back in time means that we are using relatively fewer observations to estimate model(s). As is
commonly done when performing real-time forecasting using multivariate UC models, we need to tighten priors
on the shocks’ variances driving the latent components (see, for instance, Barbarino et. al., 2020).

3Results are qualitatively similar if we instead use the revised data (2020Q1 vintage data) as the actual values
in the forecast evaluation exercises. The results are available from the author on request.
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Table A3: Real-Time Forecasting Accuracy: Base vs. Base-NoSurv

Panel A: Point Forecast Accuracy (Recursive evaluation: 1999.Q1-2019.Q4)

Relative RMSE: RMSE Base / RMSE BaseNoSurv

h=4Q h=8Q h=12Q h=16Q h=20Q

Real GDP 1.02 0.99 1.00 0.99 1.00
PCE Inflation 0.96 0.93* 0.90* 0.93* 0.97
Productivity 0.99 1.01 0.98* 0.99 1.00
Nominal Wage (AHE) 0.98 0.90* 0.93* 0.94 0.98
Unemployment Rate 1.02 1.01 0.98 0.97 0.97
Shadow FFR 1.05 1.11% 1.14* 1.16* 1.21%*

Panel B: Density Forecast Accuracy (Recursive evaluation: 1999.Q1-2019.Q4)

Relative Log Predictive Score (LPS): LPS Base - LPS BaseNoSurv

h=4Q h=8Q h=12Q h=16Q h=20Q

Real GDP -0.004*  -0.002* -0.001 0.000 0.000
PCE Inflation 0.014*  0.013* 0.016* 0.016*  0.015*
Productivity 0.001 0.000 0.000 0.001 0.002

Nominal Wage (AHE)  0.003 0.011*  0.008*  0.004 0.001
Unemployment Rate 0.000 0.012 0.004 0.003 0.007*
Shadow FFR 0.021*  0.004  0.000 -0.002  0.000

Notes: The top panel compares the point forecast accuracy of the Base model with the Base-NoSurv model. Numbers less than 1 indicate
that the Base model is more accurate on average. The bottom panel reports the corresponding density forecast accuracy performance. A
positive value (for the relative mean predictive log score) suggests that the Base model is on average more accurate. The log predictive
scores are computed using parametric normal approximation. The table reports statistical significance based on the likelihood-ratio test of
Amisano and Giacomini (2007) for the density forecast accuracy, and based on the Diebold-Mariano and West test (with the lag h — 1
truncation parameter of the HAC variance estimator) for the point forecast accuracy. The test statistics for the likelihood-ratio test use a
two-sided t-test. In the case of the Diebold-Mariano and West test, the test statistics use two-sided standard normal critical values for

horizons less than or equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters. *up to 10% significance level.

Base vs. Benchmarks

In this section we compare the real-time forecasting performance of our Base model to the
outside benchmark models, which the forecasting literature has shown to be useful forecasting
devices. Specifically, we compare the accuracy of the inflation forecasts from our Base model
to the following three models: UCSV of Stock and Watson (2007) [UCSV], Chan, Koop, and
Potter (2016) [CKP], and Chan, Clark, and Koop (2018) [CCK]. We compare the accuracy of
the unemployment rate forecasts from our Base model to the CKP model, and the accuracy of
the nominal wage inflation from the Base model to the UCSV model applied to the nominal
wage inflation, motivated by Knotek (2015).

Table A4 presents the forecast evaluation results for headline PCE inflation, nominal wage
inflation, and the unemployment rate. These results indicate the following three observations.
First, in terms of point forecast accuracy, inflation forecasts from all four models considered
are competitive with each other. There is some statistically significant evidence that the Base
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model is more accurate than UCSV at h=12Q. Regarding the density forecast accuracy, the
Base model is more accurate than the UCSV but inferior to CCK, as the latter produces more
precise intervals than the Base model. Second, in the case of nominal wage inflation, the Base
model generates more accurate forecasts (both point and density) than UCSV, and the gains
are statistically significant for the most part.

Third, the accuracy of the unemployment forecasts from the Base model is competitive with
the CKP model statistically speaking, even though the relative numbers favor CKP. A closer
inspection of the forecast errors reveals that the Base model, which incorporates survey forecasts
of the unemployment rate, experienced significantly bigger misses than the CKP model around
the Great Recession period. Outside of this period, the Base model is slightly more accurate
than the CKP, and when combined with the Great Recession period, on net, the much bigger
misses of the Base model result in overall slightly higher RMSE.

As illustrated in Tallman and Zaman (2020), just before and at the onset of the Great
Recession, survey participants projected relatively upbeat long-run forecasts of unemployment,
which indicated a declining natural rate of unemployment. It was not until a few months into
the recession that survey participants recognized the extent of the labor market damage and
began to revise their estimates of the long-run unemployment rate higher. Hence, models such
as the Base model that take signals from the survey forecasts experienced big misses.

To sum up, we view these forecasting results as providing evidence supporting our Base
model’s competitive forecasting properties.
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Table A4: Out-of-Sample Forecasting Performance: Base vs. Benchmarks

Full Sample (Recursive evaluation: 1999.Q1-2019.Q4)

Point forecasting Density forecasting
4Q 8Q 12Q  20Q 4Q 8Q 12Q 20Q
PCE Inflation
Relative RMSE Relative Log Score
Base/UCSV 096 096 0.93* 0.95 Base - UCSV 0.012*  0.022*  0.027*  0.025*
Base/CCK 1.02  1.04* 1.02 1.02 Base - CCK -0.018*  -0.032* -0.048* -0.076*
Base/CKP 1.00 098 098 1.00 Base - CKP 0.001 -0.001  -0.004* -0.024*
Nominal Wage
Relative RMSE Relative Log Score
Base/UCSV 0.88* 0.78% 0.80* 0.50 Base - UCSV 0.017*  0.035* 0.031* 0.010
Unemployment Rate
Relative MSE Relative Log Score
Base/CKP 1.01 103 105 1.06 Base - CKP 0.115*%  0.025 -0.019  -0.059*

Notes: For variables PCE inflation and nominal wage (i.e., average hourly earnings), the forecasts and associated accuracy correspond to
the quarterly annualized rate. Base forecast is defined as the Steady-State (SS) VAR forecast in which the steady states are assumed to be
the estimates of the stars from the Base model. UCSV forecast corresponds to the forecast from the univariate unobserved component
stochastic volatility model similar to Stock and Watson (2007). The model is used to construct forecasts of PCE inflation and nominal
wage inflation. CCK forecast corresponds to the forecast from the bivariate unobserved component stochastic volatility model of Chan,
Clark and Koop (2018). CKP forecast corresponds to the forecast from the bivariate unobserved component stochastic volatility model of
Chan, Koop and Potter (2016), with the bounds on u-star fixed to values identical to the Base model. The left panel reports results for the
point forecast accuracy (relative root mean squared errors) and the right panel reports the corresponding density forecast accuracy (mean
of the relative log predictive score). The table reports statistical significance based on the Diebold-Mariano and West test with the lag

h — 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by
Harvey, Leybourne, and Newbold (1997); *up to 10% significance level. The test statistics use two-sided standard normal critical values for

horizons less than or equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters.
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A5. Forecasting Results II: SSBVAR, Base stars vs. Survey

