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On the Optimality of Differential Asset Taxation

Thomas Phelan∗

Federal Reserve Bank of Cleveland

August 31, 2022

Abstract

How should a government balance risk-sharing and redistributive concerns with the
need to provide incentives for investment? Should they tax firm profits or individual
savings, or simply levy lump-sum transfers? I address these questions in an environ-
ment with entrepreneurs and workers in which output is subject to privately observed
shocks and firm owners can both misreport profits and abscond with a fraction of as-
sets. When frictions in financial markets restrict private risk-sharing, the stationary
efficient allocation may be implemented in a competitive equilibrium with collateral
constraints using (occupation-specific) linear taxes on savings and profits and lump-
sum transfers to newborns. Further, the two taxes serve distinct roles and in general
differ from one another. The savings tax affects consumption smoothing and may be
positive or negative depending on the strength of general equilibrium effects, while the
profits tax shares risk between the government and entrepreneurs, is unambiguously
positive, and depends solely on the degree of frictions in financial markets.

Keywords: Optimal taxation, moral hazard, optimal contracting.

JEL Codes: D61, D63, E62.

∗The views expressed in this paper are those of the author and do not necessarily reflect the position
of the Federal Reserve Bank of Cleveland or the Federal Reserve System. This paper previously circulated
as “Optimal capital taxation with hidden investment.” I have benefited from discussions with V.V. Chari,
Sebastian Di Tella, Matthew Knowles, Narayana Kocherlakota, Dirk Krueger (the editor), Guillaume Sublet,
Gustavo Ventura, Pierre Yared and especially Sergio Ocampo and Vasia Panousi. Replication files may be
found at https://github.com/tphelanECON/diff_cap_tax. All remaining errors are of course my own.
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1 Introduction

The appropriate taxation of capital income has long been a contentious issue in both policy
circles and in the academic literature. The majority of studies of optimal taxation divide
income into earnings (wages and salaries) or interest on risk-free savings.1 However, a
recent empirical literature has documented the growing importance of private business
income and has shown that such income differs from both earnings and interest in ways
that may warrant a separate analysis. First, DeBacker et al. [2022] show that the variance
of business income is more than 60 times the variance of labor income. Second, Smith
et al. [2019] show that ownership of private businesses is highly concentrated, particularly
among top income groups.2 Third, these authors also show that business income often falls
significantly (on average by 82 percent) upon the owner’s death, suggesting that this income
is not solely the passive return on savings. Motivated by these facts, I characterize optimal
taxes on business income and savings in an environment in which only some people can run
businesses and owners are unable to perfectly diversify. I find that it is in general optimal
to tax savings and profits at different rates, that these taxes are linear and constant over
the lifetime of agents, and that they depend on conceptually distinct economic forces.

I consider a perpetual youth environment in which individuals may either run their own
business or work for someone else. Only some individuals have the ability to run busi-
nesses and the government cannot distinguish these people from the rest of the population.
Business activity is subject to two agency frictions. First, the capital rented by each busi-
ness is subject to depreciation shocks, and the entrepreneur may choose to misreport net
operating income and divert some of it to her consumption. Because business income is
risky, the government cannot be sure if low reported profits are due to bad luck or underre-
porting. I assume that diversion is socially wasteful, in the sense that each dollar diverted
becomes less than one dollar of consumption. The fraction that is lost when diverted may
be interpreted as a measure of the severity of the agency problem. Second, I assume that
at any time, entrepreneurs may abscond with a fraction of the assets under their control,
and thereafter trade only a risk-free bond. These two agency frictions are motivated by
the aforementioned undiversified nature of business ownership together with the observed
presence of collateral constraints.3

1For recent surveys see Bastani and Waldenström [2020] and Stantcheva [2020].
2For example, Table I on page 1694 of Smith et al. [2019] shows that the median number of owners of

pass-through firms with a top 1 percent - 0.1 percent owner is 2.0.
3For the empirical relevance of collateral constraints, see, e.g., Cagetti and De Nardi [2006].
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I characterize a constrained efficient allocation in which all aggregate quantities and
cross-sectional distributions are constant over time. I do not restrict attention to a fixed
set of policy instruments but instead allow the government to choose any allocation that
respects the constraints imposed by the above agency frictions. An allocation specifies the
occupation of every agent and the amount of capital and labor delegated to each business
as functions of the history of reported output. The ability of entrepreneurs to divert output
limits risk-sharing because their consumption must depend on the (risky) output of their
firm in order to induce truthful reporting to the tax authorities. The ability of entrepreneurs
to abscond with a fraction of the assets under their control leads to a no-absconding con-
straint that limits the amount of capital that may be delegated to them.

In principle, the relationship between the history of reported output and the consump-
tion and firm size of entrepreneurs may be arbitrarily complex. However, I show that the
stationary efficient allocation can be completely characterized by the level of capital, the
initial consumption of entrepreneurs and workers, and the constant mean and volatility of
entrepreneurs’ consumption growth. The no-absconding constraint may or may not hold
with equality, and it either binds at every date or never binds at all. Further, when it
does not bind, a variation of the perturbation argument of Rogerson [1985] reveals that the
inverse Euler equation holds, just as in the setting with unobservable labor productivity.

I then implement this allocation in a competitive equilibrium in which the market struc-
ture and taxes are chosen to respect the underlying agency frictions. All agents may trade
a risk-free bond in zero net supply and are subject to endogenously determined collateral
constraints, the tightness of which depends on their ability to abscond with capital. The
government chooses lump-sum transfers for newborns and levies taxes on savings and re-
ported profits, where the latter is firm revenue minus wages, interest payments, depreciation
and any amount that the entrepreneur misreports. The government is permitted to choose
any taxes respecting incentive-compatibility, and so the transfers to newborns and the sav-
ings taxes can depend on an individual’s occupation, provided that the entrepreneurs have
the incentive to reveal their type. The profits tax treats profits and losses symmetrically,
in the sense that the tax liability of the firm owner is reduced by the value of the tax
when her firm experiences losses. It therefore shares risk between the entrepreneur and the
government, and partially makes up for the absence of private risk-sharing arrangements.

The simple characterization of the efficient allocation is mirrored by an equally simple
implementation, with all taxes linear, independent of age and history, and admitting closed-
form expressions. Further, the optimal tax on profits is simply the highest level such that
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the owner does not wish to misreport income. In contrast, the tax on individual savings
affects consumption-smoothing and has no direct effect on investment because firms borrow
at the pre-tax interest rate. As in environments with unobservable labor productivity, the
planner wishes to distort the return on savings below the subjective discount rate in order to
reduce the future cost of providing utility. However, I show that in order for entrepreneurs
to invest at the efficient level, the interest rate faced by their business must also fall below
the subjective discount rate, and that the government can affect this through the use of
transfers to newborns and debt policy.4 Further, the efficient reduction in the interest rate
can exceed the wedge on the risk-free asset, and so for some parameters the entrepreneurs’
savings are subsidized.

The relative magnitude of the savings taxes on entrepreneurs and workers depends on
the tightness of the collateral constraints. When these do not bind, the after-tax return on
entrepreneurs’ savings will always be lower than that on workers. In this case, although
all taxes are independent of wealth, the model does, in a qualified sense, imply progressive
savings taxes, because entrepreneurs (who are typically richer) face a lower after-tax return
on their savings than workers, whose savings are subsidized. In contrast, when the collateral
constraints bind, the planner wishes to backload consumption in order to relax future
collateral constraints, which counteracts the desire to distort savings downwards and implies
that the relative size of taxes between workers and entrepreneurs cannot always be signed.

For the benchmark case described above I suppose that there is no risk-sharing in the
private sector, that the bond is in zero net supply, and that all entrepreneurs are equally
productive on average. I subsequently discuss how the results change when one relaxes each
of these assumptions separately. First, when firm owners can issue equity, the profits tax
becomes redundant because these contracts serve the same risk-sharing role. The interest
rate in the efficient allocation is closer to the complete markets value and the taxes on the
savings of entrepreneurs and workers simply adjust so that the after-tax returns are the
same as in the benchmark decentralization. Second, when the government issues a risk-free
bond with fixed interest rate, the analysis carries over easily provided that we allow the
government to subsidize firm borrowing. The value of the subsidy will simply be chosen
to ensure that the excess return on capital is the same as in the benchmark case. Third,
when entrepreneurs differ in their expected returns, similar comments apply provided that
we allow the savings taxes to depend on ex-ante productivity. If we add a population of

4Note that the fall in the interest rate emerges as a property of the efficient allocation and is not merely
an automatic consequence of market incompleteness.
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more productive entrepreneurs to the benchmark economy, the optimal policy calls for the
investment of their firms to be subsidized. The extension to heterogeneous entrepreneurs
therefore leads to a qualified form of regressivity with respect to business income. However,
when their collateral constraints do not bind, the savings taxes of the more productive
entrepreneurs must be higher to ensure that the expected after-tax return on capital is
common to all entrepreneurs. In this case, the tax system as a whole is progressive, in the
sense that the ratio of total taxes paid (from both the savings and the profits taxes) to
total income is increasing in productivity. Further, despite this heterogeneity, the tax on
profits continues to depend only on the severity of the agency friction and therefore remains
common to all entrepreneurs.

Related literature. A vast literature, often referred to as the “Ramsey” approach in
honor of the contribution of Ramsey [1927], has studied optimal taxation in environments
in which the market structure is exogenously specified and the government has access to
only linear taxes on capital and labor. As first shown by Chamley [1986] and Judd [1985]
and later generalized by Chari et al. [1999], in environments with a representative agent it
is typically the case that the optimal tax on capital income is zero in the long run.5 The
benchmark framework with a representative agent has been extended to include uninsurable
labor income risk in various forms by Aiyagari [1995], Conesa et al. [2009] and Dyrda and
Pedroni [2022] and to include uninsurable capital income (or investment) risk by Panousi
and Reis [2012], Evans [2014] and Panousi and Reis [2021]. In contrast with the current
paper, these papers assume that a common tax is levied on all forms of capital income.

A separate branch of the literature, beginning with Golosov et al. [2003] and sometimes
referred to as the New Dynamic Public Finance, considers dynamic extensions of Mirrlees
[1971]. Instead of seeking the optimal policy lying within a given parametric class, this
literature considers all allocations that satisfy incentive constraints arising from informa-
tional asymmetries.6 However, the majority of this literature has focused on environments
in which the primary source of risk is labor productivity and capital income represents the
risk-free return on saving. I follow the approach of considering all allocations that satisfy
incentive-compatibility, but I also allow for the presence of multiple assets and heteroge-
neous returns to capital.7

5However, see Straub and Werning [2020] for some qualifications of this result.
6For a review of the literature see Golosov and Tsyvinski [2015].
7This notion of constrained efficiency contrasts with Davila et al. [2012], whose paper is similar in spirit

to Geanakoplos and Polemarchakis [1985] and assumes that markets are exogenously incomplete.
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A small (but growing) number of papers share this approach. Albanesi [2006] considers a
two-period model with risky returns on capital and unobservable effort and studies a variety
of market structures that differ in their degree of risk-sharing. Shourideh [2013] considers
an overlapping generations model in which agents may divert capital to consumption prior
to investment. I assume an agency friction similar to that of Shourideh [2013] but adopt a
continuous-time framework, which simplifies the analysis and allows for clear prescriptions
for taxes in a general equilibrium environment. Slavík and Yazici [2014] study optimal
capital taxation when different types of capital (machines versus buildings) are used in
production. Gerritsen et al. [2020] and Boadway and Spiritus [2021] consider two-period
models in which agents face exogenous and heterogeneous returns on capital, while Phelan
[2021] characterizes efficient allocations in an environment in which the productivity of an
entrepreneur depends on the entire history of her unobserved effort.

The study of differential asset taxation in this paper is related to a recent literature that
studies the benefits of taxing capital income and wealth. Two recent contributions are Boar
and Knowles [2022] and Guvenen et al. [2019], who characterize the optimal linear taxes on
capital income and wealth in environments with entrepreneurs and collateral constraints.
In contrast to these papers, I do not impose linearity of taxes as an assumption, but instead
show that linear taxes together with lump-sum transfers implement the constrained efficient
allocation in my environment.

To characterize efficient allocations, I first consider a partial equilibrium setting in which
a risk-neutral principal contracts with an entrepreneur facing the above agency frictions and
a fixed excess return on capital. The contracting problem is similar to that in Di Tella and
Sannikov [2021] except that I omit the possibility of hidden savings and allow entrepreneurs
to abscond with a fraction of the capital stock, a friction similar to that adopted in Kiy-
otaki and Moore [1997]. Using arguments similar to those given in Farhi and Werning
[2007], the problem of a planner facing a continuum of agents is shown to be isomorphic to
the principal’s problem for a given set of multipliers, which are then varied until resource
constraints are satisfied. When decentralizing the efficient allocation, I assume that en-
trepreneurs face a continuous-time portfolio problem as in Panousi [2010] and Angeletos
and Panousi [2009] that is augmented to incorporate separate taxes on savings and profits
and to include (possibly non-binding) collateral constraints.

The outline of this paper is as follows: Section 2 analyzes a principal-agent model with
an exogenous interest rate and productivity of capital; Section 3 characterizes stationary
efficient allocations in an environment in which productivity is determined by resource
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constraints and an aggregate production function; Section 4 implements this allocation in
a general equilibrium model with incomplete markets; Section 5 provides intuition for the
main results, discusses their robustness to various extensions (including private risk-sharing
and heterogeneous entrepreneurs) and makes comparisons with the literature; Section 6
computes a series of numerical examples; and Section 7 concludes.

2 Principal-agent model

This section characterizes the optimal risk-sharing arrangement between a risk-averse en-
trepreneur (she) and a risk-neutral principal (he) in an environment where the entrepreneur
may operate a risky production technology, her consumption is private information, and she
may abscond with a fraction of the physical assets under her control. Labor is absent from
production, and both the marginal product of capital and the interest rate are exogenous.
This problem will later be embedded into a macroeconomic model in which flow payoffs to
the principal are determined by aggregate resource constraints for both labor and capital.

The environment in this partial equilibrium setting is a variation of that considered
in Di Tella and Sannikov [2021].8 Time is continuous and extends indefinitely. Both the
principal and the entrepreneur live forever and discount at the common rate ρ > 0. The
preferences of the entrepreneur over consumption sequences are represented by

UA(c) := E
[
ρ

∫ ∞

0
e−ρt ln ctdt

]
.

The entrepreneur may operate a constant-returns-to-scale technology subject to stochastic
depreciation shocks. Only the entrepreneur may operate the production function and so
the principal must delegate capital to the entrepreneur in order for production to take
place. In addition, the entrepreneur may divert output to private consumption. When the
capital delegated follows the process k := (kt)t≥0 and the entrepreneur diverts an amount
of output stktdt per unit of time, where st ∈ [0, s] for some s > 0, output Y := (Yt)t≥0 net
of borrowing costs ρ+ τI evolves according to

dYt = (Π− ρ− τI − st)ktdt+ σktdBt (1)
8The environment is simpler than that in Di Tella and Sannikov [2021] in one respect because savings

are observable, but it is not a strict simplification because I also assume the entrepreneur may abscond
with a fraction of capital.
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where (Bt)t≥0 is distributed according to standard Brownian motion defined on a filtered
probability space (Ω, (Ft)t≥0, P ). The constant Π in (1) is the marginal product of capital,
ρ represents the cost of borrowing, and τI is a tax on investment. Both Π and τI are
fixed exogenously in this section in order to first understand the optimal contract in partial
equilibrium. In the perpetual youth economy of Section 3, the marginal product of capital
Π will be determined by the aggregate production function and the number of workers in
the economy and the tax τI will capture the extent to which capital accumulation affects
the welfare of future generations and will turn out to be negative (i.e., a subsidy).

