
Online Appendix

A Unified Framework to Estimate Macroeconomic Stars

Saeed Zaman∗

Federal Reserve Bank of Cleveland, USA
University of Strathclyde, UK

This version: October 10, 2021

I am extremely grateful to my advisors Gary Koop and Julia Darby for their valuable guidance and feedback
throughout the research and writing process. The views expressed herein are those of the author and do not
necessarily represent the views of the Federal Reserve Bank of Cleveland or the Federal Reserve System.

∗Research department, Federal Reserve Bank of Cleveland, Ohio, USA; and Department of Economics, Uni-
versity of Strathclyde, Glasgow, United Kingdom; email: saeed.zaman@clev.frb.org

1



Contents

A1. Bayesian Estimation Details 3
A1.a. Base model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
A1.b. Prior elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
A1.c. MCMC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
A1.d Marginal likelihood computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A2. Prior Sensitivity Analysis 40

A3. MCMC Convergence Diagnostics 42

A4. Additional Forecasting Results: Base vs. Benchmarks 45

A5. Additional Forecasting Results: Steady-State BVAR, Base stars vs. Survey 47

A6. Additional Real-time Estimates of Stars 50

A7. Estimated Relationship between Surveys and Stars 53

A8. Additional COVID-19 Pandemic Results 54

A9. Backcast: Survey R* from 1959-1982 60

A10. R* : Additional Full Sample Results 61
A10.a. Role of data vs. prior in shaping r-star . . . . . . . . . . . . . . . . . . . . . . 61
A10.b. Base vs. external models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A10.c. Sensitivity of r-star to the prior setting . . . . . . . . . . . . . . . . . . . . . . 62
A10.d. The usefulness of the Taylor-rule equation . . . . . . . . . . . . . . . . . . . . . 64

A11. Pi* : Additional Full Sample Results 65
A11.a. Pi-star comparison Base vs. outside models . . . . . . . . . . . . . . . . . . . . 65
A11.b. Sensitivity of pi-star to modeling assumptions . . . . . . . . . . . . . . . . . . 67
A11.c. Pi-star estimates for some variants of the Base model . . . . . . . . . . . . . . 68

A12. P*: Base Comparison with Kahn and Rich (2007) 69

A13. P* : Additional Full Sample Results 71
A13.a. Cyclical productivity based on the output gap . . . . . . . . . . . . . . . . . . 71

2



A1. Bayesian Estimation Details

A1.a. Base model equations

For convenience, we list all model equations keeping the numbering as in the main text.

Ut = U∗t + U ct (6)

Ut − U∗t = ρu1(Ut−1 − U∗t−1) + ρu2(Ut−2 − U∗t−2) + φuogapt + εut , ε
u
t ∼ N(0, σ2

u) (7)

where, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1; φu < 0

U∗t = U∗t−1 + εu∗t , ε
u∗
t ∼ TN(au − U∗t−1, bu − U∗t−1; 0, σ2

u∗) (8)

Zut = Cut + βuU∗t + εzut , ε
zu
t ∼ N(0, σ2

zu) (9)

Cut = Cut−1 + εcut , ε
cu
t ∼ N(0, σ2

cu) (10)

gdpt = gdp∗t + ogapt (11)

gdp∗t = 2gdp∗t−1 − gdp∗t−2 + εgdp∗t , εgdp∗t ∼ N(0, σ2
gdp∗) (12)

g∗t ≡ 4gdp∗t
g∗t = g∗t−1 + εgdp∗t (13)

ogapt = ρg1(ogapt−1) + ρg2(ogapt−2) + ar(rt − r∗t ) + λg(Ut − U∗t ) + εogapt (14)

where, εogapt ∼ N(0, σ2
ogap), ρ

g
1 + ρg2 < 1, ρg2 − ρ

g
1 < 1, and |ρg2| < 1; λg < 0

Zgt = Cgt + βg ∗ 4 ∗ g∗t + εzgt , ε
zg
t ∼ N(0, σ2

zg) (15)

Cgt = Cgt−1 + εcgt , ε
cg
t ∼ N(0, σ2

cg) (16)

Pt − P ∗t = ρp(Pt−1 − P ∗t−1) + λpt (Ut − U∗t ) + εpt , ε
p
t ∼ N(0, eh

p
t ) (17)

where, |ρp| < 1

λpt = λpt−1 + ελpt , ε
λp
t ∼ N(0, σ2

λp) (18)

hpt = hpt−1 + εhpt , ε
hp
t ∼ N(0, σ2

hp) (19)

P ∗t = P ∗t−1 + εp∗t , ε
p∗
t ∼ N(0, σ2

p∗) (20)

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗t ) + επt , ε
π
t ∼ N(0, eh

π
t ) (21)

ρπt = ρπt−1 + ερπt , ε
ρπ
t ∼ TN(0− ρπt−1, 1− ρπt−1; 0, σ2

ρπ) (22)

where, ρπ is truncated so that 0 < ρπt < 1.

λπt = λπt−1 + ελπt , ελπt ∼ TN(−1− λπt−1, 0− λπt−1; 0, σ2
λπ) (23)

λπ is the slope of the price Phillips curve and is constrained in the interval (-1,0).

hπt = hπt−1 + εhπt , εhπt ∼ N(0, σ2
hπ) (24)

π∗t = π∗t−1 + επ∗t , ε
π∗
t ∼ N(0, σ2

π∗) (25)
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Zπt = Cπt + βππ∗t + εzπt , ε
zπ
t ∼ N(0, σ2

zπ) (26)

Cπt = Cπt−1 + εcπt , ε
cπ
t ∼ N(0, σ2

cπ) (27)

W ∗t = π∗t + P ∗t + εw∗t , εw∗t ∼ N(0, σ2
w∗) (28)

Wt −W ∗t = ρwt (Wt−1 −W ∗t−1) + λwt (Ut − U∗t ) + κwt (πt − π∗t ) + εwt , ε
w
t ∼ N(0, eh

w
t ) (29)

hwt = hwt−1 + εhwt , εhwt ∼ N(0, σ2
hw) (30)

ρwt = ρwt−1 + ερwt , ερwt ∼ TN(0− ρwt−1, 1− ρwt−1; 0, σ2
ρw) (31)

λwt = λwt−1 + ελwt , ελwt ∼ TN(−1− λwt−1, 0− λwt−1; 0, σ2
λw) (32)

λw is the slope of the wage Phillips curve and is constrained in the interval (-1,0).

κwt = κwt−1 + εκwt , εκwt ∼ N(0, σ2
κw) (33)

it − π∗t − r∗t = ρi(it−1 − π∗t−1 − r∗t−1) + λi(Ut − U∗t ) + κi(πt − π∗t ) + εit, ε
i
t ∼ N(0, eh

i
t) (34)

where, ρi is truncated so that 0 < ρi < 1.

hit = hit−1 + εhit , ε
hi
t ∼ N(0, σ2

hi) (35)

r∗t = ζg∗t +Dt. (36)

Dt = Dt−1 + εdt , ε
d
t ∼ N(0, σ2

d) (37)

Zrt = Crt + βrr∗t + εzrt , ε
zr
t ∼ N(0, σ2

zr) (38)

Crt = Crt−1 + εcrt , ε
cr
t ∼ N(0, σ2

cr) (39)
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A1.b. Prior elicitation

Our prior settings are similar to those used in Chan, Koop, and Potter (2016) [CKP], Chan,
Clark, and Koop (2018) [CCK], and Gonzalez-Astudillo and Laforte (2020). As discussed in
CCK, UC models with several unobserved variables, such as the one developed in this paper,
require informative priors. That said, our priors settings for most variables are only slightly
informative. The use of inequality restrictions on some parameters such as the Phillips curve,
persistence, bounds on u-star could be viewed as additional sources of information that elimi-
nates the need for tight priors, something also noted by CKP. The parameters for which there is
a strong agreement in the empirical literature on their values, such as the Taylor-rule equation
parameters, we use relatively tight priors, such that prior distributions are centered on prior
means with small variance.

In the table below, the notation N(a, b) denotes Normal distribution with mean a, and
variance b; and IG(ν, S) denotes Inverse Gamma distribution with degrees of freedom parameter
ν, and scale parameter S.

Table A1: Prior settings

Parameter Parameter Description Prior

ar Coefficient on interest-rate gap in output gap equation N(0, 1)
ρg1 Persistence in output gap: lag 1 N(1.3, 0.12)
ρg2 Persistence in output gap: lag 2 N(−0.5, 0.12)
ρu1 Persistence in UR gap: lag 1 N(1.3, 0.12)
ρu2 Persistence in UR gap: lag 2 N(−0.5, 0.12)
ρp Persistence in productivity gap N(0.1, 1)
ζ Relationship between r* and g* N(1, 0.1)
ρi Persistence in interest-rate gap N(0.85, 0.12)
λi Interest rate sensitivity to UR gap: (−2 ∗ (1− ρi)) N(−0.3, 0.12)
κi Interest rate sensitivity to inflation: (0.5 ∗ (1− ρi)) N(0.075, 0.12)
λg Output gap response to UR gap N(−0.02, 1)
φu UR gap response to Output gap N(−0.02, 1)
βg Link between g* and survey N(1, 0.12)
βu Link between u* and survey N(1, 0.052)
βr Link between r* and survey N(1, 0.12)
βπ Link between π∗ and survey N(1, 0.052)
σ2
π∗ Var. of the shocks to π∗ IG(10, 0.12 × 9)
σ2
p∗ Var. of the shocks to p∗ IG(10, 0.1422 × 9)

σ2
u∗ Var. of the shocks to u∗ IG(10, 0.12 × 9)
σ2
gdp∗ Var. of the shocks to gdp∗ IG(10, 0.012 × 9)

σ2
d Var. of the shocks to d IG(10, 0.12 × 9)
σ2
w∗ Var. of the shocks to w∗ IG(10, 0.1422 × 9)
σ2
ogap Var. of the shocks to Ogap IG(10, 1× 9)

σ2
u Var. of the shocks to UR gap IG(10, 0.7072 × 9)
σ2
hp Var. of the volatility – Productivity eq. IG(10, 0.3162 × 9)

σ2
h Var. of the volatility – Price Inf. eq. IG(10, 0.3162 × 9)
σ2
hw Var. of the volatility – Wage Inf. eq. IG(10, 0.3162 × 9)

Continued on next page

5



Table A1 – continued from previous page

Parameter Parameter Description Prior

σ2
hi Var. of the volatility – Interest rate eq. IG(10, 0.3162 × 9)
σ2
λπ Var. of the shocks to TVP λπ, Price Phillips curve IG(10, 0.042 × 9)
σ2
λw Var. of the shocks to TVP λw, Wage Phillips curve IG(10, 0.042 × 9)
σ2
λp Var. of the shocks to TVP λp, Cyc. Productivity IG(10, 0.042 × 9)

σ2
κw Var. of the shocks to TVP κw, PT: π to Wages IG(10, 0.042 × 9)
σ2
ρw Var. of the shocks to TVP ρw, Persist. Wage-gap IG(10, 0.042 × 9)

σ2
ρπ Var. of the shocks to TVP ρπ, Persist. Inflation-gap IG(10, 0.042 × 9)

Cπ0 Time-varying Intercept in eq. linking survey to pi-star N(0, 0.1)
Cu0 Time-varying Intercept in eq. linking survey to u-star N(0, 0.1)
Cg0 Time-varying Intercept in eq. linking survey to g-star N(0, 0.1)
Cr0 Time-varying Intercept in eq. linking survey to r-star N(0, 0.1)
σ2
cπ Var. of the shocks to TVP Cπ IG(10, 0.12 × 9)
σ2
cu Var. of the shocks to TVP Cu IG(10, 0.12 × 9)
σ2
cg Var. of the shocks to TVP Cg IG(10, 0.12 × 9)

σ2
cr Var. of the shocks to TVP Cr IG(10, 0.12 × 9)
σ2
zπ Var. of the shocks in measurement eq. Zπ, IG(10, 0.2× 9)
σ2
zu Var. of the shocks in measurement eq. Zu, IG(10, 0.3× 9)
σ2
zg Var. of the shocks in measurement eq. Zg, IG(10, 0.1× 9)

σ2
zr Var. of the shocks in measurement eq. Zr, IG(10, 0.2× 9)
π∗0 Initial value of pi-star N(3, 52)
u∗0 Initial value of u-star, t = 0 N(5, 52)
u∗−1 Initial value of u-star, t = −1 N(5, 52)
p∗0 Initial value of p-star N(3, 52)
w∗0 Initial value of w-star, E(p∗0) + E(π∗0) = 6 N(6, 52)
D0 Initial value of D, ”catch-all” component of r-star N(0, 0.31622)
gdp∗0 Initial value of gdp-star, t = 0 N(750, 102)
gdp∗−1 Initial value of gdp-star, t = −1 N(750, 102)
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A1.c. MCMC algorithm

The estimation of our complex UC model and sampling from its joint posterior distribution
reduces to sequentially drawing from a set of conditional posterior densities, some of which are
standard and some that are non-standard.

Collect all the time-invariant model parameters into θ:
θ = (ρu1 , ρ

u
2 , σ

2
u, φu, σ

2
u∗, β

u, σ2
zu, σ

2
cu, σ

2
gdp∗, ρ

g
1, ρ

g
2, a

r, λg, σ2
ogap, σ

2
zg, σ

2
cg, β

g, ρp, σ2
hp, σ

2
p∗, σ

2
λπ, ...

σ2
ρπ, σ

2
hπ, σ

2
π∗, σ

2
zπ, σ

2
cπ, β

π, σ2
w∗, σ

2
hw, σ

2
ρw, σ

2
λw, σ

2
κw, ρ

i, λi, κi, σ2
hi, σ

2
zr, σ

2
cr, β

r, σ2
d)

We denote • as representing all other model parameters.
1. p(U∗|Y, •) 2. p(gdp∗|Y, •) 3. p(P ∗|Y, •) 4. p(π∗|Y, •) 5. p(w∗|Y, •) 6. p(r∗|Y, •)
7. p(λp|Y, •) 8. p(ρπ|Y, •) 9. p(λπ|Y, •) 10. p(ρw|Y, •) 11. p(λw|Y, •) 12. p(κw|Y, •)
13. p(hp, hπ, hw, hi|Y, •) 14. p(Cu, Cg, Cπ, Cr|Y, •) 15. p(D|Y, •) 16. p(θ|Y, •)

Step 1. Derive the conditional distribution p(U∗|Y, •)

The derivation of this distribution is most complex because the information about U∗ comes
from eight sources (i.e., model equations). Below, we derive an expression for each of the eight
sources.

The first source is the state equation of U∗. We rewrite it in a matrix notation as follows,

HU∗ = αu + εu∗ εu∗ ∼ N(0,Ωu∗), where Ωu∗ = diag(ω2
u∗, σ

2
u∗, ..., σ

2
u∗) (40)

where,

αu =


U∗0
0
0
...
0

 , H =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1


That is, the prior density for U∗ is given by

p(U∗|σ2
U∗) ∝ −

1
2(U∗ −H−1αu)

′
H
′
Ω−1
u∗H(U∗ −H−1αu) + gu∗(U

∗, σ2
u∗)

where,
au < U∗ < bu for t = 1, ..., T , and

gu∗(U
∗, σ2

u∗) = −log
(

Φ

(
bu
ωu∗

)
− Φ

(
au
ωu∗

))
−

T∑
t=2

log

(
Φ

(
bu − U∗t−1

σu∗

)
− Φ

(
au − U∗t−1

σu∗

))

The second source of information comes from the unemployment measurement equation. Rewrite
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the equation in a matrix notation,

KuU = µu +KuU
∗ + εu εu ∼ N(0,Ωu), where Ωu = IT ⊗ σ2

u (41)

and,

µu =


ρu1(U0 − U∗0 ) + ρu2(U−1 − U∗−1)

ρu2(U0 − U∗0 )
0
...
0

 , Ku =


1 0 0 · · · 0
−ρu1 1 0 · · · 0
−ρu2 −ρu1 1 · · · 0

...
. . .

