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Abstract

We measure the e↵ects of the COVID-19 outbreak on uncertainty, and we 
assess the consequences of the uncertainty for key economic variables. We use 
a large, heteroskedastic vector autoregression (VAR) in which the error volatil-
ities share two common factors, interpreted as macro and financial uncertainty. 
Macro and financial uncertainty are allowed to contemporaneously a↵ect the 
macroeconomy and financial conditions, with changes in the common compo-
nent of the volatilities providing contemporaneous identifying information on 
uncertainty. The model includes additional latent volatility states in order to ac-
commodate outliers in volatility, to reduce the influence of extreme observations 
from the COVID period. Our estimates yield large increases in macroeconomic 
and financial uncertainty since the onset of the COVID-19 period. These in-
creases have contributed to the downturn in economic and financial conditions, 
but the contributions of uncertainty are small compared to the overall move-
ments in many macroeconomic and financial indicators. That implies that the 
downturn is driven more by other dimensions of the COVID crisis than shocks 
to aggregate uncertainty (as measured by our method).
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1 Introduction

The outbreak of COVID-19 prompted extraordinary volatility in economic and fi-

nancial variables, which suggests an increase in uncertainty about future conditions.

For example, sources such as the Federal Open Market Committee of the Federal

Reserve emphasized that uncertainty was perceived to have risen dramatically. For

example, the minutes of the Committee’s April 2020 meeting reported: “Partici-

pants commented that, in addition to weighing heavily on economic activity in the

near term, the economic e↵ects of the pandemic created an extraordinary amount of

uncertainty and considerable risks to economic activity in the medium term.” Mea-

sures of uncertainty available at high frequency — the VIX and policy uncertainty

as measured by Baker, Bloom, and Davis (2016) — skyrocketed in the spring before

easing up some.

Building on the immense research literature on uncertainty that emerged fol-

lowing the seminal work of Bloom (2009), Carriero, Clark, and Marcellino (2018)

— henceforth referred to as CCM — developed an econometric model and method

for jointly (1) constructing measures of macroeconomic and financial uncertainty

and (2) conducting inference on uncertainty’s impacts on the macroeconomy. The

CCM uncertainty measures reflect common factors driving time-varying volatilities

in macroeconomic and financial variables, respectively. The model is a large, het-

eroskedastic vector autoregression (VAR) in which the error volatilities evolve over

time according to a factor structure. The volatility of each variable in the system

is driven by a common component and an idiosyncratic component. Changes in the

common component of the volatilities of the VAR’s variables provide contempora-

neous identifying information on uncertainty. Macro and financial uncertainty are

allowed to contemporaneously a↵ect the macroeconomy and financial conditions.

In CCM, estimates with monthly US data for the period 1959-2014 provided sub-

stantial evidence of commonality in volatilities, with increases in macro uncertainty

associated with economic recessions. Their estimated impulse responses showed that

(1) macroeconomic uncertainty has large, significant e↵ects on real activity and a

limited impact on financial variables and (2) financial uncertainty shocks directly im-

pact financial variables and subsequently transmit to the macroeconomy. However,

their estimates of historical decompositions indicated that they are not a primary

driver of fluctuations in macroeconomic and financial variables. For example, over

the period of the Great Recession and subsequent recovery, shocks to uncertainty
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made small to modest contributions to the paths of economic and financial variables,

whereas shocks to the VAR’s variables played a much larger role.1

This paper uses the basic framework of CCM to measure changes in macroe-

conomic and financial uncertainty in the US since the outbreak of the COVID-19

pandemic and to estimate uncertainty’s e↵ects. To do so, we need to address some

challenges that come with measuring uncertainty from macroeconomic and finan-

cial data in the COVID-19 period. The period yielded unprecedented movements in

many key variables. For example, payroll employment plummeted 14.8 percent from

March to April, a decline nearly 17 times as large as the previous largest monthly

decline, and employment rose 3.5 percent from May to June, an increase 3 times

larger than the previous record growth rate.2 These extremes might unduly influ-

ence conventional estimates of time series models. In response, Lenza and Primiceri

(2020) develop an approach to allow for temporary spikes in volatilities of innova-

tions in an otherwise conventional Bayesian VAR (BVAR). The volatility spikes lead

the BVAR to down-weight COVID observations in its parameter estimates.

In this paper, in light of possible questions around how much weight to allow

COVID observations to have, we extend the model of CCM to allow for temporary

volatility outliers. Stock and Watson (2016) developed a latent state approach to

accommodating outliers in unobserved component models of inflation, and Carriero,

et al. (2021b) extended the approach to BVARs and showed the e�cacy of the model

in macroeconomic forecasting accuracy. In this paper we add outlier states to the

CCM model to assess uncertainty and its e↵ects with a specification that has the

potential to reduce the influence of extreme observations from the COVID period.

The estimates we obtain yield very large increases in macroeconomic and fi-

nancial uncertainty over the course of the COVID-19 period. These increases have

contributed to the downturn in economic and financial conditions. Although these

contributions are sizable by historical standards, they are generally dwarfed by the

immense and unprecedented magnitudes of changes in some variables from March

through June 2020. That is, the contributions of uncertainty are small compared

to the overall movements in many macroeconomic and financial indicators. That

implies that the downturn is driven more by other dimensions of the COVID crisis

1
In Carriero, Clark, and Marcellino (2021), updated results for 1985-2014 that correct an al-

gorithm mistake in Carriero, Clark, and Marcellino (2018) yield the same patterns summarized in

this paragraph.
2
These calculations use log growth rates and data from the September 2020 vintage of FRED-

MD.
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than shocks to aggregate uncertainty (as measured by our method).3

The paper is structured as follows. Sections 2, 3, and 4 present the model, data,

and results, respectively. Section 5 concludes.