The entrepreneur may only consume a fraction ϕ of the diverted amount stktdt per
unit of time dt, where ϕ ∈ (0, 1) captures the deadweight loss from diversion and may be
thought of as a measure of the severity of the agency problem. The specification in (1) may
be interpreted as the continuous-time limit of the discrete-time environments in which the
principal delegates resources to the entrepreneur, investment is publicly observed, and the
capital stock is subject to idiosyncratic shocks that are privately observed.9 I also assume
that the entrepreneur may, at any time, take a fraction ι of the capital delegated to her
and abscond, and after doing so trade only the same risk-free bond to which the principal
has access. The principal is risk-neutral and so his preferences are represented by

UP (k, c) := E
[∫ ∞

0
e−ρt[dYt − ctdt]

]
.

An allocation must specify the consumption of the entrepreneur, the capital delegated by
the principal to the entrepreneur, and the fraction of capital the principal recommends the
entrepreneur divert to private consumption, after every history of output. To be formal, first
let the underlying probability space be (C[0,∞), (Ft)t≥0, P ), where (Ft)t≥0 is the filtration
generated by the evaluation maps and P is the Wiener measure.10

Definition 2.1. An allocation is a triple (k, c, s̃) of F-adapted processes on C[0,∞), while
a strategy is a single F-adapted process s on C[0,∞).

An allocation may be interpreted as a choice of the principal indicating capital dele-
gated to the entrepreneur together with recommended amounts of consumption and output
diverted. A strategy of the entrepreneur is then the choice of whether or not to follow
the recommended diversion process. Since the entrepreneur’s strategy is unobservable, the

9This friction therefore ought to be interpreted as hidden depreciation rather than hidden investment.
I thank an anonymous referee for helping me understand this point.

10By “evaluation maps” I mean the functions defined by xt(ω) := ω(t) for all ω ∈ C[0,∞) and t ≥ 0.
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allocation chosen by the principal must be incentive compatible, in the sense that the en-
trepreneur must wish to follow the principal’s recommendations after every history. When
the entrepreneur varies s, she alters the law of motion of output and so changes the measure
used to evaluate output paths. Denoting the corresponding expectation operator by Es,
the utility from adhering to such a strategy is

UA(k, c, s̃; s) := Es

[
ρ

∫ ∞

0
e−ρt ln(ct + ϕstkt)dt

]
.

Associated with each allocation (k, c, s̃) and strategy s is the utility process (Wt)t≥0

Wt := Es

[
ρ

∫ ∞

t
e−ρ(t′−t) ln(ct′ + ϕst′kt′)dt

′
∣∣∣∣Ft

]
.

An agent with k units of capital and access to a bond market with interest rate ρ experiences
lifetime utility W = ln(ρk). This implies that when an entrepreneur may abscond with a
fraction ι of the capital and promised utility is given by (Wt)t≥0, capital (kt)t≥0 is subject
to the additional constraint kt ≤ ωeWt for all t ≥ 0 a.s., where ω := (ρι)−1.

Definition 2.2. An allocation (k, c, s̃) is incentive compatible if UA(k, c, s̃; s̃) ≥ UA(k, c, s̃; s)

for all strategies s and if the no-absconding constraint kt ≤ ωeWt holds for all t ≥ 0 a.s.,
and the set of incentive compatible allocations is denoted AIC .

Since ϕ < 1, output is destroyed whenever the entrepreneur diverts assets to private
consumption. To characterize efficient allocations, it is therefore without loss of generality
to assume s̃ = 0 and so for ease of notation an allocation will be a pair (k, c) rather than
a triple (k, c, 0). When characterizing the principal’s problem, I will follow an approach
similar to Toda [2014] and consider a family of problems indexed by a horizon date T , after
which the planner must provide the entrepreneur with constant consumption and no capital.
The problem of the principal will then simply be defined as the limit of these problems as
the horizon tends to infinity. To this end, the set of incentive compatible allocations defined
between two dates t and T > t will be denoted AIC

t,T .

Definition 2.3. Given a fixed final horizon date T , initial utility W , marginal product of
capital Π and investment tax τI , the problem of the principal at date t ∈ [0, T ] is then

V T (W, t) = max
(k,c)∈AIC

t,T

E
[∫ T

t
e−ρ(s−t)[(Π− ρ− τI)ks − cs]ds

]
− 1

ρ
e−ρ(T−t)eWT (2)

since the payoff from providing utility W with constant consumption is −ρ−1eW . The prob-
lem of the principal is then defined as the limit V (W ) := limT→∞ V T (W, 0).
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It is well known that the principal’s problem is recursive in promised utility. Further,
it is convenient to write utility in consumption units, defined as ut := eWt , and denote the
associated value function as v(u). Before stating the explicit form of the value function, I
explain how we can partially characterize the optimal contract by exploiting homogeneity
and perturbation arguments.

First, note that if A(u) denotes the set of capital and consumption processes that satisfy
incentive-compatibility and promise-keeping given utility u, then substitution into the law
of motion (3) implies that for any scalar λ > 0, (k, c) ∈ A(u) if and only if (λk, λc) ∈ A(λu).
Since the principal’s objective is homogeneous of degree one in capital and consumption,
this implies that the value and policy functions are multiples of u, at least if the value
function is finite. In this case the problem of the principal reduces to simply choosing two
scalars, k and c, indicating capital and consumption per unit of utility.

Second, a perturbation argument may be employed to derive the optimal intertemporal
distortions. As mentioned in the introduction, a large literature has extended the static
model of Mirrlees [1971] to dynamic environments with privately observed labor productiv-
ity shocks. An important observation in this literature, first established by Rogerson [1985]
in a principal-agent setting and later by Golosov et al. [2003] in a dynamic Mirrleesian set-
ting, is that intertemporal distortions are characterized by an inverse Euler equation. This
result rests on the insight that if an allocation is efficient, it cannot be possible to perturb
it in such a way that the payoff to the principal is increased and incentive-compatibility
is preserved. A similar argument is applicable here, provided that the perturbation alters
delegated capital as well as consumption. The fact that preferences are logarithmic implies
that (k, c) is incentive compatible if and only if (ηk, ηc) is incentive compatible for any
deterministic sequence η, and this provides us with a convenient class of perturbations.
Suppose that (k, c) is the efficient allocation and for any real scalar z and positive t0 < t1

and dt define

ηt(z) =

{
ez if t ∈ [t0, t0 + dt]

e−zeρ(t1−t0) if t ∈ [t1, t1 + dt].

The change in utility is approximately ρ[e−ρt0 − e−ρt1eρ(t1−t0)]zdt = 0 and so ηt preserves
both promise-keeping and incentive-compatibility. By the assumed efficiency of the alloca-
tion, profits must be maximized at z = 0. Differentiating the change in profits with respect
to z and evaluating at zero gives kt0 = E[kt1 ], and because k/c is constant by the above
homogeneity argument, this gives ct0 = E[ct1 ], which is the inverse Euler equation.

However, there are two potential problems with the above homogeneity and perturbation
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arguments. First, the principal’s problem may fail to be finite-valued. For example, if ϕ = 0

and (Π− ρ− τI)ω > 1, then the payoff from (ct, kt) = (ut, ωut) is increasing and convex in
promised utility, and so the principal could obtain arbitrarily high profits by offering the
entrepreneur a lottery over contracts.11 Second, even if the value function were finite, if
the no-absconding constraint holds with equality, then the above perturbed allocation will
not be incentive compatible for z > 0. Propositions 2.1 and 2.2 show that both of these
potential problems do not arise when the excess return on capital is sufficiently small.

I now provide some intuition for the characterization of the optimal contract, leaving
formal justification for the following to Appendix A.1. Standard arguments ensure that
incentive-compatibility is equivalent to the requirement that utility follow a diffusion process
with volatility weakly exceeding the benefit of diverting output. Corollary A.2 shows that
it is without loss of generality to assume that

dut = ρ
(
− ln ct + x2t /2

)
utdt+

√
ρxtutdBt (3)

where xt :=
√
ρϕσkt/ct and ct := ct/ut. To understand the intuition behind the above

law of motion, note that the elasticity of utility with respect to output is the product of
the marginal utility of consumption with the additional consumption per unit of diversion.
The problem of a principal who must choose consumption growth smaller than the rate of
discount is

v = sup
c,x≥0,xc≤ω

− ln c+x2/2<1

(Sx− 1)c

ρ(1 + ln c− x2/2)
(4)

where ω =
√
ρϕσ/(ρι) and

S :=
Π− ρ− τI√

ρϕσ
. (5)

I write the problem in this manner because doing so shows that the choices of the principal
depend only on the parameters S and ω. I will write the efficient levels of consumption
and consumption volatility as c(S, ω) and √

ρx(S, ω), respectively, wherever these are well-
defined. Note that the maximand on the right-hand side of (4) is the flow payoff to the
principal divided by the difference between the discount rate and the mean growth of
consumption, and so the resulting expression is simply an instance of the Gordon growth
formula. However, this maximization is subtle because the maximand is not concave in
the choice variables. To avoid an arbitrage opportunity, this maximand must obviously be

11Indeed, in Di Tella and Sannikov [2021], the value function is not finite-valued for any ϕ ∈ [0, 1] when
utility is logarithmic, and so the no-absconding constraint is crucial even if it does not hold with equality.
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negative at all points in the constraint set. The following shows that this is assured, and
that the principal’s problem is finite-valued, provided that the excess return on capital is
sufficiently small. A proof may be found in Appendix A.2.

Proposition 2.1. For any ω, there exists S(ω) such that the principal’s problem is finite-
valued if S < S(ω), in which case it is v(u) = vu for all u > 0, where v is given in (4).
Further, x(S, ω) is increasing in S on the interval [0, S(ω)).

The principal’s problem reduces to making just two choices wherever it is finite-valued,
and so consumption satisfies dct/ct = µcdt + σcdBt for some constants µc and σc. This
implies that the no-absconding constraint either never holds with equality or holds with
equality after every history. When it holds as a strict inequality, the above perturbation ar-
gument is applicable and consumption is a martingale. In contrast, when the no-absconding
constraint holds with equality, the principal wishes to backload utility in order to relax the
future no-absconding constraints, and therefore introduces an upward drift in consumption.
The following shows that the no-absconding constraint will be strict whenever the excess
return on capital is sufficiently small. The proof is contained in Appendix A.2.

Proposition 2.2. For each ω > 0 there exists Sloc(ω) > 0 such that the no-absconding
constraint holds as a strict inequality if and only if S ∈ [0, Sloc(ω)].

Section 4 shows how a class of stationary efficient allocations may be decentralized in a
general equilibrium model using a particular set of taxes and transfers. Such a characteriza-
tion is necessarily specific to the choice of Pareto weights attached to different generations
and the assumed market structure. To isolate the role of agency frictions independently of
general equilibrium effects, I will first analyze optimal wedges in partial equilibrium. If the
return from continually investing in an asset over the interval [t, t+∆] is R = Rt,t+∆, then
intertemporal optimization implies u′(ct) = e−ρ∆E[Ru′(ct+∆)|Ft]. The following notion
measures the extent to which this optimization fails for an arbitrary return.

Definition 2.4. Given a consumption process (ct)t≥0 and asset A with return (RA
t )t≥0 the

associated wedge νA is defined by u′(c0) = e−ρtE[e−νAtRA
t u

′(ct)].

Denote by νK and νB the wedges associated with capital and the bond, respectively, and
note that the associated log returns are lnRK

t =
(
Π− τI − σ2/2

)
t + σBt and lnRB

t = ρt.
These wedges represent the extent to which the presence of private information forces the
technological returns on each asset to differ from the returns accruing to the entrepreneur.
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When the no-absconding constraint is satisfied as a strict inequality, we have the following
sharp characterization, the proof of which is contained in Appendix A.

Lemma 2.3. If the no-absconding inequality is strict then the wedge on risky capital is
νK = Π − ρ − τI + ρx(S, ω)2 −√

ρσx(S, ω) and the wedge on the bond is νB = ρx(S, ω)2.
Further, the wedge on the bond is always non-negative and the difference νB − νK is both
non-negative and increasing in Π.

Lemma 2.3 shows that it is always efficient to distort the return on the entrepreneur’s
saving below the risk-free rate, and that the magnitude of this distortion is an increasing
function of S. In contrast, the sign of the wedge on the risky asset is in general ambiguous.
However, although the wedge of the risky asset cannot be signed, it is always lower than the
wedge on the bond and the difference is increasing in the marginal product of capital. This
last observation will be important for the discussion of the optimal policy in the presence
of heterogeneous entrepreneurs given in Section 5.

Before turning to the environment with a continuum of entrepreneurs and an endogenous
productivity of capital, it is useful to summarize the key insights that emerge from this
partial equilibrium setting. First, whenever the principal’s problem is finite-valued, the
optimal contract takes a simple form and the growth of the entrepreneur’s consumption
exhibits constant mean and volatility. Second, the no-absconding constraint may or may
not hold with equality in the optimal contract, and further, it either binds after every
history, or never binds. Third, the risk borne by the entrepreneur is an increasing function
of the ratio S of the excess return on capital to the severity of the agency frictions. The
primary task of the next section is to explain how these agency frictions determine the
marginal product of capital when some agents (workers) work for others (entrepreneurs)
and output is a constant-returns-to-scale function of capital and labor. Intuitively, when
agency frictions are small relative to this excess return, the principal wishes to delegate
more capital to the agent, which tends to increase the capital stock and therefore reduce
the marginal product of capital. The net effect of these two forces on the key parameter S
is therefore ambiguous, and requires a general equilibrium analysis.

3 Stationary efficient allocations

Section 2 characterized the efficient contract between a risk-averse agent and a risk-neutral
principal given an exogenous interest rate and productivity. This section uses the above
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to characterize a particular stationary efficient allocation in a production economy with a
continuum of entrepreneurs and workers. Time is again continuous and extends indefinitely.
At any moment there is a unit mass of agents who discount at rate ρS , die at rate ρD and
are endowed with L units of labor. All agents have preferences represented by

U(c) := E
[
ρ

∫ ∞

0
e−ρt ln ctdt

]
where ρ := ρS +ρD. Agents may either run a firm or work for someone else. However, only
a fraction 1 − ψ ∈ [0, 1] of each generation, termed entrepreneurs, is capable of running
a firm, with the remaining fraction, termed workers, only able to work for someone else.
I follow Angeletos [2007] and assume that these activities are not mutually exclusive and
that entrepreneurs may perform both simultaneously. Whether an agent is an entrepreneur
or a worker will be private information and will be referred to as their type and indexed
by i ∈ {E,W}. Entrepreneurs have access to a risky production technology that produces
consumption using physical capital and labor. As in Section 2, an entrepreneur may abscond
with a fraction ι of her capital and after doing so trade only a risk-free bond with return
ρ, and she may also divert a flow of capital, with each unit diverted yielding ϕ ∈ [0, 1]

units of consumption. If capital and labor are assigned to an entrepreneur according to
the processes (kt, lt)t≥0 and the entrepreneur adheres to the diversion strategy (st)t≥0 then
output satisfies

dYt =
(
Akαt l

1−α
t − δkt − stkt

)
dt+ σktdBt,

where B := (Bt)t≥0 is a standard Brownian motion, A > 0 and α ∈ (0, 1) are exogenous
constants and δ is the depreciation rate. Since the production function is constant-returns-
to-scale in labor and capital, for a given wage the problem of the planner when facing an
individual entrepreneur is isomorphic to the principal-agent problem of Section 2.

