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Optimal Epidemic Control in Equilibrium with
Imperfect Testing and Enforcement∗

Thomas Phelan† Alexis Akira Toda‡

August 3, 2021

Abstract

We analyze equilibrium behavior and optimal policy within a Susceptible-
Infected-Recovered epidemic model augmented with potentially undiagnosed
agents who infer their health status and a social planner with imperfect en-
forcement of social distancing. We define and prove the existence of a perfect
Bayesian Markov competitive equilibrium and contrast it with the efficient
allocation subject to the same informational constraints. We identify two
externalities, static (individual actions affect current risk of infection) and
dynamic (individual actions affect future disease prevalence), and study how
they are affected by limitations on testing and enforcement. We prove that
a planner with imperfect enforcement will always wish to curtail activity,
but that its incentives vanish as testing becomes perfect. When a vaccine
arrives far into the future, the planner with perfect enforcement may en-
courage activity before herd immunity. We find that lockdown policies have
modest welfare gains, whereas quarantine policies are effective even with
imperfect testing.

Keywords: efficiency, externalities, lockdown, perfect Bayesian equi-
librium, quarantine.

JEL codes: C73, D50, D62, I12.

1 Introduction

Soon after evidence of the first community spread of the coronavirus 2019 (COVID-

19) outside of China was reported in Italy in late February 2020, European coun-

tries promptly introduced drastic mitigation measures (“lockdown”), such as the

closure of schools, restaurants, and other businesses. Many states and provinces in
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Reserve Bank of Cleveland or the Board of Governors of the Federal Reserve System.
†Federal Reserve Bank of Cleveland. Email: tom.phelan@clev.frb.org.
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the United States and Canada as well as countries around the world had followed

suit by mid-March. While implementing policies to slow the spread of an infectious

disease appears to be an obvious course of action for a prudent government, such

mitigation policies have evidently not been without costs. Curtailing economic

activities can cause unemployment, bankruptcy, and reduced access to education.

Further, engaging in non-pharmaceutical interventions (better known as “social

distancing”) reduces new infections but also delays achieving herd immunity, and

so may prolong the epidemic in the absence of a vaccine. It is therefore possible

that lockdown policies can slow the progress of the epidemic but do little to alter

its ultimate toll.

Although it appears we are now in the later stages of the pandemic, with sev-

eral vaccines developed and administered, the immense disruption to economic

and social activity wrought by the virus and the possibility of future pandemics

(either due to variants or new viruses) motivates a theoretical analysis of an epi-

demic model suitably augmented with realistic features to capture policy-relevant

tradeoffs. In this paper we build upon the standard Kermack and McKendrick

(1927) Susceptible-Infected-Recovered (SIR) model and add two important fea-

tures. First, the agents in our model are forward-looking and endogenously re-

spond to the epidemic, but they must continuously update their beliefs about

their own health status because they may lack symptoms or testing may not be

available. Second, we study the extent to which prescriptions for policy depend

upon the ability of the government to enforce their recommended actions over the

long term. The first feature is motivated by the fact that the infection fatality rate

(IFR, fraction of deaths among all cases) of COVID-19 inferred from seropreva-

lence studies is an order of magnitude smaller than the case fatality rate (CFR,

fraction of deaths among confirmed cases), which suggests substantial underre-

porting.1 The second is motivated by the fact that some governments were both

slow to impose social distancing measures and may lack the ability to enforce such

measures over the long run, possibly due to opposition from constituents. To the

best of our knowledge, no existing work considers these two features and studies

the role they play in shaping optimal policy responses.

Our model works as follows. The society consists of four behavioral types of

agents: unknown, infected, recovered, and dead. The unknown type consists of

agents who lack immunity (are susceptible) against the infectious disease as well

1According to the meta-analysis of seroprevalence studies by Ioannidis (2021), the median
IFR of COVID-19 is 0.27 percent. On the other hand, as we document in Section 4, the median
CFR across more than 200 countries and regions is 1.35 percent. Thus, the reporting rate is an
the order 0.27/1.35 = 20 percent.
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as those who are infected or recovered but unconfirmed due to imperfect testing or

asymptomatic infections. Each period, alive agents take actions a ∈ [0, 1], which

we interpret as their overall level of economic activity. We assume that in the

absence of an epidemic, agents prefer taking the highest action a = 1. During

an epidemic, taking higher actions exposes oneself to the risk of infection. As a

result, rational agents without confirmed immunity (the unknown type) optimally

choose lower actions, i.e., they voluntarily practice social distancing. Known in-

fected and recovered agents have no incentive to social distance and choose the

highest action available to them. We define a perfect Bayesian Markov competitive

equilibrium to be an allocation in which (i) agents form beliefs about their health

status and optimize given the state variables (population shares of each type) and

(ii) the evolution of beliefs and state variables are consistent with Bayes’ rule and

the collective behavior of agents. We obtain two main theoretical results. First,

we prove the existence of a (pure strategy) perfect Bayesian Markov competitive

equilibrium (Markov equilibrium for short). This result is important because to

achieve the equilibrium, individuals and policymakers only need to form expecta-

tions about the future given a few state variables and do not require implausibly

sophisticated coordination among them.

The equilibrium allocation is in general inefficient due to the externality caused

by the actions of infected agents. Existing analyses of the pandemic have either

focused upon allocations in which a planner dictates all activity in perpetuity,2

or laissez-faire allocations in which no social distancing is imposed.3 Although

obviously informative, neither of these cases models the problem of a planner who

was previously slow to act or who believes her capacity to enforce restrictions may

dissipate over time. The recursive nature of our solution methods allows us to ad-

dress this situation, as we compute equilibrium and efficient activity levels at every

point in the state space. In order to highlight the role that imperfect enforcement

plays in optimal policy responses, we distinguish between two types of external-

ities: static and dynamic. The static externality arises because the activity of

infected agents affects the probability that susceptible agents become infected in

the current period. The dynamic externality arises because the collective behav-

ior of agents affects the evolution of the prevalence of the virus throughout the

population. The interplay between the static and dynamic externalities is subtle

as they can move in different directions: when individuals choose higher activity,

2Examples include Alvarez et al. (2020), Farboodi et al. (2020), and Kruse and Strack (2020),
among others.

3An example is Toxvaerd (2020).
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they increase the risk of infecting their fellow citizens today, but if they become

infected, they reduce the risk they pose to others in the future.

This brings us to the second theoretical result. We prove that the difference

between the static efficient (the optimal choice taking future prevalence as given)

and equilibrium actions is bounded above by a number proportional to the frac-

tion of unknown infected agents, a quantity that vanishes as the probability of

diagnosis converges to 1. This shows that a government who can only enforce

short-term lockdown policies will always wish to curb activity, but their incentive

to do so vanishes with the fraction of unconfirmed cases. This observation is note-

worthy because we also provide examples in which a government with unlimited

enforcement power wishes to recommend higher activity than that which occurs

in equilibrium. This phenomenon is observed in situations in which the vaccine is

not expected to arrive until far into the future, so that herd immunity is the only

possible end to the pandemic. In these circumstances a benevolent government

may wish to encourage activity until the mass of susceptible agents is sufficiently

small, before imposing social distancing to minimize the total number of infections

(and hence deaths) necessary to reach herd immunity. It is in this sense that we

show how policy prescriptions can depend crucially on enforcement capabilities.

The presence of diagnosed and undiagnosed infected agents implies that there

are two tools for intervention available to the planner: activity recommendations

for unknown agents (referred to as lockdown policies) and recommendations for

known infected agents (referred to as quarantine policies). This combination of

undiagnosed agents and the possibility of imperfect enforcement capabilities is

precisely what makes the problem of the planner difficult. Indeed, if all infected

agents could be immediately and costlessly quarantined, then the pandemic would

likely not have had the immense economic and social impact that we have observed

over the past year. In the majority of this paper, we therefore focus primarily on

the recommendations to unknown agents, taking as given a fixed level of activity

by the known infected agents.

To illustrate our theory as well as to study the optimal interventions, we cal-

ibrate our model to the current COVID-19 epidemic and conduct a number of

robustness exercises. Due to endogenous social distancing, in the Markov equi-

librium the infection curve flattens relative to the case of myopic behavior (the

standard SIR model). We find that the planner’s optimal interventions are signif-

icantly affected by the diagnosis rate of infections, the vaccine arrival rate, and

the planner’s ability to enforce policies over the long term. The welfare gains from

lockdown policies tend to be small, reducing the welfare loss from the pandemic
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relative to the equilibrium by less than 10 percent. When the vaccine is expected

to arrive within a year or two (as could be expected at the beginning of the COVID

pandemic), the optimal reduction in activity begins earlier, is more gradual, and

extends well beyond the date at which activity has returned to normal in the equi-

librium allocation. In contrast, when the vaccine is expected to arrive decades into

the future, the optimal policy is to encourage (discourage) agents to take high ac-

tions before (after) achieving herd immunity so that herd immunity is achieved

quickly but unnecessary deaths are avoided. In contrast to lockdown policies, we

find that quarantine policies are effective even with imperfect testing.

1.1 Related literature

Kermack and McKendrick (1927) present the basic mathematical framework for

studying the evolution of infectious diseases. Models that build upon this frame-

work assume that agents can be placed into categories based on their health status,

that there is a fixed probability that an infected agent passes the infection to a

susceptible agent when they meet, and that there is a fixed rate at which infected

agents recover or die. In the simplest formulation, there are only susceptible and

infected agents. These SI models are appropriate for infectious diseases that are

incurable but not deadly.4 SIS models are ones in which infected agents can re-

cover, but when they do, they become susceptible to reinfection. SIR models are

ones in which infected agents can recover (or die) and acquire lifelong immunity.5

Although mathematical epidemic models provide insights into the spread of

infectious diseases, they often ignore individual choice or public policy.6 There

are several papers that modify the basic SIR model to allow for either government

policies or individual decisions to influence the course of the epidemic. We describe

the models as non-strategic if the government has the ability to mandate changes

through quarantines, lockdowns, or other non-pharmaceutical interventions. We

call the models strategic if individual agents independently decide levels of care

4An example is the Epstein-Barr virus (EBV) infection, which causes latent lifelong infections.
Most people are infected during childhood and experience only mild symptoms such as fever.
When infection occurs among adolescents and adults, EBV causes infectious mononucleosis
(kissing disease) in 30–50 percent of the cases.

5It is not yet clear whether patients who recover from COVID-19 acquire lifelong immu-
nity. Lifelong immunity is observed in measles and rubella, whereas immunity against influenza
is relatively short-lived. However, SIR models are likely appropriate for modeling the current
COVID-19 epidemic because once a sufficient fraction of the population acquires partial immu-
nity, the situation will likely be similar to that of the seasonal influenza.

6Eksin et al. (2019) document that mathematical epidemic models that ignore behavioral
changes have large forecast errors.
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that influence exposure to the disease.

Sethi (1978) examines the problem of a planner who can choose to quarantine

a fraction of infected agents in an SIS model. With linear payoffs and costs, he

identifies a bang-bang solution in which the planner either quarantines all infected

agents or none of them. More recently, Kruse and Strack (2020) incorporate social

distancing in a non-strategic model of infections and study a version of the SIR

model in which a social planner can, at a cost, influence the transmission rate.

With linear cost, they show that socially optimal policies are bang-bang: the social

planner reduces the transmission rate as much as possible or does not reduce the

transmission rate at all. It is typically not optimal to reduce the transmission rate

when the fraction of infected agents is small. For some of their analysis, Kruse

and Strack (2020) assume that the planner can only impose social distancing for

(no more than) a fixed length. With this restriction, lockdowns should start only

after the number of infected agents reaches a threshold.

Turning to strategic models, Geoffard and Philipson (1996), Kremer (1996),

and Auld (2003) study the extent to which strategic choices may undermine the

effects of public policy regarding the spread of an infectious disease. These papers

focus on HIV (human immunodeficiency virus) infections, where the heterogeneity

of the population and the ability to select whom to interact with are of first-order

importance. Reluga (2010), Chen et al. (2011), Fenichel et al. (2011), Chen (2012),

Fenichel (2013), and Toxvaerd (2019) present strategic models of social distanc-

ing that predates the current COVID-19 epidemic. Fenichel (2013), which is an

extended analysis of Fenichel et al. (2011), assumes that agents can select the

intensity of their interaction with others and assumes that flow utility is a single-

peaked concave function of this intensity. He contrasts socially optimal choices of

these contact levels with privately selected values and points out that if the social

planner cannot distinguish between groups (and therefore any restriction on inter-

actions must apply to susceptible, infected, and recovered agents alike), then social

welfare may be higher in the laissez-faire equilibrium than in the constrained social

planner’s problem. This possibility arises because the planner’s intervention con-

strains the participation of recovered agents (who generate positive externalities)

in addition to the participation of infected agents.

Chen et al. (2011) and Chen (2012) study a static game in which susceptible

agents decide on their level of activities. This game may exhibit multiple equilib-

ria, which are typically inefficient. Whether the susceptible agents are more or less

active than the social optimum depends on the nature of the matching technol-

ogy. More recently, Toxvaerd (2019) points out that in the presence of strategic
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agents, public policy interventions that lower the infectiousness of a disease may

lower social welfare because agents respond to the change by increasing their own

exposure.

Following the onset of the COVID-19 epidemic, a large number of papers have

been written by economists. Since this literature is too large to review, we only

discuss the subset of papers that focus on the theory and applications. Abel

and Panageas (2020) study an optimal control problem as well as the laissez-faire

equilibrium in an SIR model with population growth and show that a steady state

exists and the disease becomes endemic no matter how large the cost from excess

death is. Budish (2020) conceptualizes R ≤ 1 (effective reproduction number

less than 1) as a constraint, discusses the optimal policy in a static setting with

heterogeneous economic activities, and illustrates that cheap policies such as mask

wearing go a long way in containing the virus spread with minimal welfare costs.

Toxvaerd (2020) studies an SIR model with endogenous social distancing, which

is similar to ours. Assuming linear utility and costs, he shows that susceptible

agents either engage in no social distancing at all or social distance to maintain a

target peak prevalence, which endogenously flattens the infection curve.

Relative to this small literature of theoretical strategic epidemic models, our

main contribution is that we explicitly model imperfect testing and enforcement

and systematically study the welfare implications and optimal policies.

2 Behavioral SIR model with imperfect testing

We introduce rational and potentially undiagnosed Bayesian agents into the basic

Kermack and McKendrick (1927) Susceptible-Infected-Recovered (SIR) epidemic

model.

2.1 Model

We consider an infectious disease that can be transmitted between agents in a

society, which consists of a large ( but finite) number of agents indexed by n ∈ N =

{1, . . . , N}. Time is discrete, runs forever, and is denoted by t = 0,∆, 2∆, . . . ,

where ∆ > 0 is the length of time in one period.

Agent types and information At each point in time, agents are categorized

into several types based on their health status and information. An agent who does

not have immunity against the infectious disease is called susceptible and denoted
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by S. An infected agent who is known (unknown) to be infected is denoted by

Ik (Iu). An alive agent with immunity who is known (unknown) to be immune is

called removed (or recovered) and denoted by Rk (Ru). A dead agent is denoted

by D. The set of all types (health status) is denoted by

H := {S, Ik, Iu, Rk, Ru, D} .

For instance, an agent could be Ik if he tests positive for antigen or he shows

specific symptoms (is symptomatic), and Iu if no tests are available and he shows

no specific symptoms (is asymptomatic). Similarly, an agent could be Rk if he

tests positive for antibodies, he recovered from a past symptomatic infection and

immunity is lifelong, or he is vaccinated. Thus the set of information types is

{U := S ∪ Iu ∪Ru, Ik, Rk, D} ,

where U denotes the unknown type. When no confusion arises, we refer to an

Ik agent as “infected” and an Rk agent as “removed/recovered,” without the

qualifier “known.” Importantly, we suppose that when an agent gets infected,

with probability σ ∈ (0, 1] the agent receives a signal that reveals the true health

status (known infected, Ik). Otherwise, the agent becomes unknown infected

(Iu). Although we refer to the signal as a “test,” the signal could be literally

a laboratory test as well as other information such as the presence of specific

symptoms, knowledge of close contacts with confirmed cases, etc. We refer to the

probability σ as the diagnosis rate. In Appendix B we show that a model with

a single signal is observationally equivalent to a model with multiple signals with

potentially heterogeneous fatality rates.

Let Nh ⊂ N be the set of agents with health status h ∈ H. With a slight

abuse of notation, we also use the same symbol h to denote the fraction of type h

agents in the population, so h = |Nh| /N . The space of the aggregate state (type

distribution) is denoted by

Z :=
{
z = (S, Ik, Iu, Rk, Ru, D)

∣∣S + Ik + Iu +Rk +Ru +D = 1, Nz ∈ Z6
+

}
.

(2.1)

We suppose that the aggregate state is observable. (Ik, Rk, D are observable, and

Iu and Ru can be inferred from a small scale random antigen and antibody testing.)

The economy starts at t = 0 with some initial condition z0 ∈ Z.
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Actions and preferences At each point in time, each alive agent takes action

a ∈ A = [a
¯
, 1], where the minimum action a

¯
satisfies 0 ≤ a

¯
< 1. We interpret a as

the economic activity level: loosely, a = 1 corresponds to following a normal life

and a = a
¯

to being completely locked down (minimum activity level for subsis-

tence). The utility function of an unknown (U) and known recovered (Rk) agent

is denoted by u : A → R. The utility function of a known infected agent (Ik) is

denoted by uI : A → R. A dead agent receives the flow utility uD ∈ R.7 Agents

discount future payoffs with discount factor e−r∆, where r > 0 is the discount rate.

Disease transmission Agents meet each other randomly over time and trans-

mit the infectious disease. If agents n, n′ take actions an, an′ , respectively, then

agent n bumps into agent n′ during a period with probability λ∆anan′/N , where

λ ∈ (0, 1/∆) is a parameter (meeting rate) that governs the level of social interac-

tion with full activity (an = an′ = 1). We take λ as given, which depends on how

the society is organized (e.g., population density, whether workers commute by

car or public transportation, whether consumers shop online or at physical stores,

whether classes are taught remotely or in-person, etc.).

If agent n is susceptible (n ∈ NS) and agent n′ is infected (n′ ∈ NIk ∪NIu), the

infectious disease is transmitted from n′ to n with probability τ ∈ (0, 1] conditional

on n bumping into n′ at time t.8 We also take τ as given, which depends on how

contagious the disease is as well as how the society is organized (e.g., how often

people wash their hands, whether they wear masks, whether they greet others by

bowing, shaking hands, hugging, or kissing, etc.).

We assume that ∆ is small enough such that in any period an agent bumps

into at most one other agent. Therefore if ah := (
∑

n′∈Nh an′)/ |Nh| denotes the

average action of type h, a particular susceptible agent n who takes action a gets

infected with probability

∑
n′∈NIk∪NIu

τ
λ∆aan′

N
= τλ∆a

(∑
n′∈NIk

an′

|NIk |
|NIk |
N

+

∑
n′∈NIu

an′

|NIu |
|NIu|
N

)
= β∆(aIkIk + aIuIu)a, (2.2)

7More precisely, uD is the flow utility of being dead anticipated by alive agents.
8Thus the act of “bumping into” is asymmetric between the members in a meeting. Fig-

uratively, here is what happens if agent n bumps into n′ (in the case of an upper respiratory
infection such as COVID-19): (i) agent n meets agent n′, (ii) agent n′ sneezes into agent n’s
face (and transmits the disease to n with probability τ if n′ is infected), and (iii) they part with
each other.
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where β := τλ is the baseline transmission rate and we have used the notation

h = |Nh| /N for h = Ik, Iu. The timing convention is that if an infection occurs at

time t, the (previously susceptible, now infected) agent changes status to Ik or Iu

at time t + ∆. Since only susceptible agents are prone to infection, the expected

fraction of the population that gets newly infected between time t and t+ ∆ is

β∆aSS(aIkIk + aIuIu), (2.3)

which is called incidence in epidemiology. The fraction of infected agents

|NIk ∪NIu| /N = Ik + Iu (2.4)

is called prevalence.

Recovery and death An infected agent is removed (becomes no longer infected

by either recovering or dying) with probability γ∆ each period, where γ ∈ (0, 1/∆]

is the removal rate. Conditional on being removed, a known infected (Ik) agent

dies with probability δ ∈ (0, 1] and an unknown (Iu) agent always recover. The

rationale for this assumption is that infected agents with more severe symptoms

are more likely to get tested as well as to die. Letting δ0 be the fatality rate among

all (known and unknown) infected agents, since the diagnosis rate is σ, we have

δ =
δ0

σ
. (2.5)

Finally, recovered or dead agents remain in their corresponding states forever,

implying that recovered agents acquire lifelong immunity (see Footnote 5). Again

the timing convention is that if an infected agent is removed at time t, the agent

changes status to Rk, Ru, or D at time t+ ∆.

In epidemiology, there are several notions of fatality rate, and it is important

to understand the distinction. The fatality rate among all (known and unknown)

infected cases (which corresponds to δ0) is called the infection fatality rate (IFR).

The fatality rate among known (confirmed) infected cases (which corresponds to

δ if the signal is a laboratory test) is called the case fatality rate (CFR). The

fatality rate among the entire population is called mortality. Clearly, by definition

we have

Mortality ≤ IFR ≤ CFR.
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Vaccine arrival We assume that a vaccine arrives at a Poisson rate ν ≥ 0,

independent of everything else. Thus in our discrete-time setting, the probability

that a vaccine arrives between time t and t+ ∆ is 1− e−ν∆. We assume that the

vaccine is perfectly effective, perfectly safe, and has no cost. Thus once a vaccine

arrives, all non-infected agents will be vaccinated and become immune (Rk). The

vaccine is not a cure and hence has no effect on infected agents.

2.2 Assumptions

Throughout the rest of the paper, we maintain the following assumptions.

Assumption 1 (Utility function). The utility functions satisfy the following con-

ditions: (i) u : A = [a
¯
, 1] → R is twice continuously differentiable and satisfies

u(1) = 0, u′ > 0, and u′′ < 0, (ii) uI : A = [a
¯
, 1]→ R is continuous, strictly con-

cave, and achieves a unique maximum at aI ∈ A, and (iii) uD < uI(aI) ≤ u(1).

The assumption u(1) = 0 simplifies the algebra and is without loss of generality

because we can shift the utility functions by a constant without affecting behavior.

The assumptions uD < uI(aI) ≤ u(1) simply imply that being asymptomatic is

preferable to being symptomatic, which is in turn preferable to being dead. The

condition that uI is single-peaked at aI ∈ A implies that a potentially intermediate

value of activity level (rest) is myopically optimal for symptomatic agents. This

assumption can also be interpreted as altruism, sense of duty, or an enforcement

of a quarantine policy.

Assumption 2 (Perfect competition). Agents view the evolution of the aggregate

state z as exogenous and ignore the impact of their behavior on the aggregate state.

Assumption 2 is necessary for analytical tractability and is reasonable when

the number of agents N is large.

Assumption 3 (Consistency). On equilibrium paths, agents update their beliefs

using the Bayes rule. Off equilibrium paths, unknown (U) agents believe they are

susceptible with probability

µ(z) :=

{
S

S+Iu+Ru
if S > 0,

0 otherwise.
(2.6)

The assumption that agents apply the Bayes rule may not be realistic because a

pandemic such as COVID-19 is rare and agents may have difficulty forming beliefs
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when faced with an unprecedented situation. However, we focus on the Bayes rule

because it provides a benchmark analysis. The assumption that we specify the

off-equilibrium beliefs as in (2.6) suggests that our equilibrium concept would be

a perfect Bayesian equilibrium (PBE). We discuss this point in more detail in

Section 3.2.

3 Equilibrium analysis

This section defines and establishes the existence of equilibrium and characterizes

individual behavior.

3.1 Individual behavior

We formalize the individual optimization problem recursively. Let z ∈ Z be the

aggregate state and Vh be the value function of type h ∈ {U, Ik, Rk, D} agents.

Dead agents Because dead agents remain dead and their flow utility is uD, we

obtain

VD = (1− e−r∆)uD + e−r∆VD ⇐⇒ VD = uD.

Known recovered agents Because known recovered agents have lifelong im-

munity, their value function is constant and the Bellman equation is

VRk = max
a∈A

{
(1− e−r∆)u(a) + e−r∆VRk

}
.

The optimal action is clearly aRk = 1 (full activity) and the value function is

VRk = u(1) = 0 by Assumption 1.

Known infected agents By assumption, known infected agents are removed

with probability γ∆, and conditional on removal, die with probability δ = δ0/σ.

Since the health status transitions are independent of the aggregate state and

action, the value function is constant and the Bellman equation is

VIk = max
a∈A

(1− e−r∆)uI(a) + e−r∆((1− γ∆)VIk︸ ︷︷ ︸
stay infected

+ γ∆[(1− δ)VRk + δVD])︸ ︷︷ ︸
removal

 .

(3.1)
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By Assumption 1 the function uI is single-peaked at aI , and so the optimal action

is aIk = aI . Since VRk = u(1) = 0 and VD = uD, (3.1) simplifies to

VIk =
(1− e−r∆)uI + e−r∆γ∆δuD

1− e−r∆(1− γ∆)
, (3.2)

where uI := uI(aI). Note by Assumption 1 that we have uI = uI(aI) ≤ u(1) = 0,

so VIk < 0 = VRk .

Unknown agents Because unknown agents need to infer their health status,

the analysis is more complicated. Suppose unknown agents adhere to a policy

function aU : Z → A and that they always have the belief (2.6). (We will verify

that these assumptions are satisfied in equilibrium.) The policy aU(z), together

with the mechanisms of disease transmission, symptom development, recovery,

and death, generates transition probabilities {q(z, z′)}(z,z′)∈Z2 for the aggregate

state conditional on no vaccine arrival. (Note that Z in (2.1) is a finite set.)

By Assumption 2, agents view this law of motion as exogenous. Let VU(z) be

the value function of an unknown agent who chooses the action optimally in this

environment. By (2.2) and the analysis of known infected (Ik) agents, an agent

taking full action (a = 1) gets infected with probability

p(z) := β∆(aIIk + aU(z)Iu) (3.3)

conditional on being susceptible. Noting that infection is known with probability

σ and the vaccine arrives with probability 1− e−ν∆, the Bellman equation is

VU(z) = max
a∈A

{
(1− e−r∆)u(a) + e−r∆σµpaVIk︸ ︷︷ ︸

known infection

+ e−r∆(1− σµpa)︸ ︷︷ ︸
stay unknown

Ez(e
−ν∆VU(z′)︸ ︷︷ ︸
no vaccine

+ (1− e−ν∆)VRk︸ ︷︷ ︸
vaccine

)

}
, (3.4)

where Ez denotes the expectation with respect to {q(z, z′)}, µ = µ(z) is given

by (2.6), p = p(z) is given by (3.3), and VIk is given by (3.2). Noting that

VRk = u(1) = 0, (3.4) simplifies to

VU(z) = max
a∈A

{
(1− e−r∆)u(a) + e−r∆ Ez((1− σµpa)e−ν∆VU(z′) + σµpaVIk)

}
.

(3.5)

The following proposition establishes the existence and uniqueness of VU and

13



provides some bounds on value functions.

Proposition 3.1 (Value functions). Fix a policy function aU : Z → A of unknown

agents. Then there exists a unique value function VU : Z → R satisfying the

Bellman equation (3.5). Furthermore, the value functions satisfy the following

inequalities:

VD = uD <
(er∆ − 1)uI + γ∆δuD

er∆ − 1 + γ∆
= VIk

<
eν∆σβ∆

e(r+ν)∆ − 1 + σβ∆
VIk ≤ VU(z) ≤ VRk = 0. (3.6)

The proof of Proposition 3.1, as well as other longer proofs, is deferred to

Appendix A. The inequality (3.6) is quite intuitive. In terms of flow utility, having

no symptoms is better than having symptoms, which is better than death. Because

the states Rk, D are absorbing and a known infected agent may recover or die, the

inequalities VD < VIk < VRk = 0 are immediate. The inequality VU ≤ VRk is also

immediate because an unknown agent could get infected and generally chooses

a lower action. The inequality VIk < VU follows from the fact that an unknown

agent can always choose the myopic optimal action (a = 1, which generates flow

utility 0 = u(1) ≥ uI(aI) = uI) but gets infected only in the future.

The following proposition characterizes the best response of an unknown agent.

To state the result, we define the inverse marginal utility function φ : R → [a
¯
, 1]

by

φ(x) :=


1 if x ≤ u′(1),

(u′)−1(x) if u′(1) < x < u′(a
¯
),

a
¯

if x ≥ u′(a
¯
).

(3.7)

Proposition 3.2 (Best response of U agents). Fix a policy function aU : Z → A

and a continuation value VU : Z → R of unknown agents. Then the best response

of an unknown agent is

a∗ = φ

(
σµ(z)p(z)

er∆ − 1
(Ez e−ν∆VU(z′)− VIk)

)
, (3.8)

where µ(z) and p(z) are given by (2.6) and (3.3), respectively.

Because u′ is strictly decreasing, φ in (3.7) is decreasing. As a result, we

immediately obtain the following corollaries. Corollary 3.3 provides comparative

statics results in a partial equilibrium setting (where the policy function aU(z)

and the continuation value VU(z) are exogenously given).
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Corollary 3.3 (Comparative statics). The best response of an unknown agent a∗

in (3.8) increases if (i) ν decreases (vaccine arrival less likely), (ii) µ(z) or p(z)

decrease (infection less likely), (iii) δ0 decreases (death less likely), and (iv) uI or

uD increase (infection and death less scary).

The result that a∗ decreases in µ(z), p(z), δ0 and increases in uI , uD is intuitive:

increasing µ(z), p(z), δ0 or decreasing uI , uD makes the risk of infection or death

higher, which makes agents take more precautions. The fact that the possibility

of vaccine arrival (higher ν) makes agents take more precautions is also intuitive:

when agents expect a vaccine to arrive soon, being locked down is less painful

because it is expected to be short. As we shall see later in our numerical analysis,

the vaccine arrival rate ν significantly affects the socially efficient action. The next

corollary shows that when prevalence is sufficiently low, agents take no precautions.

Corollary 3.4 (Full activity with sufficiently low prevalence). Let I := Ik + Iu be

the prevalence defined in (2.4). There exists Ī > 0 such that for all policy function

aU(z), we have a∗ = 1 whenever I < Ī. In particular, we can take

Ī = −er∆ − 1

∆

u′(1)

σβVIk
, (3.9)

where VIk < 0 is given by (3.2).

Letting Ī as in (3.9) and using (3.6), uI ≤ 0, and (2.5), we obtain

Ī ≤ er∆ − 1

∆

(
er∆ − 1

γ∆
+ 1

)
u′(1)

βδ0(−uD)
. (3.10)

Since uD < 0, the right-hand side of (3.10) is increasing in ν, r, u′(1), uD and

decreasing in β, γ, δ0. Thus impatience, a higher marginal utility of full action,

less disutility from death, a lower transmission rate, a longer duration of infections,

and lower mortality all make agents more likely to take full action. The intuition

is identical to Corollary 3.3.

3.2 Definition and existence of equilibrium

Our equilibrium concept is the (pure strategy) perfect Bayesian Markov competi-

tive equilibrium defined below. Here “perfect Bayesian” means that agents update

beliefs on equilibrium paths using the Bayes rule as in Assumption 3; “Markov”

means that the optimal actions agents choose are functions of state variables; and
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“competitive” means that agents view the evolution of aggregate state variables

as exogenous as in Assumption 2.

Definition 3.5 (Markov equilibrium). A (pure strategy) perfect Bayesian Markov

competitive equilibrium, or Markov equilibrium for short, consists of unknown

agents’ belief µ(z) of being susceptible, transition probabilities {q(z, z′)}z,z′∈Z
for the aggregate state, value functions {Vh(z)}h=U,Ik,Rk,D

, and policy functions

{ah(z)}h=U,Ik,Rk
such that

(i) (Consistency) The belief µ(z) satisfies the Bayes rule on equilibrium paths

and is given by (2.6) off equilibrium paths; the transition probabilities {q(z, z′)}
are consistent with individual actions and the mechanisms of disease trans-

mission, symptom development, recovery, and death,

(ii) (Sequential rationality)

(U) VU(z) satisfies the Bellman equation (3.5) and a = aU(z) achieves

the maximum, where Ez denotes the conditional expectation using

{q(z, z′)} and p = p(z) is as in (3.3),

(Ik) VIk(z) is as in (3.2) and aIk(z) = aI ,

(Rk) VRk(z) = 0 and aRk(z) = 1,

(D) VD(z) = uD.

Note that Definition 3.5 only describes the society before vaccine arrival. Once

the vaccine arrives, because no new infections occur by assumption, it is optimal

for all agents to take their myopic optimal action (a = 1 for h = U,Rk and a = aI

for h = Ik) and the problem becomes trivial.

The astute reader may wonder why we adopt the notion of perfect Bayesian

equilibrium and specify that beliefs is given by (2.6) even off the equilibrium path.

The belief µ(z) equals the posterior belief if unknown agents have a common prior,

take identical actions, and learn that the aggregate state is z, but an unknown

Bayesian agent who is contemplating deviating from the equilibrium action aU(z)

generally has a different posterior. The primary reason for our choice of solution

concept is that of tractability, as we wish to study the role of forward-looking

agents that are uncertain about their health status without obscuring the analysis

with technicalities.9 The notion of perfect Bayesian equilibria allows agents to be

9To be more specific, in our discrete-time setting, insisting on applying the Bayes rule off
the equilibrium path leads to non-concave maximization problems, and hence the existence of
equilibrium is not warranted.
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forward-looking and rational, if somewhat “forgetful.” In Appendix C we extend

the model to the case with perfect recall and show that our results are robust.

The following theorem establishes the existence of equilibrium.

Theorem 3.6 (Existence of equilibrium). Suppose Assumptions 1–3 hold. Then

there exists a pure strategy perfect Bayesian Markov competitive equilibrium, where

the belief µ(z) always satisfies (2.6).

The idea of the proof of Theorem 3.6 is to start with a guess of equilibrium

policy aU(z), update it as the (necessarily unique) maximizer in (3.5), show that

this updating rule is continuous, and apply the Brouwer fixed-point theorem to

establish a fixed-point of this operation.

3.3 Externalities and efficiency

In this section we study the source of externalities in the model and the efficiency

properties of the equilibrium. Let aU(z) and aIk(z) be any policy functions for

unknown agents and known infected agents exogenously chosen by the social plan-

ner. Since the behavior of known recovered agents does not affect the aggregate

state dynamics, without loss of generality we set aRk(z) = 1, which is individually

optimal. Suppose the planner wishes to choose (aU(z), aIk(z)) to maximize so-

cial welfare. In general, individual agents have a strong incentive to deviate from

such recommendations and choose the individually optimal actions characterized

by Proposition 3.2. Thus let λ ≥ 0 be the hazard rate of failing to enforce the

recommended policy (aU(z), aIk(z)), and suppose that once the policy implemen-

tation fails, the society reverts back to the Markov equilibrium characterized in

Theorem 3.6. Letting V λ
h (z; aU , aI) be the value function of type h agents in this

environment, since the probability of reverting to equilibrium is 1− e−λ∆, we have

V λ
U (z) =(1− e−λ∆)VU(z) + e−λ∆

[
(1− e−r∆)u(aU)

+ e−r∆ Ez((1− σµpaU)e−ν∆V λ
U (z′) + σµpaUV

λ
Ik

(z′))
]
, (3.11a)

V λ
Ik

(z) =(1− e−λ∆)VIk + e−λ∆
[
(1− e−r∆)uI(aIk)

+ e−r∆ Ez((1− γ∆)V λ
Ik

(z′) + γ∆((1− δ)VRk + δVD))
]
, (3.11b)

where VU(z) and VIk are the equilibrium value functions in Theorem 3.6, µ = µ(z)

and p = p(z) are given by (2.6) and (3.3), and we write ah = ah(z) and V λ
h (z) =

V λ
h (z; aU , aIk). By the standard contraction mapping argument, V λ

h is well-defined.
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The utilitarian social welfare associated with the policies (aU(z), aIk(z)) is then

Wλ(z) := (S + Iu +Ru)V
λ
U (z) + IkV

λ
Ik

(z) +RkVRk(z) +DVD(z)

= (S + Iu +Ru)V
λ
U (z) + IkV

λ
Ik

(z) +DuD, (3.12)

where we have used VRk = 0 and VD = uD. Noting that uD is constant and D

depends only on z (and not on the policies (aU(z), aIk(z))), conditional on the

aggregate state z, we can rank social welfare associated with particular policy

functions by using

W λ(z) := UVU(z)λ + IkV
λ
Ik

(z) (3.13)

instead of Wλ, where U := S + Iu +Ru denotes the fraction of U agents.

Given the hazard rate λ, the optimal policies (aU(z), aIk(z)) maximize (3.13).

The Markov equilibrium in Definition 3.5 is generally inefficient because the equi-

librium policies (a∗U(z), a∗Ik(z)) do not maximize the welfare criterion (3.13) due

to externalities. We identify two types of externalities, static and dynamic. The

static externality refers to the fact that when (known or unknown) infected agents

take higher actions, they infect susceptible agents with some probability and affect

the current value function of unknown agents, even if the future value functions

and the aggregate state transitions remain the same. The dynamic externality

refers to the fact that the collective behavior of agents affects the aggregate state

transitions and hence future value functions. Because studying the dynamic effect

analytically is challenging, we focus on the static effect in this section, and study

the dynamic externality in our numerical exercises.

To study the static externality, imagine that the social planner can inter-

vene to alter agents’ current actions (aU , aIk), fixing the transition probabili-

ties {q(z, z′)} of the aggregate state as well as the next period’s value functions

{Vh(z′)}h=U,Ik,Rk,D
. Using (3.1), (3.5), (3.13), and noting that VRk = 0, we can

define the objective function of the planner that seeks to eliminate the static ex-

ternality by

W (aU , aIk , z) :=

U
[
(1− e−r∆)u(aU) + e−r∆ Ez((1− σµpaU)e−ν∆VU(z′) + σµpaUVIk(z

′))
]

+ Ik
[
(1− e−r∆)uI(aIk) + e−r∆ Ez((1− γ∆)VIk(z

′) + γ∆δVD)
]
. (3.14)

Restricting the action of known infected agents can be interpreted as quarantine.

Restricting the action of unknown agents can be interpreted as lockdown. Hence
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we introduce the following definition.

Definition 3.7 (Static efficient actions). Fix transition probabilities {q(z, z′)}
and value functions VU , VIk . Given a policy function aU(z) of unknown agents, we

say that the quarantine policy a†Ik(z) is static efficient if aIk = a†Ik(z) achieves the

maximum of (3.14). Similarly, given a policy function aIk(z) of known infected

agents, we say that the lockdown policy a†U(z) is static efficient if aU = a†U(z)

achieves the maximum of (3.14).

The reason we use the qualifier “static” can be understood as follows. Imagine

that a benevolent government implements some lockdown policy when faced with

an epidemic. The optimal policy then obviously depends on the scale and duration

of the intervention. If the intervention is implemented on a large scale, the dynamic

effects cannot be ignored. Furthermore, because individuals have an incentive to

deviate from lockdown policies, the optimal policies when the government has

unlimited enforcement power may be different from a short-term policy. The

policies in Definition 3.7 are efficient in the sense that the government seeks to

implement the optimal policy on a small scale when anticipating the continuation

values VU , VIk (which are the equilibrium value functions if the government can

commit only for one period).

The following proposition characterizes the static efficient quarantine policy.

Proposition 3.8 (Static efficient quarantine policy). Suppose the utility function

of known infected agents uI is continuously differentiable, strictly concave, with

inverse marginal utility function φI analogous to (3.7). Then the static efficient

quarantine policy is given by

a†Ik(z) = φI

(
σβ∆

er∆ − 1
µ(z)aU(z)U Ez(e

−ν∆VU(z′)− VIk(z′))
)
. (3.15)

Proof. Let W be as in (3.14). Using p = β∆(aIkIk + aUIu), we obtain

∂W

∂aIk
= −Ue−r∆σµβ∆IkaU Ez(e

−ν∆VU(z′)− VIk(z′)) + Ik(1− e−r∆)u′I(aIk)

= Ike
−r∆∆

(
er∆ − 1

∆
u′I(aIk)− σµβaUU Ez(e

−ν∆VU(z′)− VIk(z′))
)
.

The rest of the proof is the same as Proposition 3.2.

Proposition 3.8 has several implications. First, (3.15) does not depend on

the fraction of known infected agents Ik except through the continuation values.
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This is because the welfare gain from reducing new infections and the welfare loss

from restricting infected agents’ actions are both proportional to Ik, as we can

see from the proof of Proposition 3.8. Second, under normal circumstances the

planner seeks to quarantine known infected agents intensively. To see this, using

(3.3), note that the individually optimal action of unknown agents (3.8) can be

rewritten as

a∗U = φ

(
σβ∆

er∆ − 1
µ(z)(aIkIk + aUIu) Ez(e

−ν∆VU(z′)− VIk(z′))
)
. (3.16)

Assuming that infected and unknown agents have identical preferences (so uI = u),

the only difference between (3.15) and (3.16) is that the argument of the former

is proportional to aUU , whereas the argument of the latter is proportional to

aIkIk + aUIu. In normal situations, the fraction of actively infected agents in the

society is rather small, so Ik, Iu � U . Then the argument of (3.15) is a much

bigger number than that of (3.16), and because φ is decreasing, we would have

a†Ik � a∗U .

We next study the optimal intervention for unknown agents. Suppose all known

infected agents take action aI ∈ A, which can be interpreted as an exogenous quar-

antine policy by the discussion after Assumption 1. Let a∗U(z) be the equilibrium

policy of unknown agents and VU , VIk the corresponding value functions estab-

lished in Theorem 3.6. The following theorem provides a bound for the static

efficient lockdown policy, which is our main theoretical result.

Theorem 3.9 (Static efficient lockdown policy). Let a∗U(z) be the equilibrium

policy of unknown agents and m = mina∈A |u′′(a)| > 0. There exists a unique

static efficient lockdown policy a†U(z), which satisfies

0 ≤ a∗U(z)− a†U(z)

≤ min

{
σβ∆

m(er∆ − 1)
µ(z)a∗U(z)Iu Ez(e

−ν∆VU(z′)− VIk), 1− a¯

}
. (3.17)

In particular, if σ = 1 (so Iu = 0), then a†U(z) = a∗U(z).

Theorem 3.9 has several implications. First, the inequality a∗U ≥ a†U implies

that the equilibrium action of unknown agents is too high relative to the static

efficient lockdown policy. This is intuitive, because a subset of unknown agents are

infected and impose a negative externality on others by going out and infecting

other susceptible agents. Second, and more interestingly, the difference between

the static efficient and equilibrium actions is bounded above by a number propor-
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tional to the fraction of unknown infected agents. This quantity is typically small,

and approaches zero as σ ↑ 1. A government who can only enforce short-term

lockdown policies will therefore always (weakly) wish to curb activity, but their

incentive to do so vanishes with the fraction of unconfirmed cases. This is partic-

ularly noteworthy because we shall later provide examples in which a government

with unlimited enforcement power would wish to do the reverse, and recommend

higher activity than that which occurs in equilibrium. It is in this sense that

policy prescriptions can depend crucially on the enforcement capabilities of the

government.

3.4 Equilibrium dynamics

This section studies the equilibrium dynamics. Given arbitrary policy functions

{ah(z)}h=U,Ik,Rk
, we define the transition probabilities {q(z, z′)} induced by these

policies and the mechanisms of disease transmission, symptom development, re-

covery, and death. To simplify the notation, let zt = z, St = S, St+∆ = S+∆, etc.

Using (2.2), it is straightforward to show that

Ez(S+∆ − S) = −β∆aU(z)S(aIk(z)Ik + aU(z)Iu), (3.18a)

Ez(Ik,+∆ − Ik) = σβ∆aU(z)S(aIk(z)Ik + aU(z)Iu)− γ∆Ik, (3.18b)

Ez(Iu,+∆ − Iu) = (1− σ)β∆aU(z)S(aIk(z)Ik + aU(z)Iu)− γ∆Iu. (3.18c)

(We omit the dynamics for Rk, Ru, D agents because they do not depend on policy

functions.) We can simplify these equations further if we consider the limit N →
∞ and apply the strong law of large numbers. In the large population limit,

letting I = Ik + Iu be the fraction of infected agents, we have Ik = σI and

Iu = (1 − σ)I. Therefore adding (3.18b) and (3.18c), we obtain the system of

deterministic difference equations

S+∆ − S
∆

= −βaU(z)S(σaIk(z) + (1− σ)aU(z))I, (3.19a)

I+∆ − I
∆

= (βaU(z)S(σaIk(z) + (1− σ)aU(z))− γ)I = γ(R(z)− 1)I, (3.19b)

where

R(z) :=
β

γ
aU(z)S(σaIk(z) + (1− σ)aU(z)) (3.20)

is known as the effective reproduction number in epidemiology. At the early stage

of the epidemic, by definition we have S ≈ 1 and I ≈ 0. Therefore by Corollary
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3.4 (and assuming uI(a) = u(a)), the equilibrium policies are aU(z) = aIk(z) = 1,

and (3.20) reduces to

R(z) = β/γ =: R0, (3.21)

which is known as the basic reproduction number. When unknown agents are

myopic (so aU(z) = aIk(z) = 1), (3.19) reduces to

S+∆ − S
∆

= −βSI, (3.22a)

I+∆ − I
∆

= (βS − γ)I, (3.22b)

which is the usual Kermack and McKendrick (1927) Susceptible-Infected-Recovered

(SIR) model in discrete time. Since aU(z), aIk(z) ≤ 1, by (3.19b), (3.20), and

(3.21), we always have
I+∆ − I

∆
≤ γ(R0S − 1)I.

Since by (3.19a) the fraction of susceptible agents S always decreases over time,

the fraction of infected agents I decreases over time once

R0S ≤ 1 ⇐⇒ S ≤ 1/R0 (3.23)

holds, where R0 is the basic reproduction number in (3.21). We say that society

has achieved herd immunity if (3.23) holds.

4 Numerical analysis

In this section we use a numerical example calibrated to the COVID-19 epidemic to

study how the agents’ optimizing behavior, diagnosis rate, and lockdown policies

affect the epidemic dynamics.

4.1 Model specification

One period corresponds to a day and we assume 5 percent annual discounting,

so r = 0.05/365.25 and ∆ = 1. Because COVID-19 vaccines became available

about one year after the start of the epidemic, we set the vaccine arrival rate to

ν = 1/365.25. Unless otherwise stated, we suppose that the social planner has

unlimited enforcement power (λ = 0 in (3.11)–(3.13)).

We set the epidemic parameters from the medical literature. The daily trans-

mission rate is β = 1/5.4 based on the median serial interval (the number of days
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it takes for an infected person to transmit the disease to another person) in the

meta-analysis of Rai et al. (2021). The daily recovery rate is γ = 1/13.5 based

on the median infectious period estimated in You et al. (2020). These numbers

imply that the basic reproduction number in (3.21) is R0 = β/γ = 13.5/5.4 = 2.5,

which equals the current best estimate used by the Centers for Disease Control

and Prevention (CDC).10 The infection fatality rate (IFR) is δ0 = 0.0027, which

is the median value in the meta-analysis of Ioannidis (2021) on studies that use

seroprevalence data.11

The choice of the diagnosis rate σ is more controversial. One possibility is to

estimate the case fatality rate (CFR) δ and set σ = δ0/δ based on (2.5). Using the

data on the cumulative number of reported cases and deaths provided by the Johns

Hopkins University Center for Systems Science and Engineering,12 we find that the

median CFR across all (more than 200) regions is δ = 0.0134. This would imply

σ = δ0/δ = 0.2 (20 percent). However, this calculation ignores other information

such as the presence of symptoms. Another possibility is to set σ as the fraction

of symptomatic agents. Based on the case study of the cruise ship Diamond

Princess, which experienced a COVID-19 outbreak in February 2020 and whose

passengers were all tested, Mizumoto et al. (2020) document that about 50 percent

of confirmed cases were asymptomatic. Noting that the symptoms of COVID-19

are often similar to those of other upper respiratory infections and not specific

enough to confirm the diagnosis, as a compromise, we choose an intermediate

value σ = 0.4 for the diagnosis rate in our baseline analysis.

We set the minimum action to a
¯

= 0.01 (which is somewhat arbitrary but

never binds in simulations). The utility function of a symptom-free agent exhibits

constant relative risk aversion (CRRA) of α > 0, so

u(a) =

a1−α−1
1−α , (0 < α 6= 1)

log a, (α = 1)
(4.1)

which satisfies Assumption 1. We suppose uI = u, so the optimal action for

known infected agents is aI = 1. Although this assumption is unrealistic because

10https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
11Unlike the case fatality rate (CFR), which is defined as the reported number of deaths divided

by the reported number of cases, the estimation of the IFR is complicated by the fact that cases
and deaths may be underreported. The true number of cases can be estimated from random
antibody testing, which is called a seroprevalence survey. If we assume that the underreporting
of deaths is not severe, then the IFR can be estimated by dividing the reported number of deaths
by the estimated number of cases.

12See Dong et al. (2020), data found at: https://github.com/CSSEGISandData/COVID-19
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infected agents may be incapacitated, altruistic, or quarantined, it provides the

most conservative (worst case) analysis. For numerical illustrations, we set α = 1

(log utility). We calibrate the flow utility from death to be uD = −12.22 based

on the case study from Sweden, which did not introduce mandatory lockdowns

(see Appendix E for details). Finally, we set the initial condition to I0 = 10−6,

S0 = 1− I0, R0 = 0, and D0 = 0.

4.2 Equilibrium, static efficient, and efficient actions

We solve for the perfect Bayesian Markov competitive equilibrium using the algo-

rithm discussed in Appendix D. As a point of comparison, we also solve for the

myopic allocation in which all agents choose a = 1, as well as the static efficient

and efficient actions, which correspond to setting λ = ∞ and λ = 0 in (3.11)–

(3.13), respectively. Figure 1 shows the epidemic dynamics studied in Section

3.4 for the myopic equilibrium, which is the standard Kermack and McKendrick

(1927) SIR model. Here and elsewhere, the vertical dashed line indicates the first

date of achieving herd immunity as defined by (3.23).
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Figure 1: Epidemic dynamics in myopic equilibrium.

When agents are myopic and choose a = 1, as is well known, the epidemic

has two phases: in the first phase, the fraction of infected agents initially grows

exponentially (at a daily rate of approximately β−γ = γ(R0−1) by setting S = 1

in (3.22b)) until society achieves herd immunity (peak prevalence is 23.9percent);

in the second phase, the fraction of infected agents declines exponentially at a
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daily rate of γ. The epidemic dynamics significantly change once we introduce

optimizing behavior. Figure 2 shows the epidemic dynamics (left panels) and

contour plots of recommended actions over the state space (right panels). The

top and bottom panels are for the Markov equilibrium and efficient allocations,

respectively.
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Figure 2: Epidemic dynamics and recommended actions.

We now make a few observations regarding efficient and equilibrium alloca-

tions. First, when agents are forward-looking, the epidemic has three phases:

during the first phase, the disease spreads freely and we see exponential growth

(peak prevalence is 6.62percent); during the second phase, unknown agents vol-

untarily practice social distancing (set a∗U < 1) and the spread of the disease is

endogenously mitigated; during the third phase, society achieves herd immunity

and the fraction of infected agents declines exponentially. Second, the epidemic

dynamics and recommended action for the solution to the planner’s problem (bot-

tom panels) are qualitatively different from the Markov equilibrium. The planner

that can enforce and commit to a lockdown policy finds it optimal to substantially

reduce the action of unknown agents (bottom right). In the resulting dynamics

(bottom left), the fraction of infected agents both grows and declines more slowly,

and it takes almost 50 percent longer to reach herd immunity. Figure 3 plots the
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time paths of recommended actions (equilibrium and efficient) corresponding to

the dynamics in the left panels of Figure 2. As expected, we see that the efficient

action is almost everywhere below that of the equilibrium action, implying that

the planner wishes to curb activity more quickly and for longer than do the indi-

vidual agents. Further, compared with the equilibrium allocation, the reduction

in activity in the efficient allocation begins earlier, is more gradual, and extends

well beyond the date at which activity has returned to normal in the equilibrium

allocation.
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Figure 3: Recommended action over time.

However, as we noted in the introduction, the efficient and equilibrium time

paths plotted in Figure 3 do not necessarily provide adequate guidance to a gov-

ernment that was either slow to react to the initial infection or one that has limited

ability to carry out its desired intervention. We emphasize that Figure 3 ought to

be interpreted as plotting the activity levels across two fictitious countries: one

that pursued no non-pharmaceutical interventions at all, and one that followed the

optimal path from the outset of the virus. We therefore believe it is instructive to

complement the foregoing and examine how the recommendations of governments

with varying degrees of enforcement ability vary along the same path for the state

variables.

To analyze this point and to illustrate the theoretical analysis in Section 3.3,

Figure 4 plots the equilibrium level of activity together with the static efficient

action (λ = ∞) and the action the planner would recommend (λ = 0) along the

equilibrium path. As Theorem 3.9 suggests, the static efficient path is everywhere
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below that of the equilibrium path, and so a government who can only enforce

lockdowns for a short period of time would unambiguously wish to do so. However,

it does not follow that a government with the ability to perfectly enforce activity

levels in perpetuity would wish to reduce activity. Indeed, in this example the

difference between the efficient and equilibrium activity levels cannot be unam-

biguously signed, for at some points in the middle of the pandemic the planner’s

activity choice exceeds that of the agents in equilibrium. We interpret this last

observation to illustrate that relative to the efficient allocation, the competitive

equilibrium exhibits inefficiently volatile consumption, with abrupt changes over

the time that the planner may wish to avoid with more gradual increases and

decreases in activity.
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Figure 4: Recommended action on equilibrium path.

4.3 The importance of unknown infected agents

We have so far assumed that unknown infected agents account for 1 − σ = 60

percent of all infected agents. To illustrate the role of imperfect testing and

reporting (and to therefore relate our results to the existing literature), we now

investigate disease dynamics for the case in which σ = 1. Figure 5 shows the

epidemic dynamics (left panels), contour plots of recommended actions over the

state space (right panels), and the recommended actions over time (bottom panel).

The top panels are for the Markov equilibrium and the bottom panels are for the

efficient actions.
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Figure 5: Epidemic dynamics and recommended actions with perfect reporting
(σ = 1).

When σ = 1, all infected agents are known, and by assumption they all take

action aI = 1. Because the average action of infected agents is higher, the nega-

tive externality from infected agents is larger, and so the unknown (in this case,

susceptible) agents reduce their actions more relative to the case with σ < 1. The

resulting efficient lockdown policy appears qualitatively different from the case
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with imperfect testing, with the planner essentially delaying any reduction in ac-

tivity until the date at which the agents begin social distancing in equilibrium.

Further, in this case the efficient and equilibrium paths appear qualitatively sim-

ilar, except for the fact that the latter is more pronounced in its departure from

“normality.”

To further our understanding of these comparative statics, we compute the

welfare cost and death toll across different specifications for the diagnosis rate

σ. For welfare, we use the utilitarian social welfare W in (3.12) and apply the

inverse utility function u−1 to convert into units of activity. Since welfare without

an epidemic equals the highest action 1, we can compute the welfare cost of the

epidemic given the current state z ∈ Z as

C(z) := 1− u−1(W(z)). (4.2)

If we identify activity with current output, we can interpret C(z) as the fraction

of permanent consumption that society is willing to give up to avoid the epidemic.

For the death toll, we use the cumulative death (per 100,000 population) after

600 days conditional on no vaccine arrival. Table 1 shows the results, where the

columns labeled “Myopic,” “PBE,” and “SPP” correspond to the myopic equi-

librium (standard SIR model), perfect Bayesian Markov competitive equilibrium,

and the social planner’s problem (efficient action), respectively. The epidemic has

a large welfare cost of about a 1.8 percent reduction in permanent consumption.

Interestingly, for all reporting levels examined, the difference in welfare is larger

between the equilibrium and myopic allocation than between the equilibrium and

efficient allocation, implying that the welfare gains from the optimal lockdown

policy is modest.

Welfare loss ( percent) Death toll (per 100,000)
σ Myopic PBE SPP Myopic PBE SPP

0.1 2.04 1.80 1.68 242 209 172
0.2 2.04 1.81 1.70 242 208 175
0.4 2.04 1.82 1.74 242 207 178
0.7 2.03 1.83 1.76 242 204 179
1.0 2.04 1.81 1.76 242 201 178

Table 1: Welfare loss and death toll.
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4.4 The importance of quarantine policies

The analysis so far assumes that known infected (Ik) agents choose the highest

action aI = 1. Although this is unrealistic because infected agents may self-

isolate due to incapacitation or altruism, it provides the most conservative analysis

(worst-case scenario). As a complementary analysis, we solve the model assuming

that known infected agents choose aI = 0.4 yet enjoy the highest possible utility

(uI = 0). The choice of aI = 0.4 is motivated by the empirical study of He et al.

(2020), who document that 44 percent of secondary cases were infected during the

presymptomatic stage (prior to diagnosis) of the primary cases. This assumption

corresponds to the immediate isolation of the infected cases upon diagnosis, which

provides the best-case analysis.

Table 2 shows the welfare cost and death toll with maximal quarantine. In

each case, the welfare gains from quarantine are substantial even with a relatively

low diagnosis rate σ. In contrast, the additional welfare gains from the optimal

lockdown policy are modest. As is intuitive, the difference between the high and

low quarantine allocations is particularly stark when the diagnosis rate is high.

For σ = 1, individuals take no precautions in either the efficient or equilibrium

allocations, since the level of infections necessary to reach herd immunity is very

small.

Welfare loss ( percent) Death toll (per 100,000)
σ Myopic PBE SPP Myopic PBE SPP

0.1 1.94 1.69 1.53 236 204 171
0.2 1.80 1.57 1.41 229 197 163
0.4 1.45 1.28 1.11 208 182 143
0.7 0.65 0.64 0.52 149 148 102
1.0 0.00 0.00 0.00 0 0 0

Table 2: Welfare loss and death toll with quarantine.

4.5 The importance of vaccine arrival

Our model has so far assumed that a vaccine is expected to arrive within one year.

Consequently, it is likely that the vaccine will have arrived before the attainment

of herd immunity. How much does this assumption affect the optimal policies?

Should we expect qualitatively similar features to emerge when a vaccine is unlikely

to be forthcoming? As an extreme example, we solve for the equilibrium and

efficient actions when the vaccine arrives very far into the future (T = 100 years).
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Figure 6 shows the epidemic dynamics (left panels), contour plots of recommended

actions over the state space (right panels), and the recommended action over time

(bottom panel).
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Figure 6: Epidemic dynamics and recommended actions with T = 100.

Compared to the case with vaccines (Figure 2, where ν = 1/365.25), the

equilibrium dynamics and action (top panels) without vaccines are essentially

identical. This is because the possibility of vaccine arrival changes the argument

of the individually optimal action (3.8) by a factor of e−ν∆, which is close to 1

even if ν is large such as 1/365.25. However, the possibility of vaccine arrival

significantly affects the optimal lockdown policy. Comparing the efficient actions
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in the bottom right panels of Figures 2 and 6, we can see that when a vaccine

is not expected, the planner encourages (discourages) agents to take high action

before (after) achieving herd immunity, similar to the case with perfect reporting

(Figure 5). Although this result may be counterintuitive, the intuition is actually

straightforward. In the absence of a vaccine, the only way to end the epidemic is

to achieve herd immunity. Therefore the planner wishes to initially exacerbate the

epidemic to reach herd immunity quickly (thus reducing the cost of low action)

and then mitigate the epidemic after herd immunity to reduce unnecessary deaths.

We can clearly see this from the bottom right panel of Figure 6, where we plot the

recommended action along the equilibrium path (not over time), meaning that we

are plotting the recommended actions at the same points in the state space.

Welfare loss ( percent) Death toll (per 100,000)
σ Myopic PBE SPP Myopic PBE SPP

0.1 2.85 2.84 2.59 242 209 185
0.2 2.85 2.83 2.59 242 209 185
0.4 2.84 2.81 2.59 242 207 186
0.7 2.83 2.74 2.57 242 205 186
1.0 2.84 2.63 2.53 242 202 183

Table 3: Welfare loss and death toll with late vaccine arrival.

Table 3 shows the welfare cost and death toll when the vaccine is expected

to take T = 100 years to arrive. As expected, the welfare cost of the epidemic

is higher since it takes longer for the vaccine to arrive. More interestingly, the

bottom panels of Figures 5 and 6 show that the optimal policy is to encourage

(discourage) agents to take high action before (after) achieving herd immunity.

Our intuition for this is that when it will be a long time until a vaccine arrives,

the planner wishes to reduce abrupt fluctuations in activity and also ensure that

herd immunity is not excessively “overshot” in order to minimize deaths. Figure 7

reinforces this intuition and shows that the share of susceptible agents is reduced

more rapidly and plateaus more smoothly in the efficient allocation, so as to effect

a “smooth landing” out of the pandemic.

5 Concluding remarks

In this paper we have theoretically studied optimal epidemic control in an equilib-

rium model with imperfect testing and enforcement. We proved the existence of a

perfect Bayesian Markov competitive equilibrium, and showed that a government
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Figure 7: Efficient and equilibrium susceptible shares and deaths with T = 100.

that can only enforce lockdowns for a short period of time will wish to (weakly)

reduce activity, but that its incentive to do vanishes if testing is perfect. We then

showed through numerical examples that optimal policy is highly dependent upon

the government’s ability to enforce social distancing over the long term, and that

if a vaccine is not expected to ever arrive, the optimal activity recommended by

the government may exceed the equilibrium activity levels until the population

of susceptible agents is sufficiently low. In contrast, when a vaccine is expected

to arrive within a few years (as could reasonably be expected at the outset of

the COVID-19 epidemic), the optimal policy typically involves an immediate and

prolonged enforcement of social activity.
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A Proofs

To prove Proposition 3.1, we note the following simple lemma.

Lemma A.1. Let X be a complete metric space and T : X → X be a contraction

with fixed point x∗ ∈ X. If ∅ 6= X1 ⊂ X is closed and TX1 ⊂ X1, then x∗ ∈ X1.

Proof. Take any x0 ∈ X1 and define xn = T nx0 for n ∈ N. Since by assumption

TX1 ⊂ X1, by induction we have xn ∈ X1 for all n. By the contraction mapping

theorem, we have xn → x∗. Since X1 is closed, we have x∗ ∈ X1.

Proof of Proposition 3.1. Let X = RZ . For V ∈ X, define TV (z) by the right-

hand side of (3.5), where VU = V . Since A = [a
¯
, 1] is nonempty and compact,

u : A → R is continuous, and Z is a finite set, the maximum is achieved and

T : X → X is well-defined. Let us show that T is a contraction by verifying

Blackwell’s sufficient conditions. If V1, V2 ∈ X and V1 ≤ V2 pointwise, since

0 ≤ σµpa ≤ 1, it follows from the definition of T that

(TV1)(z) = max
a∈A

{
(1− e−r∆)u(a) + e−r∆ Ez((1− σµpa)e−ν∆V1(z′) + σµpaVIk)

}
≤max

a∈A

{
(1− e−r∆)u(a) + e−r∆ Ez((1− σµpa)e−ν∆V2(z′) + σµpaVIk)

}
=(TV2)(z),

36

http://dx.doi.org/10.1111/iere.12402
http://dx.doi.org/10.17863/CAM.52489
http://dx.doi.org/10.1016/j.ijheh.2020.113555


so T is monotone. If V ∈ X and c ≥ 0 is any constant, then

(T (V + c))(z) = max
a∈A

{
(1− e−r∆)u(a) + e−r∆ Ez((1− σµpa)e−ν∆(V (z′) + c) + σµpaVIk)

}
≤max

a∈A

{
(1− e−r∆)u(a) + e−r∆ Ez((1− σµpa)e−ν∆V (z′) + σµpaVIk)

}
+ e−(r+ν)∆c

=(TV )(z) + e−(r+ν)∆c,

so the discounting property holds with modulus e−(r+ν)∆ < 1. Therefore T is a con-

traction mapping and has a unique fixed point VU ∈ X. Because u : A = [a
¯
, 1]→ R

is continuous (hence bounded), it is straightforward to verify the transversality

condition. Therefore VU is the value function.

Next, let us show the inequalities (3.6). Noting that uD < uI ≤ 0, r > 0,

γ > 0, δ ∈ (0, 1], and VIk is given by (3.2), we have

VD = uD <
(er∆ − 1)uI + γ∆δuD

er∆ − 1 + γ∆
=

(1− e−r∆)uI + e−r∆γ∆δuD
1− e−r∆(1− γ∆)

= VIk < 0.

To obtain the lower bound for VU , Define the constants

c1 :=
σβ∆

e(r+ν)∆ − 1 + σβ∆
∈ (0, 1) (A.1)

and V1 := c1eν∆VIk . Note that

c1eν∆ < 1 ⇐⇒ eν∆σβ∆

e(r+ν)∆ − 1 + σβ∆
< 1

⇐⇒ eν∆σβ∆ < e(r+ν)∆ − 1 + σβ∆

⇐⇒ (eν∆ − 1)σβ∆ < e(r+ν)∆ − 1,

which is true because σ ∈ (0, 1], β∆ ∈ [0, 1], r > 0, and ν ≥ 0. Since c1eν∆ < 1

and VIk < 0, it follows that

VIk < c1eν∆VIk = V1 =
eν∆σβ∆

e(r+ν)∆ − 1 + σβ∆
VIk ,

which is part of (3.6). Let us next show VU ≥ V1. To this end, define the

(nonempty closed) subset of X by X1 = {V ∈ X |V ≥ V1}. By Lemma A.1, to

show VU ≥ V1, it suffices to show TX1 ⊂ X1. If V ∈ X1, then by the definition of
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T , we have

(TV )(z) = max
a∈A

{
(1− e−r∆)u(a) + e−r∆ Ez((1− σµpa)e−ν∆V (z′) + σµpaVIk)

}
≥max

a∈A

{
(1− e−r∆)u(a) + e−r∆ Ez((1− σµpa)c1VIk + σµpaVIk)

}
. (A.2)

Setting a = 1 in the right-hand side of (A.2) and noting that u(1) = 0, we obtain

(TV )(z) ≥ e−r∆((1− σµp)c1 + σµp)VIk .

Therefore to show TX1 ⊂ X1, noting that VIk < 0, it suffices to show that

e−r∆((1− σµp)c1 + σµp) ≤ c1eν∆. (A.3)

By (3.3), aU(z) ≤ 1, and the definition of Z in (2.1), we have

p = β∆(aIIk + aU(z)Iu) ≤ β∆.

Since µ ∈ [0, 1] and c1 ∈ (0, 1), it follows that

e−r∆((1− σµp)c1 + σµp) ≤ e−r∆((1− σβ∆)c1 + σβ∆) = c1eν∆

by (A.1), which implies (A.3). Therefore TX1 ⊂ X1, as desired.

To show VU(z) ≤ VRk = 0, define the (nonempty closed) subset of X by

X2 := {V ∈ X |V ≤ 0}. If V ∈ X2,

(TV )(z) = max
a∈A

{
(1− e−r∆)u(a)

+ e−r∆ Ez((1− σµpa)e−ν∆V (z′) + σµpaVIk)
}
≤ 0

because u(a) ≤ u(1) = 0, V ≤ 0, and VIk < 0. Therefore TX2 ⊂ X2, which

implies VU ≤ 0 by Lemma A.1.

Proof of Proposition 3.2. Let

f(a) := (1− e−r∆)u(a) + e−(r+ν)∆ Ez((1− σµpa)VU(z′) + σµpaVIk)

be the expression inside the braces in (3.5). Since by Assumption 2 individual

agents view the next period’s state z′ as exogenous, VU(z′) does not depend on a
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and f is strictly concave. Furthermore,

f ′(a) = (1− e−r∆)u′(a)− e−r∆σµp(Ez e−ν∆VU(z′)− VIk).

Hence considering the cases f ′(a
¯
) ≷ 0 and f ′(1) ≷ 0, the optimal action is given

by (3.8).

Proof of Corollary 3.3. Since 0 ≥ VU > VIk by (3.6) and e−ν∆ ≤ 1, we always have

Ez e−ν∆VU(z′) − VIk > 0. By (3.6) and (3.8), the best response can be rewritten

as a∗ = φ(x), where

x :=
σµ(z)p(z)

er∆ − 1

(
Ez e−ν∆VU(z′)− (er∆ − 1)uI + γ∆δuD

er∆ − 1 + γ∆

)
> 0. (A.4)

Since r > 0, uD < uI ≤ 0, and VU ≤ 0, it is straightforward to show that x

is decreasing in uI , uD and increasing in ν, µ(z), p(z), δ. Therefore the desired

comparative statics results hold because φ is decreasing.

Proof of Corollary 3.4. Let x in (A.4) be the argument of φ in (3.8). Using (2.5),

(3.2), and the bound VU ≤ 0 in (3.6), we can bound x from above as

x ≤ σµ(z)p(z)

er∆ − 1
(−VIk). (A.5)

Using µ(z) ≤ 1, aU(z) ≤ 1, and

p(z) = β∆(aIIk + aU(z)Iu) ≤ β∆(Ik + Iu) = β∆I

by (3.3), it follows from (A.5) and VIk < 0 that

x ≤ − σβ∆

er∆ − 1
IVIk . (A.6)

Therefore if I ≤ Ī, where Ī is as in (3.9), it follows from (A.6) that x ≤ u′(1).

Therefore a∗ = φ(x) = 1 by (3.7).

To prove Theorem 3.6, we consider a general stochastic game with complete

information and finitely many competitive agents denoted by n ∈ N = {1, . . . , N}.
Suppose that there are finitely many agent types indexed by h ∈ H = {1, . . . , H}.
At each point in time, the aggregate state of the economy is denoted by z ∈ Z,

which is a finite set. A type h agent takes action x ∈ Ah. Let A =
⊗H

h=1Ah.
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Let uh(x, a, z) be the flow utility of a type h agent when the agent takes action

x ∈ Ah, the average action of other agents is a ∈ A, and the aggregate state is

z ∈ Z. Type h agents discount future utility with discount factor ρh ∈ [0, 1). Time

is denoted by t = 0, 1, . . . . The aggregate state z evolves stochastically depending

on agents’ average actions and the current state. Let q(a, z, z′) be the probability

of zt+1 = z′ conditional on (at, zt) = (a, z) ∈ A × Z. When computing q(a, z, z′),

agents take the average action a as given and ignore the impact of their action x on

a (competitive behavior). An agent’s type evolves stochastically depending on an

agent’s own action, the other agents’ average actions, and the current state. Let

phh′(x, a, z) be the probability that a type h agent switches to type h′ next period

when the state is z ∈ Z, he takes action x ∈ Ah, the average action is a ∈ A,

and the current state is z ∈ Z. Value functions are denoted by V = (V1, . . . , VH),

where Vh : Z → R. Reaction functions are denoted by θ = (θ1, . . . , θH), where

θh : Z → Ah.

Definition A.2. A (pure strategy) Markov competitive equilibrium is a pair (V, θ)

of value and reaction functions such that

(i) (Consistency) The transition probability of the aggregate state is consistent

with individual behavior, so Pr(z′ | z) = q(θ(z), z, z′).

(ii) (Sequential rationality) For each h ∈ H and z ∈ Z, the Bellman equation

Vh(z) = max
x∈Ah

{
(1− ρh)uh(x, θ(z), z) + ρh

S∑
h′=1

phh′(x, θ(z), z) Ez Vh′(z
′)

}
(A.7)

holds, and x = θh(z) achieves the maximum.

Theorem A.3. Suppose the following assumptions hold:

(i) For each h ∈ H, the action set Ah is a nonempty compact convex subset of

some Euclidean space.

(ii) For each h ∈ H, the payoff function uh : Ah × A× Z → R is continuous in

(x, a, z) and strictly concave in x.

(iii) The transition probability q : A× Z × Z → [0, 1] is continuous.

(iv) For each h, h′ ∈ H, the transition probability phh′ : Ah × A × Z → [0, 1] is

continuous in (x, a, z) and affine in x.

Then there exists a pure strategy Markov competitive equilibrium.
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To prove Theorem A.3, we need the following lemma.

Lemma A.4. Let (X, d) be a complete metric space and Θ be a topological space.

Endow X × Θ with the product topology. Suppose T : X × Θ → X is continuous

and there exists β ∈ [0, 1) such that

d(T (x, θ), T (y, θ)) ≤ βd(x, y) (A.8)

for all x, y ∈ X and all θ ∈ Θ. Then the following statements are true:

(i) For each θ ∈ Θ, there exists a unique x∗(θ) ∈ X such that T (x∗(θ), θ) =

x∗(θ).

(ii) x∗ : Θ→ X is continuous.

Proof. The first claim is immediate from the contraction mapping theorem.

To show the second claim, for simplicity write Tθx := T (x, θ). Fix any (x0, θ) ∈
X × Θ and define xn = T nθ x0 for n ∈ N. Then by the triangle inequality and the

contraction property (A.8), we have

d(xn, x0) ≤ d(xn, xn−1) + · · ·+ d(x1, x0)

≤ (βn−1 + · · ·+ 1)d(x1, x0)

≤ 1

1− β
d(x1, x0) =

1

1− β
d(Tθx0, x0).

Letting n→∞ and noting that xn → x∗(θ) by the contraction mapping theorem,

we have

d(x∗(θ), x0) ≤ 1

1− β
d(Tθx0, x0). (A.9)

Since x0 ∈ X and θ ∈ Θ are arbitrary in (A.9), set θ = θ′ and x0 = x∗(θ), where

θ, θ′ ∈ Θ are arbitrary. Since by definition Tθx0 = x0, it follows that

d(x∗(θ′), x∗(θ)) ≤ 1

1− β
d(Tθ′x0, x0) =

1

1− β
d(Tθ′x0, Tθx0)

=
1

1− β
d(T (x0, θ

′), T (x0, θ)), (A.10)

where x0 = x∗(θ). Since T is continuous and x0 = x∗(θ) depends only on θ, for

any ε > 0 there exists an open neighborhood U of θ such that

d(T (x0, θ
′), T (x0, θ)) < (1− β)ε (A.11)
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whenever θ′ ∈ U . Combining (A.10) and (A.11), for all θ′ ∈ U we have

d(x∗(θ′), x∗(θ)) < ε,

so x∗ : Θ→ X is continuous.

Proof of Theorem A.3. Let V = bc(H × Z) be the space of bounded continuous

functions from H×Z to R equipped with the supremum norm. Then (V , ‖·‖) is a

Banach space. (Indeed, it is just the Euclidean space RHZ because H,Z are finite

sets.) For (V, θ) ∈ V × AZ , define

(TθV )h(z) =

max
x∈Ah

{
(1− ρh)uh(x, θ(z), z) + ρh

∑
h′,z′

phh′(x, θ(z), z)q(θ(z), z, z′)Vh′(z
′)

}
. (A.12)

A straightforward application of the maximum theorem implies that (TθV )h(z) is

continuous in θ. Since H is a finite set, we have ρ := maxh ρh ∈ [0, 1). It is then

straightforward to verify Blackwell’s sufficient conditions, and for fixed θ ∈ AZ ,

the map V 3 V 7→ TθV is a contraction mapping with modulus ρ. It follows from

Lemma A.4 that Tθ has a unique fixed point

V ∗(θ) = {V ∗h (z, θ)}(h,z)∈H×Z ∈ V ,

which is continuous in θ.

Since by assumption uh(x, a, z) is continuous and strictly concave in x and

phh′(x, a, z) is affine in x, the objective function inside the braces of (A.12) (where

Vh(z) = V ∗h (z, θ)) is continuous and strictly concave in x. Therefore there exists a

unique maximizer, which we call x = a∗h(z, θ). By the maximum theorem, a∗h(z, θ)

is continuous in θ. Since H,Z are finite sets, we may view a∗ : AZ → AZ as a

continuous map. Since A is nonempty, compact, and convex, by Brouwer’s fixed

point theorem, a∗ has a fixed point. Letting θ = (θh(z)) be this fixed point, it is

clear that all conditions in Definition A.2 are satisfied.

Proof of Theorem 3.6. We apply Theorem A.3.

The agent type is denoted by h ∈ H = {U, Ik, Rk, D}, which is finite. The

aggregate state is denoted by z ∈ Z defined in (2.1), which is finite. Define the

action set of type h agents by Ah = [a
¯
, 1] if h 6= D and AD = {0}, which are

nonempty compact convex subsets of R. Define the utility function uh : Ah×A×
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Z → R by

uU(x, a, z) = uRk(x, a, z) = u(x),

uIk(x, a, z) = uI(x),

uD(x, a, z) = uD.

Note that each uh is continuous in (x, a, z) and strictly concave in x ∈ Ah. (Al-

though uD is a constant function, it is strictly concave in x because its domain

AD = {0} is a singleton.)

Define the transition probabilities of individual states phh′(x, a, z) as follows.

For h = Rk, D agents, because they remain in their corresponding state forever,

the transition probabilities are 0 or 1, which are clearly continuous in all variables

and affine in x. For Ik agents, by assumption they die with probability γ∆δ. Hence

pIkD(x, a, z) = γ∆δ, which is continuous in all variables and constant (hence affine)

in x. The same is true for pIh′ for any h′ ∈ H. By (2.2) and (3.5), the transition

probabilities of U agents are

pUU(x, a, z) = e−ν∆(1− σµ(z)β∆(aIkIk + aUIu)x),

pUIk(x, a, z) = σµ(z)β∆(aIkIk + aUIu)x,

pURk(x, a, z) = (1− e−ν∆)(1− σµ(z)β∆(aIkIk + aUIu)x),

pUD(x, a, z) = 0,

which are continuous in all variables and affine in x. Finally, the transition proba-

bility for the aggregate state q : A×Z×Z → [0, 1] is clearly continuous because it

is determined by the current state z ∈ Z (which is finite) and individual’s actions,

whose transition probabilities are all continuous. The existence of equilibrium in

the sense of Definition A.2 then follows from Theorem A.3. The resulting value

and policy functions clearly satisfy Definition 3.5. Because U agents take identical

actions, their beliefs always satisfy (2.6).

We need the following lemma to prove Theorem 3.9.

Lemma A.5. Let I ⊂ R be an interval, f : I → R continuously differentiable

with f ′ 6= 0 on I, and g : I → R continuous. If f(a) = g(b) for some a, b ∈ I,

then

|a− b| ≤ |f(b)− g(b)|
minx∈[a,b] |f ′(x)|

.
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Proof. By the mean value theorem, there exists θ ∈ (0, 1) such that

f(b)− f(a) = f ′(c)(b− a),

where c = (1− θ)a+ θb. Since by assumption f(a) = g(b), we obtain

|f(b)− g(b)| = |f(b)− f(a)| = |f ′(c)(b− a)| ≥ m |a− b| ,

where m = minx∈[a,b] |f ′(x)| > 0 since f ′ is continuous and f ′ 6= 0 on I. Dividing

both sides by m > 0, we obtain the desired result.

Proof of Theorem 3.9. Fix z ∈ Z and let µ = µ(z) and a∗U = a∗U(z). Define the

functions f, g : A→ R by

f(x) = (1− e−r∆)u(x) + e−r∆ Ez((1− σµp(a∗U)x)e−ν∆VU(z′) + σµp(a∗U)xVIk(z
′)),

g(x) = (1− e−r∆)u(x) + e−r∆ Ez((1− σµp(x)x)e−ν∆VU(z′) + σµp(x)xVIk(z
′)),

where (with a slight abuse of notation) p(x) := β∆(aIIk + xIu). Taking the

derivatives of f, g, we obtain

f ′(x) = (1− e−r∆)u′(x)− e−r∆σβ∆µ(aIIk + a∗UIu) Ez(e
−ν∆VU(z′)− VIk),

g′(x) = (1− e−r∆)u′(x)− e−r∆σβ∆µ(aIIk + 2xIu) Ez(e
−ν∆VU(z′)− VIk),

f ′′(x) = (1− e−r∆)u′′(x) < 0,

g′′(x) = (1− e−r∆)u′′(x)− 2e−r∆σβ∆µIu Ez(e
−ν∆VU(z′)− VIk) < 0,

where the last two inequalities use u′′ < 0 and e−ν∆VU(z′) ≥ VU(z′) > VIk by

Proposition 3.1. Since A = [a
¯
, 1] is nonempty, compact, convex, and f, g are

continuous and strictly concave, they achieve unique maxima. By Definition 3.5,

the maximum of f equals a∗U . Since the last term of (3.14) does not depend on

a∗U , by Definition 3.7 the maximum of g equals a†U = a†U(z).

Let us first show a∗U − a
†
U ≥ 0. Note that at x = a∗U , we have

f ′(a∗U) = (1− e−r∆)u′(a∗U)− e−r∆σβ∆µ(aIIk + a∗UIu) Ez(e
−ν∆VU(z′)− VIk)

≥ (1− e−r∆)u′(a∗U)− e−r∆σβ∆µ(aIIk + 2a∗UIu) Ez(e
−ν∆VU(z′)− VIk)

= g′(a∗U).

If f ′(a∗U) ≤ 0, then g′(a∗U) ≤ f ′(a∗U) ≤ 0. Since g is strictly concave and a†U achieves

its maximum, it must be a†U ≤ a∗U . If f ′(a∗U) > 0, since f is strictly concave, it
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must be a∗U = 1. Therefore a†U ≤ 1 = a∗U . In either case, we have a∗U − a
†
U ≥ 0.

Next, let us show the upper bound in (3.17). If f ′(a∗U) < 0, since f is strictly

concave, it must be a∗U = a
¯
. Then a

¯
≤ a†U ≤ a∗U = a

¯
, so a∗U − a

†
U = 0 and the

bound (3.17) is trivial. Similarly, if g′(a†U) > 0, since g is strictly concave, it must

be a†U = 1. Then 1 = a†U ≤ a∗U ≤ 1, so a∗U(z)− a†U(z) = 0 and the bound (3.17) is

trivial. Therefore without loss of generality we may assume f ′(a∗U) ≥ 0 ≥ g′(a†U).

If f ′(a∗U) > 0 > g′(a†U), then 1 = a∗U ≥ a†U = a
¯

and the bound (3.17) is trivial.

Therefore we may assume either f ′(a∗U) ≥ 0 = g′(a†U) or f ′(a∗U) = 0 ≥ g′(a†U).

Case 1: f ′(a∗U) ≥ 0 = g′(a†U). Extrapolate f, g for a > 1 as

f1(x) =

f(x), (a
¯
≤ x ≤ 1)

f(1) + f ′(1)(x− 1) + 1
2
f ′′(1)(x− 1)2, (x > 1)

g1(x) =

g(x), (a
¯
≤ x ≤ 1)

g(1) + g′(1)(x− 1) + 1
2
f ′′(1)(x− 1)2. (x > 1)

Clearly f1, g1 agree with f, g on A = [a
¯
, 1]. Furthermore, f1 is twice continuously

differentiable and strictly concave on [a
¯
,∞); g1 is continuously differentiable and

strictly concave. Since f ′1(a∗U) ≥ 0 > −∞ = f ′1(∞), f1 achieves a unique maximum

at some a1 ∈ [a∗U ,∞) satisfying f ′1(a1) = 0. Since g′(a†U) = 0, g1 achieves a unique

maximum at b1 := a†U and g′1(b1) = 0. Therefore

b1 = a†U ≤ a∗U ≤ a1. (A.13)

Noting that f ′′1 (x) = f ′′(1) for x > 1 and m := mina∈A |u′′(a)| > 0, we obtain

min
x≥a

¯

|f ′′1 (x)| = min
a
¯
≤x≤1

|f ′′(x)| = min
a
¯
≤x≤1

(1− e−r∆) |u′′(x)| = (1− e−r∆)m. (A.14)

By the definitions of f1, g1, we have

f ′1(x)− g′1(x) =

e−r∆σβ∆µ(2x− a∗U)Iu Ez(e
−ν∆VU(z′)− VIk), (a

¯
≤ x ≤ 1)

f ′(1)− g′(1). (x > 1)

Taking the absolute value of both sides and setting x = b1 = a†U ∈ [a
¯
, 1], we obtain

|f ′1(b1)− g′1(b1)| = e−r∆σβ∆µ
∣∣∣2a†U − a∗U ∣∣∣ Iu Ez(e

−ν∆VU(z′)− VIk)

≤ e−r∆σβ∆µa∗UIu Ez(e
−ν∆VU(z′)− VIk), (A.15)
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where the last inequality uses −a∗U ≤ 2a†U−a∗U ≤ a∗U because 0 ≤ a†U ≤ a∗U . Noting

that f ′1(a1) = g′1(b1) = 0, combining (A.13), (A.14), (A.15), and applying Lemma

A.5 to (f, g) = (f ′1, g
′
1) and (a, b) = (a1, b1), we obtain

a∗U − a
†
U ≤ a1 − b1 ≤

|f ′1(b1)− g′1(b1)|
minx≥a

¯
|f ′′1 (x)|

≤ σβ∆

m(er∆ − 1)
µa∗UIu Ez(e

−ν∆VU(z′)− VIk),

which implies the upper bound in (3.17).

Case 2: f ′(a∗U) = 0 ≥ g′(a†U). Extrapolate f, g for a < a
¯

as

f2(x) =

f(x), (a
¯
≤ x ≤ 1)

f(a
¯
) + f ′(a

¯
)(x− a

¯
) + 1

2
g′′(a

¯
)(x− a

¯
)2, (x < a

¯
)

g2(x) =

g(x), (a
¯
≤ x ≤ 1)

g(a
¯
) + g′(a

¯
)(x− a

¯
) + 1

2
g′′(a

¯
)(x− a

¯
)2. (x < a

¯
)

Clearly f2, g2 agree with f, g on A = [a
¯
, 1]. Furthermore, f2 is continuously dif-

ferentiable and strictly concave on (−∞, 1]; g2 is twice continuously differentiable

and strictly concave. Since g′2(−∞) = ∞ > 0 ≥ g′2(a†U), g2 achieves a unique

maximum at some a2 ∈ (−∞, a†U ] satisfying g′2(a2) = 0. Since f ′(a∗U) = 0, f2

achieves a unique maximum at b2 := a∗U and f ′2(b2) = 0. Therefore

a2 ≤ a†U ≤ a∗U = b2. (A.16)

Noting that g′′2(x) = g′′(a
¯
) for x < a

¯
, g′′(x) ≤ f ′′(x) = (1 − e−r∆)u′′(x) < 0, and

m := mina∈A |u′′(a)| > 0, we obtain

min
x≤1
|g′′2(x)| = min

a
¯
≤x≤1

|g′′(x)| ≥ min
a
¯
≤x≤1

(1− e−r∆) |u′′(x)| = (1− e−r∆)m. (A.17)

By the same argument as in the previous case, we can derive

|f ′2(b2)− g′2(b2)| ≤ e−r∆σβ∆µa∗UIu Ez(e
−ν∆VU(z′)− VIk). (A.18)

Noting that g′2(a2) = f ′2(b2) = 0, combining (A.16), (A.17), (A.18), and applying

Lemma A.5 to (f, g) = (g′2, f
′
2) and (a, b) = (a2, b2), we obtain

a∗U − a
†
U ≤ b2 − a2 ≤

|g′2(b2)− f ′2(b2)|
minx≤1 |g′′2(x)|

≤ σβ∆

m(er∆ − 1)
µa∗UIu Ez(VU(z′)− VIk),

which implies the upper bound in (3.17).
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If σ = 1, since Iu = 0, we have a†U(z) = a∗U(z) by (3.17).

B Observational equivalence between single and

multiple signals

In Section 2 we supposed that an infected agent is informed of the infection with

probability σ and that a known (unknown) infected agent dies with probability δ

(0). In this Appendix we elaborate upon this assumption and show that it can

model the case in which there are multiple signals.

Suppose now that there are multiple signals that may be received upon in-

fection, indexed j = 1, . . . , J . Let σj > 0 be the probability of receiving signal

j upon infection, with σ :=
∑J

j=1 σj ∈ (0, 1]. Let δj ∈ [0, 1] be the fatality rate

conditional on receiving signal j and δ := (
∑J

j=1 σjδj)/σ be the expected fatality

conditional on receiving any signal. For instance, the signal could encode the re-

sult of a laboratory test as well as the type and severity of symptoms. Suppose a

type j known infected agent takes action aj with associated flow utility uj. Then

by (3.2), the value function of a type j agent is

Vj :=
(1− e−r∆)uj + e−r∆γ∆δjuD

1− e−r∆(1− γ∆)
.

Therefore the expected continuation value of being known infected is

VIk :=
1

σ

J∑
j=1

σjVj =
(1− e−r∆)uI + e−r∆γ∆δuD

1− e−r∆(1− γ∆)
, (B.1)

where uI := (
∑J

j=1 σjuj)/σ is the expected flow utility of being known infected.

Because (B.1) is identical to (3.2) and the continuation values {Vj} affect the be-

havior of unknown agents only through VIk due to expected utility maximization,

a model with multiple signals and heterogeneous fatality is observationally equiv-

alent to a model with a single signal and uniform fatality. The flow utility uI and

action aI in Section 2 can be interpreted as the average across those of known

infected agents.
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C Perfect recall Markov equilibrium

We now consider an extension in which we allow the beliefs of the agents to enter

as a separate state variable, the evolution of which depends directly upon their

actions. The evolution of the aggregate state variables and the value functions

of the known infected, recovered, and dead agents are unchanged relative to the

perfect Bayesian equilibrium, and we must therefore only alter the problem of the

unknown agents. Now (2.6) will remain their belief in equilibrium, but not if they

deviated from the equilibrium action in the past.

If the average action of unknown agents is ã, an agent with belief µ who

chooses activity a will believe that if he is susceptible, he becomes infected at rate

βa((1− σ)ã+ σaI)I. His belief that he is susceptible is then the probability that

he was susceptible in the previous period multiplied by the probability that he

was not infected without diagnosis during the last period, or

µ+∆ = µ(1−∆(1− σ)βa((1− σ)ã+ σaI)I). (C.1)

We then define a perfect recall Markov equilibrium as an allocation in which the

unknown agents optimize given the law of motion of the population shares and

their beliefs, and these beliefs are consistent with equilibrium behavior and the

Bayes rule. Formally, we adopt the continuous-time formulation used in the nu-

merical analysis and proceed as follows. