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Abstract

The COVID-19 pandemic has led to enormous movements in economic data that strongly

affect parameters and forecasts obtained from standard VARs. One way to address these is-

sues is to model extreme observations as random shifts in the stochastic volatility (SV) of VAR

residuals. Specifically, we propose VAR models with outlier-augmented SV that combine tran-

sitory and persistent changes in volatility. The resulting density forecasts for the COVID-19

period are much less sensitive to outliers in the data than standard VARs. Evaluating fore-

cast performance over the last few decades, we find that outlier-augmented SV schemes do at

least as well as a conventional SV model. Predictive Bayes factors indicate that our outlier-

augmented SV model provides the best data fit for the period since the pandemic’s outbreak,

as well as for earlier subsamples of relatively high volatility.
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1 Introduction

Bayesian VARs have a successful track record in point and density forecasting, the measurement of

tail risks, and structural analysis. However, incoming data in 2020 posed some basic challenges for

estimation and inference with VARs. The economic turbulence created by the ongoing COVID-

19 pandemic is reflected in extreme realizations for a number of macroeconomic and financial

series for the US, as shown in Figure 1. For example, payroll employment plummeted by about

15 percent from March to April 2020, a decline nearly 16 times as large as the previous largest

monthly decline, and real income rose by about 12 percent in the month, an increase 3 times larger

than the previous record growth rate.1 Since then, real income has continued to fluctuate strongly,

recording further record rates of increase and decline in early 2021. Measured by the business

conditions index of Aruoba, Diebold, and Scotti (2009), the drop in real activity recorded in 2020

is more than 5 times as deep as in any other recession since 1960, so that the previous Great

Recession of 2007-09 “appears minor by comparison” as noted by Diebold (2020). These extreme

realizations can have strong effects on parameter estimates and forecasts generated by conventional

constant-parameter VARs. In response, Schorfheide and Song (2020) suggest ignoring the recent

data in estimating VAR parameters, whereas Lenza and Primiceri (2020) propose a specific form

of heteroskedasticity, tuned to the COVID-19 data, to down-weight observations since March 2020

in the estimation.

Prior to the COVID-19 era, heteroskedastic VAR models, in particular models with stochas-

tic volatility (SV), have been shown to provide more accurate point and density forecasts than

constant-parameter models (see, e.g., Clark (2011), Clark and Ravazzolo (2015), and D’Agostino,

Gambetti, and Giannone (2013)). SV models generate time variation in predictive densities through

changes in the variance-covariance matrix of the VAR’s forecast errors over time, with potential

1These calculations use log growth rates and data from the April 2021 vintage of FRED-MD. The rise in measured

income from March to April also reflects payouts of government stimulus in that month. In contrast, over the following

month, real income fell by about 4.5 percent, the then second-highest drop in our data (the largest drop in real income,

by about 5 percent, that occurred in January 2013).
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benefits for the accuracy of density forecasts (Clark, McCracken, and Mertens (2020)). In addi-

tion, heteroskedasticity affects the estimation of slope coefficients in each VAR equation (at least

in finite samples). As an application of generalized least squares, when extreme realizations are

modeled as sudden increases in volatility, heteroskedastic VARs will down-weight the associated

observations when estimating parameters; in the limit, outliers associated with infinite volatility

would be discarded.2

A typical SV model assumes changes in volatility to be highly persistent. However, by defi-

nition, extreme observations are more reflective of short-lived spikes, not permanent increases, in

volatility. Like Schorfheide and Song (2020) and Lenza and Primiceri (2020), we view the extreme

observations of the COVID-19 period as possible outliers that are characterized by transient and

infrequent increases in volatility, in which case it may be desirable to reduce their influence on

model estimates and forecast distributions. In earlier work, the conventional SV model has already

been extended to feature fat-tailed, instead of normal, errors, as in Jacquier, Polson, and Rossi

(2004), henceforth denoted “SV-t.” More recently, Stock and Watson (2016) designed a discrete

mixture representation of rare but large outliers in volatility (henceforth “SVO”), as observed, for

example, during the global financial crisis.

In this paper, we introduce a novel combination of (1) an SV model with large but infrequent

volatility outliers with (2) an SV-t model that generates fat-tailed errors to an otherwise standard

Bayesian VAR (BVAR). The resulting SVO-t model nests the Stock-Watson SVO approach and the

fat-tail SV-t model of Jacquier, Polson, and Rossi (2004). We show that a BVAR with SVO(-t) is

highly effective in filtering outliers from data associated with the COVID-19 pandemic, to produce

better-behaved forecast densities.
2For example, when applied to data samples starting in the 1960s or 1970s, VARs with SV tend to discount data

points prior to the onset of the low-volatility period known as the Great Moderation that started in the mid-1980s

(Perez-Quiros and McConnell (2000)). Of course, the distinction between generalized and ordinary least squares

matters only in finite samples, as both converge to the same asymptotic limit (to which a Bayesian estimate would

also converge). But as demonstrated by the COVID-19 episode, common samples of macroeconomic data are still

sufficiently finite for (huge) outliers to matter.
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The Stock-Watson volatility model with outliers, SVO, augments the standard SV specification

of a highly persistent volatility state with an outlier volatility state that infrequently and temporar-

ily jumps to values above 1. In its original form, first considered by Stock and Watson (2016)

in unobserved component models of inflation, the model has Gaussian errors. We combine the

outlier-augmented SV process with VARs that have Gaussian (SVO) or t-distributed (SVO-t) er-

rors, and also consider the case of t-distributed errors without volatility outliers (SV-t). In light of

the heterogeneous occurrence of outliers that is visible, for example, in Figure 1, outlier states are

variable-specific in our baseline model.

We demonstrate that SVO, SVO-t, and SV-t share the same latent state representation where

residuals are written as the product of a normally distributed shock and a set of outlier states, but

differ in the assumed densities for the outlier states. In particular, SVO puts more mass on outliers

being large events that increase volatility by more than twofold, whereas SV-t sees outliers as more

moderately sized, and SVO-t is a combination of the two. Conventional procedures for estimation

of BVAR-SV models can easily be extended to handle SVO(-t). Specifically, we show that the

standard MCMC algorithm used for estimation of BVAR-SV models can still be used, but with

the addition of two extra steps. First, realized outlier states need to be drawn from their posteriors,

conditional on draws for each variable’s outlier probability. Second, the outlier probability for each

variable is drawn from a (conditional posterior) distribution conditional on the draws of the time

series of outlier states.

Throughout our empirical analysis, we use a medium-sized data set of 16 monthly variables,

motivated by research that has found that larger BVARs tend to forecast more accurately than

smaller BVARs, while going beyond medium-sized models adds little (e.g., Bańbura, Giannone,

and Reichlin (2010), Carriero, Clark, and Marcellino (2019), and Koop (2013)). Although at this

point we are comfortable viewing the extreme realizations of the COVID-19 period as outliers, we

should emphasize that our approach is data-based: Our model provides a probabilistic assessment

of timing and scale of realized outliers in the data; we are not simply deeming (i.e., restricting)

recent observations to be outliers.
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As a starting point for our empirical work, we confirm the findings of Lenza and Primiceri

(2020) and Schorfheide and Song (2020) that forecasts generated since March 2020 from ho-

moskedastic BVARs are often distorted. For example, suppose one uses monthly data through

April 2020 to estimate a medium-sized BVAR and forecast payroll employment growth starting in

May 2020. In light of the suggestion of Schorfheide and Song (2020), we also consider forecasts

for the same period but using parameter estimates based on data ending in February.3 The fore-

casts turn out to be strikingly different. In general, the recent outliers cause the forecast paths of

some variables to become extreme by historical standards. Instead, we find that BVARs with SV or

SVO specifications generated better-behaved forecasts than in the constant-variance case. Both SV

and SVO estimates register increases in forecast uncertainty. But, while the SV specification sees

all shocks to forecast uncertainty as permanent, the SVO(-t) model explicitly allows for one-off

spikes in volatility, resulting in estimates of forecast uncertainty that are still elevated but, in our

subjective assessment, appear less extreme and more reasonable. So, in our assessment, the SVO

and SVO-t specifications offer an effective approach for managing infrequent outliers with BVARs

used for forecasting.

As an alternative, we also consider relying on a standard BVAR-SV but treating as missing data

those observations identified ex-ante as extreme. The methods discussed so far adjust parameters

(including the volatility states) but not the data vector used at the forecast origin in forming a

prediction; treating observations as missing data also alters the jumping-off point of the forecasts.

