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Abstract

Carriero, Clark, and Marcellino (2018, CCM2018) used a large BVAR model with a

factor structure to stochastic volatility to produce an estimate of time-varying macroe-

conomic and financial uncertainty and assess uncertainty’s e�ects on the economy.

The results in CCM2018 were based on an estimation algorithm that has recently been

shown to be incorrect by Bognanni (2021) and fixed by Carriero, et al. (2021). In this

note we use the algorithm correction of Carriero, et al. (2021) to correct the estimates

of CCM2018. Although the correction has some impact on the original results, the

changes are small and the key findings of CCM2018 are upheld.
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1 Introduction

To make tractable the estimation of the large model of Carriero, Clark, and Marcellino (2018, here-

after denoted CCM2018), we used an equation-by-equation approach to the vector autoregression

(VAR) based on a triangularization of the conditional posterior distribution of the coe�cient vector

developed in Carriero, Clark, and Marcellino (2019, hereafter CCM2019). However, Bognanni

(2021) recently identified a conceptual problem with the triangular algorithm of CCM2019; the tri-

angularization does not deliver the intended posterior of the VAR’s coe�cients. The same problem

a�icts the estimation algorithm used in CCM2018.

In response, Carriero, et al. (2021) have developed a corrected triangular algorithm for Bayesian

VARs that does yield the intended posterior. This new algorithm permits an equation-by-equation

approach to the VAR and o�ers the same basic computational advantages of the original triangular

algorithm. In addition, the new algorithm can be used to properly estimate the uncertainty model

of CCM2018.

In this note, we provide corrected versions of the published results of CCM2018. Drawing from

Carriero, et al. (2021), Section 2 briefly explains the problem with the original triangular algorithm

and the correction. Section 3 presents corrected versions of the results of CCM2018. Although the

correction has some impact on results, these impacts are small, and the key findings of CCM2018

are upheld.

2 Original algorithm and correction

For convenience, we briefly detail the model used in CCM2018. Let HC denote the = ⇥ 1 vector of

variables of interest, split into =< macroeconomic and = 5 = = � =< financial variables. Let EC be

the corresponding =⇥1 vector of reduced-form shocks to these variables, also split into two groups

of =< and = 5 components. The reduced-form shocks are:

EC = �
�1⇤0.5

C
n C , nC ⇠ 883 # (0, �), (1)
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where � is an = ⇥ = lower triangular matrix with ones on the main diagonal, and ⇤C is a diagonal

matrix of volatilities, with the log-volatilities following a linear factor model:

ln_ 9C =

8>><
>>:

V
<, 9

ln<C + ln ⌘ 9 ,C , 9 = 1, . . . , =<

V
5 , 9

ln 5C + ln ⌘ 9 ,C , 9 = =< + 1, . . . , =.
(2)

The variables ⌘ 9 ,C — which do not enter the conditional mean of the VAR, specified below —

capture idiosyncratic volatility components associated with the 9-th variable in the VAR, and are

assumed to follow (in logs) an autoregressive process:

ln ⌘ 9 ,C = W
9 ,0 + W

9 ,1 ln ⌘ 9 ,C�1 + 4 9 ,C , 9 = 1, . . . , =, (3)

with aC = (41,C , ..., 4=,C)0 jointly distributed as 8.8.3. # (0,�a) and independent among themselves,

so that �a = 3806(q1, ..., q=). These shocks are also independent from the conditional errors nC .

The reduced-form error covariance matrix is ⌃C = �
�1⇤C �

�10.

The variable <C is our measure of (unobservable) aggregate macroeconomic uncertainty, and

the variable 5C is our measure of (unobservable) aggregate financial uncertainty. Together, the two

measures of uncertainty (in logs) follow an augmented VAR process:

2666664
ln<C

ln 5C

3777775
= ⇡ (!)

