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1 Introduction

In a tough challenge to conventional wisdom, Lucas (1987) asked how much Americans

would be willing to pay, in terms of consumption, to live in an economy that is not sub-

ject to the macroeconomic volatility that the US witnessed during the post-war period.

Finding that a representative consumer would sacrifice at most one-tenth of a percent of

lifetime consumption, Lucas concluded that there would be little benefit in further at-

tempting to stabilize the residual risk of business cycles.

Not surprisingly, Lucas’s seminal result attracted a great deal of controversy and gen-

erated a wealth of literature that revisits his estimates. In this paper, we explore a critical

point, which is subtly present in Lucas (1987), that calls for a new measurement effort

when estimating the costs of business cycles: all observed consumption is already par-

tially smoothed. That is, the data that we gather for consumption stem from a realized

allocation that is subject to the status quo of economic stabilization policies.

In order to measure the contribution of ongoing policies as well as the relevance of

the residual to be smoothed, we then need to disentangle which part of the observed

consumption pertains to each category. To accomplish such a task, we propose a tractable

decomposition in which observed consumption is a weighted geometric mean of laissez-

faire consumption, i.e., the counterfactual consumption series in the absence of any policy

and a riskless consumption sequence.

Our decomposition allows us to map all policies to a single parameter θ, which we

define as the span of stabilization power. Within this structure, we are able to prove that

the welfare cost of total economic fluctuations can be disentangled into the benefit of on-

going policies and the cost of residual fluctuations. We dialogue directly with the classic

literature and use the flexibility of this approach to apply our formulation to three types

of shock structures for the consumption process: the one of Lucas (1987) with transitory

shocks, the one of Obstfeld (1994) with permanent innovations, and a third one that de-

parts from the i.i.d. structure and uses an ARIMA process for the consumption series as

proposed by Reis (2009), which we are able to incorporate in our framework with the use
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of the Beveridge-Nelson decomposition (Beveridge and Nelson, 1981; Issler et al., 2008;

Guillén et al., 2014).

We then proceed to estimate the parameters in our welfare decomposition but hit a

measurement challenge: since the laissez-faire consumption is not observable, we need

to identify θ. For this task, we resort to the more novel literature of identification in

macroeconomics and couple it with the relevant facts of US macroeconomic history. Our

choice of data is an augmented version of the historical consumption series provided by

Barro and Ursúa (2010), which shows a significant decrease in volatility after WWII. Such

pattern is identified by the literature and the visual inspection of the data, as well as by a

statistical test to find breaks in the variance of the series.

This evidence allow us to design our identification strategy and divide the sample

into pre- and post-war periods with distinct measured volatilities, attributing them to the

larger role and presence of stabilization policies in the second period (Blanchard, 2000).

Such a discontinuity-based strategy enable us to pin down the span of stabilization poli-

cies from 1947 until today, which we then take back as an input in our decomposition.

Assuming a log-normal form for consumption, we obtain the results for all three shock

structures, but our preferred specification is the one stemming from the ARIMA process,

which, among the three considered, best models and fits the consumption data.

We estimate that the span of stabilization policies smooths 61 to 73 percent of the

laissez-faire consumption shocks. With that, the cost of total economic fluctuations is 11

percent of consumption.1 Close to 82 percent of such costs are already covered by sta-

bilization policies, yielding that more than 9 percent of smoothed lifetime consumption

is left unveiled if one does not take into account the benefit of ongoing stabilization. Fi-

nally, we observe a theoretical feature that arises from the concave nature of the utility:

the more risk averse consumers are, the more they value the relative benefit of ongoing

stabilization policies.

1Our estimates are robust to different cuts in the data, including the removal of the inter-war period and
the years surrounding a statistically identified structural break.
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2 Related Literature

Our paper is embedded in three major strands of the literature in macroeconomics: (i) the

large body of work concerned with the calculus of the welfare costs of business cycles; (ii)

the literature that studies the measurement of historical macroeconomic data; and (iii) the

literature of identification in macroeconomics.

Several papers build on Lucas’s departing point and relax some of his assumptions.

For example, Obstfeld (1994) switches the original transitory shocks for permanent ones

and focuses on its interaction with recursive preferences, Reis (2009) further develops

the time-series aspects, while Issler et al. (2008) and Guillén et al. (2014) combine both

types of shocks.2 Another block in this body departs from the representative agent setting

and estimates the costs under incomplete markets and heterogeneous agents such as in

İmrohoroğlu (1989), Krusell and Smith Jr. (1999), Storesletten et al. (2001), and De Santis

(2007). More recently, Hai et al. (2020) include memorable goods and Constantinides

(2021) focuses on the role of idiosyncratic shocks faced by households that are unrelated

to the business cycle. Our contribution here is to model the observed consumption as

a partially smoothed series and the proposal of a new and tractable decomposition that

allows us to disentangle the reach of the ongoing policies.

We conduct our data analysis grounding it in the literature on macroeconomic his-

tory. Our sample is built directly from the historical data compiled by Barro and Ursúa

(2010) and when developing our novel identification strategy, we base it on Barro and

Ursúa (2008)’s observation that for the OECD economies, there is a change in consump-

tion volatility in the post-war period. Our approach also dialogues with the seminal work

of Romer (1986) and Balke and Gordon (1989) that documents the challenges faced when

measuring the volatility of macroeconomic aggregates and show how our methodology

can reconcile improvements in both measurement and stabilization after WWII.

We also view our work as building on the effort of calculating the costs of business

cycles, with critical attention to measurement and identification that often appeared in

2For an in-depth early discussion of this literature, see Barlevy (2005), who discusses other seminal
references such as Dolmas (1998) and Alvarez and Jermann (2004).
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what became known as the “disasters” approach in the literature. We resort to Nakamura

et al. (2013)’s insight of using the variation in the volatility of the consumption series to

better identify the shift in the role of stabilization policies. Moreover, we build on Naka-

mura et al. (2017) in our use of both transitory and permanent formulations for the shocks

in conjunction with a time-varying volatility for the consumption series. At the intersec-

tion of the disasters and welfare costs literature, Jorda et al. (2020) find that substantial

costs may arise from a novel estimate of frequent and small disasters.3 In addition, by

considering the asymmetric nature of economic fluctuations, Dupraz et al. (2019) develop

a plucking model of business cycles and find welfare gains from eliminating economic

fluctuations that are an order of magnitude larger than in standard models.

3 Model

3.1 Environment and Definitions

The economy is populated by a representative consumer whose lifetime utility is given

by E0
[
∑∞

t=0 βtu(Ct)
]
, where Ct is consumption in period t, β ∈ (0, 1) is an intertempo-

ral discount factor, u(·) is the instantaneous utility function, and E0[·] is the expectation

operator conditional on the information set I0.4 We begin with a few definitions:

Definition 1. Define C̄t ≡ E0[Ct]. Then {C̄t}∞
t=0 is the riskless consumption sequence.

Definition 2. Define C̃t as consumption in the absence of stabilization policies. Then {C̃t}∞
t=0 is

the laissez-faire consumption sequence.

We can now define the welfare cost of the total economic fluctuations as the constant

λT > 0 that solves the following condition:

3Other examples in this literature are Barro and Jin (2011) and Gourio (2012).
4We assume that the expectation is taken before the realization of any uncertainty in period 0, as in some

calculations done by Obstfeld (1994) and Reis (2009). In that sense, consumption in that period is treated
as a stochastic variable. Under this assumption we compare the expected utility in two worlds where the
agent is still uncertain about all consumption flows, as in Lucas (1987).
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E0

[
∞

∑
t=0

βtu
(
(1 + λT)C̃t

)]
=

∞

∑
t=0

βtu (C̄t) . (1)

The parameter λT measures the constant compensation required by the consumer to be

indifferent between the adjusted laissez-faire, {(1+ λT)C̃t}∞
t=0, and the riskless consump-

tion sequences.

Given that the observed time series on consumption is subject to the ongoing stabi-

lization policies, we can view it as the combination of two extreme cases: (i) the (non-

observed) consumption series in the absence of any stabilization policies, C̃t, and (ii) the

(non-observed) perfectly smoothed consumption, C̄t. We then model the (observed) par-

tially smoothed consumption as a weighted geometric average:

Ct (θ) ≡ C̄θ
t C̃1−θ

t , (2)

where the parameter θ ∈ [0, 1] measures the degree of consumption smoothing. Thus, θ

can be interpreted as the span of the stabilization power of governmental policies.

We can now define the benefit of the ongoing stabilization policies as the constant

λB > 0 that solves the following condition:

E0

[
∞

∑
t=0

βtu
(
(1 + λB)C̃t

)]
= E0

[
∞

∑
t=0

βtu(Ct(θ))

]
. (3)

The parameter λB is the compensation required by the consumer to be indifferent between

the adjusted laissez-faire consumption sequence and the effective consumption sequence,

{Ct(θ)}∞
t=0.

Finally, we can compute what is left to be stabilized by defining the welfare cost of the

residual economic fluctuations as the constant λR > 0 that solves the following condition:

E0

[
∞

∑
t=0

βtu
(
(1 + λR)Ct(θ))

)]
=

∞

∑
t=0

βtu (C̄t) . (4)
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The parameter λR measures the constant compensation required by the consumer to

be indifferent between the adjusted partially smoothed consumption sequence {(1 +

λR)Ct(θ)}∞
t=0 and the aforementioned riskless sequence.