...
0 · · · −ρu2 −ρu1 1


Ignoring any terms not involving U∗, we have

log p(U |U∗, •) ∝ −1
2(U −K−1

u µu − U∗)′K
′
uΩ−1

u Ku(U −K−1
u µu − U∗)

The third source of information comes from the inflation measurement equation. Rewrite the
equation in a matrix notation,

Z = ΛπU∗ + επ επ ∼ N(0,Ωπ), where Ωπ = diag(eh
π
1 , eh

π
2 , ..., eh

π
T ) (42)

where,

zt = (πt − π∗t )− ρπt (πt−1 − π∗t−1)− λπt Ut,

Z = (z1, ..., zT )′ and Λπ = diag(−λπ1 , ...,−λπT )

Ignoring any terms not involving U∗, we have

log p(π|U∗, U, π∗, hπ, ρp, •) ∝ −1
2(Z − ΛπU∗)′Ω−1

π (Z − ΛπU∗)

The fourth source of information comes from the productivity measurement equation. Rewrite
the equation in a matrix notation,

MP = ΛPU∗ + εP εP ∼ N(0,ΩP ), where ΩP = diag(eh
p
1 , eh

p
2 , ..., eh

p
T ) (43)

where,

mt = (Pt − P ∗t )− ρP (Pt−1 − P ∗t−1)− λPt Ut,

MP = (m1, ...,mT )′ and ΛP = diag(−λP1 , ...,−λPT )

Ignoring any terms not involving U∗, we have

log p(P |U∗, U, P ∗, hp, ρp, •) ∝ −1
2(MP − ΛPU∗)′Ω−1

P (MP − ΛPU∗)
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The fifth source of information comes from the wage measurement equation. Rewrite the
equation in a matrix notation,

Mw = ΛwU∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh
w
1 , eh

w
2 , ..., eh

w
T ) (44)

where,

mw
t = (Wt −W ∗t )− ρWt (Wt−1 −W ∗t−1)− λWt Ut − κWt (πt − π∗t ),

Mw = (mw
1 , ...,m

w
T )′ and Λw = diag(−λW1 , ...,−λWT )

Ignoring any terms not involving U∗, we have

log p(W |U∗,W,W ∗, hw, ρW , •) ∝ −1
2(Mw − ΛwU∗)′Ω−1

w (Mw − ΛwU∗)

The sixth source of information comes from the output gap measurement equation. Rewrite
the equation in a matrix notation,

Mg = ΛgU∗ + εg εg ∼ N(0,Ωogap), where Ωogap = diag(σ2
ogap, ..., σ

2
ogap) (45)

where,

mg
t = ogapt − ρg1(ogapt−1)− ρg2(ogapt−2)− λgUt − ar(rt − r∗t ),

Mg = (mg
1, ...,m

g
T )′ and Λg = diag(−λg, ...,−λg)

Ignoring any terms not involving U∗, we have

log p(ogap|U∗, U, •) ∝ −1
2(Mg − ΛgU∗)′Ω−1

ogap(M
g − ΛgU∗)

The seventh source of information comes from the Taylor-type rule measurement equation.
Rewrite the equation in a matrix notation,

Mui = ΓuiU∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh
i
1 , eh

i
2 , ..., eh

i
T ) (46)

where,

mui
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− κi(πt − π∗t )− λiUt,

Mui = (mui
1 , ...,m

ui
T )′ and Γui = diag(−λi, ...,−λi)

Ignoring any terms not involving U∗, we have

log p(i|U∗, U, π, •) ∝ −1
2(Mui − ΓuiU∗)′Ω−1

i (Mui − ΓuiU∗)

The eighth source of information comes from the measurement equation that links surveys
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to U∗. Rewrite the equation in a matrix notation,

F u = βuU∗ + εzu εzu ∼ N(0,Ωzu), where Ωzu = diag(σ2
zu, ..., σ

2
zu) (47)

where,

fut = Zut − Cut ,

F u = (fu1 , ..., f
u
T )′

Ignoring any terms not involving U∗, we have

log p(Zu|U∗, U, π, •) ∝ −1
2(F u − βuU∗)′Ω−1

zu (F u − βuU∗)

Combining the above eight conditional densities we obtain,

log p(U∗|Y, •) ∝ −1
2(U∗ − Û∗)′D−1

U∗(U
∗ − Û∗) + gu∗(U

∗, σ2
u∗)

where,
DU∗ = (H ′Ω−1

U∗H + K
′
uΩ−1

u Ku + Λπ
′
Ω−1
π Λπ + Λw

′
Ω−1
w Λw + Λg

′
Ω−1
ogapΛ

g + Γui
′
Ω−1
i Γui +

ΛP
′
Ω−1
P ΛP + (βu)2Ω−1

zu )−1

Û∗ = DU∗(H
′Ω−1
U∗αu +K

′
uΩ−1

u Ku(U −K−1
u µu) + Λπ

′
Ω−1
π Z + Λw

′
Mw + Λw + Λg

′
Ω−1
ogapM

g +

Γui
′
Ω−1
i Mui + ΛP

′
Ω−1
P MP + βuΩ−1

zu F
u)

The addition of the term gu∗(U
∗, σ2

u∗) leads to a non-standard density. Accordingly, we sam-
ple U∗ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(Û∗, DU∗) using the precision-based algorithm (of Chan
and Jeliazkov, 2009) that are then accepted or rejected based on the accept-reject Metropolis-
Hastings (ARMH) algorithm (discussed in Chan and Strachan, 2012).

Step 2. Derive the conditional distribution p(gdp∗|Y, •)

The information about gdp∗ comes from five sources. Below, we derive an expression for each
of these sources.

The first source is the state equation of gdp∗. We rewrite it in a matrix notation as follows,

H2gdp
∗ = αgdp∗ + εgdp∗ εgdp∗ ∼ N(0,Ωgdp∗), where Ωgdp∗ = diag(ω2

gdp∗, σ
2
gdp∗, ..., σ

2
gdp∗)

(48)

where,
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αgdp∗ =


gdp∗0 +4gdp∗0
−gdp∗0

0
...
0

 , H2 =



1 0 0 0 · · · 0
−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
...

0 · · · 0 1 −2 1


H2 is a band matrix with unit determinant and hence is invertible.

The prior density for gdp∗ is given by

p(gdp∗|σ2
gdp∗) ∝ −

1
2(gdp∗ −H−1

2 αgdp∗)
′
H
′
2Ω−1

gdp∗H2(gdp∗ −H−1
2 αgdp∗)

The second source of information about gdp∗ is from the output gap measurement equation.
Rewrite in matrix form,

Hrhoggdp = Hrhoggdp
∗+arr̃+λgũ+αgmore+ε

ogap εogap ∼ N(0,Ωogap), where Ωogap = diag(σ2
ogap, ..., σ

2
ogap)

(49)

where,

αgmore =


ρg1(gdp0 − gdp∗0) + ρg2(gdp−1 − gdp∗−1)

ρg2(gdp0 − gdp∗0)
0
...
0

 , Hrhog =



1 0 0 0 · · · 0
−ρg1 1 0 0 · · · 0
−ρg2 −ρg1 1 0 · · · 0

0 −ρg2 −ρg1 1 · · · 0
...

. . .
. . .

. . .
. . . 0

0 · · · 0 −ρg2 −ρg1 1


,

r̃ =


r1 − r∗1
r2 − r∗2
r3 − r∗3

...
rT − r∗T

 ũ =


U1 − U∗1
U2 − U∗2
U3 − U∗3

...
UT − U∗T



log p(gdp|gdp∗, •) ∝ −1
2(gdp−H−1

rhog(Hrhoggdp
∗+arr̃+λgũ+αgmore))

′H
′
rhogΩ

−1
ogapHrhog(gdp−

H−1
rhog(Hrhoggdp

∗ + arr̃ + λgũ+ αgmore))

The third source of information comes from the unemployment gap measurement equation.
Rewrite that equation in matrix notation,

Y ugdp = Γugdp∗ + εu εu ∼ N(0,Ωu), where Ωu = diag(σ2
u, ..., σ

2
u) (50)

where,

yugdpt = ũt − ρu1 ˜ut−1 − ρu2 ˜ut−2 − φugdp, where ũt = (Ut − U∗t )

11



Y ugdp = (yugdp1 , ..., yugdpT )′

Ignoring any terms not involving gdp∗, we have

log p(U |gdp∗, •) ∝ −1
2(Y ugdp − Γugdp∗)′Ω−1

u (Y ugdp − Γugdp∗)

The fourth source of information comes from the equation linking r-star to g-star, i.e.,

r∗t = ζ(gdp∗t − gdp∗t−1) +Dt (51)

Rewrite this equation in matrix notation,

r∗ = ζHgdp∗ + αgr +D (52)

where,

αgr = (−ζgdp∗0, 0, 0, ...., 0)′

Ignoring any terms not involving gdp∗, we have

log p(r∗|gdp∗, D, •) ∝ −1
2(r∗ − (ζHgdp∗ + αgr +D))′(r∗ − (ζHgdp∗ + αgr +D))

The fifth source of information comes from the measurement equation that links surveys to
g∗. Rewrite the equation in a matrix notation,

F g = βg(Hgdp∗ − αg) + εzg εzg ∼ N(0,Ωzg), where Ωzg = diag(σ2
zg, ..., σ

2
zg) (53)

where,

fgt = Zgt − C
g
t , F g = (fg1 , ..., f

g
T )′

αg = (gdp∗0, 0, 0, ...., 0)′ is a T × 1 vector.

Ignoring any terms not involving gdp∗, we have

log p(Zg|gdp∗, •) ∝ −1
2(F g − βg(Hgdp∗ − αg))′Ω−1

zg (F g − βg(Hgdp∗ − αg))

Combining the above five conditional densities we obtain,

log p(gdp∗|Y, •) ∝ −1
2(gdp∗ − ˆgdp

∗
)
′
D−1
gdp∗(gdp

∗ − ˆgdp
∗
)

where,
Dgdp∗ = (H

′
2Ω−1

gdp∗H2 +H
′
rhogΩ

−1
ogapHrhog + Γu

′
Ω−1
u Γu + (ζH)

′
(ζH) + βgH ′Ω−1

zg β
gH)−1

ˆgdp
∗

= Dgdp∗(H
′
2Ω−1

gdp∗H2αgdp∗+H
′
rhogΩ

−1
ogap(Hrhoggdp−arr̃−λgũ−αgmore)+Γu

′
Ω−1
u Y ugdp+

(ζH)
′
(r∗ − αgr +D) + βgH ′Ω−1

zg F
g)

12



Step 3. Derive the conditional distribution p(P ∗|Y, •)

First, rewrite the productivity measurement eq. as

KpP = µp +KpP
∗ + εP εP ∼ N(0,ΩP ), where ΩP = diag(eh

p
1 , eh

p
2 , ..., eh

p
T ) (54)

µp =


ρP1 (P0 − P ∗0 ) + λP1 (U1 − U∗1 )

λP2 (U2 − U∗2 )
λP3 (U3 − U∗3 )

...
λPT (UT − U∗T )

 , KP =


1 0 0 · · · 0
−ρP2 1 0 · · · 0

0 −ρP3 1 · · · 0
...

. . .
...

0 0 · · · −ρPT 1

 , P ∗ =


P ∗1
P ∗2
P ∗3
...
P ∗T


Since | KP |= 1 for any ρP , KP is invertible. Therefore, we have likelihood

p(P |P ∗, U, •) ∼ N(K−1
P µP + P ∗, (K

′
PΩ−1

P KP )−1)

i.e.,

log p(P |U, •) ∝ −1
2 ιTh

P − 1
2(P −K−1

P µP − P ∗)
′
K
′
PΩ−1

P KP (P −K−1
P µP − P ∗),

where ιT is a T × 1 column of ones.

Similarly, rewrite the state equation for P ∗ as

HP ∗ = αp + εP∗ εP∗ ∼ N(0,ΩP∗), where ΩP∗ = diag(ω2
P∗, σ

2
P∗, ..., σ

2
P∗) (55)

where,

αp =


P ∗0
0
0
...
0

 , KP =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1


That is, the prior density for P ∗ is given by

p(P ∗|σ2
P∗) ∝ −

1
2(P ∗ −H−1αp)

′
H
′
Ω−1
P∗H(P ∗ −H−1αp)

Now account for the third source of information about P* in the equation W ∗ = P ∗+π∗+ εw∗,

p(P ∗|W ∗, π∗, σ2
W∗) ∝ −

1
2(P ∗ − (W ∗ − π∗))′Ω−1

W∗(P
∗ − (W ∗ − π∗))

13



where,

ΩW∗ = diag(σ2
W∗, σ

2
W∗, ..., σ

2
W∗), W

∗ = (W ∗1 , ...,W
∗
T )′, π∗ = (π∗1, ..., π

∗
T )′

Combining the above three conditional densities we obtain,

log p(P ∗|Y, •) ∝ −1
2(P ∗ − P̂ ∗)′D−1

P∗(P
∗ − P̂ ∗)

where,
DP∗ = (H

′
Ω−1
P∗H +K

′
PΩ−1

P KP + Ω−1
W∗)

−1

P̂ ∗ = DP∗(H
−1Ω−1

P∗αp +K
′
PΩ−1

P KP (P −K−1
P µP ) + Ω−1

W∗(W
∗ − π∗))

The candidate draws are sampled from N(P̂ ∗, DP∗) using the precision-based algorithm.

Step 4. Derive the conditional distribution p(π∗|Y, •)

The information about π∗ comes from six sources. Below, we derive an expression for each
of these sources.

The first source is the inflation measurement equation. Rewrite it in a matrix notation as,

Kππ = µπ +Kππ
∗ + επ επ ∼ N(0,Ωπ), where Ωπ = diag(eh

π
1 , eh

π
2 , ..., eh

π
T ) (56)

where,

µπ =


ρπ1 (π0 − π∗0) + λπ1 (U1 − U∗1 )

λπ2 (U2 − U∗2 )
λπ3 (U3 − U∗3 )

...
λπT (UT − U∗T )

 , Kπ =


1 0 0 · · · 0
−ρπ2 1 0 · · · 0

0 −ρπ3 1 · · · 0
...

. . .
...

0 0 · · · −ρπT 1


Since | Kπ |= 1 for any ρπ, Kπ is invertible. Therefore, we have likelihood

log p(π|U,U∗, •) ∝ −1
2 ιTh

π − 1
2(π − (K−1

π µπ + π∗))′K
′
πΩ−1

π Kπ(π − (K−1
π µπ + π∗))

The second source of information is from the state equation of π∗. Rewrite it in a matrix
notation,

Hπ∗ = απ + επ∗ επ∗ ∼ N(0,Ωπ∗), where Ωπ∗ = diag(ω2
π∗, σ

2
π∗, ..., σ

2
π∗) (57)

where,
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απ =


π∗0
0
0
...
0


That is, the prior density for π∗ is given by

p(π∗|σ2
π∗) ∝ −1

2(π∗ −H−1απ)
′
H
′
Ω−1
π∗H(π∗ −H−1απ)

Now account for the third source of information about π∗ in the equation W ∗ = P ∗+π∗+ εw∗,

p(π∗|W ∗, P ∗, σ2
W∗) ∝ −

1
2(π∗ − (W ∗ − P ∗))′Ω−1

W∗(π
∗ − (W ∗ − P ∗))

where,

ΩW∗ = diag(σ2
W∗, σ

2
W∗, ..., σ

2
W∗), W

∗ = (W ∗1 , ...,W
∗
T )′, P ∗ = (P ∗1 , ..., P

∗
T )′

The fourth source of information is from the wage measurement equation. Rewrite in ma-
trix notation,

Mwπ = Xwππ
∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh

w
1 , eh

w
2 , ..., eh

w
T ) (58)

where,

mwπ
t = wt − w∗t − ρwt (wt−1 − w∗t−1)− λwt (Ut − U∗t )− κwt πt

Mwπ = (mwπ
1 ,mwπ

2 , ...,mwπ
T )

Xwπ =


−κw1 0 0 · · · 0

0 −κw2 0 · · · 0
0 0 −κw3 · · · 0
...

. . .
...