In macroeconomic forecasting, research by Wright (2013) and Tallman and Zaman (2020),
among others, using workhorse Bayesian VAR models shows that the predictive performance
boils down to good starting conditions (i.e., nowcasts) and terminal conditions (i.e., steady
states proxied by stars). Survey forecasts provide both nowcasts and long-run projections,
whose accuracy has been shown by past research to be quite good. Wright (2019) empha-
sizes the desirable forecasting properties of the survey forecasts and highlights that econometric
approaches utilizing survey projections are at the forecasting frontier, especially in inflation
forecasting. Most empirical research on forecasting has focused on proposing methods to im-
prove the accuracy of the nowcast estimates relative to survey nowcasts’ accuracy, but only
little effort has been dedicated to improving estimates of long-run projections. Hence, this
paper raises a natural curiosity about the usefulness of the stars’ estimates from our modeling
framework for macroeconomic forecasting using Bayesian VARs (via the imposition of steady
states).

To assess the efficacy of our stars’ estimates for the external VAR models, we perform
a real-time out-of-sample forecasting evaluation similar to Wright (2013) and Tallman and
Zaman (2020). These studies informed the time-varying steady states for the steady-state (SS)
BVAR using long-run survey projections and found that doing so leads to significant gains in
accuracy. Accordingly, the design of our forecasting examination is as follows. We take the
SSBVAR from Tallman and Zaman (2020) and perform three sets of recursive real-time out-
of-sample forecasting runs. In the first run, we inform the steady states for real GDP growth,
PCE inflation, core PCE inflation, the unemployment rate, nominal wage inflation, and labor
productivity growth using long-run survey projections. For the latter two variables, we use the
survey expectations from the SPF.* The forecasts from this run are denoted ‘Survey’ in Table
A5. In the second run, we repeat the exercise, but this time inform the steady states using
the real-time estimates of the stars from the Base-NoSurv model, denoted ‘BaseNoSurv.” In
the third run, we inform the steady states using the real-time estimates of stars from the Base
model, denoted ‘Base.’

Each of the three forecasting runs is based on estimating the SSBVAR with a recursively
expanding sample, i.e., the recursive execution uses an additional quarterly data point in the
estimation. The SSBVAR is estimated with quarterly data beginning 1959Q2. The model
consists of ten variables: (1) real GDP growth; (2) real consumption expenditures; (3) headline
PCE inflation; (4) core PCE inflation; (5) labor productivity growth; (6) growth in average
hourly earnings; (7) growth in payroll employment; (8) the unemployment rate; (9) the shadow
federal funds rate; and (10) the risk spread, defined as the difference between the yield on the
10-year Treasury bond and the yield on a BAA-rated bond. The out-of-sample forecasting
period spans 1999Q1 through 2019Q4. The forecast accuracy (point and density) is computed
from one quarter ahead to 20 quarters out. Partly due to our focus on the medium-term horizon
and partly in the interest of space, we report accuracy metrics for 4, 8, 12, and 20 quarters
ahead.

We evaluate the forecast accuracy using real-time data; specifically, we treat the “actual”
as the third quarterly estimate. For instance, in the case of real GDP, the third estimate for
2018Q4 corresponds to the GDP data available in late 2019Q1. The point forecast accuracy is
assessed using the root mean squared error (RMSE) metric, and the density forecast accuracy
is assessed using the continuous ranked probability score (CRPS). Forecasts with lower RMSE

“In the case of nominal wage inflation, we construct an implied survey projection by adding the survey
expectations of PCE inflation and productivity, both of which are obtained from the SPF.
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and CRPS are preferred. The statistical significance of the point and density forecast accuracy
is gauged using the Diebold-Mariano and West test. The description of these tests is listed in
the notes accompanying the tables reporting forecast accuracy.

Table A5 reports forecast evaluation results corresponding to this exercise. The left panel
reports the point forecast accuracy results, while the right panel reports results for the density
forecast accuracy. We evaluate and compare the point and density forecast accuracies among
the Base, BaseNoSurv, and Survey forecasts in a pairwise fashion. For each variable, the three
rows report the relative RMSE (for point forecast accuracy) and the relative CRPS (for density
forecast accuracy). The first row reports the RMSE of the Base relative to Survey, the second
row reports the RMSE of BaseNoSurv relative to Survey, and the third row reports the RMSE
of BaseNoSurv relative to Base. A model with lower values of RMSE and CRPS is preferred
to a model with higher values. These relative metrics indicate the competitive accuracy of the
stars’ estimates from the Base model compared to Survey and Base-NoSurv. The exception is
the shadow federal funds rate, where Base-NoSurv outperforms both Base and Survey. For real
GDP growth, statistically speaking, Base outperforms Base-NoSurv and is competitive with
Survey.

For headline PCE inflation and labor productivity, all three are competitive with each other.
In the case of nominal wage inflation, both Base and Base-NoSurv generate forecasts that are
substantially more accurate than Survey on average. The gains are statistically significant for
the most part. The SSBVAR with steady states informed by the Base model generates more
accurate unemployment forecasts than Base-NoSurv and Survey, but the forecast gains are
statistically significant only when compared to Survey.

Overall, these forecasting results lend credibility to our stars’ estimates in their use to inform
steady states for VAR forecasting models. We also note that the results in this section lend
support to the survey projections in their use as proxies for stars, something also documented
by Tallman and Zaman (2020), among others.