However, in contrast with Section 2, an allocation is now indexed by an initial distri-
bution Φ over promised utility and types, and must specify the consumption, capital and
labor delegated to an entrepreneur as a function of initial utility or date of birth, type, and
the history of her output. Since agents supply labor inelastically, I will omit labor supply
from the definition and will also assume without loss of generality that the planner never
recommends an entrepreneur divert a positive amount of capital. In the following, (kv,it , lv,it )

and (kT,it , lT,it ) refer to the capital and labor assigned to a given type, where for agents not
alive at the initial date, the superscript indicates their birth date.
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Definition 3.1. Given a distribution Φ over utility and types, an allocation consists of se-
quences (cv,it , kv,it , lv,it )t≥0, (v, i) ∈ supp(Φ) for the initial generation and (cT,it , kT,it , lT,it )t≥T≥0,
i = E,W , for subsequent generations. An allocation satisfies promise-keeping if U(cv,i) = v

for all (v, i) ∈ supp(Φ), and is incentive compatible if U(cT,E) ≥ U(cT,W ) for all T ≥ 0 and
the allocations to entrepreneurs satisfy the incentive-compatibility conditions in Section 2.

The planner need not worry about double deviations (in which the agent misreports
type and then diverts output), since workers cannot pretend to be entrepreneurs and en-
trepreneurs who pretend to be workers are not entrusted with any capital and so thereafter
have no private information. Denote by Ct(A),Kt(A), Yt(A) and Lt(A) aggregate consump-
tion, capital, output, and labor assigned at t in allocation A.12

Definition 3.2. An allocation A is resource feasible given capital stock K if K0(A) = K,
Ct(A) + K̇t(A) ≤ Yt(A) and Lt(A) ≤ L for all t ≥ 0, and is incentive feasible if it is both
resource feasible and incentive compatible. The set of all incentive feasible allocations will
be denoted AIF (Φ,K).

I will assume that the planner cares only about workers and values the utility of a worker
at any date the same regardless of their date of birth, which amounts to placing weight e−ρST

on the T th generation. The fact that the planner only values the utility of workers simplifies
the analysis because it means that the planner just gives the entrepreneurs the least level
of utility necessary to reveal their type. I also restrict attention to efficient allocations in
which cross-sectional distributions are constant over time. The method by which this is
achieved is similar to that followed in Farhi and Werning [2007] and so details are relegated
to Appendix B.2. Essentially, one first relaxes the problem of the planner by considering
the allocation he or she would choose if he or she could trade at the subjective rate of
discount. In this way, the law of motion of aggregate capital is replaced with constraints
on the present value of resources, and the problem decomposes into many problems, all
identical in form to the principal-agent problem given in Definition 2.3. If for some initial
utility distribution and capital stock the planner would not wish to trade, then this present
value constraint implies that the resource constraint is satisfied every period.

Relative to the partial equilibrium setting in Section 2, the resource constraints and
the presence of a continuum of agents affect the analysis in two ways. The production
technology and the stock of labor jointly determine the marginal product of capital, while

12Formal definitions are in Appendix B.1.
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the presence of the Pareto weight on future generations leads the planner to behave as
if he or she faced a subsidy on capital. The problem of the planner facing a newborn is
identical to the problem of the principal in Section 2 in which τI = −ρD and the marginal
product of capital is endogenous. This marginal product of capital Π = αA(K/L)α−1 − δ,
or equivalently, the ratio S = (Π− ρS)/(

√
ρϕσ), must in turn vary until the goods resource

constraint holds. One technical subtlety is that such an S might fail to exist, since aggregate
consumption and capital will diverge if the growth in utility exceeds the rate of death. In
this paper I simply rule this possibility out by making the following assumption, where
µc(S, ω) is the efficient level of mean consumption growth given S and ω.

Assumption 3.1. The equation

(1− ψ)C(S) + ψ = (S
√
ρϕσ/α+ ρS/α+ (1/α− 1)δ)(1− ψ)K(S) (6)

has a solution Ŝ satisfying µc(Ŝ, ω) < ρD, where C(S) and K(S) are the aggregate amount of
consumption and capital delegated to entrepreneurs per unit of initial utility in the stationary
distribution, for a given S.

The explicit expressions for C(S) and K(S) are not important for what follows and so
are relegated to Appendix B.3. The following characterizes the stationary efficient allocation
for the above welfare notion and parameters.

Proposition 3.1. A solution to equation (6) is unique whenever Assumption 3.1 is satis-
fied. In this case, an efficient stationary allocation exists in which the marginal product of
capital is Π̂ = ρS + Ŝ

√
ρϕσ and the capital stock is K̂ = (αA/(Π̂ + δ))

1
1−αL.

The proof of Proposition 3.1 essentially amounts to rearranging the goods resource
constraint and is contained in Appendix B.3. Note that when the no-absconding constraint
holds as a strict inequality, the resource constraint simplifies because the drift in the utility
of entrepreneurs vanishes. Proposition 3.2 below shows that this will be true when agency
frictions are sufficiently small in the following sense. When the agency frictions are varied,
the parameters governing the diversion and absconding constraints will be assumed to be
in fixed proportions to one another, so that ι = ϕι for some ι ∈ (0, 1] and all ϕ ∈ [0, 1].
Throughout this paper, all comparative statics with respect to ϕ will fix ι in this manner,
so that the full information environment corresponds to the limit ϕ→ 0.

Proposition 3.2. Assumption 3.1 is satisfied for all sufficiently small agency frictions.
The solution Ŝ is increasing in ϕ wherever it is well-defined and tends to zero as ϕ → 0,
and so the no-absconding constraint holds as a strict inequality for all sufficiently small ϕ.
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Proof. Notice that the parameter ω :=
√
ρϕσ/(ρι) remains fixed as we vary the agency

frictions in the above manner. Rearranging the resource constraint (6) then gives

α
√
ρσ(ψ/C(S) + 1− ψ) = ((ρS + (1− α)δ)/ϕ+ S

√
ρσ)(1− ψ)x(S, ω).

Both claims in the proposition are then immediate, because the right-hand side is decreasing
in ϕ and diverges as ϕ→ 0.

Proposition 3.2 is noteworthy because the comparative statics in the general equilibrium
environment are the exact opposite of those that obtain in the partial equilibrium setting
of Section 2. When the marginal product of capital is fixed as in Section 2, the parameter
S governing the risk borne by the agent mechanically increases as ϕ falls. However, in
the infinite-horizon setting with an aggregate production technology, a reduction in agency
frictions increases the incentive to delegate capital to the agent, which tends to increase the
capital stock and therefore reduces the marginal product of capital. Proposition 3.2 shows
that the latter force always overwhelms the partial equilibrium effect, so that the risk borne
by agents is increasing in agency frictions.

The simplicity of the characterization given in Proposition 3.1 is due partly to the
preferences being homothetic and partly to the adoption of a welfare criterion that weights
the flow utility of an agent the same independently of her birth date. As emphasized in the
partial equilibrium setting of Section 2, the homotheticity of preferences and the fact that
technology exhibits constant-returns-to-scale imply that consumption and capital are linear
in normalized utility. This permits aggregation over both entrepreneurs and workers and
leads to the simple form of the resource constraint given above. Also note that the welfare
notion I adopt differs from many other papers in the literature on dynamic contracting with
private information, such as Atkeson and Lucas [1992] or Phelan [1994], who also consider
component planner problems similar to the above generational planner’s problems, but
either assume zero discounting or place weight solely on the first generation. In the latter
case this requires solving a component planning problem for a given interest rate that is
then varied until resources are balanced. In contrast, with the welfare criterion of this
paper, the only price for which stationarity may arise is the subjective discount rate of the
agents, as all other prices induce a trend in consumption across generations.

When the no-absconding constraint does not hold with equality, the stationary alloca-
tion is completely characterized by the initial levels of consumption for both workers and
entrepreneurs and the volatility of entrepreneurs’ consumption. The partial equilibrium
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analysis of Section 2 illustrates that in this case, the volatility of consumption growth must
lie between 0 and √

ρ. It is natural to then ask whether every value for volatility possible
in the partial equilibrium setting can arise in the general equilibrium setting or whether
some other stricter upper bound obtains. This will be relevant when discussing the range
of taxes possible in the decentralization of Section 4. Substituting S = 1/2 into (6) and
assuming the no-absconding constraint does not hold with equality, we obtain

α
√
ρϕσ(1− ψ + ψe−1/2) = (ρS +

√
ρϕσ/2 + (1− α)δ)(1− ψ). (7)

Using Lemma A.4, if ω = e1/2 and the general equilibrium parameters solve (7), then the
no-absconding constraint is satisfied and x̂ = 1.

Before turning to the decentralization it is useful to summarize the main points of the
above characterization. The efficient allocation is completely described by the following
requirements: all newborns attain the same level of utility, workers have zero drift in con-
sumption, entrepreneurs have drift µc(Ŝ, ω) in consumption, the volatility of entrepreneurs’
consumption is √ρx(Ŝ, ω), and the capital stock is given by Proposition 3.1. The next sec-
tion characterizes the taxes and intergenerational transfers that ensure that these properties
arise in a stationary competitive equilibrium with collateral constraints.

4 Decentralization

Section 3 characterized a stationary efficient allocation, with the distribution of resources
conducted by a social planner executing the direct mechanism. To address the questions
posed in the introduction, I now consider how this allocation may be implemented with
taxes and transfers when agents trade in decentralized markets. Such an analysis necessarily
depends on the degree of risk-sharing in the private sector. At one extreme, if agents can
write optimal long-term contracts with a competitive sector of intermediaries, the role
of the government is relegated to distributing wealth across generations and types. This
follows from arguments similar to those in Atkeson and Lucas [1992], as the problem of
an intermediary minimizing the cost of delivering utility is the dual of the problem of a
planner maximizing utility subject to resource constraints. If intermediary profits are zero,
then the decentralized allocation corresponds to those of a planner who exactly exhausts
all resources. Policy only calls for transfers to newborns and requires no taxes on agents
during their lifetime. However, the assumption of such a sector is quite strong, as it may
be too costly for business owners to find counterparties for such contracts or they may
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value the privacy of their finances and direct control of their business. A government may
therefore wish to provide social insurance using some combination of taxes and transfers.
In accordance with optimal taxation analyses with unobservable labor productivity, I first
consider a market structure in which agents trade only a risk-free bond in zero net supply.

In this analysis it is essential that both the market structure and the choices of taxes
and transfers by the government respect the informational asymmetries inherent in the
environment. I will assume that the planner may transfer wealth lump-sum to newborn
agents and levy constant linear taxes on savings and labor income, and that these choices
may depend upon whether or not the agent chooses to become a worker or an entrepreneur.
Since types are private information, these transfers and taxes must be chosen so that the
utility of entrepreneurs weakly exceeds that of workers. Entrepreneurs rent capital on behalf
of their businesses at the risk-free rate and pay taxes on their firms’ output net of payments
to labor, interest payments and reported depreciation (profits). I emphasize that since
entrepreneurs may divert a fraction of capital to consumption, this tax is levied on reported
profits, inclusive of any output diverted. Further, since the entrepreneurs may abscond with
a fraction of the capital stock, capital will be subject to a collateral constraint, in which the
amount rented by an entrepreneur cannot exceed a multiple of her wealth. The equilibrium
notion will then impose the requirement that this constraint is the least restrictive value
such that no individual ever wishes to abscond with her borrowed capital. Finally, all agents
may contract with risk-neutral insurance companies to insure against longevity risks. Such
longevity risks are common knowledge and unaffected by behavior, and so it seems natural
to assume that they may be insured away.

The main result is that for this market structure the stationary constrained efficient
allocation may be implemented using the above instruments. Further, the taxes on savings
and profits play distinct roles and depend on different economic forces. The tax on profits
provides risk-sharing, while the tax on savings is chosen to ensure that the degree of con-
sumption smoothing coincides with the efficient level. The tax on profits depends only on
the misreporting friction, while the tax on savings will depend upon general equilibrium
effects governing the response of the real interest rate to incomplete markets.

For each type i ∈ {E,W}, I will write ηi for the fraction of aggregate capital received
at birth, and τsi and τLi for the taxes on savings and labor income, respectively. All agents
may borrow up to the natural borrowing limit, and so the absence of labor income risk
implies that the relevant state variable is total wealth, the sum of bond holdings and the
present discounted after-tax value of labor income. As a fraction of the aggregate capital
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stock, the initial total wealth per unit of aggregate capital of an agent of type i is denoted
κi = ηi + hi, where hi is human wealth and given by

hi =
(1− τLi)wL/K

(1− τsi)(r + ρD)
.

Labor is inelastically supplied and agents can borrow up to their natural debt limit, and
so taxes on labor income are equivalent to lump-sum transfers. For this reason, the de-
centralization that follows will be stated in terms of κi rather than ηi, because there is
indeterminacy in the choices of ηi and τLi. For brevity I will also write ri = (1−τsi)(r+ρD)
for the after-tax return on savings of type i.

Definition 4.1. Given the wage w, marginal product of capital Π, risk-free rate r and
collateral constraint ω̂, the problem of an entrepreneur with assets a and human wealth hE
facing taxes τsE and τΠ is

VE(a) = max
(ct,kt,st)t≥0

E
[
ρ

∫ ∞

0
e−ρt ln(ct + ϕstkt)dt

]
dat = [rEat − ct + (1− τLE)wL]dt+ (1− τΠ)ktdR(st)t

kt ≤ ω̂(at + hE)

0 ≤ at + hE

where dR(st)t = (Π− r − st)dt+ σdBt. The problem of a worker with assets a and human
wealth hW facing taxes τsW is

VW (a) = max
(ct)t≥0

E
[
ρ

∫ ∞

0
e−ρt ln ctdt

]
dat = [rWat − ct + (1− τLW )wL]dt

0 ≤ at + hW .

Although it is of a standard form, several aspects of the entrepreneur’s problem in
Definition 4.1 are worth emphasizing. First, since the net return on investment in the
business dRt may be negative, the above formulation embodies the assumption that the
agent receives a tax offset if her firm sustains losses. Second, the return on the entrepreneur’s
savings is rE but the borrowing cost of the firm is r, which captures the fact that τΠ is
a tax on firm profits and not firm revenue, because interest, wages and depreciation are
subtracted prior to the imposition of the tax. In particular, it is assumed that the owner
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pays herself a wage equal to the marginal product of her labor. Third, the tax on profits
provides risk-sharing between the government and the entrepreneur. To see this, note that
the flow of tax revenue from an entrepreneur’s firm is τΠ(Π−r)ktdt+τΠktσdZt, and so with
a positive profits tax, the government receives a fraction τΠ of the shock ktσdZt to capital,
with only the remainder 1− τΠ passing through to the entrepreneur. Stealing affects only
the mean return on investment, and so the optimal strategy of the agent is independent of
wealth and investment and solves

max
s∈[0,s]

ϕs+ (1− τΠ)(Π− r − s).

The agent will choose s = 0 if and only if τΠ ≤ 1− ϕ. Under this assumption, the problem
of the entrepreneur admits a simple characterization.

Lemma 4.1. The entrepreneur will choose not to divert capital if and only if τΠ ≤ 1− ϕ,
in which case her value function is VE(a) = ln ρ+ ln (a+ hE) + ρ−1

(
µa − σ2a/2

)
, where

µa = rE − ρ+ (1− τΠ)(Π− r)k̂ σa = (1− τΠ)σk̂ (8)

and the constant k̂ is given by

k̂ = min

{
Π− r

σ2(1− τΠ)
, ω̂

}
.