0 0 · · · 0 −κwT



log p(W |π∗, •) ∝ −1
2(Mwπ −Xwππ

∗)′Ω−1
w ((Mwπ −Xwππ

∗)

The fifth source is the Taylor-rule equation. Rewrite the equation in the matrix notation,

Mπi = απi + (Kπi + Γπ)π∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh
i
1 , eh

i
2 , ..., eh

i
T ) (59)
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where,

mπi
t = it − ρiit−1 − r∗t + ρir∗t−1 − λi(Ut − U∗t )− κiπt

Mπi = (mπi
1 ,m

πi
2 , ...,m

πi
T )′

Kπi =


1 0 0 · · · 0
−ρi 1 0 · · · 0
0 −ρi 1 · · · 0
...

. . .
...

0 0 · · · −ρi 1

 , Γπ =


−κi 0 0 · · · 0

0 −κi 0 · · · 0
0 0 −κi · · · 0
...

. . .
...

0 0 · · · 0 −κi

 , απi =


−ρiπ∗0

0
0
...
0


log p(i|π∗, π, •) ∝ −1

2(Mπi − (απi + (Kπi + Γπ)π∗))′Ω−1
i (Mπi − (απi + (Kπi + Γπ)π∗))

The sixth source of information comes from the measurement equation that links surveys to π∗.
Rewrite the equation in a matrix notation,

F π = βππ∗ + εzπ εzπ ∼ N(0,Ωzπ), where Ωzπ = diag(σ2
zπ, ..., σ

2
zπ) (60)

where,

fπt = Zπt − Cπt ,

F π = (fπ1 , ..., f
π
T )′

Ignoring any terms not involving π∗, we have

log p(Zπ|π∗, π, •) ∝ −1
2(F π − βππ∗)′Ω−1

zπ (F π − βππ∗)

Combining the above six conditional densities we obtain,

log p(π∗|Y, •) ∝ −1
2(π∗ − π̂∗)′D−1

π∗ (π∗ − π̂∗)

where,
Dπ∗ = (H ′Ω−1

π∗H + K
′
πΩ−1

π Kπ + Ω−1
w∗ + X

′
wπΩ−1

w Xwπ + (K
′
πi + Γπ)

′
)Ω−1

i (K
′
πi + Γπ)

′
+

(βπ)2Ω−1
zr )−1

π̂∗ = Dπ∗(H
′Ω−1
π∗ απ + K

′
πΩ−1

π Kπ(π − K−1
π µπ) + Ω−1

w∗(W
∗ − P ∗) + X

′
wπΩ−1

w Mwπ + (K
′
πi +

Γπ)
′
Ω−1
i (Mπi − απi) + βπΩ−1

zr F
π)

The candidate draws are sampled from N(π̂∗, Dπ∗) using the precision-based algorithm.

Step 5. Derive the conditional distribution p(w∗|Y, •)
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The information about w∗ comes from two sources. Below, we derive an expression for each of
these sources.

The first source is the nominal wage measurement equation. Rewrite it in a matrix notation as,

KwW = µw +KwW
∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh

w
1 , eh

w
2 , ..., eh

w
T ) (61)

where,

µw =


ρw1 (W0 −W ∗0 ) + λw1 (U1 − U∗1 ) + κw1 (π1 − π∗1)

λw2 (U2 − U∗2 ) + κw2 (π2 − π∗2)
λw3 (U3 − U∗3 ) + κw3 (π3 − π∗3)

...
λwT (UT − U∗T ) + κwT (πT − π∗T )

 , Kw =


1 0 0 · · · 0
−ρw2 1 0 · · · 0

0 −ρw3 1 · · · 0
...

. . .
...

0 0 · · · −ρwT 1


Since | Kw |= 1 for any ρw, Kw is invertible. Therefore, we have likelihood

Ignoring any terms not involving w∗, we have

log p(W |W ∗, •) ∝ −1
2 ιTh

w − 1
2(W − (K−1

w µw +W ∗))′K
′
wΩ−1

w Kw(W − (K−1
w µw +W ∗))

The second source is the state equation of W ∗, which describes W ∗ as the sum of P ∗ and
π∗. This equation can be thought of as describing the prior density for W ∗. Rewrite it in a
matrix form.

W ∗ = P ∗ + π∗ + εw∗ εw∗ ∼ N(0,Ωw∗) (62)

p(W ∗|P ∗, π∗, σ2
w∗) ∝ −1

2(W ∗ − (P ∗ + π∗))
′
Ω−1
w∗(W

∗ − (P ∗ + π∗))

Combining the above two conditional densities we obtain,

log p(W ∗|Y, •) ∝ −1
2(W ∗ − Ŵ ∗)′D−1

W∗(W
∗ − Ŵ ∗)

where,

DW∗ = (K
′
wΩ−1

w Kw + Ω−1
W∗)

−1

Ŵ ∗ = DW∗(K
′
wΩ−1

w (KwW − µw) + Ω−1
w∗(P

∗ + π∗))

The candidate draws are sampled from N(Ŵ ∗, DW∗) using the precision-based algorithm.

Step 6. Derive the conditional distribution p(r∗|Y, •)

The information about r∗ comes from four sources. Below, we derive an expression for each of
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these sources.

The first source is the output gap measurement equation. We rewrite it in a matrix nota-
tion as follows,

Hrhogogap = αogap − arr∗ + εogap εogap ∼ N(0,Ωogap) (63)

where,

αogap =


ρg1(ogap0) + ρg2(ogap−1) + arr1 + λg(U1 − U∗1 )

ρg2(ogap0) + arr2 + λg(U2 − U∗2 )
arr3 + λg(U3 − U∗3 )

...
arrT + λg(UT − U∗T )


Ignoring any terms not involving r∗, we have
log p(ogap|r∗, •) ∝ −1

2(ogap−H−1
rhog(αogap−a

rr∗))′H
′
rhogΩ

−1
ogapHrhog(ogap−H−1

rhog(αogap−a
rr∗))

The second source is the state equation linking r∗ to g∗. We rewrite it in a matrix notation as
follows,

r∗ = ζ4gdp∗ +H−1εd εd ∼ N(0,Ωd), where Ωd = diag(ω2
d, σ

2
d, ..., σ

2
d) (64)

Ignoring any terms not involving r∗, the prior density for r∗ is given by
log p(r∗|gdp∗, σ2

d, •) ∝ −
1
2(r∗ − ζ4gdp∗)′H ′Ω−1

d H(r∗ − ζ4gdp∗)

The third source is the Taylor-type rule equation. We rewrite it in a matrix notation as follows,

M ri = αri +Kπir
∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh

i
1 , eh

i
2 , ..., eh

i
T ) (65)

where,

mri
t = it − ρiit−1 − π∗t + ρiπ∗t−1 − λi(Ut − U∗t )− κi(πt − π∗t ),

M ri = (mri
1 ,m

ri
2 , ...,m

ri
T )′

αri =


−ρir∗0

0
0
...
0

 , Kπi =


1 0 0 · · · 0
−ρi 1 0 · · · 0
0 −ρi 1 · · · 0
...

. . .
...

0 0 · · · −ρi 1


Ignoring any terms not involving r∗, we have
log p(i|r∗, •) ∝ −1

2 ιTh
i − 1

2(M ri − (αri +Kπir
∗))′Ω−1

i (M ri − (αri +Kπir
∗))
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The fourth source of information comes from the measurement equation that links surveys
to r∗. Rewrite the equation in a matrix notation,

F r = βrr∗ + εzr εzr ∼ N(0,Ωzr), where Ωzr = diag(σ2
zr, ..., σ

2
zr) (66)

where,

f rt = Zrt − Crt ,

F r = (f r1 , ..., f
r
T )′

Ignoring any terms not involving r∗, we have

log p(Zr|r∗, •) ∝ −1
2(F r − βrr∗)′Ω−1

zr (F r − βrr∗)

Combining the above four conditional densities we obtain,

log p(r∗|Y, •) ∝ −1
2(r∗ − r̂∗)′D−1

r∗ (r∗ − r̂∗)

where,
Dr∗ = ((−ar)2Ω−1

ogap +H
′
Ω−1
d H +K

′
πiΩ
−1
i Kπi + (βr)(2)Ω−1

zr )−1

r̂∗ = Dr∗(−arΩ−1
ogap(Hrhogogap−αogap)+H

′
Ω−1
d Hζ4gdp∗+K

′
πiΩ
−1
i (M ri−αri)+βrΩ−1

zr F
r)

The candidate draws are sampled from N(r̂∗, Dr∗) using the precision-based algorithm.

Step 7. Derive the conditional distribution p(λp|Y, •)

The information about λp comes from two sources. Below, we derive an expression for each of
these two sources.

The first source is the productivity measurement equation. Rewrite it in a matrix notation,

B = Xuλ
p + εp εp ∼ N(0,Ωp) (67)

where,

B = (p̃1 − ρpp̃0, ..., p̃T − ρpp̃T−1)
p̃t = pt − p∗t
ũt = Ut − U∗t
Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λp, we have the likelihood
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log p(p|λp, •) ∝ −1
2(B −Xuλ

p)′Ω−1
p (B −Xuλ

p)

The second source of information comes from the state equation for λp. We rewrite it in a
matrix notation as follows,

Hλp = ελp ελp ∼ N(0,Ωλp), where Ωλp = diag(ω2
λp, σ

2
λp, ..., σ

2
λp) (68)

Ignoring any terms not involving λp, the prior density for λp is given by

log p(λp|σ2
λp,Ωλp) ∝ −1

2(λp)′H ′Ω−1
λpH(λp)

Combining the above two conditional densities we obtain,

log p(λp|Y, •) ∝ −1
2(λp − λ̂p)′D−1

λp (λp − λ̂p)

where,
Dλp = (H ′Ω−1

λpH +X ′uΩ−1
p Xu)−1

λ̂p = Dλp(X
′
uΩ−1

p B)

The candidate draws are sampled from N(λ̂p, Dλp) using the precision-based algorithm.

Step 8. Derive the conditional distribution p(ρπ|Y, •)

The information about ρπ comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,

π̃t = πt − π∗t
ũt = Ut − U∗t
Π̃ = (π̃1, ..., π̃T )′

ũ = (ũ1, ..., ũT )′

The first source is the price inflation measurement equation. Rewrite it in a matrix notation,

Π̃ + Λũ = Xπρ
π + επ επ ∼ N(0,Ωπ) (69)

where,

Xπ = diag(π̃0, ..., π̃T−1)
Λ = diag(−λπ1 , ...,−λπT )

Ignoring any terms not involving ρπ, we have the likelihood
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log p(π|ρπ, •) ∝ −1
2(Π̃− (Xπρ

π − Λũ))′Ω−1
π (Π̃− (Xπρ

π − Λũ))

The second source comes from the state equation for ρπ. We rewrite it in a matrix notation as
follows,

Hρπ = ερπ ερπ ∼ N(0,Ωρπ), where Ωρπ = diag(ω2
ρπ, σ

2
ρπ, ..., σ

2
ρπ) (70)

0 < ρπt < 1 for t=1,....,T

Ignoring any terms not involving ρπ, the prior density for ρπ is given by

log p(ρπ|σ2
ρπ,Ωρπ) ∝ −1

2(ρπ)′H ′Ω−1
ρπH(ρπ) + gρπ(ρπ, σ2

ρπ)

where,

gρπ(ρπ, σ2
ρπ) = −

T∑
t=2

log

(
Φ

(
1− ρπt−1

σρπ

)
− Φ

(
0− ρπt−1

σρπ

))
Combining the above two conditional densities we obtain,

log p(ρπ|Y, •) ∝ −1
2(ρπ − ρ̂π)

′
D−1
ρπ (ρπ − ρ̂π) + gρπ(ρπ, σ2

ρπ)

where,
Dρπ = (H ′Ω−1

ρπH +X ′πΩ−1
π Xπ)−1

ρ̂π = Dρπ(X ′πΩ−1
π (Π̃ + Λũ))

The addition of the term gρπ(ρπ, σ2
ρπ) leads to a non-standard density. Accordingly, we sam-

ple ρπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(ρ̂π, Dρπ) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-
cussed in Chan and Strachan, 2012).

Step 9. Derive the conditional distribution p(λπ|Y, •)

The information about λπ comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,

π̃t = πt − π∗t
ũt = Ut − U∗t
NW = (π̃1 − ρπ1 π̃0, ..., π̃T − ρπT π̃T−1)′
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The first source is the price inflation measurement equation. Rewrite it in a matrix notation,

NW = Xuλ
π + επ επ ∼ N(0,Ωπ) (71)

where,

Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λπ, we have the likelihood

log p(π|λπ, •) ∝ −1
2(NW −Xuλ

π)′Ω−1
π (NW −Xuλ

π)

The second source comes from the state equation for λπ. We rewrite it in a matrix notation as
follows,

Hλπ = ελπ ελπ ∼ N(0,Ωλπ), where Ωλπ = diag(ω2
λπ, σ

2
λπ, ..., σ

2
λπ) (72)

−1 < λπt < 0 for t=1,....,T

Ignoring any terms not involving λπ, the prior density for λπ is given by

log p(λπ|σ2
λπ,Ωλπ) ∝ −1

2(λπ)′H ′Ω−1
λπH(λπ) + gλπ(λπ, σ2

λπ)

where,

gλπ(λπ, σ2
λπ) = −

T∑
t=2

log

(
Φ

(
0− λπt−1

σλπ

)
− Φ

(−1− λπt−1

σλπ

))
Combining the above two conditional densities we obtain,

log p(λπ|Y, •) ∝ −1
2(λπ − λ̂π)

′
D−1
λπ (λπ − λ̂π) + gλπ(λπ, σ2

λπ)

where,
Dλπ = (H ′Ω−1

λπH +X ′uΩ−1
π Xu)−1

λ̂π = Dλπ(X ′uΩ−1
π NW )

The addition of the term gλπ(λπ, σ2
λπ) leads to a non-standard density. Accordingly, we sam-

ple λπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(λ̂π, Dλπ) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-
cussed in Chan and Strachan, 2012).
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Step 10. Derive the conditional distribution p(ρw|Y, •)

The information about ρw comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,

w̃t = wt − w∗t
ũt = Ut − U∗t
w̃ = (w̃1, ..., w̃T )′

ũ = (ũ1, ..., ũT )′

π̃t = πt − π∗t
π̃ = (π̃1, ..., π̃T )′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

w̃ + Λwũ+ Λwππ̃ = Xwρ
w + ερw ερw ∼ N(0,Ωw) (73)

where,

Xw = diag(w̃0, ..., w̃T−1)
Λw = diag(−λw1 , ...,−λwT )
Λwπ = diag(−κw1 , ...,−κwT )

Ignoring any terms not involving ρw, we have the likelihood

log p(w|ρw, •) ∝ −1
2(w̃ − (Xwρ

w − Λwũ− Λwππ̃))′Ω−1
w (w̃ − (Xwρ

w − Λwũ− Λwππ̃))

The second source comes from the state equation for ρw. We rewrite it in a matrix notation as
follows,

Hρw = ερw ερw ∼ N(0,Ωρw), where Ωρw = diag(ω2
ρw, σ

2
ρw, ..., σ

2
ρw) (74)

0 < ρwt < 1 for t=1,....,T

Ignoring any terms not involving ρw, the prior density for ρw is given by

log p(ρw|σ2
ρw,Ωρw) ∝ −1

2(ρw)′H ′Ω−1
ρwH(ρw) + gρw(ρw, σ2

ρw)

where,

gρw(ρw, σ2
ρw) = −

T∑
t=2

log

(
Φ

(
1− ρwt−1

σρw

)
− Φ

(
0− ρwt−1

σρw

))
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Combining the above two conditional densities we obtain,

log p(ρw|Y, •) ∝ −1
2(ρw − ρ̂w)

′
D−1
ρw (ρw − ρ̂w) + gρw(ρw, σ2

ρw)

where,
Dρw = (H ′Ω−1

ρwH +X ′wΩ−1
w Xw)−1

ρ̂w = Dρw(X ′wΩ−1
w (w̃ + Λwũ+ Λwππ̃))

The addition of the term gρπ(ρπ, σ2
ρπ) leads to a non-standard density. Accordingly, we sam-

ple ρπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(ρ̂π, Dρπ) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-
cussed in Chan and Strachan, 2012).