We believe the fact that the estimates of stars from our models are generally competitive
with survey long-run projections is a good outcome. It has been well-established that survey
expectations are at the frontier of forecasting (e.g., Wright, 2019). However, the preference
is for forecasts (or estimates of stars) obtained using a single multivariate model because the
resulting forecasts will be coherent and allow for a credible narrative in a systematic manner.
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Table A5: Out-of-Sample Forecasting Performance: Steady-State BVAR

Full Sample (Recursive evaluation: 1999.Q1-2019.Q4)

Point forecasting

Density forecasting

1Q  8Q 12 20Q 1Q 8Q 120 20Q
Real GDP
Relative RMSE Relative CRPS
Base/Survey 0.96 1.00 1.03 1.01 Base - Survey -0.05  0.02 0.04 0.02
BaseNoSurv/Survey 1.01  1.04 1.04 1.02 BaseNoSurv - Survey 0.02 0.06 0.05 0.02
BaseNoSurv/Base 1.05* 1.03* 1.01 1.01 BaseNoSurv - Base 0.07*  0.04 0.01 0.01
PCE Inflation
Relative RMSE Relative CRPS
Base/Survey 0.98 1.00 1.02 1.01 Base - Survey -0.02* 0.01 0.03 0.02
BaseNoSurv/Survey 0.99 1.02 1.09 1.05 BaseNoSurv - Survey -0.01  0.02 0.08 0.06
BaseNoSurv/Base 1.00 1.01 1.07* 1.03 BaseNoSurv - Base 0.00 0.01 0.06* 0.04
Productivity
Relative RMSE Relative CRPS
Base/Survey 1.03 1.04 1.04 1.01* Base - Survey 0.02 0.04 0.04 0.01*
BaseNoSurv/Survey 1.04 1.04 1.04 1.01 BaseNoSurv - Survey  0.03*  0.03 0.05 0.01
BaseNoSurv/Base 1.01 099 1.00 1.00 BaseNoSurv - Base 0.01 -0.01  0.01 0.00
Nominal Wage
Relative RMSE Relative CRPS
Base/Survey 0.71* 0.68* 0.67* 0.71* Base - Survey -0.09* -0.13* -0.18* -0.26*
BaseNoSurv/Survey  0.68* 0.67* 0.74* 0.80* BaseNoSurv - Survey -0.09* -0.12* -0.14* -0.19*
BaseNoSurv/Base 095 098 1.11*% 1.12* BaseNoSurv - Base 0.00 0.00 0.04*  0.07*
Unemployment Rate
Relative RMSE Relative CRPS
Base/Survey 0.93* 0.91* 0.90 0.92 Base - Survey -0.04 -0.12 -0.16 -0.12
BaseNoSurv/Survey 0.95% 097 099  0.99 BaseNoSurv - Survey -0.05 -0.07 -0.06 0.00
BaseNoSurv/Base 1.03 1.07 1.09 1.08 BaseNoSurv - Base 0.00 0.05 0.10 0.12
Shadow FFR
Relative RMSE Relative CRPS
Base/Survey 0.99 0.97 0.96 0.95* Base - Survey -0.01  -0.07 -0.13 0.16*
BaseNoSurv/Survey 0.93* 0.91* 0.93  0.95* BaseNoSurv - Survey -0.07* -0.17* -0.19  -0.14%*
BaseNoSurv/Base 0.93* 0.94* 0.97 1.00 BaseNoSurv - Base -0.06* -0.10* -0.07  0.03*

Notes: For the variables real GDP, PCE inflation, productivity, nominal wage (i.e., average hourly earnings), the forecasts and the

associated accuracy correspond to the quarterly annualized rate. Base forecast is defined as the Steady-State (SS) VAR forecast in which

the steady states are assumed to be the estimates of the stars from the Base model. BaseNoSurv forecast is defined as the SS-VAR forecast

in which the steady states are taken from the Base-NoSurv model. The left panel reports results for the point forecast accuracy (relative

root mean squared errors) and the right panel reports the corresponding density forecast accuracy (mean of the relative continuous ranked

probability score). The table reports statistical significance based on the Diebold-Mariano and West test with the lag h — 1 truncation

parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by Harvey, Leybourne,

and Newbold (1997); *up to 10% significance level. The test statistics use two-sided standard normal critical values for horizons less than

or equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters.

51



A6. Additional Real-time Estimates of Stars

Figure A2: Real-time Recursive Estimates of pi-star and p-star: Base model
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Notes: The plot denoted Base corresponds to smoothed (posterior mean) estimates based on the full
sample information, i.e., 1959.Q4 through 2019.Q4. The plot denoted Base: RealTime corresponds to
real-time recursive (posterior mean) estimates generated by estimating the Base model at different points
in time, specifically 1999.Q1 through 2019.Q4. The credible intervals reflect the uncertainty around the
posterior mean smoothed estimates.

Figure A3: Real-time Recursive Estimates of w-star and g-star: Base model
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Notes: The plot denoted Base corresponds to smoothed (posterior mean) estimates based on the full
sample information, i.e., 1959.Q4 through 2019.Q4. The plot denoted Base: RealTime corresponds to
real-time recursive (posterior mean) estimates generated by estimating the Base model at different points
in time, specifically 1999.Q1 through 2019.Q4. The credible intervals reflect the uncertainty around the
posterior mean smoothed estimates. For w-star, plotted are the implied survey estimates of w-star,
constructed by adding the survey estimates of p-star and pi-star.
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Figure A4:

Real-time Recursive Estimates of Stars: Base-NoSurv model
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Notes: The plots denoted Base-NoSurv correspond to smoothed estimates based on the full
sample information, i.e., 1959.Q4 through 2019.Q4. The plots denoted Base-NoSurv: RealTime
correspond to real-time recursive estimates generated by estimating the Base-NoSurv model at
different points in time, specifically 1999.Q1 through 2019.Q4.
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Figure A5:

Real-time Recursive Estimates of Stars: Base model vs.
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Notes: The plots correspond to real-time recursive estimates generated by estimating Base
and Base-NoSurv models at different points in time, specifically 1999.Q1 through 2019.Q4. To
facilitate comparison, real-time estimates from either the Blue Chip or the Survey of Professional
Forecasters (SPF) are also plotted.
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A7. Estimated Relationship between Surveys and Stars

Figure A6: Estimated Link Between Survey Forecasts and Stars
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AS8. Additional COVID-19 Pandemic Results

Figure A7 presents posterior estimates of u-star, g-star, and r-star from the Base and Base-
NoSurv models based on estimating data through 2020Q3. Also plotted to facilitate comparison
are the corresponding posterior estimates based on estimation through 2019Q4. Figure A8,
similarly, provides estimates of pi-star, p-star, and w-star. A visual inspection of the plots
suggests the following four observations. First, estimates appear reasonable, indicating the
model isn’t blowing up. Second, adding pandemic data to the estimation sample has small
effects on the historical (posterior mean) estimates of stars in the Base model and, for the most
part (u-star being exception), also applies to the Base-NoSurv model. For u-star, there are some
notable revisions in the estimates obtained from the Base-NoSurv model comparing between
estimations pre- and post-pandemic. This considerable revision in the posterior mean of u-star
is associated with significantly increased uncertainty, as evidenced by the larger width of the
90% credible intervals; however, in the Base model, the estimation with pandemic data leads
to relatively small increase in the uncertainty about u-star.

Third, as would be expected (see Carriero et al., 2021), the precision plots indicate an
uptick in uncertainty toward the end of the sample period associated with the pandemic data.
Relatedly, the revisions to the historical estimates of precision are small in the case of the Base
model but quite large for the Base-NoSurv model.