To identify extreme observations as outliers, we use an ex-ante criterion known from the literature

on dynamic factor models that is based on the distance of a given data point from the time-series

median.4 This approach differs from the SVO approach, which estimates the occurrence of outliers

jointly with the VAR, by treating the dates of outliers as known ex-ante. In addition, echoing

3Forecasts for April 2020, obtained with parameter estimates based on pre-COVID-19 data, are documented in

the supplementary online appendix.
4Following Stock and Watson (2002), applications of dynamic factor models have considered observations to be

outliers when they are some multiple of the inter-quartile range away from the series median; among others, see Artis,

Banerjee, and Marcellino (2005) and McCracken and Ng (2016).
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arguments developed in Mitchell and Weale (2021), the missing-data treatment remains agnostic

about the specific stochastic properties of those observations that are pre-selected as outliers. In

the COVID-19 period, this approach also produces much better-behaved forecasts than a constant-

variance BVAR. In forecasting, the biggest difference with the outlier-augmented SV procedures

is that conditioning on the incidence of outliers, while otherwise ignoring any signal from their

specific realization, leads to predictive densities that can be considerably tighter than those from

SVO(-t) (or SV-t).5

Although to this point we have focused on the efficacy of methods for reducing distortions

to forecast distributions in the presence of outliers, to be broadly effective, it is important that a

given method not only helps reduce such distortions but also performs effectively in forecasting

over long periods of time less affected by outliers. Accordingly, we conduct a quasi-real-time

evaluation of forecast performance using monthly data with an evaluation window starting in 1975

and ending in 2017, comparing the accuracy of point and density forecasts from our proposed SVO

and SVO-t specifications and the alternatives discussed above. It turns out that pre-COVID data

include outliers; indeed, SVO(-t) detects pre-COVID-19 outliers in macroeconomic and financial

time series, whose existence had been noted before by, among others, Stock and Watson (2002). In

historical forecast accuracy for the 1975-2017 sample, the SVO approach marginally outperforms

SV. The SVO-t model, which features stochastic volatility, fat tails, and the outlier state treatment,

yields even better forecasts. However, the alternative approach of treating outliers as missing data

in an otherwise conventional VAR with SV performs about as well.

All told, the use of VARs with time-varying volatility, like SV and SVO, broadly mitigates the

drastic effects that outliers can have on forecasts. But only an outlier-augmented SV specification,

like SVO or SVO-t, or the alternative of treating extreme observations as missing, prevents the

width of predictive densities from blowing up as they would in the SV case. Importantly, the

5Even tighter densities (around similar point forecasts) are obtained when using deterministic dummies for each

month of the COVID-19 period. The use of dummies essentially removes pandemic observations from the estimation

sample, which reduces uncertainty for exogenous reasons.
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added value of SVO and SVO-t also holds up over a longer sample outside the recent COVID-19

episode.

To evaluate which model best characterizes the data in the COVID-19 period, we employ pre-

dictive Bayes factors (which are based on sums of predictive likelihoods). By this measure, our

SVO specification fits the COVID-19 sample the best, with SVO-t next. In earlier samples, the

SVO and SVO-t specifications also fare well in model fit. The advantages of these models are

driven by the subsamples of relatively high volatility; the baseline SV model fits best in the Great

Moderation years of 1985 through 2007.

The remainder of this paper proceeds as follows. Section 2 briefly reviews the related literature

not covered above. Section 3 introduces the SVO and SVO-t models and alternative specifications

to handle outliers, and describes their estimation. Section 4 describes the data used. Section 5

provides our results, including a forecast comparison between the various models over a long

pre-COVID-19 sample, details about estimated outlier states before and during the COVID-19

episode, the evolution of forecasts made over the course of 2020 and early 2021, and model fit.

Section 6 summarizes robustness checks provided in our supplementary online appendix. Section 7

concludes.

2 Related literature

In addition to Lenza and Primiceri (2020), Schorfheide and Song (2020), and our paper, the arrival

of COVID-19 has prompted a number of studies to consider treating the extreme observations of

the COVID-19 period as outliers. A particular contribution of our paper is the comprehensive

analysis of model fit and forecast performance over a wide set of macroeconomic and financial

variables of BVARs with and without outlier-augmented SV. By studying model performance over

a relatively long sample of post-war US data, we can also document the recurring benefits of outlier

treatments at times of crisis or other economic upheavals.
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Antolı́n-Dı́az, Drechsel, and Petrella (2021) develop a dynamic factor model for nowcasting in

the US, evaluated in real time from 2000 onward, where outliers are modeled as additive measure-

ment errors that have t-distributions. Focusing on euro area inflation, Bobeica and Hartwig (2021)

document that pandemic observations can shift parameter estimates and find some benefits to al-

lowing fat tails in a VAR for the euro area.6 In another application to euro area data, Alvarez and

Odendahl (2021) find that the pandemic’s outliers distort VAR estimates and consider alternative

approaches to modeling volatility outliers.

Prior to the arrival of COVID-19, some studies had already considered VAR specifications with

fat-tailed error distributions. For example, t-distributed shocks were used in BVAR-SV models by

Chiu, Mumtaz, and Pintér (2017) and Clark and Ravazzolo (2015) and estimated DSGE models,

with and without SV, by Cúrdia, Del Negro, and Greenwald (2014) and, more recently, by Chib,

Shin, and Tan (2021). Karlsson and Mazur (2020) and Chan (2020) provide general treatments of

heteroskedasticity in BVAR models with and without SV and fat-tailed error distributions.

Other more recent analyses have proposed approaches more geared to specific circumstances

of the pandemic. In part, these approaches go beyond our forecasting application and consider the

estimation of causal (or structural) dependencies. For example, Primiceri and Tambalotti (2020)

and Ng (2021) argue for seeing the COVID-19 period as adding a new type of shock to the dy-

namic system of the economy. Based on the assumption that the new COVID-19 shock has been

the dominant source of variation since early 2020, Primiceri and Tambalotti (2020) derive a set

of conditional forecasts for different scenarios of future developments. Instead, Ng (2021) uses

pandemic indicators to “de-covid” data prior to estimation of time series models. Specifically, in

application to a structural VAR, Ng (2021) shows that after accounting for exogenous COVID-19-

related indicators, dynamic responses to other shocks appear similar pre- and post-COVID-19.7

6In a related study, Hartwig (2021) considers US data.
7In another application, Ng (2021) augments a dynamic factor model with COVID-19-related indicators to update

uncertainty measures from Jurado, Ludvigson, and Ng (2015).
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3 BVAR models

We study VAR models of the following form:

yt = Π0 +Π(L)yt−1 + vt , vt ∼ N(0,Σt) (1)

where yt is a vector of N observables, Π(L) =
∑p

i=1Πi Li−1 is a pth order lag polynomial of

VAR coefficients, and vt denotes the VAR’s residuals. We denote the vector of stacked coefficients

contained in {Πi}pi=0 as Π. Throughout, we maintain the assumption of time-invariant transition

coefficients Π, which is commonly (and so far successfully) used in forecasting.8 All models are

specified with non-conjugate priors for Π and Σt.

The models differ mainly in whether the residuals are homoskedastic, or in the form of their

heteroskedasticity. Heteroskedasticity in VAR residuals has important effects on the estimation of

Π, in particular when there are outliers with large residual volatility. Intuitively, observations with

higher residual volatility receive less weight in the estimation of VAR coefficients. For the sake

of illustration, consider an AR(1) model without intercept: yt = πyt−1 + vt, vt ∼ N(0, σ2
t ) with

σ2
t known, and a prior conditional on past data π|yt−1 ∼ N(π, ω2). This is a signal extraction

problem where yt serves as a noisy signal about the unknown π, with a signal-to-noise ratio that is

decreasing in σ2
t . Accordingly, the posterior mean for π is a weighted average of the prior mean, π,

and the data-driven OLS estimate, πOLS , with the weight decreasing in σ2
t . In the case of observing

8These linear models remain the workhorse of applied forecasting in policy analysis and a benchmark for use in

research. Beyond linear VARs, Guerrón-Quintana and Zhong (2017) and Huber, et al. (forthcoming) employ semi-

and non-parametric methods to better allow forecasting relationships to adapt to changing conditions, in particular at

times of crisis. Having said that, our proposed approach to outliers could also be incorporated into VARs that feature

time-varying regression parameters in the smaller specification and estimation approach of D’Agostino, Gambetti, and

Giannone (2013) and the larger specification and estimation approach of Chan (2019). Results reported in the sup-

plementary online appendix indicate little to no variation in the parameters of the conditional mean in heteroskedastic

VAR models since early 2020, but sizable variation in a homoskedastic VAR.
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a single observation yt, these are:

E (π|yt, yt−1) = (1− κ) · π + κ · πOLS , with πOLS =
yt yt−1

y2t−1

, and κ =
ω2

ω2 +
σ2
t

y2t−1

.