The policy function for consumption is c(a) = ρ(a+ hE) and the policy function for capital
is k(a) = k̂(a+ hE).

Proof. See Appendix C.2.

In Definition 4.1 the parameter ω̂ is an arbitrary constant. Since the presence of the
collateral constraint is motivated by the no-absconding constraint, in what follows ω̂ will
be taken to be the largest value such that the agent will never wish to abscond. This is
equivalent to ln(ριk̂(a+ hE)) ≤ VE(a), which by Lemma 4.1 simplifies to

ω̂ = ι−1e(µa−σ2
a/2)/ρ. (9)

The collateral constraint depends on tax policy because this affects the utility from not
absconding. The following is the notion of equilibrium I that adopt in this paper.
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Definition 4.2. Given taxes τsi, τLi and τΠ and transfers ηi for i ∈ {E,W}, a stationary
competitive equilibrium consists of a capital stock K, wage w, risk-free rate r, and collateral
parameter ω̂, such that agents solve the problems in Definition 4.1, markets for labor, capital,
and goods clear, the government budget constraint is satisfied, the utility of entrepreneurs
weakly exceeds that of workers, and ω̂ satisfies (9).

The following is the main result of this paper. It shows that whenever the stationary
efficient allocation characterized in Section 3 exists, it may be implemented with linear
taxes on savings and profits, together with transfers to newborn agents. For brevity of
notation, I write x̂ = x(Ŝ, ω) and µ̂c = µc(Ŝ, ω), where Ŝ is the solution to equation (6).

Proposition 4.2. Under Assumption 3.1, the stationary efficient allocation can be imple-
mented as a competitive equilibrium with linear taxes on savings and profits. The interest
rate is r = Π̂−√

ρσx̂, the tax on profits is τΠ = 1− ϕ, and the taxes on savings satisfy

1− τsE =
ρ(1− x̂2) + µ̂c

r + ρD
1− τsW =

ρ

r + ρD
.

The endowed wealth of entrepreneurs and workers as a fraction of the capital stock is

κE =
ϕσ(ρD − µ̂c)√
ρx̂(1− ψ)ρD

κW = κE max{e−x̂2/2, x̂/ω}

and the constant in the collateral constraint is ω̂ = ι−1eµ̂c/ρ−x̂2/2.

The proof of Proposition 4.2 is contained in Appendix C.2. Although the expressions
for transfers are complicated, the logic behind the proof is simple. From Lemma 4.1, the
risk borne by the agent when τΠ = 1 − ϕ and the collateral constraint does not bind is
(Π − r)/(ϕσ), which will equal the efficient value √

ρx̂ if and only if the interest rate is
given by the above expression. The transfers to entrepreneurs and workers are then chosen
so that the bond market clears at this value. The after-tax return on workers’ savings is
equal to the discount rate because they possess no private information. The entrepreneur
earns a return of ρx̂2 on their business and so the mean growth of their consumption is
rE − ρ+ ρx̂2, which equals the efficient level µ̂c for the above taxes.

Also note that government policy is still necessary when agency frictions vanish, because
the direct weight placed on future generations leads to intergenerational transfers. There
is some indeterminacy here because lump-sum transfers have the same effect as taxes on
labor when the latter is inelastically supplied. If taxes on labor vanish, then the goods
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resource constraint gives κE ≈ (ρS/α+(1/α− 1)δ)/ρ and the wealth inherited by agents is
κEK−wL/ρ ≈ ρSK/ρ. Proposition 3.1 shows that Ŝ ≈ x̂ ≈ 0, and so the savings taxes are
approximately zero and the risk-free rate is approximately equal to the subjective discount
rate. The tax on profits remains 1−ϕ but the revenue collected is negligible because profits
approach zero. Tax revenue therefore vanishes and the government owns a fraction ρD/ρ

of the capital stock, the interest on which is transferred to newborns.
Notice that when the no-absconding constraint holds as a strict inequality, the expres-

sions in Proposition 4.2 imply rE − rW = −ρx̂2 < 0. Consequently, although all agents
face constant type-dependent linear taxes, in some qualified sense the model of this paper
implies progressivity of savings taxes, as entrepreneurs (who are typically wealthier) will
earn a lower return on their savings than workers.13

Finally, Lemma 2.3 shows that in the partial equilibrium setting, the principal always
wishes to distort the agent’s return on savings below the risk-free rate available to the
principal. However, Proposition 4.2 shows that the risk-free rate is below the subjective
rate of time preference, and so it is not clear whether the tax on entrepreneurs’ savings is
positive or negative. Indeed, as the following shows, both possibilities can occur. The proof
may be found in Appendix C.2.

Lemma 4.3. For any σ > 0 the savings tax on entrepreneurs is negative for all sufficiently
small ϕ. However, for ϕ = 1 the savings tax is positive for σ < √

ρ when the no-absconding
constraint does not hold with equality.

5 Discussion and robustness

The proof of Proposition 4.2 amounts to ensuring that the capital stock, initial consumption
and the mean and volatility of consumption growth in the competitive equilibrium coincide
with their counterparts in the efficient allocation. I now discuss its robustness to various
extensions and also provide some intuition for the role played by each instrument.

Mechanism design and the primal approach. First, it is worth emphasizing that
the mechanism design approach adopted above simplifies the characterization of the optimal
taxes. This may appear counterintuitive, because modeling incentive constraints necessi-
tates the analysis of a dynamic agency problem seemingly unrelated to the incomplete

13Note that for some parameters the pre-tax return on saving r + ρD might be negative, in which case
we have τsE < τsW and an increase in the “taxes” increases the return on savings.

23



markets model of Section 4. However, proceeding in this way eliminates the need to un-
derstand how competitive equilibria vary with taxes. The government can never do better
than the efficient allocation, and so the task of Proposition 4.2 is simply to show that the
efficient allocation can be implemented with taxes and transfers, which amounts to solving
a system of simultaneous equations. If taxes and transfers were the objects of choice in the
planner’s problem, then the analysis would be more complicated because the interest rate,
capital stock and the constant in the collateral constraint are only defined in terms of the
solutions to market clearing equations. A change in any instrument will have non-obvious
effects on all of these objects, but this is irrelevant to the proof of Proposition 4.2.

This reasoning is reminiscent of the primal approach employed in the literature on
optimal linear taxation in representative agent economies.14 Recall that here one rearranges
the first-order conditions of the consumer’s problem to eliminate prices from the budget
constraint and thereby obtain what is termed an “implementability constraint.” One can
then reverse this procedure and show that any allocation that is resource feasible and
satisfies the implementability condition can be supported as a competitive equilibrium.
In this way, there is no need to understand exactly how competitive equilibria vary with
taxes, and the planner’s problem becomes a standard programming problem. The analogy
with the approach of this paper is far from exact, but in both cases one uses the optimality
conditions that obtain in competitive equilibria (here these conditions imply constant mean
and volatility of consumption growth) and then chooses among allocations directly.

The role of the profits tax. The fact that a change in one instrument will, in general,
affect all equilibrium quantities makes it difficult to assign a unique role to the profits tax.
However, we can gain some intuition by varying the profits tax while other instruments are
held fixed at arbitrary values. The entrepreneur will choose not to divert output if and
only if τΠ ≤ 1− ϕ, and so the choice τΠ = 1− ϕ ensures that risk-sharing is at the highest
degree possible given the agency problem. However, the effect of the profits tax on the risk
borne by the entrepreneurs is subtle and depends upon general equilibrium forces.

Lemma 4.1 shows that investment is increasing in the profits tax whenever the collateral
constraint does not bind. This follows from the constant returns in production and the
symmetric treatment of profits and losses, and illustrates an effect first highlighted in Domar
and Musgrave [1944]. By levying the profits tax, the government essentially becomes a
partner in the business, receiving a constant share of both profits and losses. In partial
equilibrium, the tax does not affect the risk borne by the entrepreneur or her after-tax

14See, e.g., Chari and Kehoe [1999].
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return on wealth unless the collateral constraint binds, because the entrepreneur simply
increases her leverage. Boadway and Spiritus [2021] make a similar observation in a two-
period model with exogenous returns on risky assets, and conclude that such a tax serves no
redistributive role. However, in the current paper the excess return on capital is endogenous
and there is an additional general equilibrium effect. To see this, note that if the savings
taxes are chosen so that the inverse Euler equation holds and the collateral constraints
do not bind, then the bond market clearing condition becomes K = (1 − ψ)κEKk̂. The
volatility of consumption growth in the stationary equilibrium is then

(1− τΠ)σk̂ =
(1− τΠ)σ

(1− ψ)κE

which is decreasing in the profits tax. In other words, when the tax on profits is high,
leverage is high, which drives down the excess return on the risky asset and reduces the
risk borne by entrepreneurs in the long run.

Also note that although the profits tax depends solely on the ability of the agent to
divert resources, it is not imposed to discourage such diversion. Indeed, in the absence of
such a tax, the entrepreneur would have no desire to misreport income, since she is the
residual claimant of output and so any misreporting would only lose her money, due to the
presence of the deadweight loss. If the profits tax were below the efficient level, the problem
would not be that entrepreneurs now engage in socially wasteful activities, but that instead
risk-sharing and investment would be too low.

Alternative market structures. In the above I assumed that agents could only trade
a risk-free bond in zero net supply. There are at least two directions in which this assump-
tion could be relaxed. First, one could allow for the existence of private equity markets, so
that the government’s fiscal policy is not the only source of risk-sharing. Indeed, although
Smith et al. [2019] show that business ownership is highly concentrated, the assumption
in the benchmark decentralization that every firm is owned by a single individual is unre-
alistic. When entrepreneurs can issue equity, the allocations without taxes now coincide
with the environment of Di Tella [2017], who shows that when entrepreneurs can write
short-term contracts with a competitive sector of risk-neutral intermediaries, the sole effect
of the contracting is to reduce their exposure to their firm’s output by the factor of ϕ. This
is the lowest level consistent with incentive-compatibility, and so the private contracting
plays the same risk-sharing role as the profits tax in Section 4, which is now redundant. If
the intermediary sector is competitive, it makes no profits and so the mean excess return
on capital is Π̂− r and the problem of the entrepreneur is identical to that in Definition 4.1
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with τΠ = 0 and σ replaced with ϕσ. Reasoning identical to Proposition 4.2 implies that
the real interest rate in the optimal allocation is now r = Π̂−√

ρϕσx̂, while the expressions
for the savings taxes in terms of this interest rate remain unchanged.

As a second alternative to the benchmark market structure, we could allow the risk-
free asset to be a government bond with exogenous return. For instance, suppose that the
government allowed agents to borrow and lend at the pre-tax value r = ρS . Now there would
be no need to tax or subsidize workers’ savings to ensure that their consumption remained
constant, while the tax on entrepreneurs’ savings would have to rise in order to keep their
after-tax return on the bond unchanged. However, if the firm borrowed at r = ρS , then the
risk borne by the owner would be (Π̂−ρS)/σ, which is strictly below √

ρx̂, the efficient level
of consumption risk, and so the entrepreneur would not have sufficient incentives to invest.
To decentralize the efficient allocation, the government must now subsidize the borrowing
of the firm so that its after-tax borrowing costs are Π̂−√

ρσx̂.
Heterogeneous entrepreneurs. The above remarks also help us to understand how

the efficient allocation and taxes must change when entrepreneurs differ in their produc-
tivity and the riskiness of their projects. Incorporating unobservable heterogeneity would
substantially increase the complexity of the analysis and is beyond the scope of this pa-
per, but if such heterogeneity is observable the preceding analysis carries over easily. In
this case, the marginal product of capital will in general differ among entrepreneurs, and
the analogue of the resource constraint in Proposition 3.1 becomes more complicated.15

However, the arguments employed in Proposition 4.2 remain applicable provided that the
government allows taxes on savings and firm borrowing to depend upon productivity and
risk. An entrepreneur with marginal product of capital Π will bear the efficient level of risk
provided that the after-tax cost of her firm’s borrowing is rB = ρS − (νB − νK), where νK

and νB are the wedges defined in Section 2. Lemma 2.3 then implies that rB is decreasing
in Π, and so heterogeneity in productivity provides a force for regressivity, as the planner
wishes to increase the profits of more productive entrepreneurs by subsidizing borrowing.
However, if the collateral constraints do not bind, all entrepreneurs earn the same expected
return on their wealth because consumption is a martingale, and the higher profits of the
more productive entrepreneurs are exactly offset by a lower after-tax return on the bond.
The optimal profits tax remains common to all entrepreneurs at τΠ = 1−ϕ, unless more pro-
ductive entrepreneurs find it easier to misreport and divert output. Finally, the overall tax

15Appendix D.1 provides details of the characterization. For the purpose of this discussion, the point is
simply that projects with different marginal products of capital may be operative in the efficient allocation.
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system is progressive in the sense that the ratio of average total taxes paid (on both interest
and profits) to income is increasing in productivity. If the volatility of consumption growth
of an entrepreneur with marginal product of capital Π is denoted √

ρx(Π), then average
pre-tax business profits and interest income per unit of wealth are ρx(Π)2/ϕ and r + ρD,
respectively, and the associated taxes are (1/ϕ−1)ρx(Π)2 and τs(r+ρD) = r−ρS+ρx(Π)2,
respectively. Total taxes per unit of wealth are then r− ρS + ρx(Π)2/ϕ and so the ratio of
taxes paid to pre-tax income is increasing in productivity.

Relationship to the literature. In light of the simplicity of Proposition 4.2, it is
natural to wonder how it relates to other results in the literature. I now compare the
findings with Albanesi [2006] and Shourideh [2013], who both adopt the mechanism design
approach to study optimal taxation in the presence of multiple sources of capital income.

First, in Albanesi [2006], entrepreneurs incur an additively separable effort cost that
affects the expected return on investment. The amount of capital delegated to the en-
trepreneur does not enter the incentive constraints, unlike in the current paper in which a
high level of capital makes diversion more attractive. Further, Albanesi [2006] considers a
two-period environment with fixed marginal product of capital, which precludes an analysis
of how taxes ought to depend on history or the extent to which taxes and agency frictions
affect the excess return on capital in the long run.

Second, although both Shourideh [2013] and the current paper allow entrepreneurs
to divert capital to consumption, I focus on a decentralization with incomplete markets.
Shourideh [2013] finds that the wedge on the risk-free asset is increasing in productivity
but that the wedge on the risky asset exhibits no such monotonicity, two observations that
echo Lemma 2.3. However, in the decentralization in Section 4, neither of these wedges
corresponds to the profits tax, which serves to partially correct for missing equity markets
and depends only on the agency friction. Further, the above discussion shows that the
efficient borrowing cost depends on the difference between the risky and risk-free wedges.
Although in the efficient allocation more productive entrepreneurs may or may not face
larger wedges on the risky asset, their firms unambiguously face lower borrowing costs.

The mechanism design approach here also allows us to complement recent results in
the Ramsey literature. Panousi and Reis [2012] study optimal capital taxation in an envi-
ronment similar to that in this paper but levy a common tax on all capital income. The
presence of idiosyncratic risk depresses the risk-free rate, and Panousi and Reis [2012] show
that the sign of the optimal long run tax on capital income is ambiguous and depends
upon the strength of this precautionary motive relative to the insurance (or redistributive)
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objective of the government. For low levels of risk, redistributive concerns are minimal
and the tax on capital is negative, while the reverse is true for high levels of risk. In the
current paper, profits and savings may be taxed at different rates, and we have qualitatively
different comparative statics results. There is now no ambiguity in the sign of the profits
tax, which is always non-negative, while Lemma 4.3 shows that when agency frictions are
high, the savings tax is always non-negative for low levels of risk.