Overall, the Base model generally held up better because the survey forecasts help anchor
the econometric estimates of stars to a reasonable range. Without it, extreme data movements
in the unemployment rate profoundly influenced the econometric estimates of u-star in the
Base-NoSurv model.

We believe that the rich features of our models, which include: (1) modeling the changing
economic relationships via the implementation of time-varying parameters; (2) allowing for the
changing variance of the innovations to various equations (i.e., SV); (3) imposing bounds on
some of the random walk processes; (4) joint modeling of the output gap and unemployment
gap in particular; and (5) using survey forecasts, helped position our models to handle the
pandemic data better.

Carriero et al. (2021) using monthly Bayesian VARs show that models that allow for SV
better handle pandemic observations than those without SV. But even models with SV have a
drawback in the context of the pandemic data. This drawback arises from the standard approach
to modeling SV, which assumes a random walk process or a very persistent AR process. So in
the face of a temporary spike in volatility, the model will attribute this spike incorrectly to a
persistent increase in volatility. Inspired by the outlier treatment method of Stock and Watson
(2016) for UCSV models, Carriero et al. (2021) propose an outlier-adjusted SV method that
models the VAR residuals as a combination of persistent and transitory changes in volatility.

We believe that this drawback of standard SV applies more to monthly VARs and to a lesser
extent in quarterly models, as is the case here. However, we stress that Stock and Watson’s
treatment method for outliers can be conveniently implemented in our modeling framework. To
keep the length of the paper manageable, we leave this extension for future research.

The COVID-19 pandemic provides an excellent real-time illustration of the importance of
using survey expectations data in the econometric estimation of the stars. The unprecedented
nature of the pandemic crisis and the extreme movements in the data induced by the pandemic
are too volatile to provide a timely and credible signal about the long-run macroeconomic
consequences. Complicating problem of extracting the signal from the data during the pandemic
period is that consensus has been developing (perhaps rightly so) to treat macroeconomic data

96



for the periods 2020Q2 and 2020Q3 as outliers in estimating the macroeconometric models; see
Schorfhedie and Song (2020), Carriero et al. (2021), among others.

On the other hand, judgment assessment informed by past event studies and an understand-
ing of many decades of economic research indicate that the COVID pandemic is likely going to
have implications for long-run productivity growth (p-star), the growth rate of potential out-
put (g-star), the natural rate of unemployment (u-star), and the long-run real rate of interest
(r-star); see Jorda, Singh, and Taylor (2020). As time rolls forward, and more is revealed about
the possible long-term macroeconomic impact of the pandemic on the underlying trends, survey
participants would judgmentally adjust their estimates of long-run projections in a more timely
manner, and, by extension, our Base model, which incorporates the long-run survey projections.

Base model vs. external sources: Post-pandemic recession

We next compare our Base model estimates with those produced by external sources (and/or
models) to assess further the reliability of our Base model estimates post-pandemic recession.
Figure A9 compares the estimates of the output gap (panel a), r-star (panel b), u-star (panel c),
and pi-star (panel d) from the Base model to the outside estimates.® The estimates are based
on data through 2020Q3 (specifically the data vintage corresponding to late November 2020).
In the case of the CBO, the projections correspond to an update as of late July 2020.

The plots in panel (a) indicate remarkable similarity between the posterior mean estimate
of the Base model’s output gap and the CBO output gap. Compared with Morley and Wong
(2020), even though before the pandemic, the base model’s output gap estimates indicated
less tight resource utilization, for 2020, all three imply broadly similar inference. Morley and
Wong (2020), based on a BVAR approach, could be viewed more flexibly than ours because
it explicitly considers the possible error correlation across model equations. However, at the
same time, their approach could be deemed less flexible than ours because it does not explicitly
model time variation in parameters and stochastic volatility — i.e., it abstracts from the issue
of “a changing economic environment.” Both the CBO and Morley and Wong (2020) estimate
the output gap at -3.6% for 2020Q3, with the Base model at -2.5%. (Interestingly, the output
gap estimate from the Base model variant without SV in output gap and the unemployment
gap is at -3.5%.)

Panel (b) plots the estimates of r-star from various sources. Except for Laubach and
Williams (2003) [LW], all others are based on information available as of late November 2020.
LW’s estimate reflects information through August 2020. Comparing between 2019Q4 and
2020Q3, the Base model, Johannsen and Mertens (2019), and Del Negro et al. (2017), all esti-
mate r-star to have changed only a little: Base model: from 0.87% to 0.76%; Del Negro et al.
(2017): from 1.11% to 1.08%; and Johannsen and Mertens (2019): from 1.48% to 1.47%. In
contrast, Lubik and Matthes (2015) have r-star increasing from 0.64% to 1.00%. However, in
their estimate, r-star first falls from 0.64% to -0.68% and then bounces back to 1.0% in 2020Q3.
Their estimate of r-star displays considerable volatility compared to others’ estimates.

SMorley and Wong (2020) estimates are based on their updated work (Berger, Morley, and Wong (forthcom-
ing)) and are available to download from outputgapnow.com. The estimates were downloaded in the last week
of November, which included the nowcast estimate for 2020Q4 that we do not plot. We thank Murat Tasci for
providing the estimates of u-star from the Tasci (2012) model. We also thank Benjamin Johannsen for providing
the r-star estimates from Johannsen and Mertens (2019). The LW estimates of r-star were downloaded from the
New York Fed’s website. Del Negro et al. (2017) estimates of r-star were downloaded from github.com/FRBNY-
DSGE/rstarBrookings2017. Lubik and Matthes’ estimates were downloaded from the Richmond Fed’s website
in late November 2020.
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Panel (c) plots the estimates of u-star from four sources: Base model, the CBO, Tasci
(2012), and Chan, Koop, and Potter (2016). Comparing between the Base model and the
CBO, the contours of the u-star plots are similar. But the levels through 2010 are notably
different, with the CBO lower than the Base model. In 2020Q3, both CBO and Base indicate
u-star at 4.4%. Interestingly, both the CBO and the Base model have u-star remaining mostly
stable between 2019Q4 and 2020Q3, suggesting that they attribute most of the increase in the
pandemic’s unemployment rate to the cyclical component. It is worth highlighting that the
(median) estimate of u-star reported in the September 2020 Summary of Economic Projections,
which the Federal Reserve compiles, also indicated a stable u-star (at 4.1%) between 2019Q4
and 2020Q3.

Broadly speaking, the contour of the u-star implied by the CKP (bivariate Phillips curve)
is similar to the Base model and the CBO. But the estimated level of u-star is significantly
higher. According to the CKP model, the estimated u-star in 2020Q3 is 5.7%, just a tenth
higher than in 2019Q4. The Tasci (2012) model, which is based on the flow rates in-and-out
of unemployment, is significantly impacted by the pandemic data, as u-star is estimated to
have increased from 4.7% in late 2019 to 5.2% in 2020Q3. Part of the explanation of more
significant movements in u-star seen in the Tasci model in response to pandemic data is that
the model is estimated using maximum likelihood methods, which are known to have done a
relatively inferior job in handling extreme pandemic-induced movements in variables. More
generally, Tasci (2019) documents the challenges of estimating u-star in real time with these
models during crisis periods.