Recursive application of the above extends the example to multiple periods. In addition, the logic

of down-weighting observations subject to high residual variance carries over to the multivariate

case, as described, for example, in Koop (2003, Chapter 6).

As argued above, time-varying volatility in the VAR residuals, vt, can help to insulate estima-

tion of the transition coefficients Π from the effects of extreme outliers. However, density forecasts

will crucially depend on the assumed dynamics of the variances in Σt, and we further consider dif-

ferent forms of persistence in variance changes below.

Down-weighting extreme observations in the estimation of Π will not completely insulate the

resulting forecasts from outliers. Consider again the case of the AR(1) without intercept, where

the h-step-ahead forecast is given by yt+h|t = πh yt and yt was an outlier. Even if the outlier were

excluded from estimation of π, it would still have a direct effect on the forecast yt+h|t.9 To address

these concerns, we consider a variant of the SV model that treats pre-specified outliers as missing

values. To identify extreme observations as outliers, we use an ex-ante criterion taken from the

literature on dynamic factor models that is based on the distance between a given data point and

the time-series median. Treating pre-identified outlier observations as missing data also avoids

specification of their exact stochastic distribution; see, for example, Mitchell and Weale (2021) for

a related discussion.
9In VAR (or AR) models with higher lag orders, the forecast would not singularly depend on the outlier yt but also

preceding values that are not necessarily outliers. Nevertheless, outliers in the “jump-off” data point, yt, may unduly

influence the forecast.
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3.1 Model specification

We consider the following six variants of the VAR model (1). The first five differ in the specified

process for the residuals vt, whereas the last variant treats pre-specified outliers as missing data.

Section 6 includes a summary of robustness checks conducted with some other specifications,

described there.

1) CONST: A homoskedastic VAR with vt ∼ N(0,Σ).

2) SV: In this baseline SV model, the VAR residuals can be written as

vt = A−1 Λ0.5
t εt , with εt ∼ N(0, I) , (2)

where A−1 is a unit-lower-triangular matrix, Λ0.5
t is a diagonal matrix of stochastic volatilities, and

the reduced-form variance-covariance matrix of innovations is Σt = A−1 Λt (A
−1)′. The vector

of logs of the diagonal elements of Λt, denoted log λt, evolves as a random walk with correlated

errors:

log λt = log λt−1 + et , with et ∼ N(0,Φ). (3)

3) SVO-t: The SVO-t model is intended to capture two kinds of outliers that are both modeled

as transitory changes in volatility: The first kind captures rare jumps in volatility. The second kind

occurs more often, but is less extreme in impact (consistent with draws from the tails of a fat-tailed

distribution). Each kind of outlier enters the model in the form of a diagonal matrix of scale factors,

denoted Ot and Qt, with diagonal elements oj,t and qj,t, respectively, that are mutually i.i.d. over

all j and t.

The first kind of outlier, oj,t, has a two-part distribution that distinguishes between regular

observations and outliers. When variable j has a regular observation in period t we have oj,t =

10



1, while for an outlier it is oj,t ≥ 2.10 Outliers in variable j occur with probability pj and the

distribution for oj,t is:

oj,t =


1 with probability 1− pj

U(2, 20) with probability pj

for j = 1, . . . , N and where U(2, 20) denotes a uniform distribution with support between 2 and

20.

The second, less extreme, type of outlier in the SVO-t model is equivalent to having t-distributed

VAR residuals (conditional on Λt and Ot). Following Jacquier, Polson, and Rossi (2004), we let

the squares of the diagonal elements of Qt, qj,t, have inverse-gamma distributions:

q2j,t ∼ IG

(
dj
2
,
dj
2

)
.

The vector of VAR residuals in the SVO-t model is written as

vt = A−1 Λ0.5
t Ot Qt εt,

with A−1 and Λ0.5
t specified as before. The jth residual qj,t·εj,t (adjusted for the rotation by A−1 and

scaling by Λ0.5
t Ot), has a student-t distribution with dj degrees of freedom, since εj,t ∼ N(0, 1)

and dj/qj,t ∼ χ2
dj

. Since Ot, Qt, and Λt are diagonal, they commute, and the time-varying variance-

covariance matrix of the VAR residuals can conveniently be expressed as Σt = A−1Ot Qt Λt Q
′
t O

′
t

(A−1)′.

We place a beta prior on the outlier probability pj that corresponds to 10 years’ worth of prior

data, centered at a mean consistent with one outlier per decade. For the t-component of the SVO-t

model, we follow Jacquier, Polson, and Rossi (2004) and estimate the degrees of freedom dj for

10The lower bound of 2 on the scale shift in outliers is motivated by seeing outliers as events firmly outside the

typical mass of their otherwise Gaussian distribution (conditional on oj,t).
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each variable using a uniform discrete prior with a range of 3 to 40.

4) SVO: We also consider a simplified version of the SVO-t model, denoted SVO, where Qt = I

so that the VAR residuals are Gaussian (conditional on Ot and Λt). In this case, the time-varying

variance-covariance matrix of the VAR residuals is given by Σt = A−1Ot Λt O
′
t (A

−1)′. The SVO

model is similar to the treatment of volatility outliers by Stock and Watson (2016) in an unobserved

component model of inflation.11 As in Stock and Watson (2016), we place a beta prior on the outlier

probability pj so that the prior mean implies an outlier frequency of once every 4 years in monthly

data (and precision consistent with 10 years’ worth of prior observations). As illustrated in the

supplementary online appendix, the prior mean of pj = 1/(4 · 12) implies about the same variance

of oj,t in the SVO model as do our prior means of pj and dj in the SVO-t model for the combined

outlier states oj,t · qj,t.

5) SV-t: The SV model with t-distributed errors, SV-t, is a simplified version of the SVO-t model

where Ot = I , so that the time-varying variance-covariance matrix of the VAR residuals is given

by Σt = A−1Qt Λt Q
′
t (A

−1)′. The SV-t specification corresponds to the fat-tailed SV model of

Jacquier, Polson, and Rossi (2004), where the standard-normal shocks εt driving the VAR residuals

in (2) are replaced by t-distributed shocks. For our estimation, the degrees of freedom of the t

distribution are estimated as in Jacquier, Polson, and Rossi (2004), using a uniform discrete prior

with a range of 3 to 40. Overall, estimates not reported in the interest of brevity confirm that SVO

is more geared than SV-t toward generating sizable outliers at a variable-specific rate of occurrence

pj that is directly governed by an explicit prior, and SVO-t adds to that the flexibility of a fat-tailed

error distribution.

6) SV-OutMiss: This model applies the standard SV specification for Σt, but ignores a given

set of outlier observations in the VAR estimation altogether by treating them as missing data. The

approach builds on a practice known from the literature on dynamic factor models (DFM), in which

11In an application to inflation data, Stock and Watson (2016) use a U(2, 10) distribution for oj,t > 1.
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input data are pruned of extreme observations that are multiples times the inter-quartile range away

from the series median. Typical values for the multiple used in the literature vary from 5 to 10,

and we adopt a threshold factor of 5 as a baseline (we obtain very similar results using a factor of

10). Our supplementary online appendix provides an overview of which observations in our data

qualify as outliers according to this criterion. Apart from readings for employment, consumption,

income, and stock returns in 2020-21, and the fairly frequent occurrence of outliers in income

throughout the sample seen also in Panel (a) of Figure 1, further outliers are recorded in industrial

production, inflation, and stock returns during the recession of 2007-09. as well as exchange rates

during the 1970s.12

The DFM literature replaces extreme observations by the time-series median or a similar mo-

ment of central tendency. We adopt the same ex-ante criterion for the identification of outliers,

but we instead treat these as missing data in estimation and forecasting. In the limit, the missing

data approach corresponds to a version of attaching additive measurement error to specific obser-

vations, but with infinite variance, whereas the remaining observations are observed without error.

For each missing value, our Bayesian methods generate a posterior distribution that also informs

the resulting forecasts. Formally, denote the history of yt after pruning outliers as zt, and continue

the AR(1) example introduced above: Forecasts are then generated by yt+1|t = πh E(yt|zt) where

E(yt|zt) is identical to yt in the no-outlier case. Similarly, forecast uncertainty is generated based

on estimates of SV that condition only on zt, not potential outliers in the history of yt.