2 Model

We denote the uncertainty model that includes the outlier volatility states as the

BVAR-SVF-M-O specification, short for BVAR with stochastic volatility factors in

the mean and outlier states added. The model of CCM takes the same form, with

the outlier states omitted.

Let yt denote the n⇥1 vector of variables of interest, split into nm macroeconomic

and nf = n � nm financial variables. Let vt be the corresponding n ⇥ 1 vector

of reduced-form shocks to these variables, also split into two groups of nm and

nf components.

Following Stock and Watson (2016) and Carriero, et al. (2021b), outliers are

accommodated as temporary spikes in the standard deviations of innovations to the

VAR. Outliers are treated as independent over time and across variables. The outlier

scale variable can take one of a grid of No = 20 values, ranging from 1 to 20.4 With

probability 1� pj , there is no outlier for variable j in period t, and the outlier scale

variable oj,t takes a value of 1. With probability pj , an outlier occurs, and each of

the possible values of 2 through 20 has the same probability of pj/(No�1). That is,

outliers occur along a uniform distribution of 2 to 20. As in Carriero, et al. (2021b),

the prior mean implies an outlier frequency of once every 4 years in monthly data

(and prior precision consistent with 10 years’ worth of prior observations).

The reduced-form shocks are:

vt = A
�1

Ot⇤
0.5
t ✏t, ✏t ⇠ i.i.d. N(0, I), (1)

where A is an n ⇥ n lower triangular matrix with ones on the main diagonal, ⇤t

is a diagonal matrix of volatilities, and Ot is a diagonal matrix of the i.i.d. outlier

scale states (corresponding to standard deviations). The logs of the variances on

3
Ludvigson, Ma, and Ng (2021) instead treat COVID as a disaster shock that causes both

economic activity to plummet and uncertainty to rise.
4
Stock and Watson (2016) apply the outlier model to inflation data with an upper bound of

10 on the outlier states, which we have extended to 20 to better accommodate swings in other

variables.
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the diagonal of ⇤t follow a linear factor model:

ln�jt =

(
�m,j lnmt + lnhj,t, j = 1, . . . , nm

�f,j ln ft + lnhj,t, j = nm + 1, . . . , n.
(2)

The variables hj,t — which do not enter the conditional mean of the VAR, speci-

fied below — capture idiosyncratic volatility components associated with the j-th

variable in the VAR, and are assumed to follow (in logs) an autoregressive process:

lnhj,t = �j,0 + �j,1 lnhj,t�1 + ej,t, j = 1, . . . , n, (3)

with ⌫t = (e1,t, ..., en,t)0 jointly distributed as i.i.d. N(0,�⌫) and independent among

themselves, so that �⌫ = diag(�1, ...,�n). These shocks are also independent from

the conditional errors ✏t.

With this setup, the Cholesky residual of each macro variable j consists of a

conditionally Gaussian innovation ✏j,t that is scaled by

�̃
0.5
j,t = oj,t�

0.5
j,t = oj,t

q
m

�m,j
t hj,t,

and the reduced-form innovation variance matrix is ⌃t = A
�1

Ot⇤tO
0
tA

�10.

The same applies for financial variables, just with the financial factor ft replac-

ing the macro factor mt. As this indicates, the outlier state is idiosyncratic to

each variable’s volatility. Uncertainty is instead defined as the common element in

volatilities, distinct from the idiosyncratic components that may have some persis-

tence and the i.i.d. outlier scale components. This outliers-augmented version of

the model adds to the baseline CCM specification an entirely transitory volatility

component (the outliers), on top of the idiosyncratic stochastic volatility process

that may have some persistence (and, indeed, is estimated to do so for most of the

variables of the VAR).

The variable mt is our measure of (unobservable) aggregate macroeconomic un-

certainty, and the variable ft is our measure of (unobservable) aggregate financial

uncertainty. Together, the two measures of uncertainty (in logs) follow an aug-

mented VAR process:

"
lnmt

ln ft

#
= D(L)

"
lnmt�1

ln ft�1

#
+

"
�
0
m

�
0
f

#
yt�1 +

"
um,t

uf,t

#
, (4)
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where D(L) is a lag-matrix polynomial of order d. The shocks to the uncertainty fac-

tors um,t and uf,t are independent from the shocks to the idiosyncratic volatilities ej,t and

the conditional errors ✏t, and they are jointly normal with mean 0 and variance

var(ut) = var((um,t, uf,t)0) = �u =

"
�n+1 0

0 �n+2

#
. The specification in (4) im-

plies that the uncertainty factors depend on their own past values as well as the

previous values of the variables in the model, and therefore they respond to busi-

ness cycle fluctuations. Importantly, financial uncertainty a↵ects macro uncertainty

and vice-versa.