Panel (d) presents pi-star estimates from three sources: the Base model, CCK model, and
CKP model. All three models indicate that pi-star remained stable between 2019Q4 and
2020Q3. However, the pi-star estimates differ slightly across models, with the Base model
at 1.70%, CCK at 1.50%, and CKP at 1.44% (in 2020Q3).
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Figure A7: Estimates of Stars pre- vs. post-COVID Recession
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Figure A8: Estimates of Stars pre- vs. post-COVID Recession
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Figure A9: Estimates of Stars post-COVID Recession: Base vs. Outside
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A9. R*: Backcast Survey R* from 1959-1982

The survey estimates of g-star, u-star, and pi-star are direct reads from the survey. In contrast,
the r-star survey estimate is not a direct estimate. Instead, it is inferred from the Blue Chip
survey’s long-run estimates of the GDP deflator and short-term interest rate (3-month Treasury
bill) using the long-run Fisher equation, specifically, the long-run forecast of 3-month Treasury
bills less the long-run forecast of the GDP deflator. To this differential, we add +0.3 to reflect
the average differential between the federal funds rate and the 3-month Treasury bill (r-star
refers to the long-run equilibrium federal funds rate).

Survey projections are not available before 1983Q1. To fill in estimates for the survey
variables between 1959Q4 and 1982Q4, we use the CBO’s long-run projections in the case of
real GDP growth and the unemployment rate. In the case of inflation, we use the PTR series
available from the Federal Reserve Board’s website; this series is used in many studies employing
long-run expectations of inflation (e.g., CCK, Tallman and Zaman, 2020). We do not have a
readily available historical source for long-run forecasts for interest rates (and r-star). So we
backcast a particular time series of implied r-star using the CBO’s long-run projections of g-
star. Specifically, we first fit a simple linear regression model over the post-1983 period that
regresses survey r-star on a constant, its lags (2 lags), and a one-period lag “gap,” defined as
the difference between survey r-star and survey g-star. We use the estimated model and the
CBO'’s long-run projections of g-star over the sample 1959Q4 through 1982Q4 to backcast the
implied survey r-star estimates. (When backcasting, the initial values of r-star for 1959Q2 and
1959Q3 are assumed to be identical to the CBO’s g-star.)

*,Surv 7k, g%, SUTY *,Surv *,Surv *,Surv *,Surv 2
Tt =c+ ﬁlgaptfl + ﬁQthl + ﬁ3rt72 + €t y €t ~ N(Oa J*,Su'rv) (83)
rx,gx,Surv __ *,Surv *,Surv
where, gap, =g, -1y

The OLS estimation yields ¢ = —0.0745; 51 = 0.06; 82 = 1.167; 83 = —0.148.

Figure A10 plots the survey g-star and r-star estimates in solid lines, and the CBO’s g-star
and the backcast r-star in dashed lines.

Figure A10: Survey r* and g*
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A10. R* : Additional Full Sample Results

A10.a. Role of data vs. prior in shaping r-star

Kiley (2020), using a model in which r-star follows an RW process, documents an essential
finding that data provide very little information in shaping the r-star process. Hence, the
model-based r-star estimate is mainly driven by the modeler’s prior views. Our results generally
confirm Kiley’s findings. However, in our Base specification, where the variance of the g-star
process influences both the prior and the posterior for the r-star process, the data do influence
the r-star estimate because we find evidence that the data provide information about the g-star
process. This latter evidence of the data’s influence on the identification of g-star is also noted
by Kiley (2020).

We begin by comparing the prior and posterior estimates of the parameter o2,, which governs
the shock variance of the r-star process, in the Base-NoSurv-R*RW model specification, which
is a variant of the Base model that excludes survey information and assumes RW for r-star
similar to Kiley (2020). The default prior for F(02,) = 0.12), which is the same as in Gonzalez-
Astudillo and Laforte (2020) but tighter than the 0.252 used by Kiley.® (Our choice of a tighter
prior than Kiley is due to a significantly more complex model.) Our model estimation yields
posterior estimates of 0.09? (with 90% credible intervals 0.072 to 0.122) for the parameter o2,,
which is slightly different from the prior mean, suggesting that the data do play a role in shaping
r-star.

We next confirm our finding by re-doing our exercise setting a looser prior for E(c2,) =
0.173%), which equates to doubling the prior mean of the variance of the process governing the
evolution of r-star. The updated model estimation yields posterior estimates of F(02,) = 0.14
(with 90% credible intervals 0.11% to 0.172). The fit of this model (looser prior) to the interest
rate data (and other model data) is significantly worse compared to the model specification
with the default prior.

We explored the impact on the r-star estimates of even looser priors on the shock process
governing r-star. We find that as the prior on the r-star process loosens, the data become more
informative in shaping the r-star estimate (echoing Lewis and Vazquez-Grande, 2019). But
it comes at the cost of a worsening model fit, higher volatility in the r-star estimate, and a
worsening precision of r-star.

A10.b. Base vs. external models

In Figure A11, the left panel plots r-star from the Base, Base-NoSurv, and two external models:
the seminal model of LW (dashed line) and the more recent model developed in Del Negro et al.
(2017) (dotted line). As is the case with most r-star estimates presented in the literature, the
LW estimate shows a marked decline in r-star from 2000 and beyond. As shown in the figure,
compared to the r-star estimate from the Base, the LW estimate is lower over this period. Part
of the explanation of this difference in the estimates comes from the different estimates of g-star
(not shown).

In the LW model, the mechanical reason for this steadily declining trajectory of r-star is
coming from the fact that their model estimate of g-star has been steadily declining over the
same period. Over this period, GDP grew just slightly above their estimate of g-star, even

5We also explore a model specification in which prior variance is set at 0.252. The fit of this specification
was significantly inferior, and the r-star estimate was quite volatile.
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though the real short-term interest rate is significantly below zero over this period. The model
explains the combination of moderate growth in GDP (suggesting a small positive output gap)
and a negative real short-term interest rate through a low level of the r-star estimate so as
to obtain a negative real interest rate gap (see LW). In our Base (and Base-NoSurv) model,
because the estimate of g-star is even lower than LW’s, which implies a more positive output
gap (than LW), a less negative real interest rate gap (than LW) is required to explain the output
gap. The less negative real interest rate gap (i.e., a smaller interest rate gap) implies a higher
level of r-star than LW.