2666664
ln<C�1

ln 5C�1

3777775
+

2666664
X
0
<

X
0
5

3777775
HC�1 +

2666664
D<,C

D 5 ,C

3777775
, (4)

where ⇡ (!) is a lag-matrix polynomial of order 3. The shocks to the uncertainty factors D<,C and

D 5 ,C are independent from the shocks to the idiosyncratic volatilities 4 9 ,C and the conditional errors

nC , and they are jointly normal with mean 0 and variance var(DC) = var((D<,C , D 5 ,C)0) = �D.

The uncertainty variables <C and 5C can also a�ect the levels of the macro and finance variables

contained in HC , contemporaneously and with lags. In particular, HC is assumed to follow:

HC = ⇧(!)HC�1 + ⇧< (!) ln<C + ⇧ 5 (!) ln 5C + EC , (5)
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where ? denotes the number of HC lags in the VAR, ⇧(!) = ⇧1 � ⇧2! � · · · � ⇧?!
?�1, with ⇧8

an = ⇥ = matrix, 8 = 1, ..., ?, and ⇧< (!) and ⇧ 5 (!) are = ⇥ 1 lag-matrix polynomials of order ?<

and ? 5 . In explaining estimation, it will be helpful to collect the coe�cients of ⇧(!), ⇧< (!), and

⇧ 5 (!) in a : ⇥ = matrix ⇧ and the regressors of each equation in the : ⇥ 1 vector GC , and write the

VAR system as

HC = ⇧0
GC + EC . (6)

Estimating the model with a Gibbs sampler requires the conditional posterior for the matrix of

VAR coe�cients ⇧. With smaller models, it is common to rely on a GLS solution for the posterior

mean of the coe�cient vector of the system of equations. However, such a system-of-equations

approach slows considerably with larger models. In CCM2018, we instead estimated the VAR

coe�cients on an equation-by-equation basis, following a factorization of the posterior developed

in CCM2019. Specifically, let c( 9) denote the 9-th column of the matrix ⇧, and let c(1: 9�1) denote

all of the previous columns. For each equation 9 , we drew c
( 9) from a multivariate Gaussian

distribution with mean and variance as follows:

¯̀
c
( 9) = ⌦

c
( 9)

n
⌃)

C=1GC_
�1
9 ,C
H
⇤0
9 ,C
+⌦�1

c
( 9) (`

c
( 9) )

o
,

⌦
�1
c
( 9) = ⌦�1

c
( 9) + ⌃)

C=1GC_
�1
9 ,C
G
0
C
,

where H
⇤
9 ,C

= H 9 ,C � (0⇤
9 ,1_

0.5
1,C n1,C + · · · + 0⇤

9 ,, 9�1_
0.5
9�1,Cn 9�1,C), with 0

⇤
9 ,8

denoting the generic element of

the matrix �
�1 and ⌦�1

c
( 9) and `

c
( 9) denoting the prior moments of the 9-th equation, given by the

9-th column of `
⇧

and the 9-th block on the diagonal of ⌦�1
⇧ . Based on CCM2019, we intended

for this approach to yield draws from the (correct) conditional posterior

c
( 9) |c(1: 9�1)

, �, V, 51:) ,<1:) , ⌘1:) , H1:) ⇠ N( ¯̀
c
( 9) ,⌦

c
( 9) ). (7)

However, as follows from the results in Bognanni (2021), drawing the VAR’s coe�cients in

this way does not deliver the intended posterior distribution of the coe�cient matrix. That is,
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drawing the coe�cients as was done in CCM2018 does not actually sample from the density (7).

As explained in more detail in Carriero, et al. (2021), the actual density associated with the original

algorithm is missing a term, involving the information about c( 9) contained in the most recent

observations of the dependent variables of equations 9 + 1, ..., =.