3.2 Model estimation

Each of our models is estimated with an MCMC sampler, based on the methods of Carriero, Clark,

and Marcellino (2019) (henceforth “CCM”) for estimating large BVARs, but as corrected in Car-

riero, et al. (2021a). As in CCM, we use a Minnesota prior for the VAR coefficients Π and follow

their other choices for priors as far as applicable, too. Throughout, we use p = 12 lags in a monthly

12In recognition of the end of the Bretton-Woods system, outliers in exchange rates are ignored for estimation

windows ending prior to 1985.
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data set, which is described in further detail in Section 4.

Here we briefly explain the algorithm adjustments needed for the version of the model with

constant variance and the alternative with outlier volatility states. The algorithm includes all of the

same steps given in CCM (as corrected in Carriero, et al. (2021a)), except for necessary adjust-

ments to account for the two alternative cases. For the constant-volatility model, an inverse-Wishart

prior for Σ, with a (conditionally) conjugate inverse-Wishart updating step for the MCMC sampler,

replaces the SV block of the model.13

For the SVO-t variant, the following extra steps are added to the original BVAR-SV setup: Re-

alized outlier states oj,t and qj,t need to be drawn from their posteriors. The step for oj,t conditions

on draws for the outlier probability pj and proceeds analogously to the sampling of the mixture

states needed with the Kim, Shephard, and Chib (1998) approach to the stochastic volatility states

log λt. The step for qj,t takes a draw from an inverse Gamma distribution. A further additional step

draws the outlier probability pj for each variable from a (conditional posterior) beta distribution

conditional on the draws of the time series of outlier states. The algorithms for SVO and SV-t are

simplified versions of that for SVO-t.14

For the SV-OutMiss model, which treats pre-specified outliers as missing values, the MCMC

sampler for the standard SV model is augmented by an additional step that draws the missing values

from a state-space representation of the VAR system using the disturbance smoothing algorithm

of Durbin and Koopman (2002). Computational cost increases substantially with the SV-OutMiss

model, as it requires an additional sequence of Kalman filtering and smoothing steps. In contrast,

the added cost of computing SVO-t (or SVO or SV-t) over standard SV is small, since this model

13The prior for Σ in the constant-variance model is uninformative; that is, we use an improper Wishart with zero

degrees of freedom and scale matrix equal to zero.
14The ordering of steps in our MCMC sampler reflects the recommendations of Del Negro and Primiceri (2015) as

implemented also by Cúrdia, Del Negro, and Greenwald (2014) (for SV-t) and Stock and Watson (2016) (for SVO).

Specifically, the t-error states, qj,t, are sampled before the SV mixture states of Kim, Shephard, and Chib (1998),

while draws from oj,t condition on those mixture states so that oj,t and pj are sampled after the SV steps known from

Kim, Shephard, and Chib.
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adds only steps for sampling the i.i.d. outlier states.

All results in the paper are based on 1,000 retained draws, obtained by sampling a total of 1,200

draws with 200 burn-in draws. Unreported comparisons of posteriors obtained under different

starting values indicate satisfactory convergence of the MCMC algorithms.

4 Data

Our data set consists of monthly observations for 16 macroeconomic and financial variables for

the sample 1959:M3 to 2021:M3, taken from the April 2021 vintage of the FRED-MD database

maintained by the Federal Reserve Bank of St. Louis. The variables and their transformation to

logs or log-differences are listed in Table 1. To avoid issues related to the effective lower bound

(ELB) on nominal interest rates, the data set includes only longer-term interest rates and omits a

policy rate measure, like the federal funds rate, which was constrained by the ELB from late 2008

to 2016, and then again starting in March 2020.15

A few selected series are shown in Figure 1. Observations are marked as outliers in red if

their distance from the series median exceeds 5 times the inter-quartile range (IQR), where median

and IQR are computed from the pre-COVID-19 sample. As discussed in the introduction, similar

definitions of outliers have been used in the literature on factor models. Real personal income,

shown in Panel (a) of the figure, has regularly displayed outliers over the post-war sample. Many

other series, like payroll growth shown in Panel (b), exhibit such outliers only over the recent

COVID-19 period, whereas a few others, like returns on the S&P500, in Panel (c), inflation, or the

exchange rate between the US dollar and pound sterling, displayed large outliers only on earlier

15The related paper by Lenza and Primiceri (2020) does not include any interest rates in its VAR setup. When

simulating forecasts for our longer-rate measures, the 5- and 10-year Treasury yields, individual draws have fallen

below the ELB as well, and the predictive densities were truncated at the ELB in these cases. Due to the dynamic

nature of the forecast simulation, this truncation also has indirect effects on the predictive densities of other variables.

In companion work (Carriero, et al. (2021b)), we focus on the estimation of VARs that model nominal interest rates as

censored variables.
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occasions. Some variables, like the unemployment rate in Panel (d), have registered outstanding

changes since the pandemic’s outbreak, but without registering explicit outliers by this metric.

In some cases, outliers may be attributed to unusual events. For example, in results not shown,

industrial production registers a positive outlier in December 1959, when production bounced back

following a strike in the steel industry from mid-July through early November. More recently,

income transfers from the CARES Act caused growth in personal income to surge in April 2020.

5 Results

This section presents results on forecast performance pre-COVID-19, outlier estimates, forecasts

made in 2020-21, and model fit.

5.1 Forecast performance pre-COVID-19

Applicability of the outlier-augmented BVAR-SVO and BVAR-SVO-t models is not necessarily

specific to data resulting from the current COVID-19 pandemic. As noted above, individual data

series have exhibited occasional outliers before, leading to some earlier studies of the potential

benefits of modeling fat-tailed error distributions and other forms of outliers.16 On the other hand,

to the extent our models are motivated by a goal to accommodate the extremes of the COVID-

19 period, one might be concerned that a model successful in this period could in some sense

overfit earlier data. Motivated by these considerations, in this section, we evaluate the forecast

performance of the alternative BVAR specifications described in Section 3 when applied to data

prior to the onset of COVID-19.

We conduct an out-of-sample forecast evaluation in quasi-real time, where we simulate fore-

casts made from 1975:M1 through 2017:M12.17 For every forecast origin, each model is re-

16See, for example, Chiu, Mumtaz, and Pintér (2017), Clark and Ravazzolo (2015), and Cúrdia, Del Negro, and

Greenwald (2014) for the use of SV-t specifications in VARs or DSGE models and Stock and Watson (2016) for the

use of SVO in unobserved component models.
17The end of our evaluation window has been chosen to avoid overlap with COVID-19-related realizations; how-
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estimated based on growing samples of data that start in 1959:M3. All data are taken from the

April 2021 vintage of FRED-MD; we abstract from issues related to real-time data collection. The

forecast horizons considered extend from 1 to 24 months. We evaluate point and density forecasts

based on root-mean-squared errors (RMSE) and continuous ranked probability scores (CRPS),

respectively, as described in, among others, Clark and Ravazzolo (2015) and Krüger, et al. (forth-

coming). Statistical significance of differences in loss functions is evaluated using the Diebold and

Mariano (1995) and West (1996) test.

Tables 2 and 3 compare point and density forecasts generated by a homoskedastic BVAR and

BVARs with SV and SVO-t specifications, taking the SV model as the benchmark. In Table 2’s

point forecasts, across variables and horizons SV and CONST are broadly comparable in accuracy.

For some variable-horizon combinations, one may be a little better or worse than the other (with

RMSE ratios ranging between roughly 0.97 and 1.03), but the differences are generally immaterial.

Density results as gauged by the CRPS are broadly comparable, with SV sometimes modestly

better than CONST and sometimes modestly worse. However, at the 24-months-ahead horizon,

the performance of the SV model deteriorates, with the CONST specification offering gains often

on the order of 20 to 25 percent.

The SVO-t specification could be expected to capture better the occasional outliers in pre-

COVID-19 data, but possibly also at the expense of overfitting elsewhere. However, such concerns

are not borne out by our forecast evaluation. In terms of both point and density forecasts, SVO-t

typically performs as well as, and at times even better than, SV, as well as the CONST model. Point

forecasts generated by the SVO-t model over the post-war period (and pre-COVID) are generally

on par with those from the SV model, with RMSE ratios in some cases a little below or above

1 but often very close to 1. With density forecast accuracy as gauged by the CRPS, at shorter

horizons the SVO-t specification performs very similarly to the SV baseline, with CRPS ratios

very close to 1, occasionally a bit lower. At the 12 months horizon, SVO-t yields larger gains

ever, we obtain very similar results when the evaluation window is extended through the end of our data sample in

2020.
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over SV, ranging from 2 to 6 percent. Bigger gains in accuracy occur at the horizon of 24 months,

with improvements as large as 15 percent. At this horizon, SVO-t improves forecast accuracy for

variables including consumption, industrial production, employment, hours, and stock returns. The

SVO-t gains are largest for real income, the variable most prone to outliers. Overall, the evidence

suggests that consistent use of SVO-t over the post-war sample improves on the commonly used

SV specification, in particular in terms of density forecasts and for those variables more subject to

frequent outliers, such as personal income.