The r-star estimate from Del Negro et al. is stable around 2% from 1960 through early
1980 and then slowly moves up, reaching 2.5% by late 1990. From there on, it begins a gradual
decline, ending 2019 at 1.2%, identical to the Base-NoSurv, and two-tenths lower than Base.
Broadly speaking, the contours of r-star from Del Negro et al. model closely resemble Base-
NoSurv model. It is worth noting that Del Negro et al. also utilize survey expectations on
r-star to estimate r-star but their approach to how they model the link between the two is very
different from ours.” They also assume a relationship between g-star (in their case, long-run
productivity growth) and r-star. However, their model structure is different compared to ours.

Figure A11: R* estimates

R* : Base vs. outside estimates

—Base
Base-NoSurv
4.5 - - - = LW

\ | Del Negro et al:

0 |
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"Del Negro et al. use survey expectations from the Survey of Professional Forecasters, which start from
1992 onward. In addition, in their framework survey expectations are one of the several financial indicators they
use to extract a common trend. So arguably, in their approach, the survey expectations of r-star will be less
influential in driving r-star than in our approach, in which a direct connection between r-star and the survey
data is assumed.
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A10.c. Assessment of policy stance

Figure A12 provides an assessment of the stance of monetary policy. Following Pescatori and
Turunen (2016), we gauge monetary policy’s stance as the deviation of the short-term nominal
interest rate from the long-run nominal neutral rate of interest (defined as the sum of r* and
pi*) — this is the interest rate gap from the Taylor-rule equation. A positive interest rate gap
characterizes a restrictive monetary policy stance, and a negative interest rate gap implies a
stimulative stance. The solid line corresponds to the posterior mean estimate of the policy
stance inferred from the Base model and the dashed line to that inferred from the Base-NoSurv
model. Even with notable differences in the estimates of r-star across the two models, the
assessment of the policy stance is remarkably similar throughout the sample.?

According to our model(s) estimates, the policy stance appeared to be slightly restrictive
before the Great Recession, but at the onset of the Great Recession, the policy stance immedi-
ately turned accommodative. Since then, it has remained very accommodative (reflecting the
effects of unconventional monetary policy). After peaking in late 2015, the degree of accommo-
dation has gradually declined (i.e., the interest rate gap has become less negative), such that,
by the end of 2019, it has edged closer to the neutral threshold.

A closer inspection of the figure reveals an interesting insight. Since 1990, both the degree
and duration of policy accommodation in response to the recession have been more significant
than in the previous recession. For instance, the monetary policy stance was more accom-
modative in terms of both level and duration following the 2001 recession than following the
1990-1991 recession. Similarly, during and following the Great Recession, the policy stance, in
terms of level and duration, was more significant than following the 2001 recession.

830 why are they so similar? The answer lies in the differences in pi-star estimates across two model
specifications. In other words, the differences between r-star estimates across the two models are compensated
(i.e., offset) by the differences between pi-star, such that the assessment about the stance of monetary policy
across the two models is strikingly similar. For instance, in the 1960s, the r-star estimate from the Base is on
average 1.34 percentage points (ppts) higher than that of Base-NoSurv. However, over the same period, the
pi-star estimate from the Base model is 0.54 ppt lower than that of the Base-NoSurv model, which reduces the
difference between their associated assessments of policy stance.
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Figure A12: Policy Stance

(e) Policy Stance: i-n*-r*
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Notes: Plotted are the posterior mean estimates based on estimation using the full sample (from
1959Q4 through 2019Q4).
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A11l. Pi* : Additional Full Sample Results

All.a. Pi-star comparison Base vs. outside models

In Figure A13, panel (a) plots posterior mean estimates of pi-star from some related (smaller)
models from the literature alongside Base to facilitate comparison. In particular, estimates are
shown for CKP, CCK, and the celebrated UCSV model of Stock and Watson (2007). (These
three models could be viewed as restricted variants of our Base model.)? Panel (b) plots the
corresponding precision estimates of pi-star.

There are some interesting similarities and differences across the pi-star estimates. Whereas
UCSV displays very volatile and erratic estimates of pi-star, other models show a smoother
evolution of pi-star. CKP indicate a lower estimate of pi-star than others from the early 1970s
through the late 1980s. The primary factor contributing to lower pi-star in CKP is the model
assumption of a bounded random walk for pi-star. As discussed in CKP, the addition of bounds
on pi-star leads the model to attribute a substantial share of the observed high inflation of
the 1970s to the increased persistence of the inflation gap and only a small increase in pi-star.
Hence, pi-star is estimated to have risen less than implied by other models. For instance, the
CCK model had pi-star peaking at 4.9%, Base at 5.8% and CKP at 3.2%. As alluded to in CKP,
this small rise in pi-star is consistent with a specific narrative that during the Great Inflation
period, the Fed had a low implicit target for inflation but was either unable to or unwilling to
correct large deviations of inflation from the target.

The contours of pi-star from Base are similar to CCK through 2000, but from 2000 to 2012,
Base is identical to CKP, with CCK a touch lower. It is interesting to note that from the early
2000s through 2010, both Base and CKP indicate pi-star at 2%. From 2012 through 2019, both
Base and CKP gradually drift lower to 1.6% and 1.3%, respectively; CCK is at 1.5%.

Panel (b), which plots the corresponding precision of pi-star, reveals some interesting pat-
terns. First, the precision of pi-star evolved generally with the level of pi-star. As pi-star
increased during the Great Inflation, pi-star became more uncertain, i.e., more imprecise. Sub-
sequently, as pi-star trended lower during the Volcker disinflation, so did the uncertainty about
it (i.e., precision increased). Second, comparing across models, there is significant heterogene-
ity in the precision of pi-star. From 1960 through the mid-1970s, the Base model indicates the
most precise pi-star, followed by CCK and CKP. The UCSV model shows volatile estimates of
precision, sharply fluctuating between the most precise to the least precise. From the mid-1970s
through 2019, the CCK model indicates the most precise (least uncertain) pi-star, followed by
Base, CKP, and UCSV. CCK had the uncertainty of pi-star gradually trending down starting in
the mid-1970s. In contrast, in others, the uncertainty continued to trend higher until peaking
in the early 1980s.

Third, between 2000 and 2019, the uncertainty around pi-star implied by CCK and Base has
been reasonably stable, an artifact of the use of survey data. During this period, the precision of
pi-star implied by CCK is on average 40 basis points higher (i.e., uncertainty is lower) compared
to Base. This improved precision of CCK is interesting because both CCK and Base utilize
information from survey expectations of inflation. However, at the same time, compared to
Base, which has a rich structure (hence more parameters), the CCK model is parsimonious,
as it uses information from survey expectations only (in addition to inflation’s own history) to
estimate pi-star.