To correctly use the information in question in an algorithm for sampling from the conditional

posterior for the VAR’s coe�cients, Carriero, et al. (2021) propose using a sequence of Gibbs

sampler draws. Specifically, in the model setting of CCM2018, one can correctly sample from the

joint distribution ⇧|�, V, 51:) ,<1:) , ⌘1:) , H1:) by cycling through the full conditional distributions

c
( 9) | c(� 9)

, �, V, 51:) ,<1:) , ⌘1:) , H1:) (8)

for 9 = 1, . . . , =, where c
( 9) is the 9-th column of the : ⇥ = matrix ⇧ — that is, the vector of

coe�cients appearing in equation 9 — and c
(� 9) = (c(1) 0

, . . . , c
( 9�1) 0

, c
( 9+1) 0

, . . . , c
(=) 0)0 collects

all the coe�cients in the remaining equations.

To establish this corrected approach, consider the triangular representation of the system:

H̃C = �HC = �⇧0
GC + ⇤0.5

C
n C = �(G0

C
⇧)0 + ⇤0.5

C
n C , (9)

which can be expressed as the following system of equations:

H̃1,C = G
0
C
c
(1) + _

0.5
1,C n1,C

H̃2,C = 02,1G
0
C
c
(1) + G

0
C
c
(2) + _

0.5
2,C n2,C

H̃3,C = 03,1G
0
C
c
(1) + 03,2G

0
C
c
(2) + G

0
C
c
(3) + _

0.5
3,C n3,C

.

.

.

H̃=,C = 0=,1G
0
C
c
(1) + · · · + 0=,=�1G

0
C
c
(=�1) + G

0
C
c
(=) + _

0.5
=,C
n=,C , (10)

with H̃C = �HC a vector with generic 9-th element H̃ 9 ,C = H 9 ,C + 0 9 ,1H1,C + · · · + 0 9 , 9�1H 9�1,C .

With this recursive system (10), it is evident that the coe�cients c
( 9) of equation 9 influence
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not only equation 9 , but also the following equations 9 + 1, ..., =, which is yet another way of

seeing that these equations have some extra information about c( 9) that the old algorithm missed.

Importantly though, it remains true that the previous equations 1, ..., 9 � 1 have no information

about the coe�cients of equation 9 . With coe�cient priors c( 9) ⇠ # (`
c
( 9) ,⌦c

( 9) ), 9 = 1, ...=, that

are independent across equations (as is the case in all common VAR implementations), the first 9�1

elements in the quadratic term above do not contain c
( 9) . It follows that the conditional distribution

?(c( 9) | c(� 9)
, �, V, 51:) ,<1:) , ⌘1:) , H1:) ) can be obtained using the subsystem composed of the last

= � 9 + 1 equations of (10).

In implementation, for drawing the coe�cients of equation 9 , we use only equations 9 and

higher to sample ?(c( 9) | c(� 9)
, �, V, 51:) ,<1:) , ⌘1:) , H1:) ):

I 9 ,C = G
0
C
c
( 9) + _

0.5
9 ,C
n 9 ,C

I 9+1,C = 0
0
9+1, 9 G

0
C
c
( 9) + _

0.5
9+1,Cn 9+1,C

.

.

.

I=,C = 0=, 9 G
0
C
c
( 9) + _

0.5
=,C
n=,C ,

where I 9+;,C = H̃ 9+;,C �
Õ

9+;
8< 9 ,8=1 0 9+;,8G0Cc

(8) , for ; = 0, ..., = � 9 , and 08,8 = 1.

Then, using the above triangular representation, the full conditional distribution

(c( 9) | c(� 9)
, �, V, 51:) ,<1:) , ⌘1:) , H1:) ) is

(c( 9) | c(� 9)
, �, V, 51:) ,<1:) , ⌘1:) , H1:) ) ⇠ N(`

c
( 9) ,⌦

c
( 9) ),

where

⌦
�1
c
( 9) = ⌦�1

c
( 9) +

=’
8= 9

0
2
8, 9

)’
C=1

1
_8,C

GCG
0
C
, (11)

`
c
( 9) = ⌦

c
( 9)