Tables 4 and 5 compare SVO-t against versions of the model that strip out the t-distributed

component (SVO) or the Stock-Watson outlier state (SV-t) as well as the SV-OutMiss approach,

which treats pre-specified outliers as missing data as described in Section 3. Note that these com-

parisons take SVO-t as the baseline, so that a ratio less (more) than 1 means the alternative model

is more (less) accurate than the baseline. Point forecasts from the SVO and SV-t alternatives are

quite similar in accuracy to those from the SVO-t specification. Differences in relative RMSE

are never more than 4 percent and typically just 1 percent or less. In density accuracy, the SV-t

model is similar to our preferred SVO-t specification with CRPS ratios between 0.98 and 1.0 in

nearly all cases. At horizons of 12 months or less, the SV-OutMiss specification yields density

accuracy very similar to that of the SVO-t baseline. But at 24 months, SV-OutMiss forecasts can

be modestly less accurate (e.g., industrial production and hours). The more noticeable differences

in CRPS accuracy occur with the SVO model. Although at shorter horizons SVO accuracy is quite

similar to SVO-t accuracy, at longer horizons SVO-t provides the more accurate forecasts, often by

a statistically significant margin, reaching 10 to 12 percent for consumption, industrial production,

employment, and hourly earnings.

5.2 Outlier estimates in 2020-21 and before

As described in Section 3, the SVO-t approach extends the baseline SV model by adding latent

outlier states oj,t and qj,t for each variable j = 1, . . . , N , with the former uniformly distributed and

squares of the latter having an inverse Gamma distribution. The outlier states enrich the dynamics
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of the time-varying variance-covariance matrix, Σt, so that volatility can change due to transitory

changes in oj,t and qj,t, as well as the persistent variations induced through the log-SV terms

log λt. The SVO model adds just the state oj,t to an SV model, whereas the SV-t specification

adds just the state qj,t. In each case, the additional latent states serve to pick up on temporary

increases in volatility that would be ill-represented by the more persistent variations modeled via

the conventional SV processes for log λt.

To show how our models view the evidence on outlier probabilities over the full historical

sample, Table 6 reports posterior means and 68 percent credible sets for the probabilities of large

outliers in the SVO and SVO-t models and for the degrees of freedom for the fat-tail components

of the SV-t and SVO-t specifications, along with the corresponding priors. In the SVO model,

the posterior mean probability of a large outlier is greatest for real income, at 3.19 percent, and

ranges from about 0.3 percent (housing starts) to 1.1 percent (nonfarm payrolls and hours) for

other variables. In the SV-t specification, the posterior mean estimate of the degrees of freedom is

3 for one-half of the model’s variables — implying frequent small outliers — but above 20 (near-

Gaussian) for six other variables. In the SVO-t model that allows for both small and large outliers,

the estimated degrees of freedom are quite similar to those of the restricted SV-t specification,

whereas the estimated probabilities of large outliers are sharply lower than in the SVO model.

We can also provide a closer comparison of the volatility and outlier estimates obtained from

SVO-t, SVO, and SV-t. Focusing on just real income and S&P500 returns in the interest of chart

readability, Figure 2 displays posterior medians of the SV component (i.e., λ0.5
j,t ) and outlier esti-

mates (oj,t and qj,t) obtained over the full sample, with the SV component captured in solid black

lines and the outlier components in dotted colored lines. Echoing our discussion of each model’s

properties in Section 3, these results show that, when SV-t (first column) and SV (second column)

are compared, SV-t tends to see outliers as being more moderately sized but occurring also more

regularly than SVO. For example, in the real income estimates, SV-t shows a relatively large num-

ber of outliers in the 1970s and 1980s, whereas SVO shows fewer outliers that are larger in size.

With S&P500 returns, SVO shows few outliers before the COVID-19 period, whereas the SV-t es-
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timates yield relatively regular, small outliers, with more variability in the SV estimate (λ0.5
j,t ) in the

SVO case than the SV-t case. Our preferred SVO-t specification captures aspects of both SV-t-type

outliers and SVO-type outliers. With SVO-t, the probability of a small outlier is a little lower than

in the SV-t case, with some probability mass shifted to a large outlier. Similarly, with SVO-t, the

probability of a large outlier is lower than in the SVO results, with some probability mass shifted

to a small outlier.

Time variation in Σt affects our forecasts through two channels: first, the estimation of VAR

coefficients Π as discussed in Section 3; and second, the projection of uncertainty about future

shocks vt that arises when simulating forward the dynamics of log (λt), as given in (2), to construct

predictive densities. The forecast results we have seen so far, for 1975 to 2017, seem to suggest

that the latter channel is more relevant than the former, as the RMSE differences between SV and

SVO-t are very small, while those in CRPS are sometimes larger. The outlier states in SVO-t (as

well as SVO and SV-t) allow for spikes in volatility to occur without having to project a persistent

increase in uncertainty into the future as SV would be required to do. To illustrate the effects of

this feature, we compare trajectories of time-varying volatility as estimated in quasi-real time over

the course of 2020 and early 2021.18

Focusing on the example of payroll growth to limit charts, Figure 3 reports estimates of time

variation in the volatility of forecast errors generated by SV and SVO-t, as well as the persistent

components of Σt imputed from SVO-t when the effects of the outlier states oj,t and qj,t are ignored.

(The online appendix provides results for other variables.) For this counterfactual, we compute

Σ̃t = A−1 Λt (A
−1)′ based on the SVO-t estimates for Λt and A−1.19 In addition, we consider

the corresponding measures of residual volatility obtained from the SV-OutMiss model, described

in Section 3, that treats pre-specified outliers as missing data. These estimates show that, over

18The reported trajectories of volatilities in the VAR residuals, vt, reflect smoothed estimates of the square roots of

the diagonal elements of Σt computed from MCMC estimates for different end-points of the data (that correspond to

different forecast origins in our out-of-sample forecast evaluation).
19In contrast, Σt = A−1 Ot Qt Λt Q

′
t O

′
t (A

−1)′ is the actual variance-covariance matrix of forecast errors in the

SVO-t model that accounts also for the effects from realized outlier states Ot and Qt.
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the COVID-19 period, the SVO-t model clearly differentiates between increases in uncertainty

that are short- and longer-lived, which the SV model cannot do. Volatility estimates from the SV

model, shown in Panel (a) of the figure, reflect the impact of COVID-19 in the spring with a strong

increase, which leveled off somewhat over the summer, but remained substantially elevated in the

fall.

In contrast, SVO-t proves more nimble in accounting for the extreme data seen in the spring

with a big jump in overall volatility in April as shown in Panel (b) of the figure. However, as

revealed by comparison with Panel (d), this jump is largely seen as a transitory result of an outlier

(both as it occurred in the spring and with the hindsight of estimates constructed based on data for

the fall). In contrast, the persistent component of volatility in the case of SVO-t is seen to have

risen no more than 8-fold over the course of the year. That is, the SVO-t estimates yield a much

smaller rise in the persistent component of volatility than do the estimates from the SV model. The

SV-OutMiss model yields an even smaller increase in the persistent component of volatility (the

only component of volatility in that model); the estimates from SV-OutMiss shown in Panel (c)

have risen by less than 5 times their level at the beginning of the year.

The more moderate rise in estimates of the persistent volatility component obtained with the

SVO-t specification yields noticeably narrower (and arguably less extreme) uncertainty bands

around forecasts compared to the SV model. In contrast, forecasts that condition on knowledge of

when outliers occurred, but otherwise ignore any further information from their realization (as in

the SV-OutMiss case), lead to particularly narrow uncertainty bands. As discussed next, the afore-

mentioned pattern in volatility estimates shown in Figure 3 is mirrored in out-of-sample forecast

densities generated over the course of 2020 and early 2021.

5.3 Forecasts made in 2020-21

In the months immediately preceding the COVID-19 outbreak, such as January 2020, predictive

densities generated from the CONST and SV models differ a little, but not markedly so for most
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variables.20 As we now detail, the picture changed significantly in subsequent months.

Over the course of March and April, the COVID-19 pandemic sharply affected the US econ-

omy, most visibly with the introduction of lockdown measures in the second half of March 2020,

resulting in strong swings, particularly among measures of real activity, in subsequent months.