6 Numerical examples

The goal of this paper has been to study the optimal taxation of profits and savings in a
model in which the economic forces are as transparent as possible. I now compute some
numerical examples to illustrate the theory, focusing on the benchmark decentralization
given in Section 4. Appendix E computes analogous quantities for the decentralization
with private equity markets discussed in Section 5. I will fix the parameters at

(α, σ, ρS , ρD, δ) = (0.33, 0.2, 0.04, 0.02, 0.06) (10)

and will explore how taxes and equilibrium quantities vary with the severity of the agency
frictions considered in this paper.16 The subjective discount factor ρS , the probability of
death ρD and the depreciation rate δ are all standard, while α and σ are conservatively
chosen to be in the lower end of the range of values typically adopted in the literature.

Figure 1 plots the taxes on savings as a function of the agency friction ϕ for different
levels of the fraction of the population ψ who are workers. In this first example I fix
ι = 1, which generates the tightest possible collateral constraint when agency frictions are
high.17 As expected from Lemma 4.3, both workers and entrepreneurs face negative taxes
on savings for small values of the agency frictions.

16The figures in this section differ from Figure 2 of the 2019 working paper version both due to different
parameter values and the presence of collateral constraints but also to a (now corrected) coding error.

17For context, Cagetti and De Nardi [2006] show that approximately 11.5 percent of households in the
Survey of Consumer Finances are active business owners, which corresponds to the highest value ψ = 0.885.
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Figure 1: Savings taxes with tight collateral constraints (ι = 1.0)
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Figure 2 depicts the expected consumption growth of entrepreneurs and the real interest
rate, and illustrates that the “kinks” in Figure 1 occur at points where the planner begins
to backload consumption in order to relax the no-absconding constraint in the future.
Figure 2 also shows that although the interest rate is always below the subjective discount
rate, it is not monotonic in agency frictions, even in regions of the domain in which the no-
absconding constraint does not bind. Recall that Proposition 4.2 shows that the interest rate
is the difference between the marginal product of capital and the product of the exogenous
volatility with the volatility of consumption growth. Both of these terms are increasing in
agency frictions, and Figure 2 shows that the net effect on the interest rate is in general
ambiguous. Because the tax on workers is simply chosen so that the consumption of workers
is constant, it inherits this lack of monotonicity.

Figure 2: Expected consumption growth and the interest rate
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Figure 3 complements Figure 1 by depicting the taxes on savings under parameters for
which the collateral constraints are as relaxed as possible, which from Lemma A.4 occurs
when ι ≈ 0.5. The taxes are identical to those in Figure 1 for low agency frictions (where
the collateral constraints do not bind), but are much larger for high agency frictions.

Figure 3: Savings taxes with relaxed collateral constraints (ι = 0.5)
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These magnitudes may appear surprising in light of the literature on optimal linear
capital taxation, in which there is typically a zero tax on capital in the long run. Note that
this is not due to extreme choices of α and σ, because they are at the lower end of their
typical ranges and higher values will increase the effect of agency frictions.18 There are
many reasons for the difference, but the most obvious one is that here the capital income
of entrepreneurs is the sum of their savings and the profits of their business, and so a low
return on the risk-free bond does not imply a low total return on capital. For instance, when
(ψ, ϕ) = (0.885, 1), so that the taxes in Figure 3 are at their highest value, the entrepreneurs
consume 6 percent of their wealth per period and earn a return of approximately 5.2 percent
from their business. For relaxed collateral constraints, the after-tax return on the bond must
be approximately 0.8 percent to ensure that consumption is a margingale. For the above
values, the pre-tax return on savings is approximately 3.9 percent, and so this requires a
tax on savings of almost 80 percent.

These calculations illustrate a simple but important point: when the collateral con-
straint doesn’t bind, the (symmetric) tax on profits does not reduce after-tax business

18Further, the optimal taxes on entrepreneurs’ savings are larger in the decentralization with private
equity markets given in Appendix E, because the reduction in the interest rate is smaller. However, in this
alternative decentralization the profits tax is redundant (i.e., optimally set to zero).
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income, and so the optimal tax on interest will grow large as agency frictions rise even
though the expected after-tax return on capital remains equal to the discount rate. When
the excess return on capital is high, the planner simply wants most of the entrepreneur’s
income to assume the form of profits rather than interest, and so the savings tax plays the
entire redistributive role. To see how the presence of risky and risk-free capital income can
affect the above magnitudes, note that the expected pre-tax return on capital is approx-
imately 9.1 percent in the above example. If this income were risk-free and there were a
common tax on capital income, the tax at which consumption is a martingale would be
34 percent, far lower than the above 80 percent. Finally, I emphasize that in the above
allocation, entrepreneurs must receive lump-sum transfers to compensate them for the risk
they bear; otherwise, they would have no incentive to reveal their type and start a firm.

The high sensitivity of taxes to parameters in this environment is why I have computed
a range of examples instead of emphasizing the values that obtain under a benchmark set
of parameters. Smith et al. [2019] show that there exists substantial heterogeneity in re-
turns on private businesses, and there is much we do not know regarding the determinants
of this income. In particular, although business income appears to reflect owner-specific
characteristics, the extent to which these are endogenous to tax policy is not yet clear. I
have therefore emphasized the distinct roles played by each instrument, roles that are less
sensitive to the precise form of the production technology. I interpret the above examples
as providing suggestive evidence that quantitative work ought to allow for the possibility of
levying different taxes on various forms of capital income, both because empirical work indi-
cates that such heterogeneity is quantitatively significant and because its presence provides
a simple additional force for the taxation of savings.

7 Conclusion

The United States tax code currently levies different taxes on interest income and business
profits. This paper has provided a model in which the desirability of this differential taxation
emerges when business owners may divert resources to private consumption and can abscond
with a fraction of assets. I show that whenever a stationary efficient allocation exists, it may
be implemented with lump-sum transfers together with constant, occupation-specific, linear
taxes on profits and savings. The principal findings regarding these taxes and transfers
were as follows. First, the profits tax depends solely on the degree of frictions in financial
markets and is symmetric in the sense that it allows for full offset of losses. It serves only
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to share risk and is redundant when entrepreneurs can issue equity. Second, when the
collateral constraint does not bind, entrepreneurs face lower after-tax returns on savings
than workers, and so the model generates progressive savings taxes in a qualified sense.
Third, the rate at which businesses borrow must fall below the complete markets value
in order to provide entrepreneurs with the incentive to invest at the efficient level. When
agents trade a bond in zero net supply, this is achieved via a reduction in the real interest
rate, which necessitates a subsidy on workers’ savings. Finally, when the model is extended
to allow for heterogeneous entrepreneurs, the optimal profits tax remains common to all
agents, the savings tax rises with productivity, and the investment of more productive
entrepreneurs must be subsidized.
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A Agency problem

A.1 Incentive compatibility

The characterization of incentive-compatibility adopted in Section 2 follows from the arguments
employed in the online appendix to Di Tella [2019]. However, because the situation in the current
paper is not quite a special case of Di Tella [2019], I will spell out some additional details.

Given an elasticity of intertemporal substitution ψ and risk aversion parameter γ, Di Tella
[2019] considers an intermediary (analogous to what I have termed an entrepreneur) subject to a
cash diversion problem as in the current paper but without the no-absconding constraint, with the
utility process (Ut)t≥0 from consumption (ct)t≥0 satisfying

Ut := Et
[∫ ∞

t

f(cs, Us)ds

]
(11)

where the Epstein-Zin aggregator is defined by

f(c, U) :=
ρ

1− 1/ψ

(
c1−1/ψ

[(1− γ)U ]
γ−1/ψ
1−γ

− (1− γ)U

)
. (12)

CRRA utility corresponds to ψ = 1/γ and logarithmic utility arises as γ, ψ → 1. For the CRRA case
we have f(c, U) := ρ

(
c1−γ/(1− γ)− U

)
and for the logarithmic case we have f(c, U) := ρ(ln c− U).

Lemma A.1. For any allocation (k, c), the law of motion for promised utility admits the rep-
resentation dWt = ρ(Wt − ln ct)dt + σ̃W,tdBt for some process σ̃W,t. The allocation is incentive
compatible if and only if

0 ∈ argmax
s≥0

ρ ln(ct + ϕkts)− sσ̃W,t/σ − ρ ln ct (13)

almost surely for all t ≥ 0, and so when characterizing efficient allocations there is no loss in
assuming that utility evolves according to

dWt = ρ(Wt − ln ct)dt+ ρϕσ(kt/ct)dBt. (14)
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Proof. This follows from Lemma 1 and the proof of Lemma 2 in the appendix to Di Tella [2019].
Note that although the literal statement of Lemma 2 does not apply to logarithmic utility, the
proof does in fact extend to this case, and indeed to all CRRA utility functions, because the only
point in the proof at which properties of the aggregator in (12) are relevant is for the existence of
a constant κ such that f(c, y)− f(c, x) ≤ κ(y− x) for any c and all y ≥ x. For general Epstein-Zin
preferences, this requires some restrictions on parameters, such as those imposed in the statement
of Lemma 2, but for the case of CRRA utility, we have f(c, y)− f(c, x) = ρ(−y+ x) ≤ 0 for y ≥ x,
and so this holds automatically.

Using Ito’s Lemma we have the following law of motion for utility in consumption units.

Corollary A.2. When characterizing efficient allocations, there is no loss in assuming that utility
in consumption units evolves according to the diffusion process

dut = ρ

(
− ln(ct/ut) +

1

2
(
√
ρϕσkt/ct)

2

)
utdt+ (ρϕσkt/ct)utdBt.

A.2 Characterization of value function

To prepare for the following proofs I will introduce some additional notation. I will define x and x
to be the solutions to xex

2/2 = ω and xex
2
/2−1 = ω, respectively. Note that x is the maximum x

for which the no-absconding constraint holds, under the assumption of the inverse Euler equation
holding, and x is the maximum x for which consumption growth is smaller than the rate of discount
when the no-absconding constraint holds with equality.

Also note that when the no-absconding constraint does not hold with equality, consumption
is a martingale and satisfies c = ex

2/2. For this choice of consumption, the maximand in (4) is
ρ−1(Sx− 1)ex

2/2 and has local maximum

xloc(S) :=
1−

√
1− 4S2

2S
(15)

if S < 1/2. Recall that Proposition 2.1 asserts that the problem of the principal is finite-valued
for all sufficiently small S. The technical conditions defining “sufficiently small” are the following,
where v ≡ v(S, ω) is defined in (4).

Assumption A.1. Sx < 1.

Assumption A.2. Sω + ρ(1 + S−2)v(S, ω) < 0.

Lemma A.3. If Assumption A.1 holds, then v(S, ω) ≤ 0.

Proof. I will assume the existence of a pair (c, x) in the constraint set such that the maximand in
the definition of v is positive and derive a contradiction. If such a pair existed, then the maximand
would also be positive at (ω/x, x), which would imply an x ≥ 0 such that 1 + ln(ω/x) − x2/2 > 0

and Sx > 1, which violates Assumption A.1.
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Proof of Proposition 2.1. For the purpose of this proof, write S1(ω) for any return such that As-
sumption A.1 is satisfied if S ≤ S1(ω) and S2(ω) for any return such that Assumption A.2 is
satisfied if S ≤ S2(ω). The following will show that the return in the statement of the proposition
can be taken to be S(ω) = min{S1(ω), S2(ω)}.

Using the characterization of incentive-compatibility given in Lemma A.1, the problem of the
principal can be viewed as a control problem in which the state isW and evolves according to the law
of motion dWt = ρ(Wt− ln ct)dt+ρϕσ(kt/ct)dBt = −ρ ln ctdt+

√
ρxtdBt when the control variables

are ct and xt. By the general theory of continuous-time, finite-horizon dynamic programming
outlined in Kushner and Dupuis [2001], the value function V T solves

0 = sup
c,x≥0
xc≤ω

(Sx− 1)ceW − ρ ln c
∂V T

∂W
+
ρx2

2

∂2V T

∂W 2
+
∂V T

∂t
− ρV

where V T (W,T ) = −ρ−1eW and I changed variables to c = ceW . Using the same homogeneity
argument as in Section 2, we know that the value function is of the form V T (W, t) = V T−te

W for
some function s 7→ V s satisfying V 0 = −ρ−1. Substituting and dividing by eW , the above partial
differential equation reduces to the ordinary differential equation V̇ s = J(V s) for s ∈ [0, T ] with
the initial condition V 0 = −ρ−1, where V̇ s is the time derivative of V s, and

J(V ) = sup
c,x≥0
xc≤ω

(Sx− 1)c+ ρ(− ln c+ x2/2− 1)V. (16)

Note that J is convex as it is the pointwise maximum of linear functions. I will show that the
maintained assumptions ensure that J has a root at V = v, or

0 = sup
c,x≥0
xc≤ω

(Sx− 1)c+ ρ(− ln c+ x2/2− 1)v =: sup
c,x≥0
xc≤ω

H(c, x, v)

where the second equality defines the function H. If (c∗, x∗) are the maximizers in (4), then
H(c∗, x∗, v) = 0. It remains to eliminate the possibility that H(c, x, v) > 0 for some (c, x) satisfying
c, x ≥ 0 and xc ≤ ω. The existence of such a pair (c, x) that also satisfied − ln c + x2/2 − 1 < 0

would violate the definition of v, and so it will suffice to rule out the existence of (c, x) satisfying
H(c, x, v) > 0, cx ≤ ω and − ln c + x2/2 − 1 > 0. Because v < 0 by Lemma A.3, the inequality
H(c, x, v) > 0 requires Sx > 1, and so would imply (Sx − 1)ω/x + ρ(− ln(ω/x) + x2/2 − 1)v > 0.
It will then suffice to show that this last inequality is impossible under the assumption S < S(ω),
and so I want to show that

(Sx− 1)ω/x+ ρ(− ln(ω/x) + x2/2− 1)v ≤ 0 (17)

for all x ≥ x. The inequality (17) holds automatically on x ∈ [x, 1/S] from Assumption A.1, and so
it will therefore suffice for the derivative of the left-hand side to be negative for all x ≥ 1/S. This
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is equivalent to ω/x+ ρ(1 + x2)v ≤ 0 for x ≥ 1/S. Since v < 0, this will be true for x ≥ 1/S if and
only if it is true for x = 1/S, which is exactly Assumption A.2.

The above argument shows that the function J has a root v, which will then be the coefficient
of the stationary solution to the above Hamilton-Jacobi-Bellman equation. It remains to show that
the value function indeed converges to this root as the horizon becomes infinite. To this end, note
that for any scalars C1 and C2, the terminal value problem

f ′(s) = −κ(f(s)− C1)

f(0) = C2

has solution f(s) = (C2−C1)e
−κs+C1, which converges to C1 as s→ ∞ for any κ > 0. It therefore

suffices to bound V between the solutions V̌ and V̂ to the initial value problems ˙̌Vs = J ′(v)(V̌s− v)
and ˙̂

Vs = J ′(−ρ−1)(V̂s − v) with initial conditions V̌0 = V̂0 = −ρ−1, which both converge to v as
s→ ∞. This in turn implies that

V̌s ≤ Vs ≤ V̂s (18)

for all s ≥ 0. To see (18), note that if, to the contrary, we had V̌s1 > Vs1 at some s1 > 0, then, by
the fundamental theorem of calculus, at some s2 > s1 we would have V̌s2 = Vs2 and ˙̌Vs2 > V̇s2 , or

J ′(v)(Vs2 − v) > J(Vs2) = J(Vs2)− J(v)

which violates the convexity of J . The other inequality in (18) may be established similarly, and
so by taking limits we have lims→∞ Vs = v.