For identification, we fix the factor innovation variances and impose (using an

accept/reject step in the Gibbs sampler) sign restrictions on the factor loadings so

that �m,1 > 0 and �f,nm+1 > 0.5 In addition, we deliberately include the block

restrictions of factor loadings in the volatilities specification of (2) in order to allow

the comovement between uncertainties captured in the VAR structure. Conceptu-

ally, these block restrictions are consistent with broad definitions of uncertainty:

Macro uncertainty is the common factor in the error variances of macro variables,

and financial uncertainty is the common factor in the error variances of financial

variables. However, these uncertainties may move together due to correlated inno-

vations to the uncertainties, the VAR dynamics of uncertainty captured in D(L),

and responses to past fluctuations in macro and financial variables (yt�1).

The uncertainty variables mt and ft can also a↵ect the levels of the macro and fi-

nancial variables contained in yt, contemporaneously and with lags. In particular, yt

is assumed to follow:

yt = ⇧(L)yt�1 +⇧m(L) lnmt +⇧f (L) ln ft + vt, (5)

where k denotes the number of yt lags in the VAR, ⇧(L) = ⇧1�⇧2L� · · ·�⇧kL
k�1,

with ⇧i an n ⇥ n matrix, i = 1, ..., k, and ⇧m(L) and ⇧f (L) are n ⇥ 1 lag-matrix

polynomials of order km and kf . This model allows the business cycle to respond to

movements in uncertainty, both through the conditional variances (contemporane-

ously, via movements in vt) and through the conditional means (contemporaneously

and with a lag, via the coe�cients collected in ⇧m(L) and ⇧f (L)).

5
We fix the factor innovation variances at �n+1 = 0.0375 and �n+2 = 0.075, similar to the

estimates of Carriero, Clark, and Marcellino (2021). Note that, for identification, CCM instead

fixed the factor loadings �m,1 and �f,nm+1 at values of 1 and estimated the variance-covariance

matrix of innovations to the log uncertainty factors.
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Note that, as a general matter of identification, our modeling strategy separates

the total variance of the residual Avt = Ot⇤0.5
t ✏t into four orthogonal components:

a common component, an idiosyncratic component that may have some serial corre-

lation, an i.i.d. outlier scale component, and a component due to the conditionally

independent shock ✏t. When a large residual shock (represented by Ot⇤0.5
t ✏t) hits

the economy, we let the data distinguish whether this is a large shock in the condi-

tional error ✏t (so an outlier in a standard normal distribution, with a variance that

is not moving) or rather a relatively ordinary draw for the conditional shock ✏t that

is, however, scaled up by an increase in variance, which may be transitory or per-

sistent, as well as common or idiosyncratic, as captured by the various components

contained in Ot⇤0.5
t .

In implementation with monthly data, we set the VAR lag order at k = 6, the

lag order for the uncertainty factors in the VAR’s conditional mean (km and kf ) at

2, and the lag order of the bivariate VAR in the uncertainty factors (d) to 2.

Following CCM, we estimate the model using an MCMC sampler. To make

tractable the estimation of the large model, we rely on an equation-by-equation

approach to the vector autoregression (VAR) based on a triangularization of the

conditional posterior distribution of the coe�cient vector. The published results

of CCM were based on a triangularization approach that Bognanni (2021) shows

to have a conceptual problem; the triangularization does not deliver the intended

posterior of the VAR’s coe�cients. In response, Carriero, et al. (2021) develop

a corrected triangular algorithm for Bayesian VARs that does yield the intended

posterior. Carriero, Clark, and Marcellino (2021) employ the same algorithm to

correct the estimates of CCM, using a sample of 1985 to 2014. In this paper, we

follow the algorithm as deployed in Carriero, Clark, and Marcellino (2021) for the

version of the uncertainty model without outlier states included. In the extended

model of this paper, the algorithm includes all of the same steps, with adjustments to

reflect the outlier states on top of the � and h terms. Including the outliers requires

two additional steps. One of these draws the outlier states from their posterior given

the draw of the outlier probabilities; this step proceeds analogously to the sampling

of the mixture states needed with the Kim, Shephard, and Chib (1998) approach to

the idiosyncratic volatility states h. The other draws the outlier probability for each

variable from a (conditional posterior) beta distribution conditional on the draws of

the time series of outlier states. All results in the paper are based on 5,000 retained

draws, obtained by sampling a total of 35,000 draws, discarding the first 10,000, and
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retaining every 5th draw of the post-burn sample.

In unreported results, we have also considered a di↵erent, simple approach to

treating the COVID observations as unusual and reducing their influence: We aug-

mented the VAR as in the original model of CCM to include dummy variables for

each month of March through June 2020, with the dummy for month s having a

value of 1 in month s of 2020 and 0 in all other periods. These dummies, of course,

capture the variation of the COVID months and reduce their influence on the model

estimates. This dummy-variable approach had mixed e↵ects in our setting. With

macro uncertainty, adding the dummies to the CCM specification yields an uncer-

tainty estimate comparable to what we get with this paper’s SVF-M-O model. But

the same does not apply to financial uncertainty: The model with dummies pro-

duces an increase in uncertainty in the COVID period much larger than the estimate

from our SVF-M-O model. Nonetheless, this alternative specification with dummy

variables yields impulse responses similar to those reported below, obtained from

the SVF-M-O model.