Figure 4 displays the evolution of forecasts for real income and payroll growth over the months of

March, April, and June generated from our alternative BVAR models.21 As noted by Lenza and

Primiceri (2020) and Schorfheide and Song (2020), forecasts generated by homoskedastic BVARs,

like our CONST specification, can display extreme behavior since the spring of 2020.22 For ex-

ample, Panel (h) shows that, following the drop in payroll growth in March and April, the CONST

model’s posterior median forecast for May is about -136 percent (at an annualized rate) and be-

tween -64 and -124 percent for the next few months. The model’s estimated forecast uncertainty is

immense, with a 68 percent uncertainty band that widens to 100 percentage points or more by the

12-months-ahead horizon.

In contrast, the reaction of point and density forecasts generated by the SV and SVO-t specifica-

tions to the incoming data in spring 2020 is better behaved, particularly with SVO-t. Considering

again the payroll growth forecasts shown in Figure 4, the SV model yields very negative point

forecasts for May and the next few months, but not nearly as negative as those from the CONST

model (e.g., the posterior median forecast for May is -17.8 percent and -20.1 percent for the SV

and SVO-t models, respectively). The SVO-t model yields point forecasts fairly similar to those of

the SV model, for most variables and forecast origins — consistent with our comparison of fore-

20Forecasts from the other alternatives, notably SVO and SV-t, are similar to those generated by the SV model in

January 2020.
21For brevity, our discussion will abstract from nuances of the real-time data flow, and simply refer to forecasts

being “made” at (or even “in” the month of) a particular forecast origin, even though the underlying data would have

been available in FRED-MD only in a subsequent month.
22Lenza and Primiceri (2020) consider a slightly smaller VAR system (with six variables covering mostly employ-

ment and price data and observations starting only in 1988) where problems related to COVID-19 already become

apparent with data for March 2020; in our 16-variable system case estimated from data starting in 1959, the effects of

outliers become most apparent by April.
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cast performance pre-COVID-19 in Table 2. That said, the SV model is prone to some distortion

of its estimated forecast uncertainty, particularly early in the COVID-19 period. In March, April,

and June of 2020, the uncertainty bands of the predictive densities obtained with SV are typically

wider than those of not only the SVO-t but also the CONST specifications. In keeping with the

volatility comparisons provided above, while the observations of 2020 widen the predictive den-

sities of both SV and SVO-t forecasts, their impact is much greater for the former than for the

latter. As indicated in rows 1 and 3 of the figure, SVO-t generates much narrower bands than SV.

Moreover, the SVO-t bands also remain narrower for forecasts made in subsequent months, such

as June 2020.

Rows 2 and 4 of Figure 4 compare our preferred SVO-t results to those for the more restrictive

SVO and SV-t specifications. As expected, while the point forecasts of these specifications are

difficult to distinguish, bigger differences are evident in the predictive densities. The predictive

densities are generally the narrowest with the SVO-t forecasts. The SVO model generally yields

wider densities, although in most cases the differences are less stark in June compared to March

and April. Estimates are more varied with the SV-t model. In some cases (e.g., for payroll growth at

the March 2020 forecast origin), the SV-t forecast intervals are very similar to the SVO-t estimates.

But, in other cases, the SV-t intervals are wider than the SVO-t estimates; one example occurs with

real income in the April 2020 forecasts, when the incoming data displayed a particularly large

jump.

In additional forecast results for the pandemic period, we compare results from the SVO-t spec-

ification (which treats outliers as unknown and estimates them) to results from the SV-OutMiss

approach that conditions on knowledge of when and which outliers occurred in the data. As de-

scribed above, outliers are observations that are more than 5 times the inter-quartile range away

from their sample median.23 We then treat these observations as missing data in an otherwise stan-

dard VAR-SV model. In addition to omitting outlier data from the estimation of parameters and

volatility states, SV-OutMiss replaces the outliers in the data vectors used to simulate predictive

23We obtain similar results with a threshold of 10 times the inter-quartile range.
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densities at every forecast origin.

For these specifications, Figure 5 provides predictive densities for more recent forecast origins,

ranging from September 2020 to March 2021, for not only growth in real income and payrolls

but also S&P500 returns and the unemployment rate. Even almost a year after the onset of the

COVID-19 pandemic impacted economic data, uncertainty bands from SVO-t remain noticeably

wider than before the pandemic (results omitted in the interest of brevity). In most cases, forecast

densities obtained from SV-OutMiss, which treats the timing of outliers as known, are relatively

tight. However, exceptions are evident in the unemployment rate forecasts provided in the bot-

tom row, with the SV-OutMiss bands wider than those of SVO-t for forecasts made with data in

September and December 2020. Although harder to discern in the wide scales of the charts neces-

sitated by the extreme realizations of actual data, the point forecasts produced by the alternative

methods tend to be broadly similar at longer forecast horizons, although more sizable differences

can occur at shorter horizons.

5.4 Model fit

So which model best characterizes the data in the COVID-19 period? The COVID-19 sample is too

short to permit meaningful inference on the average accuracy of out-of-sample forecasts. Drawing

on precedents such as Geweke and Amisano (2010), we instead consider the basic metric of pre-

dictive Bayes factors: the sums of 1-step-ahead predictive likelihoods. In these comparisons, we

take the SV specification as the baseline and report sums of differences in predictive likelihoods,

such that the more positive (negative) the number, the better (worse) the fit of a given specification

compared to SV. Particularly with unusual observations, some care in computing predictive scores

is warranted. We follow the recommendations of Krüger, et al. (forthcoming) and use what they

characterize as a mixture-of-parameters approach. As an instance of Rao-Blackwellization, the

approach relies as far as possible on the availability of analytical expressions for predictive likeli-

hoods conditional on parameter values and latent SV states at each MCMC draw. In computational

accuracy, we find it to be particularly important to integrate out future values of the transitory out-
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lier states, instead of characterizing their arrival via Monte Carlo simulation. The supplementary

online appendix provides further details on the calculations for each model.

A first issue is how the models compare by this measure of model fit over the COVID-19

sample of March 2020 through February 2021. These estimates are provided in the last row of

Table 7. Over this sample, the best fitting model is SVO, followed by the SVO-t specification. In

an overall fit sense, the data seem to favor a specification allowing infrequent, large outliers, and

the data imply that the fit gain over the SV baseline is large. The SV-t model comes in third, with

a relative score at least 30 log points lower. The SV-OutMiss approach that rests on identifying

outliers ex-ante fits the data of the COVID-19 period much worse, with a score difference on the

order of -950 log points. Perhaps not surprising, the CONST specification fares the worst over this

volatile period.

The consideration of model fit over the COVID-19 period of course raises the question of how,

earlier in time, the specifications compare by the same metric. For the sample running from 1975

(when our out-of-sample forecast evaluation of Section 5.1 began) into 2021, the patterns in model

fit line up with those for the COVID-19 period, but with a bigger advantage of the SVO model.

The SVO model also fares best in two other periods known for relatively high economic volatility:

the 1975-1984 period coinciding with what some have referred to as the Great Inflation and the

2008-2014 sample of the Great Recession and ensuing slow recovery. The SVO-t model again has

the second best score in the 2008-2014 period, but slips to fourth best in the 1975-1984 sample. In

contrast, over the relatively tranquil period of 1985-2007, key years of the Great Moderation, the

benchmark SV specification fits the data best, beating all of the other specifications. SV-OutMiss

fits the data next-best, because there are few outliers, so that this approach is a small departure

from SV. Among the models featuring some form of SV, allowing frequent, small outliers in the

SV-t and SVO-t models fits the data worst, with SVO and its large, infrequent outliers not as far off

the SV benchmark. Overall, our approach of extending an SV model to allow infrequent outliers

works well by the metric underlying predictive Bayes factors, achieving its gains in the several

historical subsamples that have featured high volatility.
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Although model fit as assessed through predictive likelihoods is elemental to Bayesian evalu-

ation of models, results on fit can differ from some results on out-of-sample forecast accuracy. In

our case, admittedly, while our 1975-2017 forecast results are favorable to our proposed specifi-

cations, they are not necessarily as sharp as this section’s results on model fit. One explanation is

that the predictive likelihoods (log-scores) are more responsive to outcomes in the tails; forecast

metrics including RMSE and CRPS are relatively insensitive to outcomes in the tails. Our SVO es-

timates appear to assign a little more predictive mass in the tails compared to other models. Given

the strong curvature of the log score loss function (predictive likelihood), this difference in tail

mass makes much more of a difference for log scores than CRPS.24

6 Robustness checks

This section provides an overview of several model robustness checks we have conducted. We

also note that adjusting the forecast and model evaluation samples to start in 1985 instead of 1975

yields the same qualitative results; the supplementary online appendix provides tables with these

results.