Figure 1 summarizes our modelling by showing where each parameter and measure

defined is located in a spectrum of consumption that spans the highest to the lowest level

of risk.

Figure 1: Decomposition of the welfare cost of the total economic fluctuations

C̃t E0
[
C̃t
]
= C̄tCt(θ) ≡ C̄θ

t C̃1−θ
t

Laissez - Faire
Consumption

Observed
Consumption

Riskless
Consumption

the benefit of the ongoing
stabilization policies− λB

the welfare cost of the total
economic fluctuations− λT

the welfare cost of the residual
economic fluctuations− λR

3.2 Assumptions

In order to calculate λT, λB, and λR and guarantee tractability, we assume a log-normal

process for C̃t, which implies that Ct(θ) is also log-normal. Following Lucas (1987), we

assume a CRRA instantaneous utility with parameter γ:

u(C) =


C1−γ

1− γ
, if γ > 1

ln(C), if γ = 1
(5)
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We also need assumptions that guarantee that the sums in conditions (1), (3), and (4)

are all finite. They are:

Assumption 1. Log-normal consumption process: C̃t = α0(1 + α1)
tXt, where Xt = ext−0.5σ2

t ,
with xt|I0 ∼ N

(
0, σ2

t
)
.

Assumption 2. The constant Γ ≡ β (1 + α1)
1−γ ∈ (0, 1).

Assumption 3.
∞
∑

t=0
Γt exp

{
−0.5γ (1− γ) σ2

t
}
< ∞.5

Under Assumption 1, riskless consumption is given by C̄t = E0[C̃t] = α0(1 + α1)
t

and is deterministic. Furthermore, C̃t = C̄tXt, and the partially smoothed consumption

can be rewritten as Ct (θ) = C̄tX1−θ
t . From this formulation it is easy to see that the

larger the parameter θ, the less important is the stochastic part of the partially smoothed

consumption.

3.3 Theoretical Results

We can now derive closed-form solutions for the parameters λB, λR and λT. Propositions

1, 2, and 3 establish, respectively, each of these parameters. The final step consists of using

the propositions to obtain our main decomposition of the welfare cost of total economic

fluctuations. All proofs are shown in Appendix A.

Proposition 1. Under Assumptions 1 and 3 the benefit of the ongoing stabilization policies is
given by

λB =


exp

{
θ

1−β
2 ∑∞

t=0 βtσ2
t

}
− 1, if γ = 1[

∑∞
t=0 Γt exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)σ2

t }
∑∞

t=0 Γt exp{−0.5γ(1−γ)σ2
t }

] 1
1−γ

− 1, if γ > 1
(6)

5Note that ∑∞
t=0 Γt exp

{
−0.5 (1− θ) (1− γ) (γ + θ − γθ) σ2

t
}
< ∑∞

t=0 Γt exp
{
−0.5γ (1− γ) σ2

t
}

if γ > 1.
This result ensures that the λ’s are finite in some of our results.
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Proposition 2. Under Assumptions 1, 2, and 3 the welfare cost of the residual macroeconomic
fluctuations is given by

λR =


exp

{
(1− θ)1−β

2 ∑∞
t=0 βtσ2

t

}
− 1, if γ = 1[

∑∞
t=0 Γt

∑∞
t=0 Γt exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)σ2

t }

] 1
1−γ

− 1, if γ > 1
(7)

Proposition 3. Under Assumptions 1, 2, and 3 the welfare cost of the total economic fluctuations
is given by

λT =


exp

{
1−β

2 ∑∞
t=0 βtσ2

t

}
− 1, if γ = 1[

∑∞
t=0 Γt

∑∞
t=0 Γt exp{−0.5γ(1−γ)σ2

t }

] 1
1−γ

− 1, if γ > 1
(8)

We can now state our main result in Theorem 1 below: the decomposition of the wel-

fare cost of total economic fluctuations.

Theorem 1. Under Assumptions 1 to 3 and CRRA utility (5), there is a decomposition of the
welfare cost of total economic fluctuations in the form

1 + λT =
(

1 + λB
) (

1 + λR
)

. (9)

4 Applications

In this section we characterize λT, λB, and λR using three different shock structures for the

consumption process: the classic ones of Lucas (1987) with transitory shocks and of Ob-

stfeld (1994) with permanent shocks, and one with an ARIMA process for consumption

as proposed in Reis (2009) using the Beveridge-Nelson (BN) decomposition (Beveridge

and Nelson, 1981; Issler et al., 2008; Guillén et al., 2014). The details of all calculations are

shown in Appendix B.

Example 1 - Transitory Shocks (Lucas, 1987): Define Ct = α0(1 + α1)
te−0.5σ2

ε +xL
t , where

xL
t |I0 ∼ N (0, σ2

ε ). Hence,
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λT =


exp

{
1
2

σ2
ε

}
− 1, if γ = 1

exp
{γ

2
σ2

ε

}
− 1, if γ > 1

(10)

λB =


exp

{
θ

2
σ2

ε

}
− 1, if γ = 1

exp
{

γ

2
σ2

ε −
1
2
(1− θ) (θ + γ− γθ) σ2

ε

}
− 1, if γ > 1

(11)

λR =


exp

{
1− θ

2
σ2

ε

}
− 1, if γ = 1

exp
{

1
2
(1− θ) (θ + γ− γθ) σ2

ε

}
− 1, if γ > 1

(12)

For this process, the variance in Assumption 1 becomes σ2
t = σ2

ε . Consequently, Assump-

tion 3 is satisfied as long as Assumption 2 holds.

Example 2 - Permanent Shocks (Obstfeld, 1994): Define Ct = α0(1 + α1)
te−0.5σ2

ε +xO
t ,

where xO
t = ∑t

i=0 εi, εi|I0 ∼ N (0, σ2
ε ).6 Thus,

λT =


exp

{
1
2

1
1−β σ2

ε

}
− 1, if γ = 1

exp
{

0.5γσ2
ε

} [1−Γ exp{−0.5γ(1−γ)σ2
ε }

1−Γ

] 1
1−γ

− 1, if γ > 1
(13)

λB =


exp

{
θ 1

2
1

1−β σ2
ε

}
− 1, if γ = 1

exp{0.5γσ2
ε }

exp{0.5(1−θ)[γ+θ−θγ]σ2
ε }

[
1−Γ exp{−0.5γ(1−γ)σ2

ε }
1−Γ exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)σ2

ε }

] 1
1−γ

− 1, if γ > 1
(14)

λR =


exp

{
(1− θ) 1

2
1

1−β σ2
ε

}
− 1, if γ = 1

1
exp{0.5(1−θ)[γ+θ−θγ]σ2

ε }

[
1−Γ exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)σ2

ε }
1−Γ

] 1
1−γ

− 1, if γ > 1
(15)

In this case, σ2
t = Var0

[
∑t

i=0 εi
]
= (t + 1)σ2

ε , and the condition Γ exp{−0.5γ(1− γ)σ2
ε } <

6In some calculations, Obstfeld (1994) treats C0 as known. We consider the case where the expectation is
taken before the realization of the shock ε0.
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1 is sufficient for Assumption 3 to be valid.

Example 3 - ARIMA-BN Process: Define

Ct = α0(1 + α1)
t exp

{
−1

2
σ2

xBN
t

}
exp

{
xBN

t

}
(16)

where, to obtain xBN
t , we apply the Beveridge-Nelson decomposition: given a process,

Ct = f (t) + ut, where f (t) is deterministic and (1 − L)ut = ψ(L)εt, where ψ (L) =

∑∞
j=0 ψjLj.

Define ϕj = −∑∞
i=j+1 ψi. Then, xBN

t = ψ (1)∑t
j=0 ε j + ∑t

j=0 ϕjεt−j, with ε j|I0 ∼

N (0, σ2
ε ). We rewrite σ2

xBN
t

as σ̃2
xBN

t
= ρ0 + ρ1t, where7

ρ0 ≡ ψ (1)2 σ2
ε + 2ψ (1)

∞

∑
j=0

ϕt−jσ
2
ε +

∞

∑
j=0

ϕ2
t−jσ

2
ε and ρ1 ≡ ψ (1)2 σ2

ε (17)

λT =


exp

{
1
2

(
ρ0 +

β
1−β ρ1

)}
− 1, if γ = 1

exp {0.5γρ0}
[

1−Γ exp{−0.5γ(1−γ)ρ1}
1−Γ

] 1
1−γ , if γ > 1

(18)

λB =


exp

{
θ
2

(
ρ0 +

β
1−β ρ1

)}
− 1, if γ = 1

exp{0.5γρ0}
exp{0.5(1−θ)(θ+γ−γθ)ρ0}×

×
[

1−Γ exp{−0.5γ(1−γ)ρ1}
1−Γ exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)ρ1}

] 1
1−γ − 1, if γ > 1

(19)

λR =


exp

{
1−θ

2

(
ρ0 +

β
1−β ρ1

)}
− 1, if γ = 1

exp {0.5 (1− θ) (θ + γ− γθ) ρ0}×

×
[

1−Γ exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)ρ1}
1−Γ

] 1
1−γ − 1, if γ > 1

(20)

In this case, Γ exp{−0.5γ(1− γ)ρ1} < 1 is sufficient for Assumption 3 to be valid.