Step 11. Derive the conditional distribution p(λw|Y, •)

The information about λw comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,

w̃t = wt − w∗t
ũt = Ut − U∗t
π̃t = πt − π∗t
Bw = (w̃1 − ρw1 w̃0 − κw1 π̃1, ..., w̃T − ρwT w̃T−1 − κwT−1π̃T )′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

Bw = Xuλ
w + εw εw ∼ N(0,Ωw) (75)

where,

Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λw, we have the likelihood

log p(w|λw, •) ∝ −1
2(Bw −Xuλ

w)′Ω−1
w (Bw −Xuλ

w)

The second source comes from the state equation for λw. We rewrite it in a matrix notation as
follows,

Hλw = ελw ελw ∼ N(0,Ωλw), where Ωλw = diag(ω2
λw, σ

2
λw, ..., σ

2
λw) (76)
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−1 < λwt < 0 for t=1,....,T

Ignoring any terms not involving λw, the prior density for λw is given by

log p(λw|σ2
λw,Ωλw) ∝ −1

2(λw)′H ′Ω−1
λwH(λw) + gλw(λw, σ2

λw)

where,

gλw(λw, σ2
λw) = −

T∑
t=2

log

(
Φ

(
0− λwt−1

σλw

)
− Φ

(−1− λwt−1

σλw

))
Combining the above two conditional densities we obtain,

log p(λw|Y, •) ∝ −1
2(λw − λ̂w)

′
D−1
λw (λw − λ̂w) + gλw(λw, σ2

λw)

where,
Dλw = (H ′Ω−1

λwH +X ′uΩ−1
w Xu)−1

λ̂w = Dλw(X ′uΩ−1
w Bw)

The addition of the term gλw(λw, σ2
λw) leads to a non-standard density. Accordingly, we sam-

ple λw using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(λ̂w, Dλw) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-
cussed in Chan and Strachan, 2012).

Step 12. Derive the conditional distribution p(κw|Y, •)

The information about kappaw comes from two sources. Below, we derive an expression for
each of these two sources.

First, we define some notation,

w̃t = wt − w∗t
ũt = Ut − U∗t
π̃t = πt − π∗t
Bκw = (w̃1 − ρw1 w̃0 − λw1 ũ1, ..., w̃T − ρwT w̃T−1 − λwT−1ũT )′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

Bκw = Xπκ
w + εw εw ∼ N(0,Ωw) (77)

where,

Xπ = diag(π̃1, ..., π̃T )
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Ignoring any terms not involving κw, we have the likelihood

log p(w|κw, •) ∝ −1
2(Bκw −Xπκ

w)′Ω−1
w (Bκw −Xπκ

w)

The second source comes from the state equation for κw. We rewrite it in a matrix notation as
follows,

Hκw = εκw εκw ∼ N(0,Ωκw), where Ωκw = diag(ω2
κw, σ

2
κw, ..., σ

2
κw) (78)

Ignoring any terms not involving κw, the prior density for κw is given by

log p(κw|σ2
κw,Ωκw) ∝ −1

2(κw)′H ′Ω−1
κwH(κw)

Combining the above two conditional densities we obtain,

log p(κw|Y, •) ∝ −1
2(κw − κ̂w)

′
D−1
κw (κw − κ̂w)

where,
Dκw = (H ′Ω−1

κwH +X ′πΩ−1
w Xπ)−1

κ̂w = Dκw(X ′πΩ−1
w Bκw)

The candidate draws are sampled from N(κ̂w, Dκw) using the precision-based algorithm.

Step 13. Derive the conditional distribution p(hp, hπ, hw, hi|Y, •)

Given parameters and other latent states, the stochastic volatility, hp, hπ, hw, hi are condition-
ally independent and so can be drawn separately. Following, Chan, Koop, and Potter (2013;
2016), we draw hp, hπ, hw, hi using the accept-reject independence-chain Metropolis Hastings
(ARMH) algorithm of Chan and Strachan (2012; page 32-34).

Step 14. Derive the conditional distribution p(Cu, Cg, Cπ, Cr|Y, •)

Given parameters and other latent states, Cu, Cg, Cπ, Cr are conditionally independent and
so can be drawn separately.

Beginning with Cu, the information about it comes from two sources. Below, we derive an
expression for each of these two sources.
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The first source is the measurement equation linking survey to U∗. Rewrite it in a matrix
notation,

N zu = Cu + εzu εzu ∼ N(0,Ωzu) (79)

where,

nzut = Zut − βuU∗
N zu = (nzu1 , nzu2 , ..., nzuT )′

Ωzu = diag(σ2
zu, ..., σ

2
zu)

Ignoring any terms not involving Cu, we have the likelihood

log p(Zu|Cu, •) ∝ −1
2(N zu − Cu)′Ω−1

zu (N zu − Cu)

The second source comes from the state equation for Cu. We rewrite it in a matrix nota-
tion as follows,

HCu = αcu + εcu εcu ∼ N(0,Ωcu), where Ωcu = diag(ω2
cu, σ

2
cu, ..., σ

2
cu) (80)

where,

αcu =


Cu0
0
0
...
0


Ignoring any terms not involving Cu, the prior density for Cu is given by

log p(Cu|σ2
cu,Ωcu) ∝ −1

2(Cu −H−1αcu)′H ′Ω−1
cu H(Cu −H−1αcu)

Combining the above two conditional densities we obtain,

log p(Cu|Y, •) ∝ −1
2(Cu − Ĉu)

′
D−1
Cu(Cu − Ĉu)

where,
DCu = (H ′Ω−1

cu H + Ω−1
zu )−1

Ĉu = DCu(H ′Ω−1
cu αcu + Ω−1

zuN
zu)

The candidate draws are sampled from N(Ĉu, DCu) using the precision-based algorithm.

Following similar logic,

N(Ĉr, DCr)
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DCr = (H ′Ω−1
cr H + Ω−1

zr )−1

Ĉr = DCr(H
′Ω−1
cr αcr + Ω−1

zr N
zr)

where,

nzrt = Zrt − βrr∗
N zr = (nzr1 , n

zr
2 , ..., n

zr
T )′

Ωzr = diag(σ2
zr, ..., σ

2
zr)

N(Ĉπ, DCπ)

DCπ = (H ′Ω−1
cπ H + Ω−1

zπ )−1

Ĉπ = DCπ(H ′Ω−1
cπ αcπ + Ω−1

zπN
zπ)

where,

nzπt = Zπt − βππ∗
N zπ = (nzπ1 , nzπ2 , ..., nzπT )′

Ωzπ = diag(σ2
zπ, ..., σ

2
zπ)

N(Ĉg, DCg)

DCg = (H ′Ω−1
cg H + Ω−1

zg )−1

Ĉg = DCg(H
′Ω−1
cg αcg + Ω−1

zg N
zg)

where,

nzgt = Zgt + βgαg − βggdp∗
N zg = (nzg1 , n

zg
2 , ..., n

zg
T )′

Ωzg = diag(σ2
zg, ..., σ

2
zg)

αg = (gdp∗0, 0, 0, ...., 0)′

Step 15. Derive the conditional distribution p(D|Y, •)

Given the posterior draws of r∗, ζ, and g∗, the posterior draw for D is constructed as,

D = r∗ − ζg∗ (81)
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Step 16. Derive the conditional distribution p(θ|Y, •)

There are 40 parameters in the vector θ. These parameters are drawn in 38 separate blocks
using standard regression procedures. Following similar notation to Chan, Koop, and Potter
(2016), we denote θ−x to refer all parameters in θ except the parameter x.

Substep 16.1 Derive the conditional distribution p(ρu|Y, •)

Given the stationary constraints, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1

ρu = (ρu1 , ρ
u
2)′ is a bivariate truncated normal. To obtain draws from this truncated normal

distribution, ARMH sampling algorithm is applied to the candidate draws from the proposal
density, N(ρ̂u, Dρu).

Dρu = (V −1
ρu +X

′
uXu/σ

2
u)−1

ρ̂u = Dρu(V −1
ρu ρ

u
0 +X

′
u(ũ− φuogap)/σ2

u)

where,

V −1
ρu is the prior variance and ρu0 is the prior mean,

Xu =


ũ0 ũ−1

ũ1 ũ0
...

ũT−1 ũT−2


Substep 16.2 Derive the conditional distribution p(σ2

u|Y, •)

p(σ2
u|Y, •) is a standard inverse-Gamma density,

p(σ2
u|Y, •) ∼ IG(νu0 + T

2 , Su0 + 1
2

T∑
t=1

(ũt − ρu1 ũt−1 − ρu2 ũt−2 − φuogapt)2)

Substep 16.3 Derive the conditional distribution p(φu|Y, •)

Given the constraint φu < 0, the conditional distribution p(φu|Y, •) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N(φ̂u, Dφu) using the
precision-based algorithm, and a simple accept-reject step is applied to the candidate draws.

Rewrite the unemployment rate (gap) measurement equation in matrix notation as

Y φ = φuogap+ εu εu ∼ N(0, σ2
u) (82)

where,
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yφt = ũt − ρu1 ũt−1 − ρu2 ũt−2

Y φ = (yφ1 , ..., y
φ
T )′

Dφu = (V −1
φu + ogap

′
ogap/σ2

u)−1

φ̂u = Dφu(V −1
φu φ

u
0 + ogap

′
Y φ/σ2

u)

where,

V −1
φu is the prior variance and φu0 is the prior mean,

Substep 16.4 Derive the conditional distribution p(σ2
u∗|Y, •)

p(σ2
u∗|Y, •) is a non-standard density because U∗ is a bounded random walk,

log p(σ2
u∗|Y, •) ∝ −(νu∗0+1)log σ2

u∗− Su∗0
σ2
u∗
− T−1

2 log σ2
u∗− 1

2σ2
u∗

∑T
t=2(U∗t −U∗t−1)2+gu∗(U

∗, σ2
u∗)

The candidate draws from p(σ2
u∗|Y, •) are obtained via the MH step with the proposal den-

sity

IG(νu∗0 + T−1
2 , Su∗0 + 1

2

T∑
t=2

(U∗t − U∗t−1)2)

Substep 16.5 Derive the conditional distribution p(βu|Y, •)

Candidate draws are sampled from N(β̂u, Dβu) using the precision-based algorithm.

where,

Dβu = (V −1
βu + U∗

′
Ω−1
zuU

∗)−1

β̂u = Dβu(V −1
βu β

u
0 + U∗

′
Ω−1
zu J

zu)

jzut = Zut − Cut
Jzu = (jzu1 , ..., jzuT )′

V −1
βu is the prior variance and βu0 is the prior mean for βu

Substep 16.6 Derive the conditional distribution p(σ2
zu|Y, •)

p(σ2
zu|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from
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p(σ2
zu|Y, •) ∼ IG(νzu0 + T

2 , Szu0 + 1
2

T∑
t=1

(Zut − Cut − βuU∗)2)

Substep 16.7 Derive the conditional distribution p(σ2
cu|Y, •)

p(σ2
cu|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
cu|Y, •) ∼ IG(νcu0 + T−1

2 , Scu0 + 1
2

T∑
t=2

(Cut − Cut−1)2)

Substep 16.8 Derive the conditional distribution p(σ2
gdp∗|Y, •)

p(σ2
gdp∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
gdp∗|Y, •) ∼ IG(νgdp∗0 + T−1

2 , Sgdp∗0 + (gdp∗ − αgdp∗)′ ∗H2H2 ∗ (gdp∗ − αgdp∗)/2)

where (although they are defined above but for convenience we redefine them),

αgdp∗ =


gdp∗0 +4gdp∗0
−gdp∗0

0
...
0

 , H2 =



1 0 0 0 · · · 0
−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
...

0 · · · 0 1 −2 1


H2 is a band matrix with unit determinant and hence is invertible.

Substep 16.9 Derive the conditional distribution p(ρg|Y, •)

Given the stationary constraints, ρg1 + ρg2 < 1, ρg2 − ρ
g
1 < 1, and |ρg2| < 1

ρg = (ρg1, ρ
g
2)′ is a bivariate truncated normal. To obtain draws from this truncated normal

distribution, ARMH sampling algorithm is applied to the candidate draws from the proposal
density, N(ρ̂g, Dρg).

Dρg = (V −1
ρg +X

′
ρgXρg/σ

2
ogap)

−1

ρ̂g = Dρg(V
−1
ρg ρ

g
0 +X

′
ρgYogap/σ

2
ogap)

where,

V −1
ρg is the prior variance and ρg0 is the prior mean,
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Xρg =


0 0

ogap1 0
ogap2 ogap1

...
ogapT−1 ogapT−2


yogapt = ogapt − ar(rt − rt−1)− λgũt)
Yogap = (yogap1 , ..., yogapT )′

Substep 16.10 Derive the conditional distribution p(ar|Y, •)

Candidate draws are sampled from N(âr, Dar) using the precision-based algorithm.

where,

Dar = (V −1
ar +X

′
arΩ
−1
ogapXar)

−1

âr = Dar(V
−1
ar a

r
0 +X

′
arΩ
−1
ogapJ

ar)

jart = ogapt − ρg1ogapt−1 − ρg2ogapt−2 − λgũt
Jar = (jar1 , ..., jarT )′

Xar = (r̃1, ..., r̃T )′

r̃t = rt − r∗t

V −1
ar is the prior variance and ar0 is the prior mean for ar

Substep 16.11 Derive the conditional distribution p(λg|Y, •)

Given the constraint λg < 0, the conditional distribution p(λg|Y, •) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N(λ̂g, Dλg) using the
precision-based algorithm, and a simple accept-reject step is applied to the candidate draws.

where,

Dλg = (V −1
λg +X

′
uΩ−1

ogapXu)−1

λ̂g = Dλg(V
−1
λg λ

g
0 +X

′
uΩ−1

ogapB
g)

bgt = ogapt − ρg1ogapt−1 − ρg2ogapt−2 − arr̃t
Bg = (bg1, ..., b

g
T )′

Xu = diag(ũ1, ..., ũT )′

r̃t = rt − r∗t

V −1
λg is the prior variance and λg0 is the prior mean for λg
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Substep 16.12 Derive the conditional distribution p(σ2
ogap|Y, •)

p(σ2
ogap|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
ogap|Y, •) ∼ IG(νogap0 + T

2 , Sogap0 + 1
2

T∑
t=1

(ogapt − ρg1ogapt−1 − ρg2ogapt−2 − λgũt − arr̃t)2)

Substep 16.13 Derive the conditional distribution p(σ2
zg|Y, •)

p(σ2
zg|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
zg|Y, •) ∼ IG(νzg0 + T

2 , Szg0 + 1
2

T∑
t=1

(Zgt − C
g
t − βggdp∗t−1 + βggdp∗t )

2)

Substep 16.14 Derive the conditional distribution p(σ2
cg|Y, •)

p(σ2
cg|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
cg|Y, •) ∼ IG(νcg0 + T−1

2 , Scg0 + 1
2

T∑
t=2

(Cgt − C
g
t−1)2)

Substep 16.15 Derive the conditional distribution p(βg|Y, •)

Candidate draws are sampled from N(β̂g, Dβg) using the precision-based algorithm.

where,

Dβg = (V −1
βg + (Hgdp∗ − αg)

′
Ω−1
zg (Hgdp∗ − αg))−1

β̂g = Dβg(V
−1
βg β

g
0 + (Hgdp∗ − αg)Ω−1

zg J
zg)

jzgt = Zgt − C
g
t

Jzg = (jzg1 , ..., jzgT )′

αg = (gdp∗0, 0, 0, ...., 0)′

V −1
βg is the prior variance and βg0 is the prior mean for βg

Substep 16.16 Derive the conditional distribution p(ρp|Y, •)
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Given the stationary constraint, |ρp| < 1

ρp is a truncated normal. To obtain draws from this truncated normal distribution, AR sam-
pling step is applied to the candidate draws from the proposal density, N(ρ̂p, Dρp).