Proof of Proposition 2.2. From Proposition 2.1, wherever the principal’s problem is well-defined,
the optimal choices of c and x solve

v = max
c,x≥0,xc≤ω

− ln c+x2/2<1

(Sx− 1)c

ρ(1 + ln c− x2/2)
. (19)

Since the above maximand is negative in the constraint set wherever it is well-defined, for each
fixed x the choice of consumption c will always solve

min
c≥0,xc≤ω

− ln c+x2/2<1

c

1 + ln c− x2/2
.

Changing variables to C = ln c and taking logarithms (which leaves extrema unaffected), we need
to minimize C − ln(1 + C − x2/2) over the set of real C satisfying xeC ≤ ω and −C + x2/2 < 1.
Since this latter minimand is convex and diverges as C → x2/2− 1 from above, the optimal choice
either occurs at the solution to the first-order condition or the boundary point C = ln(ω/x). In
terms of the original variables, the principal’s problem becomes

v = max
x∈[0,x]

(Sx− 1)min{ex2/2, ω/x}
ρ(1 + min{0, ln(ω/x)− x2/2})

(20)
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where I remind the reader that x is defined to be the solution to xex
2
/2−1 = ω. The no-absconding

constraint will not bind if the optimal x in (20) lies in [0, x], where x solves xex
2/2 = ω. It remains

to show the existence of Sloc > 0 in the statement of the proposition. To this end, note that for all
sufficiently small S, the local maximum xloc > 0 is feasible and well-defined, and the payoff at this
point reduces to (Sxloc(S)− 1)/ρ. Now define

Z := min
x∈[x,x]

ω/x

1 + ln(ω/x)− x2/2
(21)

and note that the minimum on the right-hand side of (21) is attained at some point because the
minimand diverges as x → x. Further, Z > 1, because the inequality ω/x > 1 + ln(ω/x) − x2/2

holds for all x ≥ x. To verify this last inequality, note that it is equivalent to

ω > x(1 + lnω)− x lnx− x3/2 (22)

which holds at x = x by the definition of x, and the derivative of the right-hand side of (22) is
ln(ω/x) − 3x2/2 < ln(ω/x) − x2/2, which is negative for x > x. Because Z > 1, we can take Sloc

to be any value in [0,1/2] such that −1 > (Slocx− 1)Z.

Lemma A.4. The function Sloc satisfies Sloc(e
1/2) = 1/2.

Proof. I want to show that 1 = xloc(1/2) = x(1/2, e1/2). Because c = e1/2 when x = 1, we require

−e1/2/2 ≥ max
x∈[1,x]

(x/2− 1)e1/2/x

3/2− lnx− x2/2

which is equivalent to −(3/2− lnx− x2/2) ≥ (x− 2)/x, or 5/2 ≤ lnx+ x2/2 + 2/x for x ∈ [1, x].
This last inequality reduces to 5/2 ≤ 5/2 at x = 1, and (lnx + x2/2 + 2/x)′ = 1/x + x − 2/x2 =

(x+ x3 − 2)/x2, which is non-negative on x ≥ 1.

The following lemma establishes properties of the local maximum given in equation (15), and
will be used in the proof of Lemma 2.3.

Lemma A.5. The function xloc satisfies limS→0 xloc(S)/S = 1 and for all S ∈ [0, 1/2] we have
S ≤ xloc(S) ≤ 2S and x′loc(S) ≥ 1.

Proof of Lemma A.5. Using xloc(S) := 1/[2S]−
√
1/[4S2]− 1, we have

x′loc(S) = − 1

2S2
+

1

4S3

1√
1/[4S2]− 1

=
1

2S2

(
1√

1− 4S2
− 1

)
.

The inequality x′loc(S) ≥ 1 is then equivalent to 1 ≥ (1 + 2S2)
√
1− 4S2, and by squaring both

sides, this in turn is equivalent to

1 ≥ (1 + 4S2 + 4S4)(1− 4S2) = 1− 12S4 − 16S6
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which is always true. The inequality S ≤ xloc(S) is equivalent to 2S2 ≤ 1−
√
1− 4S2, or 1−4S2 ≤

1− 4S2 + 4S4, while xloc(S) ≤ 2S is equivalent to 1− 4S2 ≤
√
1− 4S2, and both of these are true

when S ∈ [1/2]. Finally, using l’Hopital’s rule we have

lim
S→0

xloc(S)/S = lim
S→0

1−
√
1− 4S2

2S2
= lim
S→0

4S/
√
1− 4S2

4S
= 1

as claimed.

Proof of Lemma 2.3. Since consumption satisfies ln(ct/c0) = −ρxloc(S)
2t/2 +

√
ρxloc(S)dBt, sub-

stituting RK into Definition 2.4 and taking logarithms gives

νK = Π− ρ− τI − σ2/2 + ρxloc(S)
2/2 +

1

t
lnE

[
e(σ−

√
ρxloc(S))Bt

]
.

Using E[ezBt ] = ez
2t/2 gives νK = Π− ρ− τI + ρxloc(S)

2 −√
ρσxloc(S). Similarly, substitution of

RB gives νB = ρxloc(S)
2. Since ϕ ≤ 1, the difference between the wedge on the bond and the risky

wedge satisfies νB − νK ≥ √
ρϕσ(xloc(S)− S) which is non-negative by Lemma A.5. Finally, the

derivative of νB − νK with respect to Π is

(x′loc(S)− ϕ)
√
ρσ × ∂S/∂Π = x′loc(S)/ϕ− 1

which is again non-negative by Lemma A.5.

B Stationary efficient allocations

B.1 Aggregate resource constraints

Aggregate quantities at any date are comprised of contributions from the initial generation and
subsequent generations. Superscripts indicate date-of-birth (if not alive at the initial date) or
promised utility (if alive at initial date). Aggregate quantities associated with the initial generation
are distinguished by an underline, and aggregate quantities associated with the generation born at
date T are distinguished by a T superscript. To understand the following, note that, e.g. kT,Et is
the capital assigned to an entrepreneur at t born at date T (conditional on being alive), and so the
total capital assigned to all such entrepreneurs is e−(t−T )ρD (1 − ψ)E[kT,Et ]. Average consumption
and capital assigned at t ≥ 0 are

Ct : =

∫
R×{E,W}

E[cv,it ]Φ(dv, i), CTt := (1− ψ)E[cT,Et ] + ψE[cT,Wt ]

Ct : = e−ρDtCt + ρD

∫ t

0

e−ρD(t−T )CTt dT

Kt : =

∫
R
E[kv,Et ]Φ(dv,E), KT

t := (1− ψ)E[kT,Et ]

Kt : = e−ρDtKt + ρD

∫ t

0

e−ρD(t−T )KT
t dT
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while output is

Y t : =

∫
R
E[F (kv,Et , lv,Et )− δkv,Et ]Φ(dv,E)

Y Tt : = (1− ψ)E[F (kT,Et , lT,Et )− δkT,Et ]

Yt : = e−ρDtY t + ρD

∫ t

0

e−ρD(t−T )Y Tt dT

where F (K,L) := AKαL1−α. Aggregate labor assigned to entrepreneurs is

Lt : =

∫
R
E[lv,Et ]Φ(dv,E), LTt := (1− ψ)E[lT,Et ]

Lt : = e−ρDtLt + ρD

∫ t

0

e−ρD(t−T )LTt dT.

For future reference, note that for any function H(T, t), using e−ρ(t−T )e−ρST = e−ρSte−ρD(t−T ) and
interchanging the order of integration gives∫ ∞

0

∫ t

0

e−ρSte−ρD(t−T )H(T, t)dtdT =

∫ ∞

0

∫ ∞

T

e−ρ(t−T )e−ρSTH(T, t)dtdT. (23)

It follows that the present discounted value of consumption when the interest rate is ρS is given by∫ ∞

0

e−ρStCtdt =

∫ ∞

0

e−ρSt
(
e−ρDtCt + ρD

∫ t

0

e−ρD(t−T )CTt dT

)
dt

=

∫ ∞

0

e−ρtCtdt+ ρD

∫ ∞

0

∫ t

0

e−ρSte−ρD(t−T )CTt dTdt

=

∫ ∞

0

e−ρtCtdt+ ρD

∫ ∞

0

e−ρST
∫ ∞

T

e−ρ(t−T )CTt dtdT

and similarly for output and labor. This will be relevant for the decomposition by generation given
below. The average flow utility experienced by the initial and T th generations at t ≥ 0 is

U it =

∫
R
E[ρ ln(cv,it )]Φ(dv, i) UT,it = E[ρ ln(cT,it )]

for i ∈ {E,W}. Recall that in the main text I assume that the planner cares only about workers
and values the utility of a worker at any date the same regardless of their date of birth. Since
entrepreneurs are no more capable of providing labor than workers, they earn no information rent,
and the sole restriction necessary for the truthful revelation of type is that they receive high lifetime
utility than workers. Since the planner weights all flow utility the same regardless of an agent’s
date of birth, their objective function is

UP =

∫ ∞

0

(
e−ρtUWt + ρD

∫ t

0

e−ρSTψe−ρ(t−T )UT,Wt dT

)
dt. (24)

Using (23), the objective of the planner (24) becomes

UP =

∫
R
vΦ(dv,W ) + ρD

∫ ∞

0

e−ρSTψ

∫ ∞

T

e−ρ(t−T )E[ρ ln(cT,it )]dtdT. (25)
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Definition B.1. Given (Φ,K), the planner’s problem is V (Φ,K) = maxA∈AIF (Φ,K) U
P (A).

In this paper I restrict attention to stationary solutions to the planner’s problem. I therefore
search for the distribution Φ and capital stock K such that the distributions of utility, consumption
and capital implied by the solution to Definition B.1 are constant over time.

B.2 Reduction to principal-agent problem

I will characterize stationary efficient allocations using the ideas outlined in Farhi and Werning
[2007] and consider, in succession, relaxed and generational planner’s problems. The relaxed prob-
lem differs from the planner’s problem by allowing intertemporal trade at rate ρS .

Definition B.2. Given (Φ,K), the relaxed planner’s problem is

V R(Φ,K) = max
A∈AIC(Φ)

UP (A)∫ ∞

0

e−ρSt[Ct(A) + K̇t(A)]dt ≤
∫ ∞

0

e−ρStYt(A)dt∫ ∞

0

e−ρStLt(A)dt ≤
∫ ∞

0

e−ρStLdt

K0 = K.

If an allocation solves the relaxed planner’s problem and the distributions of utility and capital
are constant over time, then it also solves the planner’s problem beginning at that distribution and
capital. To characterize stationary solutions to the original planner’s problem, it therefore suffices
to consider problems of the form in Definition B.2 and find Φ and K such that stationarity arises.
The relaxed planner’s problem therefore has only two resource constraints instead of two for each
instant in time. Further, since Kt remains bounded, integrating by parts implies that∫ ∞

0

e−ρStK̇t(A)dt = −K0(A) + ρS

∫ ∞

0

e−ρStKt(A)dt.

Given a distribution Φ over utility and types, when the planner discounts at rate ρS the relaxed
problem in Definition B.2 is then

V R(Φ) = max
A∈AIC(Φ)

∫ ∞

0

(
e−ρtUWt + ρD

∫ t

0

e−ρSTψe−ρ(t−T )UT,Wt dT

)
dt.∫ ∞

0

e−ρSt[Ct(A) + ρSKt(A)− Yt(A)]dt ≤ K0(A)∫ ∞

0

e−ρSt[Lt(A)− L]dt ≤ 0.
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Denote by λR and λRλL the multipliers on the two resource constraints. The Lagrangian for the
relaxed problem is

L =

∫
R
vΦ(dv,W ) + ρD

∫ ∞

0

e−ρSTψ

∫ ∞

T

e−ρ(t−T )E[ρ ln(cT,Wt )]dtdT

− λR

∫ ∞

0

e−ρSt[Ct + ρSKt − Yt + λLLt]dt+ λRK0 + λRλLL.

Using (23) once again, the terms that do not depend on the initial generation are∫ ∞

0

e−ρSTψ

∫ ∞

T

e−ρ(t−T )E[ρ ln(cT,Wt )]dtdT

− λR

∫ ∞

0

e−ρST
∫ ∞

T

e−ρ(t−T )[CTt + ρSK
T
t − Y Tt + λLL

T
t ]dtdT

=

∫ ∞

0

e−ρST
∫ ∞

T

e−ρ(t−T )
(
ψE[ρ ln(cT,Wt )]− λR[C

T
t + ρSK

T
t − Y Tt − λLL

T
t ]
)
dtdT.

The term in parentheses may be written as

ψE
[
ρ ln(cT,Wt )− λRc

T,W
t

]
+ (1− ψ)λRE

[(
A(lT,Et /kT,Et )1−α − λL(l

T,E
t /kT,Et )− δ − ρS

)
kT,Et − cT,Et

]
.

Now define
Π(λL) := max

l≥0
Al1−α − λLl − δ = αA1/α[(1− α)/λL]

1/α−1 − δ (26)

and
S(λL) =

Π(λL)− ρS√
ρϕσ

. (27)

It follows that the problem of the planner facing the T th generation just becomes

max
WE ,WW∈R
WE≥WW

ψWW − ψλRe
WW

+ λR(1− ψ)v(S(λL), ω)e
WE

. (28)

Since v < 0 wherever it is well-defined, it is immediate that in the relaxed planner problem we have
WE =WW and so the problem reduces to

max
W∈R

ψ(W − λRe
W ) + λR(1− ψ)v(S(λL), ω)e

W .

B.3 Stationary resource constraint

Given (27), the average consumption and capital delegated of entrepreneurs in the stationary dis-
tribution per unit of initial utility are

C(S) =
ρDc(S, ω)

ρD − µc(S, ω)

K(S) =
ρDc(S, ω)x(S, ω)

(ρD − µc(S, ω))
√
ρϕσ

(29)
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where c and x are the policy functions in the principal-agent problem from Section 2. For the change
of variables adopted in Section 2, capital may be written as k(S, ω) := c(S, ω)x(S, ω)/(

√
ρϕσ). The

optimal labor-capital ratio from (26) is l(λL) = [(1−α)A/λL]
1/α, and output per unit of capital is

Al1−α − δ = A[(1− α)A/λL]
1/α−1 − δ

= Π(λL)/α+ (1/α− 1)δ.
(30)

Proof of Proposition 3.1. Using (30), the flow production net of depreciation from the firm of an
entrepreneur with utility u is then

(Al(λL)
1−α − δ)k(S(λL), ω)u = (Π(λL)/α+ (1/α− 1)δ)k(S(λL), ω)u.

Aggregate consumption in the stationary distribution when the initial utility level is u0 is then given
by ((1 − ψ)C(S(λL)) + ψ)u0 and aggregate output is (Π(λL)/α + (1/α − 1)δ)(1 − ψ)K(S(λL))u0

and so canceling u0 and substituting S(λL) = (Π(λL)− ρS)/(
√
ρϕσ) gives the claimed expression.

Given this λL, the capital stock K is determined from the labor resource constraint l(λL) = L/K.
To see that the solution to (6) is unique whenever it exists, note that dividing by C(S) gives

1− ψ + ψ/C(S) = (S
√
ρϕσ/α+ ρS/α+ (1/α− 1)δ)(1− ψ)

x(S, ω)
√
ρϕσ

(31)

and the right-hand side of (31) is increasing in S while the left-hand side is decreasing in S. Finally,
given K, the lifetime utility u0 satisfies

u0 =
AKαL1−α − δK

(1− ψ)C(S(λL)) + ψ
(32)

which completes the characterization.