Common outlier: With the COVID-19 pandemic inducing extreme volatility in a number of vari-

ables, some may view it as plausible that the outlier is common to all variables, rather than indepen-

dent across variables as in the SVO specification. Some other work, such as Lenza and Primiceri

(2020), has developed models in which the pandemic induces a common shift in volatility in an

otherwise homoskedastic VAR. Accordingly, we have also considered a specification in which the

outlier state is common to all variables, in which case the time-varying variance-covariance matrix

of the VAR residuals is given by Σt = ō2tA
−1 Λt (A

−1)′, where ōt denotes a scalar outlier state.

In results detailed in the supplementary online appendix, making the outlier common seems

to have no advantages. In historical estimates, the common-outlier specification registers virtu-

24Note that, due to the i.i.d. nature of the outlier states, the SVO log scores depend only on the vector of outlier

probabilities, not fitted values of past outliers.

26



ally no outliers prior to the COVID-19 pandemic. Instead, the common-outlier specification sees

outliers only in the early stages of the pandemic period, from March through June 2020, when a

good number of variables experienced enormous realizations at the same time, but none in late

2020 or early 2021. Imposing the same outlier on all variables during COVID-19 leads to some

marked differences in the width of predictive densities compared to the SVO(-t) models that fea-

ture variable-specific outliers, but fairly identical performance in point forecasts over the pandemic

period. In general, making outliers common in some cases makes forecasts slightly less accurate

compared to the SVO specification that models outliers as independent across variables.

Capturing the pandemic period with dummy variables: As another simple approach to condition-

ing on knowledge of when and which outliers occurred in the data, particularly the timing of the

COVID-19 pandemic, we consider an otherwise standard BVAR-SV model with separate dummy

variables added to represent each month of the sample since COVID’s outbreak in March 2020.25

Predictive densities for selected forecast origins in 2020-21 are provided in the supplementary on-

line appendix. By soaking up all information contained in data since the onset of the pandemic,

the dummy approach generates point forecasts comparable to our outlier-augmented SV models.

But because the dummy approach is conditioned on ex-ante knowledge that all COVID-19-related

data points are highly unusual, its forecast densities are much tighter than those derived from our

more agnostic outlier-augmented SV models or the SV-OutMiss specification.

AR(1) processes for SV: Our SV specifications treat log volatility as a random walk, following

studies such as Cogley and Sargent (2005), Stock and Watson (2007), Justiniano and Primiceri

(2008), and Clark (2011). We have also considered results from models in which SV is a persistent

25Wide priors are assigned to each dummy coefficient. Denote the dummy coefficient for each month t ≥ 2020:03

by δt. The prior for each δt is a mean-zero normal distribution, with a large variance set equal to 1/ε, where ε is a

small number chosen as a function of machine precision (identical to the output of the eps function in MATLAB).

For t ≥ 2020:03, only the sum of δt and the residual vt are identified.
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AR(1) process rather than a random walk.26 These results are qualitatively similar to the random

walk-based results presented above. For example, the SVO-t specification forecasts at least as well

as SV in historical data and in the COVID-19 period, and the predictive Bayes factors show overall

similar patterns as reported for our random walk-based specifications.

VARs in levels: Our model specifications use log growth rates of trending variables (income,

consumption, employment, etc.). Some work in the forecasting literature instead uses log levels

in VARs, including examples such as Bańbura, Giannone, and Reichlin (2010) and Lenza and

Primiceri (2020). In a factor model setting, Antolı́n-Dı́az, Drechsel, and Petrella (2021) model

outliers as occurring in levels and not growth rates. In the supplementary online appendix results,

we have verified that VAR models with log levels rather than growth rates yield results showing

overall the same patterns as detailed above.

Variable ordering: In VARs with stochastic volatility specified as in equations (1) through (3),

variable ordering affects estimates. In practice, some work, such as Cogley and Sargent (2005),

has found that results do not depend much on ordering. But recent work by Arias, Rubio-Ramirez,

and Shin (2021) and Hartwig (2020) has shown that ordering choices in VARs with time-varying

parameters and SV can affect out-of-sample forecasts. In particular, in their results, ordering has

little effect on point forecasts but measurable effects on density-related measures, including the

standard deviation of the predictive density and the length of prediction intervals.

The relatively large number of variables in our model means a very large number of possible

orderings. Accordingly, we have investigated sensitivity to variable ordering with an approach

meant to be broad but streamlined to be computationally tractable (if still demanding). Our basic

metric for sensitivity is the distance between predictive densities obtained in one ordering versus

another. We assess the distance and its significance with the potential scale reduction factor (PSRF)

of Gelman and Rubin (1992). In particular, we compare predictive densities generated from the

26Clark and Ravazzolo (2015) find that random walk and AR(1) specifications yield relatively similar forecast

performance in post-war US data.
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VAR-SVO model at different forecast origins around and during the onset of the COVID-19 pan-

demic, December 2019, March and April 2020, and March 2021. For each of these origins, we

randomly draw 640 different orderings of the model’s 16 variables, estimate each model, and form

forecast densities. We then compute a Gelman-Rubin scale reduction test for each variable at each

horizon (1 to 24 months ahead).

Overall, these results, detailed in the supplementary online appendix, suggest small ordering

effects in our forecasts. The vast majority of Gelman-Rubin statistics are under 1.2. Only in April

2021 does a handful get as high as about 1.3, indicating some small to modest differences in den-

sities, typically for economic activity variables at medium forecast horizons. Of course, we chose

these forecast origins to reflect different conditions in the COVID-19 period, with the economy

near its depths in April 2020 and almost a year into recovery as of March 2021. For forecast

origins in late 2019 or early 2021, the Gelman-Rubin statistics show no significant differences in

densities across variable orderings. The differences that are detected occur with the April 2020

forecast origin.

Model stability: The unusual developments of the pandemic inevitably raise a question as to

whether it represents a break in conventional business cycle dynamics and time series models. Our

results treat the VARs as stable, taking various steps to limit the influence that extreme observations

can have on model estimates. Of course, although it would be ideal to be able to formally test model

stability, the sample since March 2020 is too short to permit formal inference with conventional

tests or metrics.

As a simple and feasible alternative, we examine the stability of recursive estimates of the

VAR from January 2020 through the end of our sample in 2021. To assess the significance of a

change in each coefficient, we take the January 2020 posterior for each coefficient as a reference

point. For the sake of comparability, we standardize the change in the posterior means obtained at

subsequent forecast origins, by dividing the changes by January’s posterior standard deviation.27

27The resulting statistics are similar in spirit to a frequentist t-statistic, though without necessarily identical inter-

pretation in the context of our Bayesian application.
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The supplementary online appendix provides charts of these statistics over time, for each variable

and month, for the intercepts and lag coefficients. We consider stability for all of the paper’s

specifications: CONST, SV, SV-OutMiss, SVO-t, SVO, and SV-t specifications. Broadly, these

results indicate that — except for the CONST case — there are at most only fairly limited changes

in some coefficients, while the vast majority of coefficients show little change. By our simple

measures of significance, the CONST specification is quite prone to some coefficient change, most

sizably for some economic activity indicators. In the SV specifications, coefficient change appears

much less significant. The SVO and SVO-t models show changes in intercepts for some variables,

but otherwise, estimates look to be broadly stable over the period.

7 Conclusion

We study the use of an outlier-augmented stochastic volatility specification for Bayesian VARs.

Our work is prompted by the enormous realizations of many macroeconomic time series wit-

nessed over the course of 2020-21 as COVID-19 impacted many economies across the world. As

recognized by other recent studies such as Lenza and Primiceri (2020) and Schorfheide and Song

(2020), these outliers have strong, and sometimes outsized, effects on forecasts made with standard

constant-variance VARs. Our SVO(-t) approach extends to BVARs the earlier work of Stock and

Watson (2016) in the context of unobserved component models of inflation, and it is related to SV

models with t-distributed errors developed by Jacquier, Polson, and Rossi (2004). The SVO model

features stochastic volatility, and an outlier-state treatment, and the SVO-t specification augments

SVO with fat-tailed shocks.

Although VARs with time-varying volatility tend to down-weight high-volatility observations

in the construction of parameter estimates, the resulting forecasts can be better insulated from

outliers. As shown in Section 5.3, BVARs with time-varying volatility generate point forecasts

that are less distorted than in the constant-variance case. But a conventional SV model expects

all changes in volatility to be persistent, so that it extrapolates huge forecast uncertainty from the
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initial COVID-19 shocks. In contrast, SVO(-t) allows the model to fit sharp spikes in current

volatility while adapting its uncertainty forecasts more moderately.