An additional factor that could contribute to the differential in precision is that, unlike Base,

9Whereas in estimating the UCSV model, Stock and Watson (2007) fix the parameters governing the smooth-
ness of the SV processes, we estimate them.
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CCK allows SV in the pi-star equation. A more in-depth inspection of the estimation results
reveals that the primary factor driving the superior precision of the CCK estimate of pi-star
compared to Base is tighter priors on the assumed relationship between survey expectations and
pi-star. And that translates into a posterior estimate implying a stronger connection between
survey expectations and pi-star in CCK than Base.

Figure A13: Pi* estimates: Base vs. External models
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Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
In all cases, the inflation measure is PCE inflation.
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A11.b. Sensitivity of pi-star to modeling assumptions

Figure A14, panel (a) indicates the sensitivity of the pi-star estimates to modeling assumptions.
The plot labeled Base-W*RW is the variant of the Base model that removes the theoretical
restriction imposed by equation (26) and instead assumes a random walk assumption for w-star.
Comparing the Base and Base-W*RW plots indicates the effects of the theoretical restriction
on pi-star. As shown, the posterior mean estimate of pi-star from Base-W*RW is marginally
lower than Base in the period 1970 through the early 1980s (Great Inflation period). However,
from there on, estimates of pi-star are identical. During the high-inflation period, compared
to the Base model, the Base-W*RW allocates a higher share of the increase in inflation to the
persistence component than pi-star (i.e., the random walk component); see figure A15. Hence,
the lower level of pi-star in Base-W*RW than Base.

The plot labeled Base-NoPT is the variant of the Base model that eliminates the pass-
through from prices to wages, modeled via equation (29b)—doing so results in a slightly higher
pi-star (Base-NoPT) from 1970 through the early 1980s. However, thereafter, estimates of pi-
star are identical between Base and Base-NoPT. During the high-inflation period, compared
to the Base model, the Base-NoPT allocates a lower share of the increase in inflation to the
persistence component than pi-star; hence, the higher level of pi-star in Base-NoPT than Base.
Based on the model comparison (shown in table A6), the Base-W*RW model’s fit to the inflation
data is comparable to the Base but the fit to other data is significantly inferior compared to
Base. In the case of Base-NoPT, the fit to the inflation data is marginally better than Base.
However, the overall fit of the Base-NoPT is significantly worse than Base. The Base-NoPT
model’s reduced fit is the net effect of its reduced ability to fit wages and its improved ability
to fit prices.

We also explored a variant of the Base model that allowed the pass-through from wages
to prices in the price inflation equation, denoted Base-PT-Wage-to-Prices. The estimates of
pi-star (and of other parameters) are identical to those of the Base; hence, they are not shown.
Therefore, not surprisingly, as reported in Table A6, both models’ ability to fit inflation data
is very similar. We also highlight that allowing SV in the inflation equation is very important,
as evidenced by a significantly reduced fit of the Base-NoSV model, which is the Base model
variant that does not feature SV in any model equations.
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Figure A14: More Estimates for Price Inflation Block

(a) »* : Base vs. Base variants (b) Precision n* : Width 90% Intervals
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Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

Table A6: Model Variants for Price Inflation
Model variant MDD of Price inflation MDD Model
Base -365.2 -1587.3
Base-NoSurv -365.6 -1587.1
Base-W*RW -365.2 -1594.3
Base-PT-Wages-to-Prices -365.0 -1586.8
Base-NoPT -364.4 -1592.3
Base-NoSV -412.5 -1939.7
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All.c. Pi-star estimates for some variants of the Base model

Figure A15: Pi* estimates: Base vs. Base model variants
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A12. P*: Base Comparison with Kahn and Rich (2007)

In this section, we compare our model-based estimates of p-star with the narrative about p-star
implied from the two-regime Markov switching model of Kahn and Rich (2007).10 A regime-
switching framework (as in Kahn and Rich) allows for deterministic values of p-star, where
the number of deterministic values equals the number of possible regimes. Accordingly, in a
2-regime setup, the estimated p-star would periodically alternate from one regime (e.g., a low
productivity regime) to the other regime (e.g., a high productivity regime). In contrast, the
random walk assumption for p-star adopted in this paper (and in others such as Roberts, 2001;
Edge et al., 2007; Benati, 2007) allows for the possibility that p-star may be (slowly) changing
in every period. This latter assumption implies that the possible values of p-star could equal
the number of periods in the estimation sample. The differences in the stochastic conception
between the two frameworks complicate direct comparison in p-star.

One possible, albeit imperfect, approach to comparing the implied p-star from two frame-
works is to use the regime-switching model’s identified regimes to assess how well those corrob-
orate p-star estimates implied from the RW assumption model. Specifically, for the RW model,
compute the “average” p-star over the specific periods (identified regimes). Then assess the
following: (1) whether the “average” rates imply a characterization of regimes that corroborate
the identified regimes; and (2) how close the “average” rates of p-star are to the deterministic
values of p-star estimated in the regime-switching model. We use this approach to compare the
estimates of p-star from our models to the p-star estimated by the Kahn and Rich model.

Figure A16 presents the comparison of p-star. Panel (a) compares the Base model with the
Kahn and Rich model, and panel (b) compares the Base-W*RW model with the Kahn and Rich
model. In the panels, the shaded areas refer to the two regimes identified by the Kahn and Rich
model using the same vintage of data as our models. The lighter shaded area corresponds to the
“high productivity regime,” and the darker shaded area corresponds to the “low productivity
regime.” Their model identifies two subperiods of high productivity regimes: the beginning of
our sample through 1974Q4 and 1996Q3 through 2004Q4. Similarly, their model identifies two
subperiods of low productivity regimes: 1975Q1 through 1996Q2 and 2005Q1 through the end
of the sample, 2019Q4.

Next, we compare the “average” rates for the two regimes implied by our models to the
Kahn and Rich model. The Base model implies for a low productivity regime an “average” rate
of 1.6% (for both subperiods) and for a high productivity regime an “average” rate of 2.4%
(subperiod beginning of our sample through 1974Q4) and 2.2% (subperiod 1996Q3 through
2004Q4). The Base-W*RW model implies for a low productivity regime “average” rate of
1.7% (in the first subperiod) and 1.4% (in the second subperiod) and for a high productivity
regime “average” rates of 2.6% and 2.3%, respectively. In comparison, Kahn and Rich’s model
implies a p-star of 1.33% for a low productivity regime for both subperiods (p-star is equal
across subperiods by construction) and 2.96% p-star for a high productivity regime. For the
low productivity regime, the implied p-star from the Base is slightly higher than Kahn and
Rich’s, but for the high productivity regime, Kahn and Rich’s model is slightly higher.

Overall, this illustration suggests that the two approaches provide generally similar infer-
ences about developments in p-star, and we view this as a useful result for macroeconomists
tasked with modeling and tracking productivity developments.