7Here we follow Issler et al. (2008). See calculations in Appendix B.3.
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5 Empirical Approach

In this section, we first develop the regressions to be estimated and present the challenge

in the identification of the span of θ. We then present the strategy we implement to over-

come this difficulty, allowing us to pin down the values to be used in our results.

5.1 Estimation

5.1.1 Transitory Shocks

Assuming transitory shocks under Assumption 1 and applying the logarithm to both

sides of equation (2), we have that:

log (Ct(θ)) = log (α0)− (1− θ)0.5σ2
ε + t log (1 + α1) + (1− θ)εt. (21)

We can reinterpret (21) as a time series regression of log per capita consumption ct with

coefficients π0 and π1, and error ut:

log(ct) = π0 + π1t + ut, (22)

Note that an identification problem arises when we try to estimate the parameters in

equation (21) since (α0, θ, σ2
ε ) are all simultaneously mapped to π0. Furthermore, σ2

ε is

scaled by (1− θ), which lies in the background of ut. Only parameter α1 is well-identified

and can be directly inverted from the estimates since α1 = exp (π1)− 1.

5.1.2 Permanent Shocks

Considering the case where permanent shocks hit consumption, we have that:

log (Ct(θ)) = log (α0)− (1− θ)0.5tσ2
ε + t log (1 + α1) + (1− θ)

t

∑
i=0

εi. (23)
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Taking first-differences,

∆ log (Ct(θ)) = log (1 + α1)− (1− θ)0.5σ2
ε + (1− θ)εt. (24)

We can re-write equation (24) as:

∆ log(ct) = π0 + ut. (25)

The same identification issue arises: (α1, θ, σ2
ε ) are behind π0 with σ2

ε scaled by (1− θ).

5.1.3 ARIMA-BN Process

Similarly, we have that:

∆ ln Ct (θ) = ln (1 + α1)− 0.5ρ1 + (1− θ)∆xBN
t (26)

Hence,

∆ ln Ct (θ) = ln (1 + α1)− 0.5ψ (1)2 σ2
ε + ψ (L) ε̃t (27)

where ε̃t ∼ N
(

0, (1− θ)2 σ2
ε

)
.

Here we use the fact that the per capita consumption series has a unit root and its

first-difference is stationary.8 Hence, we can switch to the ARMA(p, q) form:

Φ (L)∆ ln Ct (θ) = Φ (1)
[
ln (1 + α1)− 0.5ψ (1)2 σ2

ε

]
+ Θ (L) ε̃t (28)

At this step we estimate an ARMA(p, q) with an intercept for the first-difference of the

8The series is I(1) as identified by the ADF, PP, KPSS, and DF-GLS tests.
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observed log consumption series. After that, we have Φ̂(L) and Θ̂(L) and invert the left-

hand-side term to obtain:

∆ ln Ct (θ) =
[
ln (1 + α1)− 0.5ψ (1)2 σ2

ε

]
+ ψ (L) ε̃t (29)

where ψ̂(L) = Θ̂(L)/Φ̂(L) was obtained in the estimation process.

5.2 Identification

From our previous characterization of the identification problem, we observed that the

scaling of the structural parameters by θ means that the consumption series is partially

smoothed due to the ongoing stabilization policies. This means that if we knew θ (or σ2
ε )

in advance, it would be possible to recover all parameters in our consumption model by

running a simple regression like the ones shown previously. Since this is not possible, we

need to design an identification strategy.

Our strategy consists of exploring an observed variation in the volatility of the histor-

ical consumption series in order to identify θ. We use a combination of three pieces of

evidence: (i) the empirical fact documented in the literature that per capita consumption

in the US became less volatile after WWII; (ii) a visual analysis in which we plot the series

and observe a potentially unique break in the graph coinciding with the post-war period;

and (iii) a statistical result in which we conduct a test to find any breaks in the variance

series.

To apply this strategy in the data, we need to use a long series of consumption for the

US. Our choice is to build on the data by Barro and Ursúa (2010). This database contains

annual observations of US per capita consumption between 1834 and 2009. We complete

the sequence of consumption between 2010 and 2019, maintaining their methodology and

using the series available from the BEA’s NIPA. Finally, we set the data in real terms to

the year of 2012.9

9We use the series “Personal Consumption Expenditures” in Table 1.1.5, the price index series for the
same category in Table 1.1.4, and the series“Population (midperiod thousands)” in Table 2.1 (US Bureau of
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For the first factor, we follow Lucas (1987), Barro and Ursúa (2008), and Nakamura

et al. (2017), who discuss and document the fact that the end of the Second World War

marks a substantial decrease in the volatility of consumption over time, exhibiting a het-

eroskedastic pattern. The second piece of evidence with the visual analysis is depicted in

Figure 2. For the third factor, we apply the iterated cumulative sums of squares (ICSS)

algorithm developed by Inclan and Tiao (1994) to detect breaks in the variance of con-

sumption growth. We use a 5 percent significance level to test for multiple breaks.10 The

ICSS algorithm identifies only one break in the variance of consumption growth indicat-

ing a sudden decrease in the volatility of consumption growth after 1947. We then profit

from the approach of discontinuity-based identification as discussed in Nakamura and

Steinsson (2018) and assume that no other factors, aside from the changes in stabilization

policies, that affect the consumption series of the US change discontinuously at the end

of WWII.

In formal terms, suppose that we have two periods of time, 1 and 2, and that Var(εt) =

σ2
ε in both periods, but we observe a lower volatility in consumption in period 2. All else

constant, we can attribute this difference in the measured volatility to a different span of

stabilization power of policies in those periods. To see that, let θi and σ̂2
u,i be, respectively,

the stabilization power and the estimated variance of ut in period i ∈ {1, 2}. Thus, we

have that σ̂2
u,i = (1− θi)

2σ2
ε . If we knew θ1 in advance, we could pin down θ2 using the

following identifying equation:

θ̂2 = 1− (1− θ1)

√√√√ σ̂2
u,2

σ̂2
u,1

. (30)

The remaining parameter to delineate in the strategy is θ1. For that, a natural candidate

would be a period of incipient stabilization policies, i.e., one in which θ1 is close to zero.

In Figure 2, we show our identification strategy at work in the plot of the historical series

Economic Analysis, 2021a,b,c).
10We consider the critical value of 1.30 reported in Table 1 of Inclan and Tiao (1994) for a sample size of

200, which is the number closest to our sample. Considering the asymptotic value for the test (1.358) does
not change our results.
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of consumption. The top panel shows the series in its log level for the identification with

transitory shocks and the bottom panel shows the series’ first-difference to accommodate

the permanent shocks and ARIMA-BN process approaches as shown in equations (24)

and (29).

If we divide the series into two periods, pre- and post-war, there is a substantial

decrease in the measured standard error after 1947. Focusing on the series with first-

differences in the bottom panel, for the period between 1835 and 1946, we have that

σ̂u = 0.046, which then suffers a sharp decrease of more than 60 percent of its value,

to σ̂u = 0.018, after WWII until today. With such a discontinuous decrease in the volatil-

ity of the series, we can plug these measures into equation (30) and, assuming θ1 = 0.20,

for instance, we find that θ̂2 = 0.69. This indicates a share of 69 percent of smoothed

consumption in the observed series post-1947.

15



Figure 2: Time series of per capita consumption for the US between 1835 and 2019.

Year
1840 1860 1880 1900 1920 1940 1960 1980 2000

7.5

8

8.5

9

9.5

10

10.5

11

← 1947

σ̂u = 0.080

σ̂u = 0.050

θ̂2 = 0.50

log consumption
linear trend
band limit

(a) Time series of log consumption.

Year
1840 1860 1880 1900 1920 1940 1960 1980 2000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

σ̂u = 0.046

σ̂u = 0.018

← 1947

θ̂2 = 0.69

consumption growth
average growth
band limit

(b) Time series of consumption growth.

Notes: The figure shows the time series for per capita consumption for the US between 1835 and 2019 with
our augmented sample of the Barro and Ursúa (2010) data. There are two panels: the top one uses the series
in log levels and the second in growth. The vertical line marks the year 1947, at the end of WWII. We report
the standard errors for the two sub-periods generated by this line along with the average and band limits
equivalent to 2σu.

A critical point for our measurement of the decrease in consumption’s standard error

is the seminal argument by Romer (1986) about the spurious decrease in the unemploy-
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ment rate’s volatility after 1948, which was also emphasized for GNP in Balke and Gor-

don (1989) and revisited for GDP in the context of OECD economies by Barro and Ursúa

(2008). The first differing factor in our approach is that we use the series for consumption

collected by the BEA since 1929. On top of that, with our augmented sample of Barro and

Ursúa (2010) data, we add an extra 90 years to the length of the original sample.