3 Data

Following CCM, our results are based on a VAR including 30 macroeconomic and

financial variables, which are listed in Table 1. Reflecting the available samples

of the raw data and observations taken by transformations and model lags, the

estimation sample is September 1960 to June 2020.6 Following common practice in

the factor model literature as well as studies such as Jurado, Ludvigson, and Ng

(2015), after transforming each series for stationarity as needed, we standardize the

data (demean and divide by the simple standard deviation) before estimating the

model.7

Our variable set includes 18 macroeconomic series, chosen for being major indi-

cators within broad categories (production, labor market, etc.). With one exception,

we take these series and some financial indicators from the FRED-MD monthly data

set detailed in McCracken and Ng (2016), which is similar to that underlying com-

mon factor model analyses, such as Stock and Watson (2006). The one exception is

6
We took the data from the September release of FRED-MD. Although this vintage has data

through June for most series, two of the series in our model only have observations through June

(under FRED-MD’s usual timing).
7
To reduce the potential impact of COVID extremes, in the standardization, we computed the

means and standard deviations with data through 2019 and omitted 2020 observations.
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the new orders index from the Institute of Supply Management, which FRED-MD

is no longer able to include; we instead obtained this series from Haver Analytics.

Our variable set also includes 12 financial series, consisting of the return on the

S&P 500, the spread between the Baa bond rate and the 10-year Treasury yield,

and a set of additional variables made available by Kenneth French on his web page.

Specifically, we use the French series on CRSP excess returns, four risk factors —

for SMB (Small Minus Big), HML (High minus Low), R15 R11 (small stock value

spread), and momentum— and sector-level returns for a breakdown of five industries

(consumer, manufacturing, high technology, health, other).

As discussed in CCM, this specification reflects some choice as to what con-

stitutes a macroeconomic variable rather than a financial variable. Reflecting the

typical factor model analysis, the McCracken-Ng data set includes a number of

indicators — of stock prices, interest rates, and exchange rates — that may be con-

sidered financial indicators. In our model specification, the variables in question are

the federal funds rate, the credit spread, and the S&P 500 index. It seems most

appropriate to treat the funds rate, as the instrument of monetary policy, as a macro

variable. For the other two variables, the distinction between macro and finance is

admittedly less clear. Whereas Jurado, Ludvigson, and Ng (2015) treat these indi-

cators as macro variables that bear on macroeconomic uncertainty and not directly

on financial uncertainty, it seems more natural to consider these indicators as finan-

cial variables, in keeping with such precedents as Koop and Korobilis (2014) on the

measurement of financial conditions. Accordingly, we include the credit spread and

the S&P 500 index in the set of financial variables.

4 Results

This section first provides our estimates of outlier states, time-varying volatilities,

and macroeconomic and financial uncertainty. It then presents impulse responses

and historical decompositions.

4.1 Volatility and uncertainty estimates

Before taking up the main results of interest, it may be useful to consider the estima-

tion of outlier states in the BVAR-SVF-M-O model. For most financial variables,

the posterior mean probabilities of an outlier each month are low, at about 0.4

percent. Mean outlier probabilities are modestly higher for most — although not
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all — macro variables. For example, the probability estimates are 0.9 percent for

employment and 2.2 percent for real personal income.

Figure 1 provides posterior mean estimates of the outlier states oj,t for variable

j, covering a subset of variables in the interest of readability. For some variables,

reflecting the estimated low probabilities of an outlier, the mean state estimate is

flat at 1 for most or much of the sample. At the other extreme, the estimates

identify a number of outliers for personal income. More immediate to the matter of

the COVID period, a number of variables experience outliers in the period of the

COVID disruption to economic activity. For example, the posterior mean of the

outlier state (recall that this scales up standard deviations) for consumer spending

is nearly 14 in March; the estimate for employment is about 11 in March and 18 in

April. As we discuss below, these outlier state movements contribute significantly

to the variability of the a↵ected variables of the model. Although a number of

variables are found to experience outliers in recent months, it is not a majority of

the series; for example, only 8 of the 18 macroeconomic variables in the model have

a posterior mean of oj,t of 2 or more in the months of March or April. Accordingly,

we proceed with treating the outliers as being independent across variables rather

than common to most or all, in keeping with treating common, persistent changes

in forecast error variances as changes in aggregate uncertainty.8

Turning to overall volatility changes, Figure 2 shows the magnitudes of changes

in volatilities in recent months, broken into contributions from the uncertainty fac-

tors, the outlier states, and the idiosyncratic volatility components. Whereas it

would be di�cult to compute contributions to changes in the diagonal elements of

⌃t, the variance-covariance matrix of reduced-form innovations in the VAR, it is

possible to directly compute percent changes in �̃
0.5
j,t =

q
m

�j,m
t o2j,thj,t for macro

variables and �̃
0.5
j,t =

q
f
�j,f
t o2j,thj,t for financial variables. For each month t from

January 2019 through June 2020, we compute 0.5 ln(�̃j,t/�̃j,0), where �̃j,0 refers to

the volatility of December 2018, and the contributions to this percent change in the

standard deviation from the uncertainty factors, the outlier states, and the idiosyn-

cratic volatility components. The charts report posterior means of the contributions,

as stacked bars.
8
If we followed conventions in the factor model literature (e.g., McCracken and Ng (2016)) and

simply defined an outlier as an observation with distance from the median more than 5 or 10 times

the width of the interquartile range, it would also be the case that only a few macro variables show

an outlier in recent months.
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Perhaps the most immediate result in these estimates is the giant increases in the

volatilities of many variables. For example, the log change in 0.5�̃ for employment is

about 4, meaning that volatility (as measured by the standard deviation) has risen

by 400 percent. Increases in most of the financial volatilities were more tempered

although still dramatic, for example with the return volatilities rising about 100

percent.