10T he estimates of p-star implied by the Kahn and Rich (2007) model are routinely updated and made available
for download at James A. Kahn’s website: http://sites.google.com/view/james-a-kahn-economics/home/trend-
productivity-update .
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Figure A16: P* Consistent with Narrative from 2-Regime Markov-Switching Model

(a) Base vs. Kahn and Rich (KR)-2 regime model
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Notes: The shaded areas refer to the two regimes identified by the Kahn and Rich model using
the same vintage of data as our models. The lighter shaded area corresponds to the “high
productivity regime,” and the darker shaded area the “low productivity regime.” The plots
labeled Base and Base-W*RW are the posterior mean estimates based on the full sample (from
1959Q4 through 2019Q4).
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A13. U* : Additional Full Sample Results

A13.a. Sensitivity of u-star to modeling assumptions

Figure A17, panel (a) plots estimates of u-star (posterior mean) from the variants of the Base
model to highlight the sensitivity of u-star to modeling assumptions and the informational aspect
of joint modeling. The plot denoted Base-NoBoundU* represents the Base model variant that
eliminates the bound on the random walk process describing u-star. Doing so has a trivial
effect on the estimates of u-star, the precision of u-star, and model fit. Comparing between
panels (a) and (b), the posterior mean estimate of u-star is quite similar across Base and Base-
NoBoundU*. Similarly, there is little change in the u-star estimate’s precision across the two
models, with Base only marginally better in the latter part of the sample (as shown in panel
e). Not surprisingly, the Bayesian model comparison suggests equal support for both Base and
Base-NoBoundU*.

We highlight two noteworthy comments in regard to the implementation of bounds on u-
star. First, the trivial difference in the estimates between Base and Base-NoBoundU* arises
because the bounds defined on u-star are wide. Put differently, the values of the bound we have
set are not binding on the Base model. Second, we find that using bounds on u-star is extremely
important in the Base-NoSurv, as it helps keep the estimation tractable. In other words, the
advantages of using bounds on the random walk processes that were stressed in CKP were in
full display in the estimation of Base-NoSurv. Hence, we prefer to keep bounds on u-star in our
main models.

The other model variants plotted in panel (a) are all nested specifications of the Base
model: the Bivariate model of GDP and the unemployment rate (a Base model that excludes
survey information and everything else except the equations describing the dynamics of GDP
and the unemployment rate); Bivariate4+Surv, which is bivariate but adds survey data for
GDP and unemployment; and CKP Adjusted, which is a bivariate model of inflation and the
unemployment rate as in CKP but with no bounds on pi-star and augmented with SV. For visual
reasons (to limit the number of plots), u-star from Base in panel (a) is not shown. However, for
the sake of discussion, we could treat the plot representing Base-NoBoundU* as the estimate for
the Base model, since they are identical to each other (as discussed in the preceding paragraph).

These plots show that different model specifications could provide very different signals
about the level of long-run unemployment, indicating the sensitivity of u-star to modeling
assumptions. A model specification that infers the estimate of u-star from inflation and unem-
ployment data only, i.e., the price Phillips curve (CKP Adj. model), has a lower trajectory of
u-star compared to Base. The model specification that infers the estimate of u-star from GDP
and the unemployment data only, i.e., the Okun’s law relationship (Bivariate model), displays
larger fluctuations than the CKP Adj. model. Once the Bivariate model is augmented with
survey data for GDP and unemployment, its trajectory resembles that of the Base model.

Panel (b) compares the u-star estimates from the main model specifications with the CBO
estimate of the long-run unemployment rate. Interestingly, for the most part, the CBO u-star’s
contour is similar to our model-based estimates, though the level of the CBO u-star estimate is
lower from 1960 through the mid-1990s. At the onset of the Great Recession and through the
early phase of the economic recovery, all three have u-star continuing to move higher. Whereas
Base and Base-NoSurv peak in late 2010 at 5.7% and 6.0%, respectively, the CBO has u-star
peaking in late 2011 at 5.8%. Since then, u-star has steadily moved lower, with the pace of
decline quite similar across CBO and Base. The CBO has u-star at the end of 2019 at 4.4%,
about two-tenths higher than the Base model.
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Precision of u-star

Panel (c) plots the precision of u-star estimates for Base, Base-NoSurv, Base-NoBoundU*,
and Bivariate+Surv. We make several observations. First, comparing between Base and Bi-
variate+Surv, both of these model specifications use information from the surveys and Okun’s
relationship. However, Base relies on greater information and additional structure (e.g., wage
Phillips curve, price Phillips curve, cyclical productivity, monetary policy stance via the Taylor-
type policy rule) to infer u-star compared to Bivariate+Surv; hence, the more improved precision
of the resulting u-star. And the model comparison indicates a significantly higher fit of the Base
model to the unemployment data compared to the Bivariate+Surv.

Second, comparing with Base and Base-NoSurv, additional information from survey fore-
casts improves the precision of u-star, but this improved precision does not translate into im-
proved model fit, which instead worsens somewhat (as shown in Table A7).

Panel (d) shows the precision of u-star for Base-NoSurv, Bivariate (GDP and unemploy-
ment), and CKP-Adj (which is a bivariate model of price inflation and the unemployment rate).
As indicated earlier, u-star from Base-NoSurv is inferred from a broader information set and
structure than the other two small-scale models. Accordingly, the Base-NoSurv estimate of
u-star is, for the most part, more precise and the model comparison indicates a substantially
higher fit to the unemployment data than the other two. The plots also show that u-star inferred
from the Okun’s law relationship (i.e., Bivariate model) is less precise than u-star inferred from
the price Phillips curve (i.e., CKP-Adj model). In contrast, the Bayesian model comparison
lends support to the Bivariate model over the CKP-Adj model.

The results also provide evidence that adding survey data to the Bivariate model (Bivari-
ate+Surv) further improves both the precision of u-star (comparing Bivariate and Bivariate-
Surv in panels ¢ and d) and the fit to the unemployment data (Bivariate: 88.5 vs. Bivari-
ate+Surv: 85.2, as shown in Table A7). This latter finding of improved fit from adding survey
data is interesting because in the case of Base, adding survey data worsens the model fit (Base:
89.4 vs. Base-NoSurv: 93.1). Importantly, it suggests that survey forecasts of u-star are likely
useful in the case of parsimonious models but of limited use for models that are already utilizing
various sources of information to infer u-star.
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Figure A17: U*

& (a) U*: model variants & (b) U*: Comparison with CBO
| Base | - Base
| Base-NoBoundU* | Base-NoSurv |
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Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
In panel (a), CKP Adj. refers to the bivariate model of inflation and the unemployment rate
as in CKP but with no bounds on pi-star.

Table A7: Model Comparison: Variants Focused on Unemployment Rate (UR)

Base Base-NoSurv Base-NoBoundU* Bivariate Bivariate+Surv CKP-Ad]

MDD of UR 89.4 93.1 88.8 88.5 85.2 47.7
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