 
⌦�1

c
( 9) `

c
( 9) +

=’
8= 9

08, 9

)’
C=1

1
_8,C

GC I8,C

!
. (12)
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As documented in Carriero, et al. (2021), this approach preserves the gains in computational

complexity described in CCM2019. Although the use of additional information (data) for all but

the =-th equation makes this algorithm empirically slower than that originally used in the paper, in

application the computational time is comparable. Accordingly, in this note, we use this approach

to sampling the VAR’s coe�cients to correct and update the results of CCM2018.1

3 Corrected results

In general, the correction of the estimation algorithm has proven to make it somewhat more

di�cult to disentangle measures of macroeconomic and financial uncertainty. Abstracting from

algorithm considerations, some challenges are to be expected, given the comovement of forecast

error variances across the variables of the model, the counter-cyclicality of uncertainty, the non-

linear features of the model, and the large size of the model. The algorithm correction seems to

have made these challenges steeper, for reasons not easy to pinpoint. For example, with some of

the loose prior settings of CCM2018, estimates with the new algorithm showed more issues with

mixing and convergence of the MCMC chain.

Accordingly, to be able to reliably estimate the model with the corrected algorithm, we have

made two changes relative to the settings of CCM2018. First, we have tightened a few prior

settings. We lowered the hyperparameter \3 governing shrinkage of the factor coe�cients in

the VAR’s conditional mean from the paper’s uninformative setting of 1000 to a more modestly

informative setting of 1. We also lowered the prior variance on the elements of the � matrix from

the paper’s largely uninformative setting of 10 to a more modestly informative setting of 1. Second,

we have shortened the estimation sample, so that it starts in January 1985 instead of July 1960 as

in the paper. With the shorter sample, there are fewer concerns with potential sample instabilities

1See Carriero, et al. (2021) for an implementation of computations that makes use of a data-

matrix type of notation that is easy to implement and computationally e�cient in programming

languages such as Matlab.
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owing to various structural shifts in the economy, monetary policy in particular. Some other work

in the uncertainty literature (e.g., Baker et al. (2016) and Basu and Bundick (2017)) also focuses on

samples starting in the mid-1980s. Since some other studies on uncertainty, such as Alessandri and

Mumtaz (2019) and Shin and Zhong (2020), started estimation in the 1970s, we have repeated our

analysis with a sample starting in 1975, finding results qualitatively very similar to those reported

below.

In the remainder of this note, we provide results for the 1985-2014 sample corresponding to

those in CCM2018, but using the corrected algorithm for VAR estimation described above. In

general, the corrected results are qualitatively the same as those provided in CCM2018.

Figure 1 displays the posterior distribution of the updated measures of macro (top panel) and

financial uncertainty (bottom panel). The updated estimates are very similar to those of the paper,

with correlations (paper with corrected algorithm) of about 0.9 for the macro factor and 0.98 for

the financial factor. It continues to be the case that the macro and financial factors are modestly

correlated, with a correlation of about 0.3 for the 1985-2014 period in both the original and updated

estimates. Relative to the paper, the main di�erence in the uncertainty estimates is that the new

macro factor is a little more variable than the paper’s estimate. But in general, the new estimates

display the same features as did the original estimates. For example, the financial uncertainty

factor increases not only during recessions, as does the macro uncertainty factor, but also in other

periods of financial turmoil. As indicated in Figure 1, our estimates of uncertainty show significant

increases around some of the political and economic events that Bloom (2009) highlights as periods

of uncertainty, as in the case of financial uncertainty around the Black Monday event of 1987.

Figure 2 reports the updated estimates of the reduced-form volatilities of the variables in our

model, i.e., the diagonal elements of ⌃0.5
C

, which reflect both the common uncertainty factors and

idiosyncratic components, along with the estimated idiosyncratic volatilities (reported in the chart

as ⌘0.5
8,C

). In broad terms, these results are comparable to the paper’s original estimates. For example,

the volatility of the funds rate declines sharply in the 1980s. As another, for some variables (e.g,

industrial production), most variability appears to be driven by the common factors, whereas for a
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few others (e.g., real consumer spending, the PPI for finished goods, and the federal funds rate) the

idiosyncratic variation is preponderant, explaining most of the overall variation in the volatility.