In the variance decomposition from the BVAR-SVF-M-O model, the relative im-

portance of uncertainty, outliers, and idiosyncratic volatilities varies across variables.

The uncertainty factors drive considerable increases in volatility for all variables. For

financial variables, uncertainty factors are the dominant driver. For macro variables,

uncertainty factors are important to most increases, but are occasionally dominated

by outlier state contributions. As examples, with industrial production and unem-

ployment, the estimates show outliers driving the volatility increases of March and

April, respectively, and the uncertainty factors driving the increase of May. For

some other variables, such as employment and the help wanted-to-unemployment

ratio, increases in the idiosyncratic volatility components also contribute. But in

general, the contributions of the idiosyncratic volatility components are smaller than

those of the uncertainty factors and outlier states (and in some cases they lower,

rather than raise, volatility).

By comparison, over the period January 2007-December 2009 spanning the Great

Recession, Figure 3 shows that the overall rise in volatility was smaller for many

variables — although still sizable — with a somewhat di↵erent composition than

that observed for the COVID period. One pattern shared by the Great Recession

period is that a sizable increase in aggregate uncertainty helped drive volatility

higher. But outliers are estimated to have played a smaller role in 2007-2009 than

in 2019-2020, a↵ecting volatilities of only a few variables in the former period but

several in the latter. The overall di↵erences in the magnitudes of the volatility

changes and the role of outliers point to the COVID period being unique.

Turning from variance contributions to the estimates of uncertainty, the top two

panels of Figure 4 report our macroeconomic and financial uncertainty estimates,

measured as the posterior medians ofm0.5
t and f

0.5
t , respectively. The estimates show

significant increases in 2020. Macroeconomic uncertainty moves up sharply (from a

historical average level of about 1 in January) from March to May, peaking at nearly

5, and then moderating to about 2 in June. The estimate of financial uncertainty also

picks up significantly in 2020, peaking at about 3 in April and declining to about

10



0.7 in June. As a more general matter, looking at the pre-COVID period from

1985 through 2019, adding the outlier states to the CCM model has little e↵ect

on the time series of macroeconomic uncertainty. For this period, the estimates

of uncertainty from this paper’s model (fit using data through mid-2020) are very

similar to estimates obtained by fitting the baseline model of CCM without outlier

states to data for 1985 through 2019, with correlations of 0.95 for macroeconomic

uncertainty and 0.99 for financial uncertainty.

There is considerable uncertainty around the estimate of uncertainty in the

COVID period. Figure 5 provides the BVAR-SVF-M-O posterior median estimates

of macroeconomic (m0.5
t ) uncertainty along with 70 percent credible sets, for the

periods 1960-2019 (top) and January-June 2020 (bottom). Historically, from the

start of the sample through December 2019, the width of the credible set averaged

0.2 (compared to an average level of the uncertainty index of 1), with the range

commonly rising with spikes in uncertainty, usually around recessions. Over this

period, the width of the credible set peaked at 0.8 in October 2008. As evidenced

in the lower panel of Figure 5, the width of the 70 percent credible set has been

much greater over the COVID period, peaking at 4.6 in May 2020. Of course, if the

sample were extended beyond June 2020, with the additional data and two-sided

smoothing, the precision of uncertainty estimates for the first half of 2020 could

improve.

For comparison to other measures of uncertainty, the bottom panel of Figure 4

provides the VIX measure of uncertainty (through June 2020) and current estimates

of macroeconomic and financial uncertainty based on the Jurado, Ludvigson, and

Ng (2015) model (through June 2020, posted by Professor Ludvigson). The JLN

estimates show a significant rise, with macroeconomic uncertainty increasing 39

percent from December 2019 to a peak in March 2020 and financial uncertainty

increasing 32 percent over the same period. These increases are of course much

more modest than those evident from our models. However, that is in keeping with

historical patterns, in which our uncertainty estimates rise more than those of JLN

around recessions (of course, this need not mean that our uncertainty measures

yield larger impacts on the economy, since the greater sensitivity of the uncertainty

measure to the cycle will be reflected in smaller response coe�cients). The greater

variability of our measures could stem from the various di↵erences in our modeling

approach as compared to JLN, including the fact that, in our one-step approach to

estimating uncertainty and its e↵ects on the economy, uncertainty responds directly

11



to fluctuations in the economy, through the inclusion of yt�1 in the time series

process of the factors.9 The VIX measure of uncertainty displays a sharper rise,

with the VIX more than tripling from January to March before drifting down over

the following few months. Caggiano, Castelnuovo, and Kima (2020) use estimates

of a small VAR through April 2019 and scale up the size of a shock to the VIX to

gauge (via impulse responses) the e↵ects of the rise in uncertainty on world output

during the pandemic, concluding that the e↵ects are sizable. Altig, et al. (2020)

review and compare movements of a range of measures of uncertainty before and

during the pandemic.