C Decentralization

C.1 Discrete-time approximation

In order to aid the reader in this section I outline a discrete-time environment that approximates
the incomplete-markets model of Section 4. Suppose that time assumes the values ∆, 2∆, . . . for
some ∆ > 0. The following is then the timing in the nth period (calendar time t = n∆). In the
morning, the entrepreneur wakes up with an units of wealth, consumes ∆cn units of consumption,
and deposits the remainder of their wealth in a bank that promises (1 +∆r)(an −∆cn) tomorrow.
In addition, the entrepreneur writes the following insurance contract against longevity risks of the
following form: if alive tomorrow the insurance company will transfer ∆ρD(an−∆cn) units of output
to the entrepreneur, and otherwise the insurance company takes possession of the entrepreneur’s
wealth. In the afternoon, the entrepreneur supplies labor, rents kn units of capital from the bank
on behalf of their firm, and invests the capital and hires workers at wage w. The output produced
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net of labor payments is ∆(Π + δ)kn, and the depreciated capital is (δ∆+
√
∆σXn)kn, where Xn

is i.i.d. across both time and entrepreneurs and assumes the values ±1 with equal probability. The
entrepreneur pays taxes τsE on savings (the sum of interest from the bank and the life insurance
company) and τΠ on profits, which are given by output minus labor costs, interest payments ∆rkn

on the borrowed capital, and the amount snkn∆ stolen and diverted to consumption

∆(Π + δ)kn − (δ∆+
√
∆σXn)kn −∆r =

(
∆(Π− r − sn)−

√
∆σXn

)
kn.

The wealth of the entrepreneur at the beginning of the next period is therefore

an+1 = (1 +∆(1− τsE)(r + ρD))(an −∆cn) + ∆(1− τLE)wL

+ (1− τΠ)
(
∆(Π− r − sn)−

√
∆σXn

)
kn

and so the change in wealth satisfies

an+1 − an = −∆2(1− τsE)(r + ρD)cn + [(1− τsE)(r + ρD)an − cn + (1− τLE)wL+ (1(Π− r)kn]∆

+ (1− τΠ)
(
∆(Π− r)−

√
∆σXn

)
kn.

As ∆ → 0 this becomes equivalent to the law given in Definition 4.1. The insurance company pays
∆ρD(an − ∆cn) with probability 1 − ∆ρD and receives an+1 with probability ∆ρD, and so their
expected profits are −∆ρD(an −∆cn)(1−∆ρD) + ∆ρDan +∆ρDE[an+1 − an] or

Profits = −∆ρD[(an −∆cn)(1−∆ρD)− an

− [−∆(r + ρD)cn + (r + ρD)an − cn + w + (Π− r)kn]∆]

= −∆ρD[an − an∆ρD −∆cn +∆2cnρD − an

+ [∆(r + ρD)cn − (r + ρD)an + cn − w − (Π− r)kn]∆]

= −∆2ρD[−anρD +∆cnρD +∆(r + ρD)cn − (r + ρD)an − w − (Π− r)kn]

which is o(∆) as ∆ → 0. Therefore, the profit over any fixed interval vanishes as ∆ → 0. The
bank makes zero profits, so the return promised to depositors is equal to the return demanded
from entrepreneurs. The amount of wealth the agents deposit at the bank must equal the amount
rented by entrepreneurs and so if the distribution of the wealth of entrepreneurs has density g then
market-clearing in the discrete-time environment is

∫∞
0

(a−∆c(a))g(da) =
∫∞
0
k(a)g(da). Since the

∆c(a) term is negligible as ∆ → 0, this approximates the market-clearing condition given in the
proof of Proposition 4.2.
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C.2 Implementation with risk-free bond

Proof of Lemma 4.1. Given taxes on profits τΠ and risk-free savings τs, the Hamilton-Jacobi-
Bellman equation for the agent’s value function is

ρV (a) = max
c,k≥0

k≤ω̂(a+h)

ρ ln c+ ((1− τsE)(r + ρD)a− c+ (1− τΠ)(Π− r)k + (1− τLE)wL)V
′(a)

+
σ2

2
(1− τΠ)

2k2V ′′(a).

Substituting V (a) = ln(a + h) + D in the Bellman equation and writing ĉ = c/(a + hE) and
k̂ = k/(a+ hE), we have

ρD = max
ĉ,k̂≥0

k̂≤ω̂

ρ ln ĉ+ (1− τsE)(r + ρD)− ĉ+ (1− τΠ)(Π− r)k̂ − σ2

2
(1− τΠ)

2k̂2

which gives both claims upon substitution.

Proof of Proposition 4.2. The task of this proof is simply to show that for the above taxes and
transfers, the conditions characterizing the efficient stationary distribution are satisfied. In this
proof I will write µcE and σcE for the coefficients of the drift and diffusion of entrepreneurs’
consumption, and I will first show that (µcE , σcE) = (µ̂c,

√
ρx̂). For the above interest rate, profits

tax, and constant in the collateral constraint, the capital policy function is

k̂ =

√
ρx̂

ϕσ

because the inequality √
ρx̂/(ϕσ) ≤ ω̂ = ι−1 max{x̂/ω, e−x̂2/2} is automatically true from the

definition ω =
√
ρϕσ/(ρι). For these taxes, the consumption of entrepreneurs satisfies µcE =

−ρx̂2 + µ̂c + ϕσ
√
ρx̂

√
ρx̂/(ϕσ) = µ̂c and σcE = (1 − τΠ)σ

√
ρx̂/(ϕσ) =

√
ρx̂ while for workers we

have µ̂cW = σ̂cW = 0. For these coefficients, the constant appearing in the collateral constraint
coincides with the general expression (9), and by Lemma 4.1, the entrepreneurs will be indifferent
between revealing and not revealing their type when κW = κE/min{ex̂2/2, ω/x̂}. It remains to
verify that the market clearing conditions are satisfied at the marginal product of capital given in
Proposition 3.2. The bond market clearing condition is

K = (1− ψ)
ρDκE
ρD − µ̂c

√
ρx̂K

ϕσ

which holds by the above definition of κE . Using A(K̂/L)α−1 − δ = Π̂/α + (1/α − 1)δ, then by
cancelling K on both sides, the goods market clearing equation becomes

(Π̂/α+ (1/α− 1)δ) = ρ

(
ρD(1− ψ)κE
ρD − µ̂c

+ ψκW

)
= ρ

(
ρD

ρD − µ̂c
+

ψ

1− ψ
max{e−x̂

2/2, x̂/ω}
)
ϕσ(ρD − µ̂c)√

ρx̂ρD
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which simplifies to

(Π̂/α+ (1/α− 1)δ)

√
ρx̂ρD

ϕσ(ρD − µ̂c)
= ρ

(
ρD

ρD − µ̂c
+

ψ/c

1− ψ

)
coincides with (6) and completes the proof.

Proof of Lemma 4.3. Note that for sufficiently small ϕσ, the no-absconding constraint holds as a
strict inequality and the resource constraint becomes

(1− ψ)x(S, ω) =
α
√
ρϕσ(ψ/c(S, ω) + 1− ψ)

ρS + S
√
ρϕσ + (1− α)δ

. (33)

By Proposition 4.2, the savings tax is negative if ρ(1− x̂2) > Π̂−√
ρσx̂+ ρD, or

0 > ρx(Ŝ, ω)2 + Ŝ
√
ρϕσ −√

ρσx(Ŝ, ω). (34)

Using the inequalities in Lemma A.5, a sufficient condition for the tax to be negative is then
(1− ϕ)σ/

√
ρ > 2x̂. Using (33), we then need

α
√
ρϕσ(ψ/c(S, ω) + 1− ψ)

ρS + S
√
ρϕσ + (1− α)δ

< (1− ψ)(1− ϕ)σ/
√
ρ,

which holds for all sufficiently small ϕ. If ϕ = 1, then the tax on savings will be positive if the
right-hand side of (34) is positive. Dividing by √

ρσx(Ŝ, ω), this is equivalent to

1 <
√
ρx(Ŝ, ω)/σ + Ŝ/x(Ŝ, ω) (35)

If σ < √
ρ and the no-absconding constraint does not hold as an equality, then it will suffice to show

xloc(S) < xloc(S)
2 + S for S ∈ [0, 1/2]. Using xloc(S) = (1−

√
1− 4S2)/[2S], this is equivalent to

the inequalities

(1−
√
1− 4S2)/[2S] < (1−

√
1− 4S2)2/[4S2] + S

1−
√
1− 4S2 <

1

S
(1−

√
1− 4S2 − 2S2) + 2S2

or (1/S − 1)
√
1− 4S2 < (1− 2S2)(1/S − 1), which is true for all S ∈ [0, 1/2].

D Robustness and extensions

D.1 Heterogeneous entrepreneurs

In this section I show how the characterization of efficient allocations and the above decentralization
change in the presence of two types of entrepreneurs. Suppose that a fraction ζ ∈ [0, 1] of the
entrepreneurs operate with the technology A1K

αL1−α and the remaining fraction operate with the
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technology A2K
αL1−α, and that the parameters governing the severity of the agency friction for

each type are ϕ1 and ϕ2, respectively. The expressions Π(λL), S(λL) and l(λL) in Appendix B.3
must now be indexed by j ∈ {1, 2},

lj(λL) = [(1− α)Aj ]
1/αλ

−1/α
L

Πj(λL) = αA
1/α
j [(1− α)/λL]

1/α−1 − δ

Sj(λL) =
Πj(λL)− ρS√

ρϕjσ
.

To characterize the new stationary efficient allocation, I want to write Π2 and S2 in terms of Π1

and S1. To this end, note that

Π2(λL) = αA
1/α
2 [(1− α)/λL]

1/α−1 − δ

= (A2/A1)
1/αΠ1(λL) + ((A2/A1)

1/α − 1)δ =: D0Π1(λL) +D1

(36)

where the constants D0 and D1 do not depend on ϕ1 or ϕ2, and hence

S2(λL) =
D0Π1(λL) +D1 − ρS√

ρϕ2σ
=

Π1(λL)− ρS√
ρϕ1σ

(D0ϕ1/ϕ2) +
D1 + (D0 − 1)ρS√

ρϕ2σ

which is summarized as follows.

Lemma D.1. Given a multiplier λL, we have

S2(λL) = S1(λL)(A2/A1)
1/αϕ1/ϕ2 + ((A2/A1)

1/α − 1)(ρS + δ)/(
√
ρϕ2σ). (37)

Note that ω is common to both types and so I will drop it from the following notation for
brevity. The characterization of the stationary efficient allocation now proceeds much as in the
proof of Proposition 3.1, except that we have to be careful about non-negativity restrictions, as
it might be the case the one type of entrepreneur is not producing in the stationary efficient
allocation. The average consumption and capital delegated to entrepreneurs of each type in the
stationary distribution per unit of initial utility are again given by the expressions (29), provided
that we interpret c(S) = 1 and x(S) = 0 for S < 0.

The planner once again places zero weight on the utility of all types of entrepreneurs, and so
all agents receive the same level of initial utility u0. Once again the variable that adjusts until
resources clear is the multiplier λL on the labor resource constraint, but it is convenient to write
the resource constraint solely in terms of S1 = S. Output in the stationary allocation for a fixed
λL and type j ∈ {0, 1} is

Jj(Sj(λL)) := (Sj(λL)/α+ (ρS/α+ (1/α− 1)δ)/(
√
ρϕjσ))

ρDc(Sj(λL))x(Sj(λL))

ρD − µc(Sj(λL))
.
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Now write S1 = S and S2(S) = S(A2/A1)
1/αϕ1/ϕ2 + ((A2/A1)

1/α − 1)(ρS + δ)/(
√
ρϕ2σ), so that

J1(S) = (S/α+ (ρS/α+ (1/α− 1)δ)/(
√
ρϕ1σ))

ρDc(S)x(S)

ρD − µc(S)

J2(S) = (S2(S)/α+ (ρS/α+ (1/α− 1)δ)/(
√
ρϕ2σ))

ρDc(S2(S))x(S2(S))

ρD − µc(S2(S))
.

Instead of (6), the equation characterizing the stationary distribution is now

(1− ψ)(ζC(S) + (1− ζ)C(S2(S))) + ψ = (1− ψ)(ζJ1(S) + (1− ζ)J2(S)). (38)

The situation in which we add a small number of more productive entrepreneurs to the benchmark
case corresponds to ϕ1 = ϕ2, A2 > A1 and ζ → 1, so that the resource constraint defining Ŝ is
unaffected, provided that for these values, S2(Ŝ) satisfies Assumption A.1 and Assumption A.2.

For the second example, suppose that type 1 entrepreneurs are not subject to an agency problem,
so that ϕ1 ≈ 0, and that type 2 entrepreneurs are more productive, so that A2 > A1. In this case,
the sole effect of the corporate sector is to put an upper bound on the marginal product of capital
that can obtain in the efficient allocation. Specifically, the multiplier λL cannot be any smaller
than the value at which Π1(λL) = ρS , and so we must have

Π2 − ρS = min{Π̂2 − ρS , ((A2/A1)
1/α − 1)(ρS + δ)},

where Π̂2 is the efficient level of the marginal product of capital is a world with only type 2
entrepreneurs. To understand this, note that when the corporate sector is utilized, the marginal
product of capital in this sector is pinned down at ρS , and the associated multiplier on the resource
constraint satisfies αA1/α

1 [(1− α)/λ∗L]
1/α−1 = ρS + δ or

λ∗L = A
1

1−α
1 (α/(ρS + δ))

α
1−α (1− α).

From (36), this then determines the marginal product of capital among the entrepreneurs at Π2(λ
∗
L).

When the no-absconding constraint does not bind, the fraction of output that is produced by the
entrepreneurial sector is the solution ξ to

ξ(1− ψ + ψ/C(S2(λ
∗
L))) = ((ρS + S2(λ

∗
L)
√
ρϕσ)/α+ (1/α− 1)δ)(1− ψ)

x(S2(λ
∗
L), ω)√

ρϕσ
.

D.2 Constant relative risk aversion

In this section I show that the qualitative claims in the main text extend to the case of constant
relative risk aversion with γ ≥ 1. I will not strive for complete generality, as I wish to show only
that the method followed in the main text does not depend crucially on logarithmic utility. In
particular, when the no-absconding does not hold with equality, the inverse Euler equation holds
and the constrained efficient allocation can be decentralized by choosing taxes and transfers to
match the constant mean and variance of consumption growth in the efficient allocation. However,
it is more difficult to provide sufficient conditions for the principal’s problem to be well-defined and
for the no-absconding constraint to not bind in the optimal contract.
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D.2.1 Characterizaton of value function

Proceeding analogously as in Appendix A.1, when characterizing efficient allocations with utility
function u(c) = c1−γ/(1−γ), it is without loss of generality to assume that promised utility satisfies

dWt = ρ
(
Wt − c1−γt /(1− γ)

)
dt+ ρϕσktc

−γ
t dBt.

Now define utility in consumption units as ut = [(1 − γ)Wt]
1

1−γ and change variables to ct =

ct[(1− γ)Wt]
1

1−γ and kt = kt[(1− γ)Wt]
1

1−γ . The law of motion of promised utility is then

dWt = ρ
(
1− c1−γt

)
Wtdt+ ρϕσktc

−γ
t (1− γ)WtdBt =: µWWtdt+ σWWtdBt.