Dρp = (V −1
ρp +X

′
prodΩ

−1
P Xprod)

−1

ρ̂p = Dρp(V
−1
ρp ρ

p
0 +X

′
prodΩ

−1
P Y prod)

where,

V −1
ρp is the prior variance and ρp0 is the prior mean,

p̃t = Pt − P ∗t

Xprod = (p̃0, ..., p̃T−1)′

yprodt = p̃t − λpt ũt

Y prod = (yprod1 , ..., yprodT )′

Substep 16.17 Derive the conditional distribution p(σ2
hp|Y, •)

p(σ2
hp|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
hp|Y, •) ∼ IG(νhp0 + T−1

2 , Shp0 + 1
2

T∑
t=2

(hpt − h
p
t−1)2)

Substep 16.18 Derive the conditional distribution p(σ2
p∗|Y, •)

p(σ2
p∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
p∗|Y, •) ∼ IG(νp∗0 + T−1

2 , Sp∗0 + 1
2

T∑
t=2

(P ∗t − P ∗t−1)2)

Substep 16.19 Derive the conditional distribution p(σ2
λπ|Y, •)

p(σ2
λπ|Y, •) is a non-standard density because of the constraints on λπ,

log p(σ2
λπ|Y, •) ∝ −(νλπ0+1)log σ2

λπ−
Sλπ0
σ2
λπ
− T−1

2 log σ2
λπ−

1
2σ2
λπ

∑T
t=2(λπt −λπt−1)2+gλπ(λπ, σ2

λπ)

The candidate draws from p(σ2
λπ|Y, •) are obtained via the MH step with the proposal den-
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sity

IG(νλπ0 + T−1
2 , Sλπ0 + 1

2

T∑
t=2

(λπt − λπt−1)2)

Substep 16.20 Derive the conditional distribution p(σ2
ρπ|Y, •)

p(σ2
ρπ|Y, •) is a non-standard density because of the constraints on ρπ,

log p(σ2
ρπ|Y, •) ∝ −(νρπ0 +1)log σ2

ρπ−
Sρπ0
σ2
ρπ
− T−1

2 log σ2
ρπ− 1

2σ2
ρπ

∑T
t=2(ρπt −ρπt−1)2 +gρπ(ρπ, σ2

ρπ)

The candidate draws from p(σ2
ρπ|Y, •) are obtained via the MH step with the proposal den-

sity

IG(νρπ0 + T−1
2 , Sρπ0 + 1

2

T∑
t=2

(ρπt − ρπt−1)2)

Substep 16.21 Derive the conditional distribution p(σ2
hπ|Y, •)

p(σ2
hπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
hπ|Y, •) ∼ IG(νhπ0 + T−1

2 , Shπ0 + 1
2

T∑
t=2

(hπt − hπt−1)2)

Substep 16.22 Derive the conditional distribution p(σ2
π∗|Y, •)

p(σ2
π∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
π∗|Y, •) ∼ IG(νπ∗0 + T−1

2 , Sπ∗0 + 1
2

T∑
t=2

(π∗t − π∗t−1)2)

Substep 16.23 Derive the conditional distribution p(σ2
zπ|Y, •)

p(σ2
zπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
zπ|Y, •) ∼ IG(νzπ0 + T

2 , Szπ0 + 1
2

T∑
t=1

(Zπt − Cπt − βππ∗)2)
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Substep 16.24 Derive the conditional distribution p(σ2
cπ|Y, •)

p(σ2
cπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
cπ|Y, •) ∼ IG(νcπ0 + T−1

2 , Scπ0 + 1
2

T∑
t=2

(Cπt − Cπt−1)2)

Substep 16.25 Derive the conditional distribution p(βπ|Y, •)

Candidate draws are sampled from N(β̂π, Dβπ) using the precision-based algorithm.

where,

Dβπ = (V −1
βπ + π∗

′
Ω−1
zπ π

∗)−1

β̂π = Dβπ(V −1
βπ β

π
0 + π∗

′
Ω−1
zπ J

zπ)

jzπt = Zπt − Cπt
Jzπ = (jzπ1 , ..., jzπT )′

V −1
βπ is the prior variance and βπ0 is the prior mean for βπ

Substep 16.26 Derive the conditional distribution p(σ2
w∗|Y, •)

p(σ2
w∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
w∗|Y, •) ∼ IG(νw∗0 + T−1

2 , Sw∗0 + 1
2

T∑
t=2

(w∗t − π∗t − P ∗t )2)

Substep 16.27 Derive the conditional distribution p(σ2
hw|Y, •)

p(σ2
hw|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
hw|Y, •) ∼ IG(νhw0 + T−1

2 , Shw0 + 1
2

T∑
t=2

(hwt − hwt−1)2)

Substep 16.28 Derive the conditional distribution p(σ2
ρw|Y, •)

p(σ2
ρw|Y, •) is a non-standard density because of the constraints on ρw,
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log p(σ2
ρw|Y, •) ∝ −(νρw0+1)log σ2

ρw−
Sρw0

σ2
ρw
−T−1

2 log σ2
ρw− 1

2σ2
ρw

∑T
t=2(ρwt −ρwt−1)2+gρw(ρw, σ2

ρw)

The candidate draws from p(σ2
ρw|Y, •) are obtained via the MH step with the proposal den-

sity

IG(νρw0 + T−1
2 , Sρw0 + 1

2

T∑
t=2

(ρwt − ρwt−1)2)

Substep 16.29 Derive the conditional distribution p(σ2
λw|Y, •)

p(σ2
λw|Y, •) is a non-standard density because of the constraints on λw,

log p(σ2
λw|Y, •) ∝ −(νλw0+1)log σ2

λw−
Sλw0

σ2
λw
−T−1

2 log σ2
λw−

1
2σ2
λw

∑T
t=2(λwt −λwt−1)2+gλw(λw, σ2

λw)

The candidate draws from p(σ2
λw|Y, •) are obtained via the MH step with the proposal density

IG(νλw0 + T−1
2 , Sλw0 + 1

2

T∑
t=2

(λwt − λwt−1)2)

Substep 16.30 Derive the conditional distribution p(σ2
κw|Y, •)

The candidate draws are obtained from

IG(νκw0 + T−1
2 , Sκw0 + 1

2

T∑
t=2

(κwt − κwt−1)2)

Substep 16.31 Derive the conditional distribution p(ρi|Y, •)

Given the constraint |ρi| < 1, the conditional distribution p(ρi|Y, •) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N(ρ̂i, Dρi) using the
precision-based algorithm, and a simple accept-reject step is applied to the candidate draws.

where,

Dρi = (V −1
ρi +X

′
ρiΩ
−1
i Xρi)

−1

ρ̂i = Dρi(V
−1
ρi ρ

i
0 +X

′
ρiΩ
−1
i Mρi)

mρi
t = it − π∗t − r∗t − λiũt − κiπ̃t

Mρi = (mρi
1 , ...,m

ρi
T )′

Xρi = (i0 − π∗0 − r∗0, ..., iT−1 − π∗T−1 − r∗T−1)′

V −1
ρi is the prior variance and ρi0 is the prior mean for ρi
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Substep 16.32 Derive the conditional distribution p(λi|Y, •)

The candidate draws are sampled from the proposal distribution N(λ̂i, Dλi) using the precision-
based algorithm.

where,

Dλi = (V −1
λi +X

′
λiΩ
−1
i Xλi)

−1

λ̂i = Dλi(V
−1
λi λ

i
0 +X

′
λiΩ
−1
i Mλi)

mλi
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− κiπ̃t

Mλi = (mλi
1 , ...,m

λi
T )′

Xλi = (ũ1, ..., ũT )′

V −1
λi is the prior variance and λi0 is the prior mean for λi

Substep 16.33 Derive the conditional distribution p(κi|Y, •)

The candidate draws are sampled from the proposal distribution N(κ̂i, Dκi) using the precision-
based algorithm.

where,

Dκi = (V −1
κi +X

′
κiΩ
−1
i Xκi)

−1

κ̂i = Dκi(V
−1
κi κ

i
0 +X

′
κiΩ
−1
i Mκi)

mκi
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− λiũt

Mκi = (mκi
1 , ...,m

κi
T )′

Xκi = (π̃1, ..., π̃T )′

V −1
κi is the prior variance and κi0 is the prior mean for κi

Substep 16.34 Derive the conditional distribution p(σ2
hi|Y, •)

p(σ2
hi|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
hi|Y, •) ∼ IG(νhi0 + T−1

2 , Shi0 + 1
2

T∑
t=2

(hit − hit−1)2)
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Substep 16.35 Derive the conditional distribution p(σ2
zr|Y, •)

p(σ2
zr|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
zr|Y, •) ∼ IG(νzr0 + T

2 , Szr0 + 1
2

T∑
t=1

(Zrt − Crt − βrr∗t )2)

Substep 16.36 Derive the conditional distribution p(σ2
cr|Y, •)

p(σ2
cr|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
cr|Y, •) ∼ IG(νcr0 + T−1

2 , Scr0 + 1
2

T∑
t=2

(Crt − Crt−1)2)

Substep 16.37 Derive the conditional distribution p(βr|Y, •)

Candidate draws are sampled from N(β̂r, Dβr) using the precision-based algorithm.

where,

Dβr = (V −1
βr + r∗

′
Ω−1
zr r
∗)−1

β̂r = Dβr(V
−1
βr β

r
0 + r∗

′
Ω−1
zr J

zr)

jzrt = Zrt − Crt
Jzr = (jzr1 , ..., j

zr
T )′

V −1
βr is the prior variance and βr0 is the prior mean for βr

Substep 16.38 Derive the conditional distribution p(σ2
d|Y, •)

p(σ2
d|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
d|Y, •) ∼ IG(νd0 + T−1

2 , Sd0 + 1
2

T∑
t=2

(Dt −Dt−1)2)
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A1.d Marginal likelihood computation

Bayesian model comparison is based on the marginal likelihood (marginal data density) metric.
In computing marginal likelihood for various models, we use the approach proposed by CCK,
which decomposes the marginal density of the data (e.g., inflation) into the product of predic-
tive likelihoods. This approach allows us to separately compute marginal data density for each
variable of interest: inflation, nominal wages, interest rate, real GDP, the unemployment rate,
and labor productivity. The variable-specific marginal densities prove quite useful because they
allow for deeper insights about the source of the deficiencies, which in turn helps differentiate
models at a more disaggregated level.

Specifically, the marginal data density of the variables of interest is computed as follows,

p(yj |Xj
i ,Mi) =

T∏
t=3

p(yjt |y
j
1:t−1, X

j
1:t,i,Mi) (83)

where, j = PCE inflation (π), unemployment rate(ur), real GDP(gdp), labor productivity(prod),
nominal wage inflation(wage), nominal short-term interest rate(int);
p(yjt |y

j
1:t−1, X

j
1:t,i,Mi) is the predictive likelihood for variable j, and Xj

i is a set of covariates that
influences variable j in model Mi. For example, in the case of the short-term interest rate, the
covariates in the Base model include ur, π, gdp, and survey data, whereas in the Base-NoSurv
model, the covariates will not include the survey data.

To compute the overall marginal data density of Y = (yπ, yur, ygdp, yprod, ywage, yint)′ for
model Mi,

p(Y |Xi,Mi) = p(yπ|Xπ
i ,Mi)× p(yur|Xur

i ,Mi)× p(ygdp|Xgdp
i ,Mi)...

×p(yprod|Xprod
i ,Mi)× p(ywage|Xwage

i ,Mi)× p(yint|Xint
i ,Mi) (84)

A2. Prior Sensitivity Analysis

In the paper, we noted that our prior settings are similar to those used in CKP, CCK, and
Gonzalez-Astudillo and Laforte (2020). As discussed in CCK, UC models with several unob-
served variables, such as the one developed in this paper, require informative priors. That said,
our priors settings for most variables are only slightly informative. The use of inequality re-
strictions on some parameters such as the Phillips curve, persistence, bounds on u-star could be
viewed as additional sources of information that eliminate the need for tight priors, something
also noted by CKP. The parameters for which there is a strong agreement in the empirical
literature on their values, such as the Taylor-rule equation parameters, we use relatively tight
priors, such that prior distributions are centered on prior means with small variance. So besides
the prior on the Taylor-rule equation parameters, all other prior settings are taken from related
papers.

Here, we examine the sensitivity of loosening the priors on the variances of the shocks to the
pi-star, p-star, u-star, and r-star (i.e., for the process D). Specifically, we double the prior mean
of the variances from 0.01 to 0.03. Table A2 reports the posterior estimates. The top panel
reports the posterior estimates from the main text to facilitate easy comparison, and the bottom
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panel reports the posterior estimates of re-running the models with these new prior values. The
results for p-star are as expected. In the paper, we noted that the prior view primarily shapes
p-star, and we see that manifest here too; prior (E(σ2

p∗)) and posterior (E(σ2
p∗|Data)) are fairly

identical. Similar evidence is seen in the case of r-star (i.e., D) for the Base-NoSurv model.
For pi-star, u-star, and r-star (in the case of Base), the posterior mean estimates’ differences
between the two panels are small. In fact, the posterior mean estimates from the runs with
looser priors are pushed toward values that are closer to the prior mean estimates used in the
main paper, lending credibility to our default prior settings used in the main paper.

Table A2: Parameter Estimates

Panel A: From the main paper, where prior E(σ2
π∗) = E(σ2

u∗) = E(σ2
d) = 0.12 and E(σ2

p∗) = 0.142

Parameter Parameter description Posterior estimates
Base Base-NoSurv

Mean 5% 95% Mean 5% 95%
σ2
π∗ Variance of the shocks to π∗ 0.1212 0.1002 0.1412 0.1272 0.0842 0.1822

σ2
p∗ Variance of the shocks to p∗ 0.1452 0.1112 0.1832 0.1412 0.1092 0.1762

σ2
u∗ Variance of the shocks to u∗ 0.0752 0.0642 0.0892 0.0842 0.0712 0.1002

σ2
d Variance of the shocks to d 0.0932 0.0772 0.1102 0.1142 0.0842 0.1482

Panel B: Prior sensitivity, where prior E(σ2
π∗) = E(σ2

u∗) = E(σ2
d) = E(σ2

p∗) = 0.1732

Parameter Parameter description Posterior estimates
Base Base-NoSurv

Mean 5% 95% Mean 5% 95%
σ2
π∗ Variance of the shocks to π∗ 0.1432 0.1242 0.1632 0.1902 0.1452 0.2362

σ2
p∗ Variance of the shocks to p∗ 0.1722 0.1342 0.2142 0.1662 0.1302 0.2072

σ2
u∗ Variance of the shocks to u∗ 0.1022 0.0902 0.1152 0.1212 0.1032 0.1402

σ2
d Variance of the shocks to d 0.1222 0.1062 0.1402 0.1752 0.1362 0.2182
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A3. MCMC Convergence Diagnostics

In this section, we document the diagnostic properties of our MCMC algorithm in the Base and
Base-NoSurv models. Following Primiceri (2005), Koop, Leon-Gonzalez, and Strachan (2010),
and Korobilis (2017), we report the autocorrelation functions of the posterior draws (10th and
50th order sample autocorrelation), inefficiency factors (IFs), and convergence diagnostic (CD)
of Geweke (1992).1

One of the most common metrics examined to assess the efficiency of the MCMC sampler
is to look at the autocorrelation function of the draws, which indicates how well the chain is
mixing. Low autocorrelations are preferred to higher because the lower the autocorrelation, the
closer the draws are to being independent and the higher the efficiency of the algorithm. The
plots shown in the top panel of the figures correspond to 10th and 50th order autocorrelations
in the draws, and as can be seen, they indicate very low autocorrelation. In the case of 50th
order autocorrelation, all of them indicate correlation close to zero, and in the case of 10th
order except for a couple most indicate correlation below 0.2.

The inefficiency factor related to the autocorrelation functions is the inverse of Geweke’s
(1992) relative numerical efficiency measure (RNE). It is computed using the following formula,
(1 + 2

∑∞
i=1 ρi), where ρi refers to the k − th order autocorrelation of the chain. The middle

panel in Figures A1 and A2 plots the IF for each of the parameters. The values lower than or
close to 20 are considered desirable. As shown, in the case of the Base model, all the IFs are
below 20, and most are at or below 10. Similarly, in the case of Base-NoSurv, except one, for
all other parameters, IFs are below 20. (Note: IFs are computed using the default setting in
LeSage’s toolbox: estimation of spectral density at frequency zero uses a tapered window of 4%.)

As discussed in Koop, Leon-Gonzalez, and Strachan (2010), to assess whether the MCMC
sampler has converged, a rough rule of thumb is to look at the CDs and see whether 95% of
them are less than 2. If they are, then convergence is likely achieved. Based on the plots in
Figures A1 and A2 (third panel), most CDs are within +/- 2. The very few that exceed 2 are
only slightly larger than 2.

We also note that the results are fairly identical to the different initial conditions of the
chain (picked randomly) and to a significantly lower number of simulations (and burn-in). For
example, a run using 320K posterior draws with a burn-in of the first 300K and retaining all
the remaining draws provides similar inference. However, the MCMC convergence properties
favor higher simulations because it allows for a greater degree of thinning.

Overall, these diagnostic measures give us confidence in the good convergence properties of
our MCMC algorithm in both the Base and Base-NoSurv models.

1In computing some of these metrics, we have benefitted from the Matlab toolbox developed by James P.
LeSage. A detailed explanation including intuition for these convergence diagnostics is provided in Koop (2003;
page 67-68) and Chan et al. (2019; page 209).
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Figure A1: MCMC Diagnostics of Base Model
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Figure A2: MCMC Diagnostics of Base-NoSurv Model
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A4. Additional Forecasting Results: Base vs. Benchmarks

In this section we compare the real-time forecasting performance of our Base model to the
outside benchmark models, which the forecasting literature has shown to be useful forecasting
devices. Specifically, we compare the accuracy of the inflation forecasts from our Base model
to the following three models: UCSV of Stock and Watson (2007) [UCSV], Chan, Koop, and
Potter (2016) [CKP], and Chan, Clark, and Koop (2018) [CCK]. We compare the accuracy of
the unemployment rate forecasts from our Base model to the CKP, and the accuracy of the
nominal wage inflation from the Base model to the UCSV model applied to the nominal wage
inflation – motivated by Knotek (2015).

Table A3 presents the forecast evaluation results for headline PCE inflation, nominal wage
inflation, and the unemployment rate. These results indicate the following three observations.
First, in terms of point forecast accuracy, inflation forecasts from all four models considered
are competitive with each other. There is some statistically significant evidence that the Base
model is more accurate than UCSV at h=12Q. Regarding the density forecast accuracy, the
Base model is more accurate than the UCSV but inferior to CCK, as the latter produces more
precise intervals than the Base model. Second, in the case of nominal wage inflation, the Base
model generates more accurate forecasts (both point and density) than UCSV, and the gains
are statistically significant for the most part.

Third, the accuracy of the unemployment forecasts from the Base model is competitive with
the CKP model statistically speaking, even though the relative numbers favor CKP. A closer
inspection of the forecast errors reveals that the Base model, which incorporates survey forecasts
of the unemployment rate, experienced significantly bigger misses than the CKP model around
the Great Recession period. Outside of this period, the Base model is slightly more accurate
than the CKP, and when combined with the Great Recession period, on the net, the much
bigger misses of the Base model result in overall higher RMSE.

As illustrated in Tallman and Zaman (2020), just before and at the onset of the Great
Recession, survey participants projected relatively upbeat long-run forecasts of unemployment,
which indicated a declining natural rate of unemployment. It was not until a few months into
the recession that survey participants recognized the extent of the labor market damage and
began to revise their estimates of the long-run unemployment rate higher. Hence, models such
as the Base model that take signals from the survey forecasts experienced big misses.

To sum up, we view these forecasting results as providing evidence supporting our Base
model’s competitive forecasting properties.
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Table A3: Out-of-Sample Forecasting Performance: Base vs. Benchmarks

Full Sample (Recursive evaluation: 1999.Q1-2019.Q4)

Point forecasting Density forecasting
4Q 8Q 12Q 20Q 4Q 8Q 12Q 20Q

PCE Inflation
Relative RMSE Relative Log Score

Base/UCSV 0.95 0.97 0.93* 0.96 Base - UCSV 0.013* 0.023* 0.028* 0.041*
Base/CCK 1.01 1.04 1.01 1.04* Base - CCK -0.018* -0.030* -0.046* -0.058*
Base/CKP 0.98 0.99 0.97 1.02 Base - CKP 0.002 0.001 -0.003* -0.008*

Nominal Wage
Relative RMSE Relative Log Score

Base/UCSV 0.89* 0.87* 0.92 0.64 Base - UCSV 0.012 0.027* 0.037* 0.041*
Unemployment Rate
Relative MSE Relative Log Score

Base/CKP 1.08 1.12 1.15 1.24 Base - CKP 0.001 0.000 -0.004 -0.007

Notes: For variables PCE inflation and nominal wage (i.e., average hourly earnings), the forecasts and associated accuracy correspond to

the quarterly annualized rate. Base forecast is defined as the Steady-State (SS) VAR forecast in which the steady states are assumed to be

the estimates of the stars from the Base model. UCSV forecast corresponds to the forecast from the univariate unobserved component

stochastic volatility model similar to Stock and Watson (2007). The model is used to construct forecasts of PCE inflation and nominal

wage inflation. CCK forecast corresponds to the forecast from the bivariate unobserved component stochastic volatility model of Chan,

Clark and Koop (2018). CKP forecast corresponds to the forecast from the bivariate unobserved component stochastic volatility model of

Chan, Koop and Potter (2016), with the bounds on u-star fixed to values identical to the Base model. The left panel reports results for the

point forecast accuracy (relative root mean squared errors) and the right panel reports the corresponding density forecast accuracy (mean

of the relative log predictive score). The table reports statistical significance based on the Diebold-Mariano and West test with the lag

h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by

Harvey, Leybourne, and Newbold (1997); *up to 10% significance level. The test statistics use two-sided standard normal critical values for

horizons less than or equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters.
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A5. Additional Forecasting Results: SSBVAR, Base stars vs.
Survey

In macroeconomic forecasting, research by Wright (2013) and Tallman and Zaman (2020),
among others, using workhorse Bayesian VAR models shows that the predictive performance
boils down to good starting conditions (i.e., nowcasts) and terminal conditions (i.e., steady
states proxied by stars). Survey forecasts provide both nowcasts and long-run projections,
whose accuracy has been shown by past research to be quite good. Wright (2019) empha-
sizes the desirable forecasting properties of the survey forecasts and highlights that econometric
approaches utilizing survey projections are at the forecasting frontier, especially in inflation
forecasting. Most empirical research on forecasting has focused on proposing methods to im-
prove the accuracy of the nowcast estimates relative to survey nowcasts’ accuracy, but only
little effort has been dedicated to improving estimates of long-run projections. Hence, this
paper raises a natural curiosity about the usefulness of the stars’ estimates from our modeling
framework for macroeconomic forecasting using Bayesian VARs (via the imposition of steady
states).

To assess the efficacy of our stars’ estimates for the external VAR models, we perform
a real-time out-of-sample forecasting evaluation similar to Wright (2013) and Tallman and
Zaman (2020). These studies informed the time-varying steady states for the steady-state (SS)
BVAR using long-run survey projections and found that doing so leads to significant gains in
accuracy. Accordingly, the design of our forecasting examination is as follows. We take the
SSBVAR from Tallman and Zaman (2020) and perform three sets of recursive real-time out-
of-sample forecasting runs. In the first run, we inform the steady states for real GDP growth,
PCE inflation, core PCE inflation, the unemployment rate, nominal wage inflation, and labor
productivity growth using long-run survey projections. For the latter two variables, we use the
survey expectations from the SPF.2 The forecasts from this run are denoted ‘Survey’ in Table
A4. In the second run, we repeat the exercise, but this time inform the steady-states using
the real-time estimates of the stars from the Base-NoSurv model, denoted ‘BaseNoSurv’. In
the third run, we inform the steady-states using the real-time estimates of stars from the Base
model, denoted ‘Base.’

Each of the three forecasting runs is based on estimating the SSBVAR with a recursively
expanding sample, i.e., the recursive execution uses an additional quarterly data point in the
estimation. The SSBVAR is estimated with quarterly data beginning 1959Q2. The model
consists of ten variables: (1) real GDP growth; (2)real consumption expenditures; (3) headline
PCE inflation; (4) core PCE inflation; (5) labor productivity growth; (6) growth in average
hourly earnings; (7) growth in payroll employment; (8) the unemployment rate; (9) the shadow
federal funds rate; and (10) the risk spread, defined as the difference between the yield on the
10-year Treasury bond and yield on BAA-rated bond. The out-of-sample forecasting period
spans 1999Q1 through 2019Q4. The forecast accuracy (point and density) is computed from
one-quarter-ahead to 20 quarters out. Partly due to our focus on the medium-term horizon and
partly in the interest of space, we report accuracy metrics for 4, 8, 12, and 20 quarters ahead.

We evaluate the forecast accuracy using real-time data; specifically, we treat the “actual”
as the third quarterly estimate. For instance, in the case of real GDP, the third estimate for
2018Q4 corresponds to the GDP data available in late 2019Q1. The point forecast accuracy is
assessed using the root mean squared error (RMSE) metric, and the density forecast accuracy

2In the case of nominal wage inflation, we construct an implied survey projection by adding the survey
expectation of PCE inflation and productivity, both of which are obtained from the SPF.
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is assessed using the continuous ranked probability score (CRPS). Forecasts with lower RSME
and CRPS are preferred. The statistical significance of the point and density forecast accuracy
is gauged using the Diebold-Mariano and West test. The description of these tests is listed in
the notes accompanying the tables reporting forecast accuracy.

Table A4 reports forecast evaluation results corresponding to this exercise. The left panel
reports the point forecast accuracy results, while the right panel reports results for the density
forecast accuracy. We evaluate and compare the point and density forecast accuracies among
the Base, BaseNosurv, and Survey forecasts in a pairwise fashion. For each variable, the three
rows report the relative RMSE (for point forecast accuracy) and the relative CRPS (for density
forecast accuracy). The first row reports the RMSE of the Base relative to Survey, the second
row reports the RMSE of BaseNoSurv relative to Survey, and the third row reports the RMSE
of BaseNoSurv relative to Base. A model with lower values of RMSE and CRPS is preferred
to a model with higher values. These relative metrics indicate the following. First, for real
GDP growth, statistically speaking, Survey outperforms both Base and BaseNoSurv. A closer
inspection of the errors reveals that most of the gains of Survey over Base and BaseNoSurv are
achieved over the post-Great Recession period.

As indicated in the figures plotting real-time estimates (see Figure A5), starting in 2011
onward, while both Base and Base-NoSurv have g-star falling sharply in the vicinity of 1.0%,
the Survey has g-star falling only a little, to 2.0%. This more rapid deceleration in g-star inferred
by our models hurts the forecast accuracy of real GDP forecasts. This particular forecasting
result suggests that our models misleadingly attribute a higher portion of the low GDP growth
realizations in the post-Great Recession period to a trend decline in real GDP growth instead
of cyclical fluctuations.

For headline PCE inflation, all three are competitive with each other, with some statistically
significant gains in the density forecast accuracy of Base and Base-NoSurv over Survey. In
the case of nominal wage inflation, both Base and Base-NoSurv generate forecasts that are
substantially more accurate than Survey on average. The gains are statistically significant for
the most part. In the case of labor productivity, while Base is more accurate than BaseNoSurv,
both are inferior to the Survey. This result suggests that bringing in survey information about
productivity in the Base model may improve the econometric estimation of p-star.

For the unemployment rate, both Base and BaseNoSurv are inferior to the Survey, but the
gains are not statistically significant for the most part. The SSBVAR with steady states in-
formed by the Base model generates more accurate unemployment forecasts than Base-NoSurv,
but the forecast gains are statistically significant only for the very long horizons. In the case
of the shadow federal funds rate, both Base and Survey are competitive but are inferior to
BaseNoSurv for h=4Q and h=8Q.

Overall, these forecasting results lend credibility to our stars’ estimates (except for g-star)
in their use to inform steady states for VAR forecasting models. We also note that the results
in this section lend support to the survey projections in their use as proxies for stars, something
also documented by Tallman and Zaman (2020), among others.

The fact that the estimates of stars from our models are generally competitive to survey
long-run projections we believe is a good outcome. It has been well-established that survey
expectations are at the frontier of forecasting (e.g., Wright, 2019). However, the preference
is for forecasts (or estimates of stars) obtained using a single multivariate model because the
resulting forecasts will be coherent and allow for a credible narrative in a systematic manner.
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Table A4: Out-of-Sample Forecasting Performance: Steady-State BVAR

Full Sample (Recursive evaluation: 1999.Q1-2019.Q4)

Point forecasting Density forecasting
4Q 8Q 12Q 20Q 4Q 8Q 12Q 20Q

Real GDP
Relative RMSE Relative CRPS

Base/Survey 1.05* 1.07* 1.06* 1.01 Base - Survey 0.09* 0.09* 0.07* 0.01
BaseNoSurv/Survey 1.04 1.09* 1.07* 1.03* BaseNoSurv - Survey 0.06 0.12* 0.09* 0.03
BaseNoSurv/Base 0.98 1.02 1.01 1.02* BaseNoSurv - Base -0.02 0.03 0.01 0.02

PCE Inflation
Relative RMSE Relative CRPS

Base/Survey 0.99* 0.98 1.00 1.05 Base - Survey -0.02* -0.02* -0.01 0.04
BaseNoSurv/Survey 0.97 1.00 1.04 1.06 BaseNoSurv - Survey -0.03* -0.01 0.02 0.04
BaseNoSurv/Base 0.99 1.02 1.04 1.01 BaseNoSurv - Base -0.02 0.01 0.03 0.00

Productivity
Relative RMSE Relative CRPS

Base/Survey 1.04* 1.08* 1.05* 1.00 Base - Survey 0.04* 0.08* 0.06* 0.00
BaseNoSurv/Survey 1.06* 1.13* 1.12* 1.05 BaseNoSurv - Survey 0.07* 0.13* 0.12* 0.05
BaseNoSurv/Base 1.02 1.05* 1.06* 1.05* BaseNoSurv - Base 0.02 0.05* 0.06* 0.05*

Nominal Wage
Relative RMSE Relative CRPS

Base/Survey 0.73* 0.77* 0.84* 0.92* Base - Survey -0.08* -0.09* -0.09* -0.08*
BaseNoSurv/Survey 0.72* 0.76* 0.93* 1.06 BaseNoSurv - Survey -0.08* -0.09* -0.05* 0.03
BaseNoSurv/Base 0.98 0.99 1.10 1.16 BaseNoSurv - Base 0.00 0.00 0.04 0.11

Unemployment Rate
Relative MSE Relative CRPS

Base/Survey 1.05 1.08* 1.09 1.11 Base - Survey 0.03 0.09* 0.13* 0.18*
BaseNoSurv/Survey 1.07 1.13 1.19 1.27* BaseNoSurv - Survey -0.08 -0.15 -0.10 0.20*
BaseNoSurv/Base 1.02 1.05 1.09 1.14* BaseNoSurv - Base 0.02 0.10 0.19 0.31

Shadow FFR
Relative RMSE Relative CRPS

Base/Survey 0.98 0.99 1.01 1.06 Base - Survey -0.02 -0.02 0.02 0.18
BaseNoSurv/Survey 0.91* 0.92 0.96 1.07 BaseNoSurv - Survey -0.08* -0.15 -0.10 0.20
BaseNoSurv/Base 0.93* 0.93* 0.95 1.01 BaseNoSurv - Base -0.06* -0.13* -0.12 0.02

Notes: For the variables real GDP, PCE inflation, productivity, nominal wage (i.e., average hourly earnings), the forecasts and the

associated accuracy correspond to the quarterly annualized rate. Base forecast is defined as the Steady-State (SS) VAR forecast in which

the steady states are assumed to be the estimates of the stars from the Base model. BaseNoSurv forecast is defined as the SS-VAR forecast

in which the steady states are taken from the Base-NoSurv model. The left panel reports results for the point forecast accuracy (relative

root mean squared errors) and the right panel reports the corresponding density forecast accuracy (mean of the relative continuous ranked

probability score). The table reports statistical significance based on the Diebold-Mariano and West test with the lag h− 1 truncation

parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by Harvey, Leybourne,

and Newbold (1997); *up to 10% significance level. The test statistics use two-sided standard normal critical values for horizons less than

or equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters.
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A6. Additional Real-time Estimates of Stars

Figure A3: Real-time Recursive Estimates of Output Gap: Base model

Notes: The plot denoted Base corresponds to smoothed (posterior mean) estimates based on
the full sample information, i.e., 1959.Q4 through 2019.Q4. The plot denoted Base: RealTime
corresponds to real-time recursive (posterior mean) estimates generated by estimating the Base
model at different points in time, specifically 1999.Q1 through 2019.Q4. The credible intervals
reflect the uncertainty around the posterior mean smoothed estimates.
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Figure A4: Real-time Recursive Estimates of Stars: Base-NoSurv model

Notes: The plots denoted Base-NoSurv correspond to smoothed estimates based on the full
sample information, i.e., 1959.Q4 through 2019.Q4. The plots denoted Base-NoSurv: RealTime
correspond to real-time recursive estimates generated by estimating the Base-NoSurv model at
different points in time, specifically 1999.Q1 through 2019.Q4.
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Figure A5: Real-time Recursive Estimates of Stars: Base model vs. Base-NoSurv model

Notes: The plots correspond to real-time recursive estimates generated by estimating Base
and Base-NoSurv models at different points in time, specifically 1999.Q1 through 2019.Q4. To
facilitate comparison, real-time estimates from either the Blue Chip or the Survey of Professional
Forecasters (SPF) are also plotted.
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A7. Estimated Relationship between Surveys and Stars

Figure A6: Estimated Link Between Survey Forecasts and Stars

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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A8. Additional COVID-19 Pandemic Results

Figure A7 presents posterior estimates of u-star, g-star, and r-star from the Base and Base-
NoSurv models based on estimating data through 2020Q3. Also plotted to facilitate comparison
are the corresponding posterior estimates based on estimation through 2019Q4. Figure A8,
similarly, provides estimates of pi-star, p-star, and w-star. A visual inspection of the plots
suggests the following four observations. First, estimates appear reasonable, indicating the
model isn’t blowing up. Second, adding pandemic data to the estimation sample has small
effects on the historical estimates of stars in the Base model and, for the most part, also
applies to the Base-NoSurv model. For u-star, there are some notable revisions in the estimates
obtained from the Base-NoSurv model comparing between estimations pre- and post-pandemic.
The considerable revision in the posterior mean of u-star is associated with decreased precision,
as evidenced by the larger width of the 90% credible intervals; however, in the Base model, the
estimation with pandemic data is associated with increased precision of u-star.

Third, in the case of g-star, estimation using pandemic data yields posterior mean estimates
of g-star that are revised four-tenths higher starting in 2000 onward compared to estimation
using pre-pandemic data. Fourth, as would be expected (see Carriero et al., 2021), the precision
plots indicate an uptick in uncertainty toward the end of the sample period associated with the
pandemic data. But except for p-star and w-star, the uptick in uncertainty is small. The Base
model generally held up better because the survey forecasts help anchor the econometric esti-
mates of stars to a reasonable range. Without it, extreme data movements in the unemployment
rate profoundly influenced the econometric estimates of u-star in the Base-NoSurv model. In
light of the discussion in the preceding paragraph, we view the uptick in uncertainty around
p-star as a reasonable result.

We believe that the rich features of our models, which include: (1) modeling the changing
economic relationships via the implementation of time-varying parameters; (2) allowing for the
changing variance of the innovations to various equations (i.e., SV); (3) imposing bounds on
some of the random walk processes; (4) joint modeling of the output gap and unemployment
gap in particular; and (5) the use of survey forecasts, helped position our models to handle the
pandemic data better.

Carriero et al. (2021) using monthly Bayesian VARs show that models that allow for SV
better handle pandemic observations than those without SV. But, even models with SV have a
drawback in the context of the pandemic data. This drawback arises from the standard approach
to modeling SV, which assumes a random walk process or a very persistent AR process. So in
the face of a temporary spike in volatility, the model will attribute this spike incorrectly to a
persistent increase in volatility. Inspired by the outlier treatment method of Stock and Watson
(2016) for UCSV models, Carriero et al. (2021) propose an outlier-adjusted SV method that
models the VAR residuals as a combination of persistent and transitory changes in volatility.

We believe that this drawback of standard SV applies more to monthly VARs and to a lesser
extent in quarterly models, as is the case here. However, we stress that Stock and Watson’s
treatment method for outliers can be conveniently implemented in our modeling framework. It
would also require introducing SV in both the output gap and the unemployment gap equations.
To keep the length of the paper manageable, we leave this extension for future research.

The COVID-19 pandemic provides an excellent real-time illustration of the importance of
using survey expectations data in the econometric estimation of the stars. The unprecedented
nature of the pandemic crisis and the extreme movements in the data induced by the pandemic
are too volatile to provide a timely and credible signal about the long-run macroeconomic
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consequences. Complicating the signal extraction problem from the data during the pandemic
period is that consensus has been developing (perhaps rightly so) to treat macroeconomic data
for the periods 2020Q2 and 2020Q3 as outliers in estimating the macroeconometric models; see
Schorfhedie and Song (2020), Carriero et al. (2021), among others.

On the other hand, judgment assessment informed by past event studies and understanding
of many decades of economic research indicates that the COVID pandemic is likely going to have
implications for a long-run productivity growth (p-star), the growth rate of potential output
(g-star), the natural rate of unemployment (u-star), and the long-run real rate of interest (r-
star); see Jorda, Singh, and Taylor (2020). As time rolls forward, and more is revealed about the
possible long-term macroeconomic impact of the pandemic on the underlying trends, the survey
participants would judgmentally adjust their estimates of long-run projections in a more timely
manner, and, by extension, our Base model, which incorporates the long-run survey projections.

Base model vs. external sources: Post-pandemic recession

We next compare our Base model estimates with those produced by external sources (and/or
models) to assess further the reliability of our Base model estimates post-pandemic recession.
Figure A9 compares the estimates of the output gap (panel a), r-star (panel b), u-star (panel c),
and pi-star (panel d) from the Base model to the outside estimates.3 The estimates are based
on data through 2020Q3 (specifically data vintage corresponding to late November 2020). In
the case of the CBO, the projections correspond to an update as of late July 2020.

The plots in panel (a) indicate remarkable similarity between the posterior mean estimate
of the Base model’s output gap and the CBO output gap. Compared with Morley and Wong
(2020), even though before the pandemic, the base model’s output gap estimates indicated less
tight resource utilization, for 2020, they are quite similar. Morley and Wong (2020), based on
a BVAR approach, could be viewed more flexibly than ours because it explicitly considers the
possible error correlation across model equations. However, at the same time, their approach
could be deemed less flexible than ours because it does not explicitly model time variation in
parameters and stochastic volatility – i.e., it abstracts from the issue of “changing economic
environment.” Both the Base model and Morley and Wong (2020) estimates the output gap at
-3.5% for 2020Q3, with the CBO just a tenth higher at -3.6%.

Panel (b) plots the estimates of the r-star from various sources. Except for Laubach and
Williams (2003) [LW], all others are based on information available as of late November 2020.
LW’s estimate reflects information through August 2020. Comparing between 2019Q4 and
2020Q3, the Base model, Johannsen and Mertens (2019), and Del Negro et al. (2017), all three
estimate r-star to have changed only a little; Base model: from 1.36% to 1.26%, Del Negro et
al. (2017): from 1.11% to 1.08%, Johannsen and Mertens (2019): from 1.48% to 1.47%. In
contrast, Lubik and Matthes (2015) have r-star increasing from 0.64% to 1.0%. However, in
their estimate, r-star first falls from 0.64% to -0.68% and then bounces back to 1.0% in 2020Q3.
Their estimate of r-star displays considerable volatility compared to others.

3Morley and Wong (2020) estimates are based on their updated work (Berger, Morley, and Wong (forthcom-
ing)) and are available to download from outputgapnow.com. The estimates were downloaded in the last week of
November, which included the nowcast estimate for 2020Q4 that we do not plot. We thank Murat Tasci for pro-
viding the estimates of the u-star from the Tasci (2012) model. We also thank Benjamin Johannsen for providing
the r-star estimates from Johannsen and Mertens (2019). The LW estimates of r-star were downloaded from the
New York Fed’s website. Del Negro et al. (2017) estimates of r-star were downloaded from github.com/FRBNY-
DSGE/rstarBrookings2017. Lubik and Matthes estimates were downloaded from the Richmond Fed’s website in
late November 2020.
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Panel (c) plots the estimates of the u-star from four sources: Base model, the CBO, Tasci
(2012), and Chan, Koop, and Potter (2016). Comparing between the Base model and the
CBO, the contours of the u-star plots are quite similar. But the levels through 2010 are notably
different, with the CBO higher than the Base model. From mid-2013 onward, the levels are
quite similar, and in 2020Q3, both indicate u-star at 4.3% (Base) and 4.4% (CBO). Interestingly,
both the CBO and the Base model have u-star remaining mostly stable between 2019Q4 and
2020Q3, suggesting that they attribute most of the increase in the pandemic’s unemployment
rate to the cyclical component. It is worth highlighting that the (median) estimate of u-star
reported in the September 2020 Summary of Economic Projections, which the Federal Reserve
compiles, also indicated a stable u-star (at 4.1%) between 2019Q4 and 2020Q3.

Broadly speaking, the contour of the u-star implied by the CKP (bivariate Phillips curve)
is similar to the Base model and the CBO. But the estimated level of u-star is significantly
higher. According to the CKP model, the estimated u-star in 2020Q3 is 5.7%, just a tenth
higher than in 2019Q4. The Tasci (2012) model, which is based on the flow rates in-and-out
of unemployment, is significantly impacted by the pandemic data, as the u-star is estimated
to have increased from 4.7% in late 2019 to 5.2% in 2020Q3. Part of the explanation of more
significant movements in u-star seen in the Tasci model in response to pandemic data is that
the model is estimated using maximum likelihood methods, which are known to have done a
relatively an inferior job in handling extreme pandemic induced movements in variables. More
generally, Tasci (2019) documents the challenges of estimating u-star in real time with these
models during crisis periods.

Panel (d) presents pi-star estimates from three sources: the Base model, CCK model, and
CKP model. All three models indicate that pi-star remained stable between 2019Q4 and
2020Q3. However, the pi-star estimates differ slightly across models, with the Base model
at 1.65%, CCK at 1.50%, and CKP at 1.44% (in 2020Q3).
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Figure A7: Estimates of Stars pre- vs. post-COVID Recession

Notes: The plots labeled Pre-Pandemic reflect posterior estimates based on information in the
sample 1959Q4 through 2019Q4, and plots labeled Post-Pandemic reflect posterior estimates
based on the sample 1959Q4 through 2020Q3.
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Figure A8: Estimates of Stars pre- vs. post-COVID Recession

Notes: The plots labeled Pre-Pandemic reflect posterior estimates based on information in the
sample 1959Q4 through 2019Q4, and plots labeled Post-Pandemic reflect posterior estimates
based on the sample 1959Q4 through 2020Q3.
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Figure A9: Estimates of Stars post-COVID Recession: Base vs. Outside

Notes: In the case of Johannsen and Mertens (2021), Del Negro et al. (2017), and Lubik and
Matthes (2015), the estimates plotted are the posterior median; for all others it is the (posterior)
mean estimate.
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A9. R*: Backcast Survey R* from 1959-1982

The survey estimates of g-star, u-star, and pi-star are direct reads from the survey. In contrast,
the r-star survey estimate is not a direct estimate. Instead, it is inferred from the Blue Chip
survey long-run estimates of the GDP deflator and short-term interest rates (3-month Treasury
bill) using the long-run Fisher equation, specifically, the long-run forecast of 3-month Treasury
bills less the long-run forecast of the GDP deflator. To this differential, we add +0.3 to reflect
the average differential between the federal funds rate and the 3-month Treasury bill (r-star
refers to the long-run equilibrium federal funds rate).

Survey projections are not available before 1983Q1. To fill in estimates for the survey
variables between 1959Q4 and 1982Q4, we use the CBO long-run projections in the case of
real GDP growth and the unemployment rate. In the case of inflation, we use the PTR series
available from the Federal Reserve Board’s website; this series is used in many studies employing
long-run expectations of inflation (e.g., CCK, Tallman and Zaman, 2020). We do not have a
readily available historical source for long-run forecasts for interest rates (and r-star). So we
backcast a particular time series of implied r-star using the CBO’s long-run projections of g-
star. Specifically, we first fit a simple linear regression model over the post-1983 period that
regresses survey r-star on a constant, its lags (2 lags), and a one-period lag “gap,” defined as
the difference between survey r-star and survey g-star. We use the estimated model and the
CBO’s long-run projections of g-star over the sample 1959Q4 through 1982Q4 to backcast the
implied survey r-star estimates. (When backcasting, the initial values of r-star for 1959Q2 and
1959Q3 are assumed to be identical to the CBO’s g-star)

r∗,Survt = c+ β1gap
r∗,g∗,Surv
t−1 + β2r

∗,Surv
t−1 + β3r

∗,Surv
t−2 + ε∗,Survt , ε∗,Survt ∼ N(0, σ2

∗,Surv) (85)

where, gapr∗,g∗,Survt = g∗,Survt − r∗,Survt

The OLS estimation yields c = −0.0745; β1 = 0.06; β2 = 1.167; β3 = −0.148

Figure A10 plots the survey g-star and r-star estimates in solid lines, and the CBO’s g-star
and the backcast r-star in dashed lines.

Figure A10: Survey r* and g*
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A10. R* : Additional Full Sample Results

A10.a. Role of data vs. prior in shaping r-star

Kiley (2020), using a model in which r-star follows an RW process, documents an essential
finding that data provide very little information in shaping the r-star process. Hence, the
model-based r-star estimate is mainly driven by the modeler’s prior views. Our results generally
confirm Kiley’s findings. However, in our Base specification, where the variance of the g-star
process influences both the prior and the posterior for the r-star process, the data do influence
the r-star estimate because we find evidence that the data provide information about the g-star
process. This latter evidence of the data’s influence on the identification of g-star is also noted
by Kiley (2020).

We begin by comparing the prior and posterior estimates of the parameter σ2
r∗, which governs

the shock variance of the r-star process, in the Base-R*RW and Base-NoSurvR*RW – both of
these specs model r-star as an RW similar to Kiley (2020). We set prior for E(σ2

r∗) = 0.12),
which is the same as in Gonzalez-Astudillo and Laforte (2020) but tighter than the 0.252 used by
Kiley.4 (Our choice of a tighter prior than Kiley is due to a significantly more complex model.)
Our model estimation yields posterior estimates of 0.092 (with 90% credible intervals 0.072

to 0.112) in Base-R*RW and 0.12 (with 90% intervals 0.082 to 0.132) in Base-NoSurvR*RW,
respectively. It appears that in the case of Base-NoSurv-R*RW, the prior setting of the r-
star process is driving the trajectory, as evidenced by the posterior mean of the parameter
σ2
r∗ identical to the prior. But in the case of the Base, the posterior mean of the parameter
σ2
r∗ is slightly different from the prior mean, suggesting that by bringing survey data into the

estimation, the data do play a role in shaping r-star.
We next confirm our finding by re-doing our exercise setting a looser prior for E(σ2

r∗) =
0.252), same as in Kiley (2020). The updated model estimation yields posterior estimates of
E(σ2

r∗) = 0.152 (with 90% credible intervals 0.132 to 0.172) in Base-R*RW and E(σ2
r∗) = 0.222

(with 90% intervals 0.182 to 0.272 in Base-NoSurvR*RW, respectively. The fit of these models
to the interest rate data (and other model data) is significantly worse compared to Base and
Base-NoSurv.

We explored the impact on the r-star estimates of even looser priors on the shock process
governing r-star. We find that as the prior on the r-star process loosens, the data become more
informative in shaping the r-star estimate (echoing Lewis and Vazquez-Grande, 2019). But it
comes at the cost of worsening model fit, higher volatility in the r-star estimate, and worsening
precision of r-star.

A10.b. Base vs. external models

In Figure A11, the left panel plots r-star from the Base (solid line) and two external models:
the seminal model of LW (dashed line) and the more recent model developed in Del Negro et al.
(2017) (dotted line). As is the case with most r-star estimates presented in the literature, the
LW estimate shows a marked decline in r-star from 2000 and beyond. As shown in the figure,
compared to the r-star estimate from the Base, the LW estimate is lower over this period. Part
of the explanation of this difference in the estimates comes from the different estimates of g-star
(not shown).

4We also explore a model specification in which prior variance is set at 0.252. The fit of this specification
was significantly inferior, and the r-star estimate was quite volatile.
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In the LW model, the mechanical reason for this steadily declining trajectory of r-star is
coming from the fact that their model estimate of g-star has been steadily declining over the
same period. Over this period, GDP grew just slightly above their estimate of g-star, even
though the real short-term interest rate is significantly below zero over this period. The model
explains the combination of moderate growth in GDP (suggesting a small positive output gap)
and negative real short-term interest through a low level of r-star estimate so to obtain a negative
real interest rate gap (see Laubach and Williams, 2016). In our Base (and Base-NoSurv) model,
because the estimate of g-star is even lower than LW’s, which implies a more positive output
gap (than LW), a less negative real interest rate gap (than LW) is required to explain the output
gap. The less negative real interest rate gap (i.e., a smaller interest rate gap) implies a higher
level of r-star than LW.

The r-star estimate from Del Negro et al. is stable around 2% from 1960 through early
1980 and then slowly moves up, reaching 2.5% by late 1990. From there on, it begins a gradual
decline, ending 2019 at 1.2%, identical to the Base, and two-tenths lower than Base-NoSurv. It
is worth noting that Del Negro et al. also utilize survey expectations on r-star to estimate r-star
but their approach in how they model the link between the two is very different than ours.5

They also assume a relationship between g-star (in their case, long-run productivity growth)
and r-star. However, their model structure is different compared to ours. Shortly, we show an
r-star estimate from our model specification with the tighter prior assumption for the r-star
process, which is remarkably similar to Del Negro et al.

A10.c. Sensitivity of r-star to the prior setting

As just shown and as noted by others (e.g., Kiley (2020)), the prior elicitation for the variance
parameter of the shock process governing r-star has a notable influence on the dynamics of
r-star. We briefly show another illustration highlighting the sensitivity of r-star to the prior
setting. In Figure A11, the right panel plots the posterior mean r-star obtained from model
specification, Base-NoSurv-R*TightPrior, which is Base-NoSurv but with a tighter prior value
for the parameter σ2

d (0.012 instead of 0.12). The parameter σ2
d refers to the variance of the

shock process defining the “catch-all” component D. Also plotted are the posterior estimates of
r-star from the Base-NoSurv and the Del Negro et al. (2017) models. Three things immediately
stand out. First, imposing a tighter prior has a notable impact on r-star, as shown by comparing
dashed and solid lines in the figure. Second, the model specification Base-NoSurv-R*TightPrior
has the posterior mean of r-star near 2% from early 1960 through mid-1980, which is similar
to the r-star estimate reported in Kiley (2020). Third, the entire trajectory of r-star from the
Base-NoSurv-R*TightPrior is remarkably similar to the median estimate of r-star from the Del
Negro et al. model. These results indicate that very different approaches could provide similar
estimates, yet somewhat related approaches could yield very different estimates.

5Del Negro et al. use survey expectations from the Survey of Professional Forecasters, which start from
1992 onward. In addition, in their framework survey expectations are one of the several financial indicators they
use to extract a common trend. So arguably, in their approach, the survey expectations of r-star will be less
influential in driving r-star than in our approach, in which a direct connection between r-star and the survey
data is assumed.
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Figure A11: R* estimates
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A10.d. The usefulness of the Taylor-rule equation and the equation linking
r* to surveys

In recent studies on estimating r-star, a Taylor-type rule equation is added to the model struc-
ture to improve the econometric estimation. Our Base model also includes a Taylor-type rule.
As we now illustrate, this addition is crucial to improve precision and the plausibility of the r-
star estimates significantly. The left panel in Figure A12 plots three estimates of r-star obtained
from model specifications Base (solid line), Base-NoR*Surv (dashed line), and Base-NoR*Surv-
NoTRule (dotted line). The right panel plots the corresponding precision of the r-star estimates.
The specification Base-NoR*Surv excludes the equation linking r-star to survey expectations
from the model (but keeps equations relating other stars to surveys). Doing so produces a
trajectory of r-star similar to the Base-NoSurv spec, and not surprisingly, the precision of r-star
is reduced relative to the Base spec, as evidenced by the plot corresponding to Base-NoR*Surv
lying above the Base.

The specification Base-NoR*Surv-NoTRule excludes the equation linking r-star to survey
expectations and the Taylor-rule equation. So in this spec, r-star is identified from the IS-
curve equation, and the equation relating r-star to g-star. As expected, shrinking the model’s
structure further by excluding the Taylor-rule equation reduces the r-star estimate’s precision
dramatically, as evidenced by Base-NoR*Surv-NoTRule plot located above all the others in
the left panel. Besides the impact on precision, as would be expected, changes in the system’s
structure result in notable differences in the estimated level of r-star. The posterior mean es-
timate of r-star, which has the r-star declining steadily over the sample, is substantially lower
than both Base and Base-NoR*Surv. However, the uncertainty around the posterior mean is
enormous, thereby complicating inference with a reasonable degree of certainty.

Figure A12: The Usefulness of Taylor Rule equation

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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A11. Pi* : Additional Full Sample Results

A11.a. Pi-star comparison Base vs. outside models

In Figure A13, panel (a) plots posterior mean estimates of pi-star from some related (smaller
size) models from the literature alongside Base to facilitate comparison. In particular, estimates
are shown for CKP, CCK, and the celebrated UCSV model of Stock and Watson (2007).6 Panel
(b) plots the corresponding precision estimates of pi-star.

There are some interesting similarities and differences across the pi-star estimates. Whereas
UCSV displays very volatile and erratic estimates of pi-star, others show a smoother evolution
of pi-star. CKP indicate a lower estimate of pi-star than others from the early 1970s through the
late 1980s. The primary factor contributing to lower pi-star in CKP is the model assumption
of a bounded random walk for pi-star. As discussed in CKP, the addition of bounds on pi-star
leads the model to attribute a substantial share of the observed high inflation of the 1970s to
the increased persistence of the inflation gap and only a small increase in pi-star. Hence, pi-star
is estimated to have risen less than implied by other models. For instance, CCK model had
pi-star peaking at 4.9%, Base at 6.0% and CKP at 3.2%. As alluded to in CKP, this small
rise in pi-star is consistent with a specific narrative that during the Great Inflation period, the
Fed had a low implicit target for inflation but was either unable to or unwilling to correct large
deviations of inflation from the target.

The contours of pi-star from Base are similar to CCK through 2000, but from 2000 to 2012,
Base is identical to CKP, with CCK a touch lower. It is interesting to note that from the early
2000s through 2010, both Base and CKP indicate pi-star at 2%. From 2012 through 2019, both
Base and CKP gradually drift lower to 1.5% (same as CCK) and 1.3%, respectively.

Panel (b), which plots the corresponding precision of pi-star, reveals some interesting pat-
terns. First, the precision of pi-star evolved generally with the level of pi-star. As pi-star
increased during the Great Inflation, pi-star became more uncertain, i.e., more imprecise. Sub-
sequently, as pi-star trended lower during the Volcker disinflation, so did the uncertainty about
it (i.e., precision increased). Second, comparing across models, there is significant heterogene-
ity in the precision of pi-star. From 1960 through the mid-1970s, the Base model indicates the
most precise pi-star, followed by CCK and CKP. The UCSV model shows volatile estimates of
precision, sharply fluctuating between the most precise to the least precise. From the mid-1970s
through 2019, the CCK model indicates the most precise (least uncertain) pi-star, followed by
Base, CKP, and UCSV. CCK had the uncertainty of pi-star gradually trending down starting in
the mid-1970s. In contrast, in others, the uncertainty continued to trend higher until peaking
in the early 1980s.

Third, between 2000 and 2019, the uncertainty around pi-star implied by CCK and Base has
been reasonably stable, an artifact of the use of survey data. During this period, the precision of
pi-star implied by CCK is on average 40 basis points higher (i.e., uncertainty is lower) compared
to Base. This improved precision of CCK is interesting because both CCK and Base utilize
information from survey expectations of inflation. However, at the same time, compared to
Base, which has a rich structure (hence more parameters), the CCK model is parsimonious,
as it uses information from survey expectations only (in addition to inflation’s own history) to
estimate pi-star.

An additional factor that could contribute to the differential in precision is that, unlike Base,
CCK allows SV in the pi-star equation. A more in-depth inspection of the estimation results

6Whereas in estimating the UCSV model, Stock and Watson (2007) fix the parameters governing the smooth-
ness of the SV processes, we estimate them.
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reveals that the primary factor driving the superior precision of the CCK estimate of pi-star
compared to Base is tighter priors on the assumed relationship between survey forecast and
pi-star. And that translates into a posterior estimate implying a stronger connection between
survey forecast and pi-star in CCK than Base.

Figure A13: Pi* estimates: Base vs. External models

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
In all cases, the inflation measure is PCE inflation.
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A11.b. Sensitivity of pi-star to modeling assumptions

Figure A14, panel (a) indicates the sensitivity of the pi-star estimates to modeling assumptions.
The plot labeled Base-W*RW is the variant of the Base model that removes the theoretical
restriction imposed by equation (28) and instead assumes a random walk assumption for w-star.
Comparing the Base and Base-W*RW plots indicates the effects of the theoretical restriction
on pi-star. As shown, the posterior mean estimate of pi-star from Base-W*RW is marginally
lower than Base in the period 1970 through the early 1980s (Great Inflation period). However,
from there on, estimates of pi-star are identical. During the high-inflation period, compared
to the Base model, the Base-W*RW allocates a higher share of the increase in inflation to the
persistence component than pi-star (i.e., the random walk component); see figure A14. Hence,
the lower level of pi-star in Base-W*RW than Base.

The plot labeled Base-NoPT is the variant of the Base model that eliminates the pass-
through from prices to wages, modeled via equation (29b)—doing so results in a slightly higher
pi-star (Base-NoPT) from 1970 through the early 1980s. However, thereafter, estimates of pi-
star are identical between Base and Base-NoPT. During the high-inflation period, compared
to the Base model, the Base-NoPT allocates a lower share of the increase in inflation to the
persistence component than pi-star; hence, the higher level of pi-star in Base-NoPT than Base.
Based on the model comparison, the Base-W*RW model’s fit to the inflation data and other
data is inferior compared to Base. In the case of Base-NoPT, the fit to the inflation data is
slightly better than Base. However, the overall fit of the Base-NoPT is significantly worse than
Base. The Base-NoPT model’s reduced fit is the net effect of its reduced ability to fit wages
and its improved ability to fit prices.

We also explored a variant of the Base model that allowed the pass-through from wages to
prices in the price inflation equation, denoted Base-PT-Wage-to-Prices in Table 1. The esti-
mates of pi-star (and of other parameters) are identical to those of the Base; hence, they are not
shown. Therefore, not surprisingly, as reported in Table 8 (main paper), both models’ ability to
fit inflation data are very similar. We also highlight that allowing SV in the inflation equation
is very important, as evidenced by a significantly reduced fit of the Base-NoSV model, which is
the Base model variant that does not feature SV in any model equations.

Figure A14: More Estimates for Price Inflation Block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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A11.c. Pi-star estimates for some variants of the Base model

Figure A15: Pi* estimates: Base vs. Base model variants

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

68



A12. P*: Base Comparison with Kahn and Rich (2007)

In this section, we compare our model-based estimates of p-star with the narrative about p-star
implied from the two-regime Markov switching model of Kahn and Rich (2007).7 A regime-
switching framework (as in Kahn and Rich) allows for deterministic values of p-star, where
the number of deterministic values equals the number of possible regimes. Accordingly, in a
2-regime setup, the estimated p-star would periodically alternate from one regime (e.g., a low
productivity regime) to the other regime (e.g., a high productivity regime). In contrast, the
random walk assumption for p-star adopted in this paper (and in others such as Roberts, 2001;
Edge et al., 2007; Benati, 2007) allows for the possibility that p-star may be (slowly) changing
in every period. This latter assumption implies that the possible values of p-star could equal
the number of periods in the estimation sample. The differences in the stochastic conception
between the two frameworks complicate direct comparison in p-star.

One possible, albeit imperfect, approach to comparing the implied p-star from two frame-
works is to use the regime-switching model’s identified regimes to assess how well those corrob-
orate p-star estimates implied from the RW assumption model. Specifically, for the RW model,
compute the “average” p-star over the specific periods (identified regimes). Then assess the
following: (1) whether the “average” rates imply a characterization of regimes that corroborate
the identified regimes; and (2) how close the “average” rates of p-star are to the deterministic
values of p-star estimated in the regime-switching model. We use this approach to compare the
estimates of p-star from our models to the p-star estimated by the Kahn and Rich model.

Figure A16 presents the comparison of p-star. Panel (a) compares the Base model with Kahn
and Rich model, and panel (b) compares the Base-W*RW model with the Kahn and Rich model.
In the panels, the shaded areas refer to the two regimes identified by the Kahn and Rich model
using the same vintage of data as our models. The lighter shaded area corresponds to the
“high productivity regime,” and the darker shaded area corresponds to the “low productivity
regime.” Their model identifies two subperiods of high productivity regimes: the beginning of
our sample through 1974Q4 and 1996Q3 through 2004Q4. Similarly, their model identifies two
subperiods of low productivity regimes: 1975Q1 through 1996Q2 and 2005Q1 through the end
of the sample, 2019Q4. Based on the “average” rates of p-star computed for the specific two
regimes from our models, if we assume a cutoff of 1.5%, with an “average” rate of p-star <= 1.5%
as defining low productivity regime, and “average” rate > 1.5% as defining high productivity
regime, then the characterization of regimes (and in-turn the narrative) aligns perfectly with
Kahn and Rich.

Next, we compare the “average” rates for the two regimes implied by our models to the
Kahn and Rich model. The Base model implies for a low productivity regime an “average” rate
of 1.3% (for both subperiods) and for a high productivity regime an “average” rate of 2.1%
(subperiod beginning of our sample through 1974Q4) and 1.7% (subperiod 1996Q3 through
2004Q4). The Base-W*RW model implies for a low productivity regime an “average” rate of
1.5% (for both subperiods) and for a high productivity regime an “average” rate of 2.5% (in the
first subperiod) and 2.3% (in the second subperiod). In comparison, Kahn and Rich’s model
implies a p-star of 1.33% for a low productivity regime for both subperiods – p-star is equal
across subperiods by construction; and 2.96% p-star for a high productivity regime. For the
low productivity regime, the implied p-star is similar between our models and Kahn and Rich’s,
but for the high productivity regime, Kahn and Rich’s model is on the higher side than our

7The estimates of p-star implied by the Kahn and Rich (2007) model are routinely updated and made available
for download at James A. Kahn’s website: http://sites.google.com/view/james-a-kahn-economics/home/trend-
productivity-update
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models.
Overall, this illustration suggests that the two approaches provide generally similar infer-

ences about developments in p-star, and we view this as a useful result for macroeconomists
tasked with modeling and tracking productivity developments.

Figure A16: P* Consistent with Narrative from 2-Regime Markov-Switching Model

Notes: The shaded areas refer to the two regimes identified by the Kahn and Rich model using
the same vintage of data as our models. The lighter shaded area corresponds to the “high
productivity regime,” and the darker shaded area the “low productivity regime.” The plots
labeled Base and Base-W*RW are the posterior mean estimates based on the full sample (from
1959Q4 through 2019Q4).
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A13. P* : Additional Full Sample Results

A13.a. Cyclical productivity based on the output gap

Figure A17: Base-P*CycOutputGap model

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
The solid line represents the posterior mean and the dotted lines represent the 90% credible
intervals.
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