4.2 Impulse responses

To provide a basic assessment of the e↵ects of macroeconomic and financial uncer-

tainty, we compute impulse response functions for each of the 5000 retained draws

of the VAR’s parameters and latent states and report the posterior medians and

70 percent credible sets of these functions. For a given shock of the size of one

standard deviation, we report response estimates using black lines and gray shaded

regions for posterior medians and 70 percent credible sets, for a subset of selected

variables. Note that, although the models are estimated with standardized data, for

comparability to previous studies the impulse responses are scaled and transformed

back to the units typical in the literature.10

In broad terms, the impulse response estimates from the two models reported

in Figures 6 (macroeconomic uncertainty) and 7 (financial uncertainty) are compa-

rable and qualitatively the same as the corrected and updated estimates of CCM

presented in Carriero, Clark, and Marcellino (2021). As shown in the last panel

of row 3 of Figure 6, the shock to log macro uncertainty produces a rise in uncer-

tainty that gradually dies out. Economic activity and the labor market decline in

response, with indicators such as consumer spending, housing starts and permits,

9
In contrast, the JLN measures of uncertainty are obtained as simple averages of conventional

stochastic volatility estimates obtained from simple autoregressive models (augmented to include

factor indexes of the economy) of each series, without direct feedback of economic conditions to

volatility.
10
We do so by using the model estimates to: (1) obtain impulse responses in standardized,

sometimes (i.e., for some variables) di↵erenced data; (2) multiply the impulse responses for each

variable by the standard deviations used in standardizing the data before model estimation; and (3)

accumulate the impulse responses of step (2) as appropriate to get back impulse responses in levels

or log levels. Accordingly, the units of the reported impulse responses are percentage point changes

(based on 100 times the log levels for variables in logs or rates for variables not in log terms).
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manufacturing and trade sales, the ISM index of new orders, employment, and hours

worked falling. Despite the significant decline of economic activity in response to

the macro uncertainty shock, there doesn’t appear to be evidence of a broad decline

in prices. The PPI for finished goods declines steadily, but the response is estimated

imprecisely. Consumer prices as captured by the PCE price index instead show little

change. Overall, as noted in CCM, this picture of price responses is in line with

New Keynesian models, which predict a small e↵ect of uncertainty on inflation due

to sticky prices (and possibly wages). In the face of this deterioration in the real

economy and in the absence of much movement in prices, the federal funds rate grad-

ually falls. The responses of financial indicators to the shock to macro uncertainty

are — collectively speaking — muted and imprecisely estimated. Aggregate stock

prices and returns, as captured by the S&P 500 price index and the CRSP excess re-

turns, show little change (whereas, in Carriero, Clark, and Marcellino (2021), these

variables showed some decline). The spread between the Baa and 10-year Treasury

yields undergoes a modest, but persistent and significant, rise, with a hump-shaped

pattern.

The estimates of responses to a financial uncertainty shock in Figure 7 are also

broadly similar to the estimates of CCM as corrected and updated in Carriero,

Clark, and Marcellino (2021). As reported in the last panel, the shock to log finan-

cial uncertainty produces a rise in uncertainty that gradually dies out. The financial

uncertainty shock a↵ects economic activity much as does a shock to macroeconomic

uncertainty. In particular, the financial uncertainty shock depresses economic ac-

tivity and leads to reductions in the federal funds rate and a rise (and eventual

decline) in the credit spread. The most notable di↵erence with respect to results for

a macro uncertainty shock is that a financial uncertainty shock leads to a sizable

fallo↵ in aggregate stock prices and returns. The response of the S&P500 price level

is negative and significant. The CRSP excess returns display a negative jump and

then gradually recover. However, the responses of the risk factors included in the

model are insignificant.

4.3 Historical decompositions

To assess the specific role of fluctuations in uncertainty shocks in the economy and

financial markets in the period of the COVID-19 pandemic, we estimate historical

decompositions. In a standard linear model, a historical decomposition of the total

s-steps-ahead prediction error variance of yt+s can be easily obtained by construct-
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ing a baseline path (forecast) without shocks, and then constructing the contribution

of shocks. With linearity, the sums of the shock contributions and the baseline path

equal the data. In our case, the usual decomposition cannot be directly applied

because of interactions between ⇤t+s and ✏t+s: Shocks to log uncertainty a↵ect the

forecast errors through ⇤t+s✏t+s, and, over time, shocks ✏t+s a↵ect ⇤t+s through

the response of uncertainty to lagged y. CCM used a decomposition of the total

contribution of the shocks into three parts: (i) the direct contributions of the un-

certainty shocks ut+s to the evolution of y; (ii) the direct contributions of the VAR

“structural” shocks ✏t+s to the path of y taking account of movements in ⌃t+s that

arise as uncertainty responds to y but abstracting from movements in ⌃t+s due to

uncertainty shocks; and (iii) the interaction between shocks to uncertainty and the

structural shocks ✏t+s.

To be more specific, consider a simple one-factor model with lag orders of 1,

abstracting from outlier states:

(
yt = ⇧yt�1 + �1mt + �2mt�1 + vt

mt = �yt�1 + �mt�1 + ut
, (6)

where vt and ut are independent, with variances ⌃t and �u, respectively. So we

can replace vt above with ⌃0.5
t ✏t, where ⌃0.5

t is a shortcut notation for the Cholesky

decomposition of ⌃t and ✏t is N(0, In). The one-step-ahead forecast errors are

yt+1 �Etyt+1 = ⌃0.5
t+1✏t+1 + �1ut+1. Now let ⌃̂t+s|t denote the future error variance

matrix that would prevail in the absence of future shocks to uncertainty. This would

be constructed from forecasts of future uncertainty accounting for movements in y

driven by ✏ shocks and the path of idiosyncratic volatility terms (incorporating

shocks to these terms). The following decomposition can be obtained by adding

and subtracting ⌃̂t+1|t terms in the forecast error:

yt+1 � Etyt+1 = �1ut+1 + ⌃̂0.5
t+1|t✏t+1 + (⌃0.5

t+1 � ⌃̂0.5
t+1|t)✏t+1. (7)

In this decomposition, the first term gives the direct contribution of the uncertainty

shock, the second term gives the direct contribution of the structural shocks to the

VAR, and the third term gives the interaction component. The third term can be

simply measured as a residual contribution, as the data less the direct contributions

from the uncertainty shock and the structural shocks to the VAR.