A second relevant consideration is the fact that our methodology allows us enough

flexibility for a degree of discretion in the interpretation of the span during the incipient

stabilization period. In equation (30), the greater θ1, the smaller the impact of the volatility

ratio in the identification of the second period’s span. In that sense, the choice of θ1

can be made larger to reflect both a historically motivated share of riskless consumption

and to also take into account a certain degree of measurement error that undermined the

mapping of such stabilization to the collected data.11

6 Empirical Results

6.1 Estimation

We run regressions (22) and the versions of (25) for permanent shocks and ARIMA-BN

process – (24) and (29), respectively –, and obtain their estimated coefficients as well as

the error volatility of the two distinct periods, σ̂2
u,i. We compute the span of stabilization

power, θ̂2(θ1), for different levels in the grid θ1 ∈ {0, 0.1, 0.2, 0.3}, in order to allow dif-

ferent policy efficiencies in the initial period. With these two values at hand, we can then

directly compute σ̂2
ε = σ̂2

u,1/(1− θ1)
2.

For the remaining parameters, in the case of transitory shocks we have that α̂1 =

exp(π̂1)− 1. For the case of permanent shocks, α̂1 = exp
(
π̂0 + (1− θ̂2)0.5σ2

ε

)
− 1. Finally,

for the case of the ARIMA-BN process we have that α̂1 = exp
(
π̂0 + (1− θ̂2)0.5ψ̂(1)2σ2

ε

)
−

1. Table 1 shows the results of our estimations.

11Here we also develop another subtle point mentioned in Lucas’s original analysis. In Lucas (1987),
footnote 4, there is a mention of Romer (1986) in which the author acknowledges that his calculations do
not incorporate her findings and may rely on the 1930s experience.
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úa
(2

01
0)

da
ta

w
it

h
su

b-
pe

ri
od

s
di

vi
de

d
at

19
47

.
Th

e
se

ri
es

is
I(

1)
as

id
en

ti
fie

d
by

th
e

A
D

F,
PP

,K
PS

S,
an

d
D

F-
G

LS
te

st
s.

Th
e

fir
st

-d
iff

er
en

ce
of

th
e

se
ri

es
is

id
en

ti
fie

d,
by

bo
th

th
e

A
IC

an
d

BI
C

cr
it

er
ia

,a
s

an
A

R
M

A
(0

,0
)f

or
th

e
pr

e-
19

47
pe

ri
od

an
d

an
A

R
M

A
(1

,0
)f

or
th

e
su

bs
eq

ue
nt

ye
ar

s.
Th

e
im

pl
ie

d
pa

ra
m

et
er

s
ar

e
ob

ta
in

ed
us

in
g

th
e

fo
rm

ul
as

de
sc

ri
be

d
in

th
e

te
xt

an
d

eq
ua

ti
on

(3
0)

.

18



Our preferred shock structure is the one with the ARIMA-BN process, since it is the

one that most accurately models the data and allows for a more flexible structure without

relying on the i.i.d. assumption of either the level or the first-difference of the series. We

also focus the discussion on the results associated with our preferred choice of initial span,

θ1 = 0.20, since it allows, as mentioned previously, for a combination of some degree

of stabilization power and measurement error in the pre-1947 sample. The estimated

span is 0.4985 with transitory shocks, 0.7027 with permanent shocks, and 0.6814 with the

ARIMA-BN process.

These results show that the average post-war reach of stabilization policies is far from

trivial and more than tripled after WWII. The results naturally vary according to the

choice of θ1, but with moderate sensitivity: had we considered a total absence of stabiliza-

tion policies in the pre-war sample, i.e., θ1 = 0, we would have that the post-war smooth-

ing factor would be 61 percent for the ARIMA-BN process. Moreover, for all shocks, as

we increase the value of θ1, the implied increase in θ̂2 is incrementally smaller, further

contributing to the robustness of the range estimated.

We relax the 1947 cutoff by conducting robustness checks with different windows of

time. We find a structural break in the level of the series in 1931 and, given that, run

another set of regressions, breaking the first half of the series in 1913 and in 1930 in order

to allow for the break and to eliminate the highly unstable inter-war period. We find

results similar to the estimates shown in Table 1. All details can be found in Appendix C.

6.2 Welfare Costs of Economic Fluctuations

With the estimated values for θ̂2 and σ̂2
ε , we can now turn back to the calculation of our

decomposition for λT, λB, and λR shown in Theorem 1. We show all our results in Table

2. The numbers are obtained by plugging in the estimates of Table 1 into equations (10)

through (15). We also provide a measure that is more naturally comparable to the ones

shown in the literature with the absence of the span θ, which is represented by λlit placed

in the last column of the table. The derivation of this cost is straightforward and hence

we leave it to Appendix B.4.
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Table 2: Decomposition of the welfare cost of total economic fluctuations.

Transitory shocks

λT λB λR λlit

θ̂2 0.37 0.44 0.50 0.56 0.37 0.44 0.50 0.56 0.37 0.44 0.50 0.56 -

γ = 1 0.32 0.40 0.51 0.66 0.12 0.17 0.25 0.37 0.20 0.23 0.25 0.29 0.13
γ = 2.5 0.81 1.00 1.27 1.66 0.42 0.58 0.82 1.17 0.39 0.42 0.44 0.48 0.32
γ = 5 1.63 2.01 2.55 3.35 0.91 1.27 1.78 2.53 0.71 0.74 0.76 0.80 0.64
γ = 7.5 2.45 3.04 3.86 5.07 1.40 1.96 2.74 3.90 1.03 1.06 1.08 1.12 0.96

Permanent shocks

λT λB λR λlit

θ̂2 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 -

γ = 1 2.63 3.92 4.99 6.65 1.64 3.02 4.11 5.74 0.97 0.88 0.84 0.86 0.36
γ = 2.5 3.25 4.89 6.33 8.91 2.15 3.92 5.40 7.97 1.08 0.94 0.88 0.88 0.52
γ = 5 4.14 6.28 8.34 13.01 2.89 5.21 7.34 11.99 1.21 1.02 0.93 0.90 0.63
γ = 7.5 5.44 8.39 11.60 15.47 4.00 7.19 10.52 14.39 1.39 1.12 0.98 0.95 0.69

ARIMA-BN

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 5.15 6.40 8.16 10.79 3.13 4.13 5.58 7.77 1.96 2.18 2.45 2.81 0.75
γ = 2.5 6.75 8.49 11.06 15.08 5.13 6.73 9.11 12.86 1.54 1.65 1.79 1.96 0.94
γ = 5 8.16 10.63 14.65 22.16 6.71 9.09 12.96 20.26 1.36 1.41 1.49 1.58 1.03
γ = 7.5 9.64 13.37 20.92 51.68 8.25 11.88 19.28 49.52 1.29 1.33 1.38 1.44 1.06

Notes: The table displays the computed parameters for the decomposition of the welfare cost of
total economic fluctuations. The numbers are obtained using equations (10) through (20) with
the estimates shown in Table 1. All of the entries are in percentages of lifetime consumption. We
also report an extra welfare cost measure, λlit, described in Appendix B.4. We report numbers
for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid for
θ1 ∈ {0, 0.1, 0.2, 0.3}, and with a calibrated β = 0.96 for the permanent shocks and ARIMA-BN
process.

We focus on the usual level of relative risk aversion used in the literature, γ = 2.5, and

on the ARIMA-BN process structure. The total cost, λT, is 11 percent of lifetime consump-

tion with λB = 9.11, or 82 percent of it represented as the benefit of ongoing policies. This

leaves us with a residual of λR = 1.79 yet to be smoothed, almost double the value of λlit.

More importantly, beyond finding high level costs for λT, the approach is able to unveil

how much of the total welfare costs is left unaccounted for if one focuses only on the

residual measures. Fixing γ at 2.5, even if we assume a zero effect of stabilization policies
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in pre-1947 period, there would still be 5.13 percent of lifetime consumption accruing to

the benefit of ongoing policies. If we return to θ̂2 = 0.69 and let γ = 5, we have that the

total cost is 14.65 percent of lifetime consumption out of which 88 percent is already being

stabilized.

The results also allow us to explore a theoretical aspect and understand how the con-

cave utility interacts with our proposed decomposition and the parameter θ. If we fix a

given level of the measured span of policies, the marginal benefit of smoothing the resid-

ual fluctuations in proportion to the total welfare cost, i.e., λR/λT, is decreasing in the

relative degree of risk aversion. Risk-averse consumers tend to value relatively more the

benefit generated by the ongoing stabilization policies, going up as much as 92 percent of

the total welfare cost with the ARIMA-BN process when γ is at the highest level consid-

ered.

7 Conclusion

We revisited the long-standing issue of the welfare costs of business cycles, focusing on

unveiling the extent to which ongoing stabilization policies are smoothing observed con-

sumption. Our approach is rooted in the fact that all data we gather on consumption are

subject to the policy status quo. We provided a decomposition for total macroeconomic

fluctuations by disentangling them into the benefit of current policies and the residual to

be flattened.

We also conducted an empirical analysis with the goal of identifying our key decom-

position parameter, the span of stabilization power, using historical consumption data.

Our estimate is approximately 69 percent and the welfare costs of total economic fluctua-

tions are around 11 percent of permanent consumption, with 9 percent of it already being

smoothed by ongoing policies and 1.8 percent left as a residual.

Our paper abstracts from key aspects relevant to our question, such as different types

of consumption goods and agent heterogeneity. We also take a simplified view of the

role of stabilization policies and technological changes in the post-war US economy. We
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understand that they are critical considerations and leave them for future research.
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Appendix

A Proofs

Below we outline the proofs for Lemmas 1, 2, 3, Propositions 1, 2, 3 and for Theorem 1.