An alternative approach could be to pre-screen the data to identify outliers in individual vari-

ables based on a simple measure of historical norms, and then treat these variable-specific outliers

as missing observations in an otherwise conventional VAR with SV. Forecasts from this alternative

missing-data approach (SV-OutMiss) neglect the possible arrival of future outliers. In contrast, our

outlier-augmented SV models provide a coherent treatment of extremes in the data by modeling

the occurrence of outliers as stochastic events, with unknown timing. Accordingly, the resulting

forecast densities fully reflect the uncertainty emanating from the presence of outliers in the data.

As a result, the outlier-augmented SV models are particularly attractive for continued use over

the yet-unknown course of economic developments related to the COVID-19 pandemic as well as

future events.

In light of the potential for our approaches to overfit data predating the pandemic period, we

conduct a quasi-real-time evaluation of forecast performance using monthly data with an evaluation

window starting in 1975 and ending in 2017. We compare the accuracy of point and density

forecasts, as measured by RMSE and CRPS, from standard VARs against our proposed SVO(-t)

specifications. Even in the pre-COVID-19 period, our outlier-augmented SV models forecast the

data, on balance, a little better than a conventional VAR-SV model. The SV-OutMiss specification

delivers a performance competitively similar to that of SVO(-t).

To evaluate which model best characterizes the data in the COVID-19 period, forecast accu-

racy could, of course, be a natural metric. However, the sample is too short to support formal

inference on the basis of average forecast accuracy. Instead, we employ predictive Bayes factors.

By this measure, our SVO specification fits the COVID-19 sample the best, with SVO-t next. The

neglected arrival of future outliers in the SV-OutMiss model incurs a sizable penalty in the pre-

dictive Bayes factors. Over the entire evaluation sample since 1975, the SVO specification again

fares best. The gains of the outlier-augmented SV model are driven by various episodes of rel-

atively high volatility in the data; in contrast, the baseline SV model fits well only in the Great
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Moderation years of 1985 through 2007.

.
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Table 1: List of variables

Variable FRED-MD code transformation Minnesota prior

Real Income RPI ∆ log(xt) · 1200 0
Real Consumption DPCERA3M086SBEA ∆ log(xt) · 1200 0
IP INDPRO ∆ log(xt) · 1200 0
Capacity Utilization CUMFNS 1
Unemployment Rate UNRATE 1
Nonfarm Payrolls PAYEMS ∆ log(xt) · 1200 0
Hours CES0600000007 0
Hourly Earnings CES0600000008 ∆ log(xt) · 1200 0
PPI (Fin. Goods) WPSFD49207 ∆ log(xt) · 1200 1
PCE Prices PCEPI ∆ log(xt) · 1200 1
Housing Starts HOUST log(xt) 1
S&P 500 SP500 ∆ log(xt) · 1200 0
USD / GBP FX Rate EXUSUKx ∆ log(xt) · 1200 0
5-Year Yield GS5 1
10-Year Yield GS10 1
Baa Spread BAAFFM 1

Note: Data obtained from the 2021-04 vintage of FRED-MD. Monthly observations from
1959:M03 to 2021:M03. Entries in the column “Minnesota prior” report the prior mean on the
first own-lag coefficient of the corresponding variable in each BVAR. Prior means on all other
VAR coefficients are set to zero.
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Table 6: Outlier-Augmented SV Parameters

SVO SV-t SVO-t

Variable pj νj pj νj

Prior 1.81 21 0.58 21
0.85 – 3.32 9.00 – 34.00 0.15 – 1.56 9.00 – 34.00

Real Income 3.19 3 0.35 3
2.37 – 4.27 3 – 3 0.08 – 0.93 3 – 3

Real Consumption 0.49 3 0.17 3
0.21 – 0.94 3 – 3 0.04 – 0.46 3 – 3

IP 0.50 3 0.13 3
0.25 – 0.90 3 – 3 0.04 – 0.32 3 – 3

Capacity Utilization 0.42 26 0.12 25
0.20 – 0.75 14 – 36 0.03 – 0.34 14 – 36

Unemployment Rate 0.62 21 0.30 31
0.34 – 1.01 8 – 34 0.13 – 0.55 22 – 38

Nonfarm Payrolls 1.12 3 0.17 3
0.62 – 1.75 3 – 3 0.04 – 0.52 3 – 3

Hours 1.05 3 0.20 3
0.56 – 1.72 3 – 3 0.05 – 0.48 3 – 3

Hourly Earnings 0.45 3 0.15 3
0.21 – 0.85 3 – 4 0.04 – 0.40 3 – 3

PPI (Fin. Goods) 0.50 6 0.12 4
0.24 – 0.90 3 – 21 0.03 – 0.34 3 – 8

PCE Prices 0.41 14 0.12 9
0.19 – 0.78 3 – 32 0.03 – 0.34 3 – 31

Housing Starts 0.34 35 0.11 35
0.16 – 0.63 28 – 39 0.03 – 0.29 29 – 39

S&P 500 0.61 3 0.13 3
0.27 – 1.11 3 – 3 0.03 – 0.35 3 – 3

USD / GBP FX Rate 0.94 3 0.56 5
0.56 – 1.40 3 – 3 0.30 – 0.97 3 – 17

5-Year yield 0.36 31 0.12 31
0.17 – 0.65 22 – 38 0.03 – 0.31 20 – 38

10-Year yield 0.36 35 0.11 35
0.17 – 0.64 28 – 39 0.03 – 0.30 28 – 39

Baa Spread 0.85 27 0.24 28
0.49 – 1.29 15 – 36 0.07 – 0.58 17 – 36

Notes: Outlier probability pj (in percent), and t-distribution’s degrees of freedom, νj , of orthog-
onalized residuals of each variable. Median, 15.87% and 84.14% posterior quantiles from full-
sample estimation using data from 1959:M03 – 2021:M03. The priors are, pj ∼ Beta(2.5, 117.5)
for SVO, and pj ∼ Beta(1.0, 119.0) forSVO-t. and νj ∼ U(3, 40) direcretized over an integer-
valued grid.
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Table 7: Log Bayes Factors Relative to SV

Models

Samples SVO-t SVO SV-t OutMiss CONST

Full sample
1975:01-2021:02 244.11 334.84 195.19 −782.79 −9200.01

G Inflation
1975-1984 8.25 33.22 10.37 17.38 −250.02

G Moderation
1985-2007 −41.94 −9.69 −52.00 −6.64 −385.43

GFC
2008-2014 21.53 29.50 13.69 −56.28 −236.40

COVID-19
2020:03-2021:02 225.33 232.59 193.28 −739.52 −8167.44

Note: Differences in cumulative log Bayes factors, logL(Mi)− logL(M0), where logL(Mi) =∑T1

t=T0
log p(yt+1|yt,Mi) between the different models listed above (Mi) and the SV model (M0),

measured over different subsamples of forecast origins, t. Unless stated otherwise, samples extend
from January to December of the years given.
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Figure 1: Some selected data series
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Note: Data for selected time series, with data transformations as listed in Table 1. Red dots denote
observations that are more than five times the inter-quartile range away from the series median.
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Figure 3: Time-varying volatilities since 2020 of payroll growth
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Note: Quasi-real-time trajectories of time-varying volatility in VAR residuals, measured by the di-
agonal elements of Vart (vt) = Σt implied by different models. Medians of (smoothed) posterior
obtained from different data samples ending at forecast origins as indicated in the figure legend.
Panel (d) displays estimates of stochastic volatility for SVO-t that ignore the contributions from
outliers and that are computed from Σ̃t = A−1 ΛtA

−T (i.e., neglecting the Ot and Qt components
in the computation of the uncertainty measures shown here, while including these outliers in esti-
mation of A−1, Λt, etc.). Reflecting the sizable differences in the size of estimates resulting with
and without outlier treatment, different scales are used in upper- and lower-row panels.
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Figure 4: Predictive densities since March 2020
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Note: Medians and 68% uncertainty bands of predictive densities, simulated out-of-sample at various forecast origins
as indicated in each panel. The solid green line denotes realized data prior to the forecast origin.
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Figure 5: Predictive densities since mid 2020
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Note: Medians and 68% uncertainty bands of predictive densities, simulated out-of-sample at various forecast origins
as indicated in each panel. Forecasts generated from the SV-OutMiss approach identify observations ex-ante as out-
liers, based on being more than 5 times the inter-quartile range away from the median; these outliers are indicated with
a circle, and the corresponding backcast densities from the SV-OutMiss model are superimposed.
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