One complication with this approach is that, in the interaction components, there
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is not a good way to separate the roles of aggregate uncertainty and idiosyncratic

volatility, because ⌃t is the product of such terms containing innovations to aggre-

gate uncertainty and innovations to idiosyncratic components. Since the terms are

multiplicative and not additive, there isn’t a clear way to isolate the role of aggregate

uncertainty from the role of idiosyncratic components. In light of these complica-

tions, and because the interaction e↵ects are empirically much less pronounced than

the direct e↵ects, CCM did not attempt to separate the roles of aggregate uncer-

tainty and idiosyncratic volatility in the interaction component. CCM’s reported

results focused on the more important contributions from the first two pieces of the

decomposition: shocks to uncertainty and VAR shocks.

In the recent extreme variation in the data, the interaction term of the simple

decomposition drives much of the variation in some variables. Such a pattern, of

course, means that the variation is di�cult to decompose in a meaningfully complete

way. However, in this paper, we are primarily interested in the magnitudes of

the contributions of uncertainty shocks. As a result, we simplify the historical

decomposition analysis and focus on just contributions from uncertainty shocks. In

the simple one-step-ahead example, the direct contribution from uncertainty shocks

is measured by just �1ut+1; this contribution and contributions at later periods are

easily computed.

Figure 8 provides the estimated contributions from uncertainty shocks (stacked

bars), along with the actual data (black lines), for January 2019 through June 2020.

Each panel shows the data series (demeaned for simplicity) and the direct contri-

butions of shocks to (separately) macroeconomic and financial uncertainty. These

panels use two scales, with the left for the data and the right for the contributions

of the uncertainty shocks. The reported estimates are posterior medians of decom-

positions computed for each draw from the posterior. In light of space constraints,

the figure provides results for a subset of selected variables.

In the estimated historical decomposition for 2019-2020, uncertainty shocks ac-

count for some of the sharp data changes that have occurred in recent months. By

historical standards, the contributions are sizable; in fact, for many of the vari-

ables, the contributions of uncertainty shocks are larger in 2020 than during the

Great Recession (using results for a 2003-2014 decomposition not reported in the

interest of brevity). But in the COVID period, the contributions of uncertainty

shocks are dwarfed by the dramatic size of the total changes. For example, averaged

in the months of March and April (the worst months of the pandemic), combined
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shocks to macroeconomic and financial uncertainty pulled down employment and

consumption by about 2 basis points and industrial production by 12 basis points.

Annualized (multiplied by 12), these are notable contributions by conventional busi-

ness cycle standards. But averaged over March and April, the actual growth rates of

employment, consumption, and industrial production (with historical mean growth

rates removed) fell by unprecedented magnitudes of 8, 10, and 9 percent, respec-

tively. Consistent with the impulse response estimates, shocks to macroeconomic

uncertainty are more important to macro variables than are shocks to financial

uncertainty, and the reverse applies for financial variables.

As sizable as our estimates of the contributions of uncertainty to the COVID

downturn are by historical standards, some research has obtained even larger esti-

mates. Pellegrino, Castelnuovo, and Caggiano (2020) and Pellegrino, Ravenna, and

Zullig (2021) obtain larger e↵ects of an uncertainty shock using a nonlinear VAR in

which uncertainty shocks can have more adverse e↵ects during recessions than dur-

ing normal times. In addition, Barrero and Bloom (2020) suggest that uncertainty

will reduce US GDP growth in 2020 by 2 to 3 percent (on a four-quarter basis);

with data for the first half of the year in hand, private-sector forecasters surveyed

by the Wall Street Journal in mid-September put GDP growth for the year at about

-4 percent. These estimated e↵ects of uncertainty are based on the cross-country

methodology of Baker, Bloom, and Terry (2020), who relate GDP growth to uncer-

tainty as measured by stock market volatility and who address possible endogeneity

by instrumenting with episodes of natural disasters, terrorist attacks, and political

shocks. The di↵erence in magnitudes in their results as compared to ours likely is

at least in part due to methodology and probably less due to the measure of uncer-

tainty. We say this based on a simple comparison to BVAR estimates (methodology

like ours) that measure uncertainty with stock market volatility (underlying uncer-

tainty measure relied on by Barrero and Bloom). In unreported results, if we use

stock market volatility as the measure of uncertainty and add it to a conventional

BVAR with uncertainty ordered first, the peak e↵ect of the contributions to shocks

to uncertainty is about -2 percentage points for employment, consumption, and in-

dustrial production — sizable but still well short of the peak 15 percent decline seen

in the actual data. We conjecture that Baker, Bloom, and Terry’s cross-country

instrumental variables approach based on historical disasters boosts the estimated

e↵ects.11 Ludvigson, Ma, and Ng (2021) use structural VARs and historical data

11
Consistent with this, Baker, Bloom, and Terry (2020) obtain smaller estimated e↵ects with a
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on natural disasters to estimate COVID’s e↵ects on the economy and uncertainty.