Lemma 1. Under Assumption 1 and CRRA utility (5),

∞

∑
t=0

βtu (C̄t) =


ln α0
1−β + β ln(1+α1)

(1−β)2 , if γ = 1

α̃0 ∑∞
t=0 Γt, if γ > 1

(31)

where α̃0 ≡ (1− γ)−1α
1−γ
0 .

Proof of Lemma 1. Consider a γ = 1. Then,

∞

∑
t=0

βt ln (C̄t) =
∞

∑
t=0

βt (ln α0 + t ln (1 + α1)) =
ln α0

1− β
+

β ln (1 + α1)

(1− β)2 . (32)

When γ > 1,

∞

∑
t=0

βt(1− γ)−1 (C̄t)
1−γ

= (1− γ)−1α
1−γ
0

∞

∑
t=0

[
β (1 + α1)

1−γ
]t

= α̃0

∞

∑
t=0

Γt. (33)

�

Lemma 2. Consider an arbitrary constant k > 0. Under Assumption 1 and CRRA utility (5),

E0

[
∞

∑
t=0

βtu
(
(1 + k)C̃t

)]
=


ln(1+k)

1−β + ln α0
1−β + β ln(1+α1)

(1−β)2 − 1
2 ∑∞

t=0 βtσ2
t , if γ = 1

α̃0(1 + k)1−γ ∑∞
t=0 Γt exp

{
−0.5γ (1− γ) σ2

t
}

, if γ > 1
(34)

where α̃0 ≡ (1− γ)−1α
1−γ
0 .

Proof of Lemma 2. For the case where γ = 1,
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E0

[
∞

∑
t=0

βt ln
[
(1 + k)C̃t

]]
= E0

[
∞

∑
t=0

βt
(

ln(1 + k) + ln α0 + t ln (1 + α1) + xt −
1
2

σ2
t

)]

=
∞

∑
t=0

βt
(

ln(1 + k) + ln α0 + t ln (1 + α1) + E0 [xt]−
1
2

σ2
t

)
=

ln(1 + k)
1− β

+
ln α0

1− β
+

β ln (1 + α1)

(1− β)2 − 1
2

∞

∑
t=0

βtσ2
t ,

using the fact that E0 [xt] = 0.

For the case where γ > 1,

E0

[
∞

∑
t=0

βt
[
(1 + k)C̃t

]1−γ

1− γ

]
= (1− γ)−1E0

[
∞

∑
t=0

βt
[
(1 + k)α0 (1 + α1)

t exp
{

xt − 0.5σ2
t

}]1−γ
]

= α̃0(1 + k)1−γ
∞

∑
t=0

[
β (1 + α1)

1−γ
]t
× . . .

. . . exp
{
−0.5 (1− γ) σ2

t

}
E0 [exp {(1− γ) xt}] .

Note that

E0 [exp {(1− γ) xt}] = exp {E0 [(1− γ) xt] + 0.5Var0 [(1− γ) xt]} = exp
{

0.5 (1− γ)2 σ2
t

}
.

Thus,

E0

[
∞

∑
t=0

βt
[
(1 + k)C̃t

]1−γ

1− γ

]
= α̃0(1 + k)1−γ

∞

∑
t=0

Γt exp
{
−0.5 (1− γ) σ2

t

}
exp

{
0.5 (1− γ)2 σ2

t

}
= α̃0(1 + k)1−γ

∞

∑
t=0

Γt exp
{
−0.5γ (1− γ) σ2

t

}
.

�

Lemma 3. Consider an arbitrary constant ` > 0. Under Assumption 1 and CRRA utility (5),

∞

∑
t=0

βtu ((1 + `)Ct(θ)) =
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
ln(1+`)

1−β + ln α0
1−β + β ln(1+α1)

(1−β)2 − 1
2 (1− θ)∑∞

t=0 βtσ2
t , if γ = 1

α̃0(1 + `)1−γ ∑∞
t=0 Γt exp

{
−0.5 (1− γ) (1− θ) (θ + γ− γθ) σ2

t
}

, if γ > 1
(35)

where α̃0 ≡ (1− γ)−1α
1−γ
0 .

Proof of Lemma 3. Again, when γ = 1,

E0

[
∞

∑
t=0

βt ln [(1 + `)Ct(θ)]

]
= E0

[
∞

∑
t=0

βt ln
[
(1 + `)α0 (1 + α1)

t exp
{
(1− θ)

[
xt − 0.5σ2

t

]}]]

=
∞

∑
t=0

βt
(

ln(1 + `) + ln α0 + t ln (1 + α1) + (1− θ)
[

E0 [xt]− 0.5σ2
t

])
=

ln(1 + `)

1− β
+

ln α0

1− β
+

β ln (1 + α1)

(1− β)2 − 1− θ

2

∞

∑
t=0

βtσ2
t ,

given that E0 [xt] = 0. With γ > 1,

E0

[
∞

∑
t=0

βt [(1 + `)Ct (θ)]
1−γ

1− γ

]
= (1− γ)−1E0

[
∞

∑
t=0

βt [(1 + `)Ct (θ)]
1−γ

]

= (1− γ)−1E0

[
∞

∑
t=0

βt
[
(1 + `)α0 (1 + α1)

t + . . .

. . . exp
{
(1− θ)

[
xt − 0.5σ2

t

]}]1−γ
]

= α̃0(1 + `)1−γ
∞

∑
t=0

[
β (1 + α1)

1−γ
]t
× . . .

. . . exp
{
−0.5 (1− θ) (1− γ) σ2

t

}
E0 [exp {(1− θ) (1− γ) xt}] .

Note that

E0 [exp {(1− θ) (1− γ) xt}] = exp {E0 [(1− θ) (1− γ) xt] + 0.5Var0 [(1− θ) (1− γ) xt]}
= exp

{
0.5 (1− θ)2 (1− γ)2 σ2

t

}
.
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And,

exp
{
−0.5 (1− θ) (1− γ) σ2

t

}
E0 [exp {(1− θ) (1− γ) xt}]

= exp
{
−0.5 (1− θ) (1− γ) σ2

t

}
exp

{
0.5 (1− θ)2 (1− γ)2 σ2

t

}
= exp

{
−0.5 (1− θ) (1− γ) (γ + θ − γθ) σ2

t

}
.

Thus,

E0

[
∞

∑
t=0

βt [(1 + `)Ct (θ)]
1−γ

1− γ

]
= α̃0(1+ `)1−γ

∞

∑
t=0

Γt exp
{
−0.5 (1− θ) (1− γ) (γ + θ − γθ) σ2

t

}

�

Proof of Proposition 1. Replace k with λB in Lemma 2, use ` = 0 in Lemma 3, and then
solve equation (3) for λB. The assumptions guarantee that λB < ∞. �

Proof of Proposition 2. We use ` = λR in Lemma 3 and the results in Lemma 1 for solving
equation (4) for λR. The assumptions guarantee that λR < ∞. �

Proof of Proposition 3. We use k = λT in Lemma 2 and Lemma 1 in equation (1). Then, we
solve it for λT. The assumptions guarantee that λT < ∞. �

Proof of Theorem 1. For γ = 1, we have

(
1 + λB

) (
1 + λR

)
= exp

{
θ

1− β

2

∞

∑
t=0

βtσ2
t

}
exp

{
(1− θ)

1− β

2

∞

∑
t=0

βtσ2
t

}

= exp

{
1− β

2

∞

∑
t=0

βtσ2
t

}
= 1 + λT

Now, for γ > 1, we have
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(
1 + λB

)1−γ (
1 + λR

)1−γ
=

∑∞
t=0 Γte−0.5(1−γ)(1−θ)(θ+γ−γθ)σ2

t

∑∞
t=0 Γte−0.5γ(1−γ)σ2

t

∑∞
t=0 Γt

∑∞
t=0 Γte−0.5(1−θ)(1−γ)(γ+θ−γθ)σ2

t

⇐⇒
(

1 + λB
) (

1 + λR
)

=

[
∑∞

t=0 Γt

∑∞
t=0 Γte−0.5γ(1−γ)σ2

t

] 1
1−γ

= 1 + λT

�

B Calculations for the Applications

B.1 Example 1 (Lucas, 1987):

For γ = 1:

λT = exp

{
1− β

2

∞

∑
t=0

βtσ2
t

}
− 1 = exp

{
1
2

σ2
ε

}
− 1 (36)

λB = exp

{
θ

1− β

2

∞

∑
t=0

βtσ2
t

}
− 1 = exp

{
θ

1− β

2
σ2

ε
1

1− β

}
− 1 = exp

{
θ

2
σ2

ε

}
− 1 (37)

λR = exp
{
(1− θ)

1− β

2
σ2

ε
1

1− β

}
− 1 = exp

{
1− θ

2
σ2

ε

}
− 1 (38)

For γ > 1:

λT =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp
{

0.5γ (γ− 1) σ2
t
}


1
1−γ

− 1

=

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {0.5γ (γ− 1) σ2
ε }∑∞

t=0

[
β (1 + α1)