If f(Wt) := [(1− γ)Wt]
1

1−γ then f ′(Wt) := [(1− γ)Wt]
γ

1−γ and f ′′(Wt) := γ[(1− γ)Wt]
γ

1−γ−1, and
so using Ito’s lemma the law of motion for ut as

df(Wt) = (µWWtf
′(Wt) + (σ2

W /2)W
2
t f

′′(Wt))dt+ f ′(Wt)σWWtdBt

= ρ

(
(1− c1−γt )

1− γ
[(1− γ)Wt]f

′(Wt) + (
√
ρϕσktc

−γ
t )2[(1− γ)Wt]

2f ′′(Wt)/2

)
dt

+ ρϕσktc
−γ
t [(1− γ)Wt]f

′(Wt)dBt

which may be written as

dut = ρ

(
1− c1−γt

1− γ
+ γx2t/2

)
utdt+

√
ρxtutdBt

where x :=
√
ρϕσkc−γ . As with Section 2, the value function is linear in ut whenever it is finite-

valued, and so it is of the form v(u) = vu, where

v = sup
c,x≥0,xcγ≤ω

−1< c1−γ−1
1−γ − γx2

2

(Sxcγ − c)/ρ

1 + (c1−γ − 1)/(1− γ)− γx2/2
(39)

is a candidate value function. Now define x to be the solution to

γx
2

2
+

1− (ω/x)1/γ−1

1− γ
= 1

and consider the following two analogues of Assumptions A.1 and A.2.

Assumption D.1. Sx1/γω1−1/γ < 1.

Assumption D.2. ω1/γS1/γ + ρ
(
ω1/γ−1S1/γ−1 + γ2S−2

)
v ≤ 0.

Assumptions D.1 and D.2 are obviously satisfied for all sufficiently small S. The following
establishes the main claims of Proposition 2.1 and Proposition 2.2 for the case of CRRA preferences.
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Proposition D.2. If Assumptions D.1 and D.2 are satisfied, then the value function is finite-valued
and given by v(u) = vu for all u > 0. Further, the no-absconding constraint holds for sufficiently
small S, in which case the inverse Euler equation holds.

Proof. I first show that v ≤ 0 for sufficiently small S. Note that because γ ≥ 1, if there existed a
pair (x, c) in the constraint set with Sxcγ−1 > 1, then there would also exist such a pair in which
the no-absconding constraint held with equality c = (ω/x)1/γ . i.e. there would exist x such that
Sx1/γω1−1/γ > 1 and

γx2

2
+

1− (ω/x)1/γ−1

1− γ
< 1

which violates Assumption D.1. As per the proof of Proposition 2.1, to establish that the optimal
choices in (39) solve the Hamilton-Jacobi-Bellman equation

0 = sup
c,x≥0
xcγ≤ω

(Sxcγ−1 − 1)c+ ρ

(
1− c1−γ

1− γ
+ γx2/2− 1

)
v =: sup

c,x≥0
xcγ≤ω

H(c, x, v),

it remains to eliminate the possibility that H(c, x, v) > 0 for some pair (c, x) satisfying c, x ≥
0 and xcγ ≤ ω. The existence of (c, x) satisfying (1 − c1−γ)/(1 − γ) + γx2/2 − 1 < 0 would
violate the definition of v, and so it will suffice to rule out the existence of a pair (c, x) such that
(1− c1−γ)/(1− γ) + γx2/2− 1 > 0 and

(Sxcγ−1 − 1)c+ ρ((1− c1−γ)/(1− γ) + γx2/2− 1)v > 0.

Since v < 0, this last inequality implies

(Sx1/γω1−1/γ − 1)(ω/x)1/γ + ρ

(
1− (ω/x)1/γ−1

1− γ
+ γx2/2− 1

)
v > 0 (40)

for some x > x. The inequality (40) cannot hold on x ∈ [x, 1/S] from Assumption D.1, and so
to establish finiteness it will suffice for the derivative of the left-hand side to be negative for all
x ≥ 1/S. This is equivalent to

ω1/γx−1/γ + ρ
(
ω1/γ−1x1−1/γ + γ2x2

)
v ≤ 0.

Because v < 0, this will be true for x ≥ 1/S if and only if it is true for x = 1/S, which is exactly
Assumption D.2.

Ito’s Lemma implies that the inverse Euler equation is equivalent to µc = (1− γ)σ2
c/2. For the

case with γ > 1 it is convenient to define z := xcγ−1 and to write the problem as

sup
c>0,cz≤ω

1−c1−γ
1−γ + γ

2 z
2c2−2γ<1

(Sz − 1)c/ρ

1 + c1−γ−1
1−γ − γ

2 z
2c2−2γ

. (41)
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Now suppose that we fix z and minimize over c. This gives

ln(1− Sz) + min
c>0,cz≤ω

1−c1−γ
1−γ + γ

2 z
2c2−2γ<1

ln c− ln

(
1 +

c1−γ − 1

1− γ
− γ

2
z2c2−2γ

)
. (42)

Writing y := c1−γ , the problem is equivalent to maximizing

ln y + (γ − 1) ln

(
y − γ

1− γ
− γz2y2/2

)
over the set of y > 0 such that y ≥ (ω/z)1−γ and (y−γ)/(1−γ)−γz2y2/2 > 0. This last function is
concave and diverges when (y−γ)/(1−γ) ≈ γz2y2/2 > 0, and so the optimal choice of consumption
in (42) is the minimum of the solution to the first-order condition and the boundary value c = ω/z.
The first-order condition for consumption is

1

c
=
c−γ − γ(1− γ)z2c1−2γ

c1−γ−γ
1−γ − γz2c2−2γ/2

.

Rearranging then gives a quadratic in c1−γ , 0 = 1 − c1−γ + (1 − γ)(γ − 1/2)z2c2−2γ , which has
one positive solution for consumption which I denote by cfoc(z). Note that cfoc(z) is necessarily
increasing in z. Simplifying and using the definition of x gives

c1−γfoc − γ

1− γ
− γx2/2 = c1−γfoc − γ(1− γ)x2,

and hence (c1−γfoc − 1)/(1− γ) = −(1/2− γ)x2, which is equivalent to the inverse Euler equation. In
what follows I write c(z) = min{cfoc(z), ω/z}. I now define z as the solution to

0 = 1− (ω/z)1−γ + (1− γ)(γ − 1/2)ω2−2γz2γ , (43)

which is the largest z such that the no-absconding constraint and inverse Euler equation holds.
Similarly, define z as the solution to

0 = 1 +
(ω/z)1−γ − 1

1− γ
− γ

2
z
2γ
ω2−2γ .

The no-absconding constraint will hold as a strict inequality if the optimal z in (41) lies in [0, z]. It
remains to show that this holds for sufficiently small S. As with the proof of Proposition 2.2, for
this it will suffice to show that Z > 1, where

Z := min
z∈[z,z]

ω/z

1 + (ω/z)1−γ−1
1−γ − γ

2 z
2γω2−2γ

(44)

is the analogue of (21). I first show that that this is true for z = z by noting that

ω/z

1 + (ω/z)1−γ−1
1−γ − γ

2 z
2γω2−2γ

= min
c>0

1−c1−γ
1−γ + γ

2 z
2c2−2γ<1

c

1 + c1−γ−1
1−γ − γ

2 z
2c2−2γ

> min
c>0

1−c1−γ
1−γ + γ

2 z
2c2−2γ<1

c

1 + c1−γ−1
1−γ

= 1.

(45)
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The desired inequality Z > 1 is equivalent to

ω > z +
zγω1−γ − z

1− γ
− γz2γ+1ω2−2γ/2 (46)

for all z ∈ [z, z], and (45) shows that this holds at z = z. The derivative with respect to z of the
right-hand side of (46) is then

1 +
γ(ω/z)1−γ − 1

1− γ
− γ(γ + 1/2)z2γω2−2γ =

(
(ω/z)1−γ − 1

1− γ
− (γ + 1/2)z2γω2−2γ

)
,

which will be negative for z ≥ z if and only if it is negative for z = z. At z this expression is
negative if 0 > (ω/z)1−γ−1

1−γ − (γ + 1/2)z2γω2−2γ and hence

0 > (γ − 1/2)ω2−2γz2γ − (γ + 1/2)z2γω2−2γ = −ω2−2γz2γ

which is true.

D.2.2 Efficient stationary distribution and decentralization

For general CRRA parameters, the Hamilton-Jacobi-Bellman equation is given by

ρV (a) = max
c,k≥0

k≤ω̂(a+hE)

c1−γ

1− γ
+ [(1− τsE)(r + ρD)a− c+ (1− τΠ)(Π− r)k + (1− τLE)wL]V

′(a)

+ (1− τΠ)
2σ

2k2

2
V ′′(a).

Lemma D.3. The entrepreneur choose not to divert if and only if τΠ ≤ 1 − ϕ. In this case the
value function is of the form V (a) = V (a+ hE)

1−γ/(1− γ) for some V , and

c(a) = ĉ(a+ hE) =

(
1

γ
[ρ− (1− γ)(1− τsE)(r + ρD)]−

(Π− r)2

2γ2σ2
(1− γ)

)
(a+ hE)

k(a) = k̂(a+ hE) =
(Π− r)(a+ hE)

γσ2(1− τΠ)
.

The associated law of motion of wealth is da = µa(at + hE)dt+ σa(at + hE)dZt, where

µa =
1

γ
[(1− τsE)(r + ρD)− ρ] +

(Π− r)2

2γ2σ2
(1 + γ) σa =

Π− r

γσ
.

Proof. Upon substituting the assumed form, the Hamilton-Jacobi-Bellman equation becomes

ρV

1− γ
= max

ĉ,k̂

ĉ1−γ

1− γ
+ V

[
(1− τsE)(r + ρD)− ĉ+ (1− τΠ)(Π− r)k̂

]
− γ(1− τΠ)

2V
σ2k̂2

2
.

First-order conditions for capital and consumption give

k̂ =
Π− r

γ(1− τΠ)σ2
ĉ = V

−1/γ
.
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Substituting into the Hamilton-Jacobi-Bellman equation gives

ρV

1− γ
=
V

1−1/γ

1− γ
+ V [(1− τsE)(r + ρD)− ĉ] + V

[
(1− τΠ)(Π− r)k̂ − γ

2
[(1− τΠ)σ]

2k
2
]

=
γV

1−1/γ

1− γ
+ V (1− τsE)(r + ρD) + V

[
(Π− r)2

γσ2
− γ

2
[(1− τΠ)σ]

2

(
Π− r

γ(1− τΠ)σ2

)2
]

ρ

1− γ
=
γV

−1/γ

1− γ
+ (1− τsE)(r + ρD) +

(Π− r)
2

2γσ2

which rearranges to

ĉ = V
−1/γ

=
1

γ
[ρ− (1− γ)(1− τsE)(r + ρD)]−

(Π− r)
2

2γ2σ2
(1− γ)

as claimed. The law of motion of wealth is then

dat = [(1− τsE)(r + ρD)at + (1− τLE)wL− ct + (1− τΠ)(Π− r)kt]dt+ (1− τΠ)σktdZt

and so the law of total wealth is

d(at + hE)

(at + hE)
=
[
(1− τsE)(r + ρD)− c+ (1− τΠ)(Π− r)k̂

]
dt+ (1− τΠ)σk̂dZt

=

[
(1− τsE)(r + ρD)−

1

γ
[ρ− (1− γ)(1− τsE)(r + ρD)] +

(Π− r)
2

2γ2σ2
(1− γ) +

(Π− r)2

γσ2

]
dt

+
(Π− r)

γσ
dZt.

This implies σa = (Π− r)/(γσ), while µa simplifies to

µa =
1

γ
(rE − ρ) +

(Π− r)
2

γσ2

(
1

2
(1/γ − 1) + 1

)
as claimed.

The efficient allocation is again characterized by three properties: the marginal product of
capital coincides with the solution to the stationary form of the goods resource constraint, and the
mean and volatility of the growth in consumption coincide with those in the efficient allocation.
For the latter, when the no-absconding constraint doe not hold with equality we require that the
mean and volatility of consumption growth be µc = ρ(1− γ)x2/2 and σc =

√
ρx.

Proposition D.4. The marginal product of capital that obtains in the efficient stationary distri-
bution is Π̂ = ρS + Ŝ

√
ρϕσ, where Ŝ is the solution to the equation

ρDc(S, ω)

ρD − µc(S, ω)
+

ψ

1− ψ
= [S

√
ρϕσ/α+ ρS/α+ (1/α− 1)δ]

ρDc(S, ω)x(S, ω)

(ρD − µc(S, ω))
√
ρϕσ

(47)
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provided that µc(Ŝ, ω) < ρD. In this case, if the no-absconding constraint does not hold with equality
at this Ŝ, then writing x̂ = x(Ŝ, ω), the efficient allocations may be decentralized in a competitive
equilibrium in which τΠ = 1 − ϕ, the real interest rate is r = Π̂ − γ

√
ρσx̂, the tax on profits is

τΠ = 1− ϕ, and the taxes on savings are

1− τsE =
ρ(1− γ2x̂2)

r + ρD
1− τsW =

ρ

r + ρD
.

The endowed wealth of entrepreneurs as a fraction of the capital stock is

κE =
ϕσ(ρD − µ̂c)√
ρx̂(1− ψ)ρD

and κW is chosen such that entrepreneurs and workers obtain the same level of lifetime utility.

Proof. The proof proceeds in much the same way as the proof of Proposition 4.2. The risk borne
by the agent when τΠ = 1− ϕ is ϕσk̂, which from Lemma D.3 implies that the entrepreneurs bear
the efficient level of risk if √ρx̂ = (Π̂− r)/(γσ), which is true for the above choice of interest rate.
In this case, the mean growth in entrepreneurs’ consumption is

µcE =
1

γ
(rE − ρ) +

(Π̂− r)2

2γ2σ2
(1 + γ) =

1

γ
(rE − ρ) + ρx̂2(1 + γ)/2.

In order for the inverse Euler equation to hold, we need µcE = ρ(1 − γ)x̂2/2, which requires
ρ(1 − γ)x̂2/2 = (rE − ρ)/γ + ρx̂2(1 + γ)/2 and hence rE = ρ(1 − γ2x̂2) which holds for the above
tax on savings.

E Additional figures

In this appendix I depict some additional figures related to the examples computed in Section 6.
Throughout, parameters remain fixed at (10).
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Figure 4: Wedges on entrepreneurs
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Figure 4 depicts the wedges faced by entrepreneurs, which are simply properties of the efficient
allocation and do not depend on the market structure. As expected from Proposition 3.2, the wedge
on the risk-free asset is positive and increasing in agency frictions. In contrast, the wedge on the
risky asset exhibits no such monotonicity.

In contrast with the main text, in this appendix I consider the market structure with private
equity contracts discussed in Section 5. Figure 5 and Figure 6 depict the taxes on savings, while
Figure 7 depicts the real interest rate. In all cases I show the results for both the tight (ι = 1.0)

and relaxed (ι = 0.5) collateral constraints.
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Figure 5: Savings taxes with private equity and tight collateral constraints (ι = 1.0)
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Figure 6: Savings taxes with private equity and relaxed collateral constraints (ι = 0.5)
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Figure 7: Interest rates with private equity, for both relaxed (ι = 0.5) and tight (ι = 1.0)
collateral constraints

Relative to the benchmark market structure of Section 4, the presence of equity markets reduces
the exposure of the entrepreneurs to the risk in their business. This increases the real interest rate
from Π̂−√

ρσx̂ to Π̂−√
ρϕσx̂ and therefore increases the savings taxes on all agents. Interestingly,

in contrast with the benchmark decentralization from Section 4, the interest rate (and hence the tax
on workers) now appears to be monotonically decreasing in agency frictions. In contrast, the tax on
entrepreneurs’ savings in Figure 5 no longer appears to be monotonic when collateral constraints
are tight.
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