In their estimates, treating COVID as a disaster-type shock (and calibrating its

immense size) yields declines in activity indicators like those observed in the data,

as well as a rise in economic and financial uncertainty due to the disaster shock.

In the broader context of uncertainty and its e↵ects, particularly in a period as

unusual as that of the pandemic, we should emphasize that our estimates obtained

by Bayesian methods are explicitly conditional on the model and the data avail-

able to date. Over time, as more data become available, the model’s estimates of

uncertainty and contributions to the economic fluctuations of the COVID period

could change. Moreover, there are some respects in which uncertainty could matter

in ways outside the scope of our aggregate model. In particular, uncertainty at

a micro level could have important e↵ects, particularly in the COVID downturn.

Some of the uncertainty literature (pre-COVID) has emphasized the important role

of volatility shifts at the micro level (see, e.g., Bloom, et al. (2018)). Such micro

changes need not be captured as aggregate uncertainty in models such as ours. The

subjective uncertainty indicators considered in Altig, et al. (2020) display a sizable

rise in firm-level uncertainty following the COVID outbreak. In addition, Knight-

ian uncertainty may have been particularly important in the months immediately

following the pandemic’s outbreak, as some kinds of economic activity shut down in

unprecedented ways.

5 Conclusions

In this paper we measure the e↵ects of the COVID-19 outbreak on macroeconomic

and financial uncertainty, and the consequences of uncertainty for key economic

variables.

We use a large, heteroskedastic vector autoregression (VAR) in which the er-

ror volatilities share two common factors, interpreted as macro and financial un-

certainty, in addition to idiosyncratic components. Macro and financial uncertainty

are allowed to contemporaneously a↵ect the macroeconomy and financial conditions,

with changes in the common component of the volatilities providing contemporane-

ous identifying information on uncertainty. The model used in this paper extends

that of Carriero, Clark, and Marcellino (2018) with the addition of latent states to

accommodate outliers in volatility, to reduce the influence of extreme observations

di↵erent VAR-based identification applied to just US data.
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from the COVID period.

The estimates we obtain yield large increases in macroeconomic and financial un-

certainty over the course of the COVID-19 period. These increases have contributed

to the downturn in economic and financial conditions, but the contributions of un-

certainty are small compared to the overall movements in many macroeconomic and

financial indicators. That implies that the downturn is driven more by COVID-

related supply and demand shocks that, at least with our methodology, are not

measured as shocks to aggregate uncertainty.
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Table 1: Variables in the baseline model

Macroeconomic variables Financial variables
All employees: total nonfarm (� ln) S&P 500 (� ln)
Industrial production index (� ln) Spread, Baa-10y Treasury
Capacity utilization: manufacturing (�) Excess return
Help wanted to unemployed ratio (�) SMB FF factor
Unemployment rate (�) HML FF factor
Real personal income (� ln) Momentum factor
Weekly hours: goods-producing R15 R11
Housing starts (ln) Industry 1 return
Housing permits (ln) Industry 2 return
Real consumer spending (� ln) Industry 3 return
Real manuf. and trade sales (� ln) Industry 4 return
ISM: new orders index Industry 5 return
Orders for durable goods (� ln)
Avg. hourly earnings, goods-producing (�2 ln)
PPI, finished goods (�2 ln)
PPI, commodities (primary metals, �2 ln)
PCE price index (�2 ln)
Federal funds rate (�)

Note: For those variables transformed for use in the model, the table indicates the trans-
formation in parentheses following the variable description.
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Figure 1: Posterior means of outlier states, BVAR-SVF-M-O
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sion, measured as � ln �̃
0.5
i,t , BVAR-SVF-M-O

27



Macroeconomic uncertainty
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Figure 4: The top two panels report posterior median estimates of the macroeconomic (m0.5
t , top)

and financial uncertainty (f0.5
t , middle) factors from the BVAR-SVF-M-O model. The bottom panel

provides the uncertainty estimates of Jurado, Ludvigson, and Ng (2015) and the VIX measure of
uncertainty. Shaded regions denote periods between NBER business cycle peaks and troughs.
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Macroeconomic uncertainty, 1985-2019, with credible set

median 15%-ile 85%-ile
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Figure 5: The panels report BVAR-SVF-M-O posterior median estimates of macroeconomic (m0.5
t )

uncertainty along with 70 percent credible sets, for the periods 1960-2019 (top) and January-June
2020 (bottom). Shaded regions denote periods between NBER business cycle peaks and troughs.
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Figure 6: Impulse response estimates for shock to macroeconomic uncertainty. The black line and
gray shaded region provide posterior medians and 70 percent credible sets from the BVAR-SVF-
M-O specification. 30
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Figure 7: Impulse response estimates for shock to financial uncertainty. The black line and gray
shaded region provide posterior medians and 70 percent credible sets from the BVAR-SVF-M-O
specification. 31
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Figure 8: Historical decomposition (posterior medians) with contributions from just uncertainty
shocks, January 2019-June 2020, BVAR-SVF-M-O. Chart is two-scale, with scale for actual data
on the left side and scale for estimation contributions on the right.
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