1−γ
]t


1

1−γ

− 1

=

[
1

exp {0.5γ (γ− 1) σ2
ε }

] 1
1−γ

− 1 = exp
{

1
2

γσ2
ε

}
− 1 (39)
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λB =

exp
{
−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2}∑∞

t=0

[
β (1 + α1)

1−γ
]t

exp {0.5γ (γ− 1) σ2
ε }∑∞

t=0

[
β (1 + α1)

1−γ
]t


1

1−γ

− 1

=

[
exp

{
−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2

ε

}
exp {−0.5γ (1− γ) σ2

ε }

] 1
1−γ

− 1

= exp
{

1
2
[γ− (1− θ) (γ + θ − θγ)] σ2

ε

}
(40)

λR =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2
ε }∑∞

t=0

[
β (1 + α1)

1−γ
]t


1

1−γ

− 1

=

[
1

exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2
ε }

] 1
1−γ

− 1

= exp
{

1
2
(1− θ) (γ + θ − θγ) σ2

ε

}
(41)

B.2 Example 2 (Obstfeld, 1994)

For γ = 1:

λT = exp

{
1− β

2

∞

∑
t=0

βtσ2
t

}
− 1 = exp

{
1− β

2

∞

∑
t=0

βt
(

tσ2
ε + σ2

ε

)}
− 1

= exp

{
1− β

2

[
β

(1− β)2 +
1

1− β

]
σ2

ε

}
− 1 = exp

{
1
2

1
1− β

σ2
ε

}
− 1 (42)

λB = exp

{
θ

1− β

2

∞

∑
t=0

βtσ2
t

}
− 1 = exp

{
θ

1− β

2

∞

∑
t=0

βt
(

tσ2
ε + σ2

ε

)}
− 1

= exp
{

θ

2

[
β + 1− β

1− β

]
σ2

ε

}
− 1 = exp

{
θ

2
1

1− β
σ2

ε

}
− 1 (43)
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λR = exp

{
(1− θ)

1− β

2

∞

∑
t=0

βtσ2
t

}
− 1 = exp

{
(1− θ)

1− β

2

∞

∑
t=0

βt
(

tσ2
ε + σ2

ε

)}
− 1

= exp
{

1− θ

2

[
β + 1− β

1− β

]
σ2

ε

}
− 1 = exp

{
1− θ

2
1

1− β
σ2

ε

}
− 1 (44)

For γ > 1:

λT =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {0.5γ (γ− 1) (tσ2
ε + σ2

ε )}


1

1−γ

− 1

=

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {0.5γ (γ− 1) σ2
ε }∑∞

t=0

[
β (1 + α1)

1−γ exp {0.5γ (γ− 1) σ2
ε }
]t


1

1−γ

− 1

=

[
1

1− β (1 + α1)
1−γ

1− β (1 + α1)
1−γ exp

{
0.5γ (γ− 1) σ2

ε

}
exp {0.5γ (γ− 1) σ2

ε }

] 1
1−γ

− 1

= exp
{

0.5γσ2
ε

} [1− β (1 + α1)
1−γ exp

{
0.5γ (γ− 1) σ2

ε

}
1− β (1 + α1)

1−γ

] 1
1−γ

− 1 (45)

λB =

=

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp
{
−0.5 (1− θ) (1− γ) [γ + θ − θγ]

(
tσ2

ε + σ2
ε

)}
∑∞

t=0

[
β (1 + α1)

1−γ
]t

exp {0.5γ (γ− 1) (tσ2
ε + σ2

ε )}


1

1−γ

− 1

=

exp
{
−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2

ε

}
exp {−0.5γ (1− γ) σ2

ε }

1
1−β(1+α1)

1−γ exp{−0.5(1−θ)(1−γ)[γ+θ−θγ]σ2
ε }

1
1−β(1+α1)

1−γ exp{0.5γ(γ−1)σ2
ε }


1

1−γ

− 1

=
exp

{
0.5γσ2}

exp {0.5 (1− θ) [γ + θ − θγ] σ2}

×
[

1− β (1 + α1)
1−γ exp

{
0.5γ (γ− 1) σ2

ε

}
1− β (1 + α1)

1−γ exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2
ε }

] 1
1−γ

− 1 (46)
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λR =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] (tσ2
ε + σ2

ε )}


1

1−γ

− 1

=

[
1

exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2
ε }

] 1
1−γ

×

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2
ε }
]t


1

1−γ

− 1

=
1

exp {−0.5 (1− θ) [γ + θ − θγ] σ2
ε }

×
[

1− β (1 + α1)
1−γ exp

{
−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2

ε

}
1− β (1 + α1)

1−γ

] 1
1−γ

− 1 (47)

B.3 Example 3 - ARIMA-BN Process (Reis, 2009):

From the Beveridge-Nelson decomposition,

xBN
t = ψ (1)

t

∑
j=0

ε j +
t

∑
j=0

ϕjεt−j

= [ψ (1) + ϕt] ε0 + [ψ (1) + ϕt−1] ε1 + · · ·+ [ψ (1) + ϕ1] εt−1 + [ψ (1) + ϕ0] εt

=
t

∑
j=0

[
ψ (1) + ϕt−j

]
ε j (48)

Since ε0 is revealed at the end of t = 0, E0
[
xBN

t
]
= 0. Hence,

σ2
xBN

t
≡ E

[(
xBN

t −E0

[
xBN

t

])2
]
= E

[
(xBN

t )2
]
= E

[
t

∑
j=0

[
ψ (1) + ϕt−j

]2
ε2

j

]

=
t

∑
j=0

[
ψ (1)2 + 2ψ (1) ϕt−j + ϕ2

t−j

]
σ2

ε

= (t + 1)ψ (1)2 σ2
ε + 2ψ (1)

t

∑
j=0

ϕt−jσ
2
ε +

t

∑
j=0

ϕ2
t−jσ

2
ε (49)
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which can be rewritten into (17).

λB = exp

{
θ

1− β

2

∞

∑
t=0

βt (ρ0 + ρ1t)

}
− 1 = exp

{
θ

2

(
ρ0 +

β

1− β
ρ1

)}
− 1 (50)

λR = exp

{
(1− θ)

1− β

2

∞

∑
t=0

βt (ρ0 + ρ1t)

}
− 1 = exp

{
1− θ

2

(
ρ0 +

β

1− β
ρ1

)}
− 1 (51)

For γ > 1,

λT =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5γ (1− γ) (ρ0 + ρ1t)}


1

1−γ

− 1

=

[
1

exp {−0.5γ (1− γ) ρ0}

] 1
1−γ

×

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ exp {−0.5γ (1− γ) ρ1}
]t


1

1−γ

= exp {0.5γρ0}
[

1− β (1 + α1)
1−γ exp {−0.5γ (1− γ) ρ1}

1− β (1 + α1)
1−γ

] 1
1−γ

(52)
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λB =

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) (ρ0 + ρ1t)}

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5γ (1− γ) (ρ0 + ρ1t)}


1

1−γ

− 1

=

[
exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ0}

exp {−0.5γ (1− γ) ρ0}

] 1
1−γ

×

∑∞
t=0

[
β (1 + α1)

1−γ exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ1}
]t

∑∞
t=0

[
β (1 + α1)

1−γ exp {−0.5γ (1− γ) ρ1}
]t


1

1−γ

− 1

=
exp {0.5γρ0}

exp {0.5 (1− θ) (θ + γ− γθ) ρ0}

×
[

1− β (1 + α1)
1−γ exp {−0.5γ (1− γ) ρ1}

1− β (1 + α1)
1−γ exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ1}

] 1
1−γ

− 1 (53)

λR =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) (ρ0 + ρ1t)}


1

1−γ

− 1

=

[
1

exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ0}

] 1
1−γ

×

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ1}
]t


1

1−γ

− 1

= exp {0.5 (1− θ) (θ + γ− γθ) ρ0}

×
[

1− β (1 + α1)
1−γ exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ1}

1− β (1 + α1)
1−γ

] 1
1−γ

− 1

B.4 The Literature-based Cost λlit

Here we characterize in our three applications the welfare cost of business cycles in the

absence of observed consumption as proposed in our decomposition. We simply substi-

tute σ2
ε by σ2

u in our previous calculations and use the formula for λT for each type of
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shock. Recall that, in our methodology, σ2
u = (1− θ2)

2σ2
ε .

Example 1 (Lucas, 1987) :

λlit =


exp

(
σ2

u
2

)
− 1, if γ = 1

exp
(

γσ2
u

2

)
− 1, if γ > 1

(54)

Example 2 (Obstfeld, 1994) :

λlit =


exp

(
σ2

u
2(1− β)

)
− 1, if γ = 1

exp
{

0.5γσ2
u
} [1− Γ exp−0.5γ(1− γ)σ2

u
1− Γ

] 1
1−γ

− 1, if γ > 1
(55)

Example 3 (Reis, 2009) :

In this case, the substitution is in equation (17).

λlit =


exp

{
1
2

(
ρ0 +

β

1− β
ρ1

)}
− 1, if γ = 1

exp {0.5γρ0}
[

1− Γ exp {−0.5γ (1− γ) ρ1}
1− Γ

] 1
1− γ , if γ > 1

(56)

C Robustness Exercises

C.1 Full Sample

In Table 3 we present our estimations of the welfare cost using the full sample as in the

main text. We also compute the λ’s for different values of β in the case of permanent

shocks.
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Table 3: Welfare cost - Full sample

Transitory shocks

λT λB λR λlit

θ̂2 0.37 0.44 0.50 0.56 0.37 0.44 0.50 0.56 0.37 0.44 0.50 0.56 -

γ = 1 0.32 0.40 0.51 0.66 0.12 0.17 0.25 0.37 0.20 0.23 0.25 0.29 0.13
γ = 2.5 0.81 1.00 1.27 1.66 0.42 0.58 0.82 1.17 0.39 0.42 0.44 0.48 0.32
γ = 5 1.63 2.01 2.55 3.35 0.91 1.27 1.78 2.53 0.71 0.74 0.76 0.80 0.64
γ = 7.5 2.45 3.04 3.86 5.07 1.40 1.96 2.74 3.90 1.03 1.06 1.08 1.12 0.96

Permanent shocks

β = 0.95

λT λB λR λlit

θ̂2 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 -

γ = 1 2.10 2.60 3.30 4.33 1.31 1.72 2.31 3.18 0.77 0.86 0.97 1.11 0.29
γ = 2.5 3.42 4.26 5.46 7.27 2.63 3.41 4.53 6.23 0.77 0.82 0.89 0.98 0.46
γ = 5 4.58 5.79 7.60 10.51 3.77 4.94 6.69 9.51 0.78 0.81 0.86 0.91 0.58
γ = 7.5 5.44 7.03 9.56 14.12 4.61 6.16 8.63 13.11 0.80 0.82 0.86 0.90 0.65

β = 0.96

λT λB λR λlit

θ̂2 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 -

γ = 1 2.63 3.92 4.99 6.65 1.64 3.02 4.11 5.74 0.97 0.88 0.84 0.86 0.36
γ = 2.5 3.25 4.89 6.33 8.91 2.15 3.92 5.40 7.97 1.08 0.94 0.88 0.88 0.52
γ = 5 4.14 6.28 8.34 13.01 2.89 5.21 7.34 11.99 1.21 1.02 0.93 0.90 0.63
γ = 7.5 5.44 8.39 11.60 15.47 4.00 7.19 10.52 14.39 1.39 1.12 0.98 0.95 0.69

β = 0.97

λT λB λR λlit

θ̂2 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 -

γ = 1 3.52 4.36 5.55 7.31 2.20 2.88 3.87 5.36 1.29 1.44 1.62 1.85 0.48
γ = 2.5 4.60 5.74 7.40 9.92 3.54 4.60 6.14 8.51 1.02 1.09 1.18 1.30 0.61
γ = 5 5.48 6.97 9.23 12.96 4.52 5.96 8.14 11.76 0.92 0.96 1.01 1.07 0.69
γ = 7.5 6.23 8.13 11.21 17.13 5.29 7.14 10.16 15.97 0.89 0.92 0.96 1.00 0.73

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total eco-
nomic fluctuations expanding the one in the main text for different β’s. The numbers are obtained using
equations (10) through (15) with the estimates shown in Table 1. All of the entries are in percentages of
lifetime consumption. We also report an extra welfare cost measure, λlit, described in Appendix B.4. We
report numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid
for θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the permanent shocks.
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Table 4: Welfare cost - Full sample - ARIMA-BN

β = 0.95

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 4.07 5.05 6.43 8.48 2.48 3.27 4.40 6.12 1.55 1.72 1.94 2.22 0.60
γ = 2.5 5.91 7.42 9.63 13.05 4.49 5.88 7.92 11.13 1.36 1.46 1.58 1.73 0.83
γ = 5 7.50 9.72 13.29 19.77 6.16 8.30 11.74 18.03 1.26 1.32 1.38 1.47 0.96
γ = 7.5 8.99 12.35 18.89 40.20 7.68 10.95 17.35 38.31 1.22 1.26 1.31 1.37 1.01

β = 0.96

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 5.15 6.40 8.16 10.79 3.13 4.13 5.58 7.77 1.96 2.18 2.45 2.81 0.75
γ = 2.5 6.75 8.49 11.06 15.08 5.13 6.73 9.11 12.86 1.54 1.65 1.79 1.96 0.94
γ = 5 8.16 10.63 14.65 22.16 6.71 9.09 12.96 20.26 1.36 1.41 1.49 1.58 1.03
γ = 7.5 9.64 13.37 20.92 51.68 8.25 11.88 19.28 49.52 1.29 1.33 1.38 1.44 1.06

β = 0.97

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 6.98 8.69 11.12 14.76 4.23 5.59 7.56 10.57 2.64 2.93 3.31 3.79 1.01
γ = 2.5 7.84 9.91 12.95 17.80 5.96 7.86 10.68 15.19 1.78 1.90 2.06 2.26 1.08
γ = 5 8.93 11.71 16.29 25.19 7.36 10.03 14.46 23.09 1.46 1.53 1.61 1.71 1.11
γ = 7.5 10.38 14.56 23.47 85.20 8.90 12.97 21.70 82.42 1.36 1.40 1.45 1.52 1.12

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total economic
fluctuations expanding the one in the main text for different β’s. The numbers are obtained using equations (10)
through (20) with the estimates shown in Table 1. All of the entries are in percentages of lifetime consumption.
We also report an extra welfare cost measure, λlit, described in Appendix B.4. We report numbers for the
relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid for θ1 ∈ {0, 0.1, 0.2, 0.3}, and
with β ∈ {0.95, 0.96, 0.97} for the ARIMA-BN process.

C.2 Structural Break

One may be concerned with the presence of structural breaks in a long time series. We

apply the methodology developed in Bai and Perron (1998, 2003) to test structural breaks

in our sample. For the transitory shock version we test a structural break in the log-

consumption and we find a break in 1931 (scaled F-statistic is 1221.88 with a critical value

of 11.47). We also test a structural break in the first-difference of log-consumption for our

example with permanent shocks. We obtain a scaled F-statistic of 9.31 (with critical value

of 8.58) indicating a break in 1934.12

12In our tests, we allow for at most 5 breaks in the time series. The tests indicate only one break in the
first-difference of log-consumption (1934) and indicate 3 breaks in the log-consumption (1879, 1931, and
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We use the break to create sub-samples for our identification strategy. The first sub-

sample considers the years from the beginning of the sample until the year of the struc-

tural break, and a second sub-sample, as in the main text, considers the years after WWII.

To keep the sub-samples the same size for our estimations with transitory or permanent

shocks, we set the first sub-sample for the years between 1835 and 1930. The results of

the estimated parameters along with the implied θ are presented in Table 5. If we com-

pare those results with the results in Table 1 in the main text, we note that the estimations

imply only a marginal change in the implied parameters with all three shock structures.

Table 6 presents the welfare cost using the implied parameters in Table 5.

1993).
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Table 6: Structural break - Welfare cost

Transitory shocks

λT λB λR λlit

θ̂2 0.32 0.39 0.46 0.53 0.32 0.39 0.46 0.53 0.32 0.39 0.46 0.53 -

γ = 1 0.28 0.34 0.43 0.56 0.09 0.13 0.20 0.30 0.19 0.21 0.23 0.27 0.13
γ = 2.5 0.69 0.85 1.08 1.42 0.31 0.45 0.65 0.95 0.38 0.40 0.43 0.46 0.32
γ = 5 1.39 1.72 2.18 2.85 0.69 0.99 1.42 2.06 0.70 0.72 0.74 0.78 0.64
γ = 7.5 2.09 2.58 3.28 4.31 1.06 1.53 2.20 3.18 1.02 1.04 1.06 1.10 0.96

Permanent shocks

β = 0.95

λT λB λR λlit

θ̂2 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 -

γ = 1 1.96 2.43 3.08 4.04 1.20 1.58 2.12 2.94 0.75 0.83 0.94 1.07 0.29
γ = 2.5 3.19 3.97 5.09 6.76 2.42 3.14 4.18 5.75 0.75 0.80 0.87 0.96 0.46
γ = 5 4.25 5.37 7.03 9.67 3.46 4.53 6.13 8.69 0.77 0.80 0.84 0.90 0.58
γ = 7.5 4.91 6.32 8.51 12.36 4.09 5.46 7.61 11.38 0.79 0.81 0.84 0.88 0.65

β = 0.96

λT λB λR λlit

θ̂2 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 -

γ = 1 2.46 3.66 4.63 6.09 1.51 2.78 3.77 5.20 0.94 0.86 0.83 0.85 0.36
γ = 2.5 3.04 4.56 5.86 8.09 1.98 3.61 4.95 7.16 1.04 0.92 0.87 0.87 0.52
γ = 5 3.86 5.85 7.70 11.59 2.66 4.81 6.73 10.60 1.17 0.99 0.91 0.90 0.63
γ = 7.5 4.98 7.63 10.40 13.46 3.60 6.48 9.34 12.41 1.33 1.08 0.96 0.93 0.69

β = 0.97

λT λB λR λlit

θ̂2 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 -

γ = 1 3.29 4.08 5.19 6.83 2.01 2.65 3.56 4.95 1.25 1.39 1.57 1.79 0.48
γ = 2.5 4.29 5.35 6.88 9.21 3.25 4.24 5.66 7.84 1.00 1.07 1.16 1.27 0.61
γ = 5 5.08 6.45 8.51 11.87 4.14 5.46 7.45 10.71 0.90 0.94 0.99 1.05 0.69
γ = 7.5 5.61 7.27 9.92 14.79 4.69 6.30 8.90 13.67 0.88 0.91 0.94 0.99 0.73

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total eco-
nomic fluctuations using a robustness sample that avoids the structural break in 1931. The numbers are
obtained using equations (10) through (15) with the estimates shown in Table 5. All of the entries are in
percentages of lifetime consumption. We also report an extra welfare cost measure, λlit, described in Ap-
pendix B.4. We report numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied
θ̂2 along the grid for θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the permanent shocks.
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Table 7: Structural break - Welfare cost - ARIMA-BN

β = 0.95

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 3.80 4.71 6.00 7.91 2.27 3.00 4.05 5.64 1.50 1.67 1.88 2.15 0.60
γ = 2.5 5.50 6.90 8.94 12.08 4.12 5.40 7.28 10.21 1.33 1.43 1.54 1.69 0.83
γ = 5 6.92 8.94 12.13 17.79 5.60 7.54 10.62 16.11 1.25 1.30 1.36 1.45 0.96
γ = 7.5 8.19 11.12 16.56 31.28 6.90 9.75 15.07 29.52 1.21 1.25 1.30 1.35 1.01

β = 0.96

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 4.81 5.97 7.62 10.06 2.86 3.79 5.13 7.16 1.89 2.10 2.37 2.71 0.75
γ = 2.5 6.28 7.89 10.25 13.93 4.70 6.18 8.36 11.79 1.51 1.62 1.75 1.92 0.94
γ = 5 7.52 9.76 13.33 19.83 6.10 8.25 11.69 18.00 1.34 1.40 1.47 1.56 1.03
γ = 7.5 8.76 11.99 18.17 37.05 7.39 10.53 16.58 35.12 1.28 1.31 1.36 1.43 1.06

β = 0.97

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 6.51 8.10 10.36 13.75 3.87 5.12 6.95 9.73 2.55 2.84 3.20 3.66 1.01
γ = 2.5 7.29 9.19 11.99 16.41 5.46 7.20 9.78 13.90 1.74 1.86 2.01 2.21 1.08
γ = 5 8.22 10.73 14.78 22.39 6.68 9.08 12.99 20.37 1.44 1.51 1.58 1.68 1.11
γ = 7.5 9.41 13.00 20.15 46.47 7.96 11.45 18.44 44.30 1.35 1.39 1.44 1.50 1.12

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total economic
fluctuations using a robustness sample that avoids the structural break in 1931. The numbers are obtained
using equations (10) through (20) with the estimates shown in Table 5. All of the entries are in percentages
of lifetime consumption. We also report an extra welfare cost measure, λlit, described in Appendix B.4. We
report numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid for
θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the ARIMA-BN process.

C.3 Removing the Interwar Period

As the previous exercise used the disjoint periods (1835-1930 and 1947-2019), we run an

additional experiment where we use the 1931 break in the time series as a reference point

to design two new intervals. In the previous exercise, we have removed 15 periods -

years 1931 to 1945 - from the full sample. Those periods were exclusively defined after

the break. For this case, we remove a similar interval for the period before the 1931 break.

We construct two sub-samples by excluding the interwar period from our data, which

results in a first period with years 1835 to 1913 and a second period from 1947 to 2019, the
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last one as in our main analysis.13

Besides the structural break in the consumption series during the interwar period,

many other relevant macroeconomic events happened during this window of time. For

example, we have the 1929 crisis and the Great Depression that followed. In general,

this period was marked by highly unstable macroeconomic outcomes, and hence, it is

worth subtracting it from the sample to better measure pre-war volatility. Once again,

the results are similar to our original analysis. Table 8 presents the estimated and implied

parameters and Table 9 presents the computed λ’s using the estimations in Table 8. Once

again, there is no substantial change in the results.

13We also run an experiment by removing exactly 15 periods before and after the break, that is, using
subssamples from 1835-1915 and 1947-2019. As expected, the results are so similar to the results in this
subsection that we only report the exercise where we remove the interwar period.
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Table 9: Removing the interwar period - Welfare cost

Transitory shocks

λT λB λR λlit

θ̂2 0.33 0.40 0.46 0.53 0.33 0.40 0.46 0.53 0.33 0.40 0.46 0.53 -

γ = 1 0.28 0.35 0.44 0.58 0.09 0.14 0.21 0.31 0.19 0.21 0.24 0.27 0.13
γ = 2.5 0.71 0.88 1.11 1.46 0.33 0.47 0.68 0.99 0.38 0.40 0.43 0.46 0.32
γ = 5 1.43 1.76 2.24 2.93 0.72 1.04 1.48 2.14 0.70 0.72 0.75 0.78 0.64
γ = 7.5 2.15 2.66 3.38 4.43 1.12 1.60 2.29 3.30 1.02 1.04 1.07 1.10 0.96

Permanent shocks

β = 0.95

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 1.92 2.38 3.02 3.96 1.17 1.54 2.07 2.87 0.74 0.82 0.93 1.06 0.29
γ = 2.5 3.13 3.89 4.98 6.62 2.36 3.07 4.08 5.62 0.75 0.80 0.86 0.95 0.46
γ = 5 4.16 5.25 6.87 9.44 3.37 4.42 5.98 8.47 0.77 0.80 0.84 0.89 0.58
γ = 7.5 4.91 6.32 8.51 12.36 4.09 5.46 7.61 11.38 0.79 0.81 0.84 0.88 0.65

β = 0.96

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 2.41 3.58 4.53 5.94 1.47 2.71 3.67 5.05 0.93 0.85 0.83 0.85 0.36
γ = 2.5 2.98 4.47 5.73 7.87 1.93 3.52 4.83 6.94 1.03 0.91 0.86 0.87 0.52
γ = 5 3.79 5.73 7.52 11.22 2.60 4.69 6.55 10.24 1.16 0.99 0.91 0.89 0.63
γ = 7.5 4.98 7.63 10.40 13.46 3.60 6.48 9.34 12.41 1.33 1.08 0.96 0.93 0.69

β = 0.97

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 3.22 3.99 5.08 6.69 1.96 2.58 3.48 4.83 1.24 1.38 1.55 1.77 0.48
γ = 2.5 4.20 5.24 6.74 9.01 3.17 4.13 5.52 7.65 0.99 1.06 1.15 1.26 0.61
γ = 5 4.97 6.31 8.31 11.58 4.04 5.32 7.25 10.42 0.90 0.94 0.99 1.05 0.69
γ = 7.5 5.61 7.27 9.92 14.79 4.69 6.30 8.90 13.67 0.88 0.91 0.94 0.99 0.73

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total eco-
nomic fluctuations using a robustness sample that excludes the interwar period. The numbers are obtained
using equations (10) through (15) with the estimates shown in Table 8. All measures are in percentages of
lifetime consumption. We also report an extra welfare cost measure, λlit, described in Appendix B.4. We
report numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid
for θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the permanent shocks.
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Table 10: Removing the interwar period - Welfare cost - ARIMA-BN

β = 0.95

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 3.73 4.62 5.88 7.75 2.21 2.92 3.95 5.51 1.48 1.65 1.86 2.13 0.60
γ = 2.5 5.39 6.76 8.74 11.81 4.01 5.26 7.10 9.96 1.32 1.42 1.53 1.68 0.83
γ = 5 6.76 8.72 11.81 17.26 5.45 7.34 10.31 15.59 1.24 1.29 1.36 1.44 0.96
γ = 7.5 7.97 10.79 15.96 29.41 6.68 9.42 14.48 27.68 1.21 1.25 1.29 1.35 1.01

β = 0.96

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 4.71 5.85 7.46 9.86 2.79 3.69 5.00 6.98 1.87 2.08 2.35 2.69 0.75
γ = 2.5 6.15 7.72 10.03 13.61 4.58 6.02 8.15 11.49 1.50 1.61 1.74 1.90 0.94
γ = 5 7.34 9.52 12.97 19.22 5.93 8.02 11.35 17.40 1.33 1.39 1.46 1.55 1.03
γ = 7.5 8.52 11.62 17.48 34.39 7.16 10.18 15.90 32.50 1.27 1.31 1.36 1.42 1.06

β = 0.97

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 6.38 7.94 10.15 13.46 3.76 4.99 6.77 9.49 2.52 2.81 3.16 3.63 1.01
γ = 2.5 7.14 8.99 11.73 16.03 5.32 7.02 9.54 13.54 1.73 1.85 2.00 2.19 1.08
γ = 5 8.03 10.46 14.37 21.65 6.50 8.82 12.60 19.65 1.44 1.50 1.58 1.67 1.11
γ = 7.5 9.15 12.58 19.32 42.06 7.70 11.05 17.64 39.96 1.34 1.38 1.43 1.50 1.12

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total eco-
nomic fluctuations using a robustness sample that excludes the interwar period. The numbers are obtained
using equations (10) through (20) with the estimates shown in Table 8. All measures are in percentages of
lifetime consumption. We also report an extra welfare cost measure, λlit, described in Appendix B.4. We re-
port numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid for
θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the ARIMA-BN process.
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