Table 2 (preserving the numbering of the paper for ease of reference) provides correlations

of our updated estimates of macroeconomic and financial uncertainty shocks with some well-

known macro shocks. In most cases, the uncertainty shocks continue to show little correlation

with “known” macroeconomic shocks. For example, the correlations of uncertainty shocks with

productivity shocks are small and insignificant in these updated estimates, as they were in the

paper’s reported results. However, with the shorter sample and updates, there are a few instances

of small, significant correlations of the uncertainty shocks with “known” macroeconomic shocks.

For example, the monetary policy shocks have a small, statistically significant correlation with

the shock to financial uncertainty. Some of the shift in these results seems to be due just to the

shortening of the sample; in a few cases, with the sample starting in 1985, the uncertainty shocks of

the paper’s original estimates show similarly significant correlations with “known” macroeconomic

shocks.

Figure 3 provides the impulse response estimates of a one-standard-deviation shock to log

macro uncertainty (ln<C). These estimates are qualitatively the same as those reported in the paper.

The shock to log macro uncertainty produces a rise in uncertainty that gradually dies out, over the

course of about one year. Financial uncertainty rises in response, also for about a year, although the

response of financial uncertainty is estimated less precisely than the response of macro uncertainty.

Activity measures including consumption, real M&T (manufacturing and trade) sales, industrial

production, and capacity utilization decline significantly. The labor market also deteriorates, with

employment and hours falling and the unemployment rate rising. Despite the significant decline of

economic activity in response to the macro uncertainty shock, there doesn’t appear to be evidence of

a broad decline in prices. Although the PPI for finished goods declines steadily (with an imprecise

estimate), overall consumer prices as captured by the PCE price index fail to display a significant

change. In the face of this sizable deterioration in the real economy and in the absence of much

movement in prices, the federal funds rate gradually falls. The responses of financial indicators
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to the shock to macro uncertainty are somewhat mixed, often muted, and sometimes imprecisely

estimated. However, in these corrected estimates as compared to the paper’s original results, the

shock to uncertainty produces a larger and more precisely estimated fallo� in the S&P 500 and

excess return.

Figure 4 provides the impulse response estimates of a one-standard-deviation shock to log

financial uncertainty (ln 5C). These updated estimates are also comparable to those reported in the

published paper, although in this case of a financial uncertainty shock, the corrected responses

tend to be a little smaller than those reported in CCM2018. The shock to log financial uncertainty

produces a rise in uncertainty that only gradually dies out, over the course of almost two years.

In response, macro uncertainty slightly declines (whereas in the paper’s estimates it slightly rose),

although by an amount that would not be significant at confidence levels modestly greater than 70

percent (as they are barely significant at 70 percent). As to broader e�ects of financial uncertainty,

when compared to a macro uncertainty shock, a financial uncertainty shock has similar macroeco-

nomic e�ects, but often modestly smaller or sometimes less precisely estimated. However, in these

estimates, as in the paper’s results, a financial uncertainty shock does not have significant e�ects on

the housing sector (starts and permits). In addition, as in the paper’s results, the shock to financial

uncertainty produces a persistent and significant rise in the credit spread, with a hump-shaped

pattern. It also produces a sizable fallo� in aggregate stock prices and returns, but the responses of

the risk factors included in the model are insignificant.

Figure 5 provides corrected historical decomposition results for the period from 2003 through

2014. The charts show the standardized data series, a baseline path corresponding to the uncon-

ditional forecast, the direct contributions of shocks to (separately) macroeconomic and financial

uncertainty, and the direct contributions of the VAR’s shocks. The reported estimates are posterior

medians of decompositions computed for each draw from the posterior. These updated results are

also qualitatively similar to those provided in the paper. Around the Great Recession, shocks to

uncertainty contribute to fluctuations in economic activity, the federal funds rate, the credit spread,

and uncertainty itself, but not much to inflation or stock prices (or other financial indicators). How-
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ever, for the macroeconomic and financial variables of the model, the e�ects of uncertainty shocks

are generally dominated by the contributions of the VAR’s shocks. One qualitative di�erence with

the corrected results compared to the estimates originally reported is that the contribution of shocks

to financial uncertainty is smaller in the new estimates.

Figure 6 shows the e�ects of uncertainty shocks on the predictive distributions of selected

variables. The solid black line and gray shading report the predictive density of a baseline path

for the variables. The alternative path denoted by the dotted (median) and dashed lines (15 and

85 percent quantiles) instead shows the predictive density with additional uncertainty shocks (for

December 2007 through June 2009) corresponding to those obtained with our estimated model.

These corrected results are very similar to the original estimates provided in CCM2018. Consistent

with the simple impulse responses, the shocks to uncertainty cause the path of economic activity to

shift down. For many but not all variables, the shocks also have a distributional e�ect beyond just

moving the center of the distribution: they also cause the distribution to rotate downward. The 15th

percentile of the 70 percent credible set appears to fall more than does the 85th percentile. These

e�ects are most evident for those variables for which an uncertainty shock a�ects the median of the

distribution, particularly for measures of economic activity (employment, industrial production,

etc.), the federal funds rate, and the credit spread. For variables for which the median responses

are smaller (e.g., for the PCE price index), there are no obvious distributional e�ects.
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Table 2: Correlations of uncertainty shocks with other shocks

macro financial

known uncertainty uncertainty

shock shock shock

Productivity: Fernald TFP -0.065 0.137

(1985:Q1-2014:Q2) (0.406) (0.164)

Oil supply: Hamilton (2003) 0.144 0.150

(1985:Q1-2014:Q2) (0.039) (0.009)

Oil supply: Kilian (2008) -0.123 0.064

(1985:Q1-2004:Q3) (0.236) (0.651)

Monetary policy: Guykaynak, et al. (2005) -0.054 0.159

(1990:Q1-2004:Q4) (0.570) (0.029)

Monetary policy: Coibion, et al. (2016) -0.143 -0.332

(1985:Q1-2008:Q4) (0.173) (0.000)

Fiscal policy: Ramey (2011) 0.076 0.093

(1985:Q1-2008:Q4) (0.343) (0.036)

Fiscal policy: Mertens and Ravn (2012) 0.079 -0.033

(1985:Q1-2006:Q4) (0.101) (0.248)

Notes: The table provides the correlations of the orthogonalized shocks to uncertainty

(measured as the posterior medians of⇠�1
� DC , where⇠� denotes the Choleski decomposition

of �) with selected macroeconomic shocks. The monthly shocks from the model are

averaged to the quarterly frequency. Entries in parentheses provide the sample period of the

correlation estimate (column 1) and the ?-values of C-statistics of the coe�cient obtained

by regressing the uncertainty shock on the macroeconomic shock (and a constant). The

variances underlying the C-statistics are computed with the pre-whitened quadratic spectral

estimator of Andrews and Monaghan (1992).
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Figure 1: Uncertainty estimates: posterior median (solid black line) and 15%/85% quantiles (dotted

lines), with macro uncertainty (<0.5
C ) in the top panel and financial uncertainty ( 5 0.5

C ) in the bottom

panel. The gray shading indicates periods of NBER recessions. The periods indicated by black

vertical lines or regions correspond to the uncertainty events highlighted in Bloom (2009). Labels

for these events are indicated in text horizontally centered on the event’s start date.
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Figure 2: Reduced-form (black line) and idiosyncratic volatilities (⌘0.5
8,C , gray line), selected vari-

ables, posterior medians
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Figure 3: Impulse responses for one-standard-deviation shock to macro uncertainty, selected

variables, posterior median (black line) and 15%/85% quantiles (gray shading)

15



E
m

pl
oy

m
en

t

0
5

10
15

20
25

30
35

40
45

-0
.3

0

-0
.2

5

-0
.2

0

-0
.1

5

-0
.1

0

-0
.0

5

-0
.0

0

0.
05

In
d.

 p
ro

d.

0
5

10
15

20
25

30
35

40
45

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

-0
.00.
1

C
ap

ac
ity

 u
til

iz
at

io
n

0
5

10
15

20
25

30
35

40
45

-0
.3

0

-0
.2

5

-0
.2

0

-0
.1

5

-0
.1

0

-0
.0

5

-0
.0

0

0.
05

0.
10

U
ne

m
pl

oy
m

en
t r

at
e

0
5

10
15

20
25

30
35

40
45

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

W
ee

kl
y 

ho
ur

s,
 g

oo
ds

0
5

10
15

20
25

30
35

40
45

-0
.0

4

-0
.0

3

-0
.0

2

-0
.0

1

0.
00

0.
01

H
ou

si
ng

 s
ta

rt
s

0
5

10
15

20
25

30
35

40
45

-0
.4

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H
ou

si
ng

 p
er

m
its

0
5

10
15

20
25

30
35

40
45

-0
.4

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
ea

l c
on

su
m

er
 s

pe
nd

in
g

0
5

10
15

20
25

30
35

40
45

-0
.0

50

-0
.0

25

0.
00

0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.
12

5

0.
15

0

R
ea

l m
an

uf
. a

nd
 tr

ad
e 

sa
le

s

0
5

10
15

20
25

30
35

40
45

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

-0
.0

IS
M

 in
de

x,
 n

ew
 o

rd
er

s

0
5

10
15

20
25

30
35

40
45

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

-0
.00.
1

0.
2

P
P

I, 
fin

is
he

d 
go

od
s

0
5

10
15

20
25

30
35

40
45

-101234

P
C

E
 p

ri
ce

 in
de

x

0
5

10
15

20
25

30
35

40
45

-1
.0

0

-0
.7

5

-0
.5

0

-0
.2

5

0.
00

0.
25

0.
50

0.
75

1.
00

Fe
de

ra
l f

un
ds

 r
at

e

0
5

10
15

20
25

30
35

40
45

-0
.1

2

-0
.1

0

-0
.0

8

-0
.0

6

-0
.0

4

-0
.0

2

0.
00

0.
02

0.
04

S
&

P
 5

00

0
5

10
15

20
25

30
35

40
45

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.50.
0

S
pr

ea
d,

 B
aa

-1
0y

 T
re

as
ur

y

0
5

10
15

20
25

30
35

40
45

-0
.0

1

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

E
xc

es
s 

re
tu

rn

0
5

10
15

20
25

30
35

40
45

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

-0
.00.
1

M
om

en
tu

m

0
5

10
15

20
25

30
35

40
45

-0
.1

5

-0
.1

0

-0
.0

5

0.
00

0.
05

0.
10

0.
15

0.
20

R
15

_R
11

0
5

10
15

20
25

30
35

40
45

-0
.3

0

-0
.2

5

-0
.2

0

-0
.1

5

-0
.1

0

-0
.0

5

-0
.0

0

0.
05

0.
10

0.
15

Lo
g 

m
ac

ro
 u

nc
er

ta
in

ty

0
5

10
15

20
25

30
35

40
45

-0
.0

30

-0
.0

25

-0
.0

20

-0
.0

15

-0
.0

10

-0
.0

05

0.
00

0

0.
00

5

0.
01

0

Lo
g 

fin
an

ce
 u

nc
er

ta
in

ty

0
5

10
15

20
25

30
35

40
45

-0
.0

5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 4: Impulse responses for one-standard-deviation shock to financial uncertainty, selected

variables, posterior median (black line) and 15%/85% quantiles (gray shading)
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Figure 5: Historical decomposition for 2003-2014, selected variables, posterior medians, with

actual data series in solid black line
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Figure 6: E�ects of uncertainty shocks on predictive distributions, December 2007 through De-

cember 2012, selected variables. The baseline path is reported as the solid black line (median) with

gray shading (15%/85% quantiles). The path with the e�ects of the estimated uncertainty shocks

over the period is reported as the dotted line (median) with dashed lines (15%/85% quantiles).
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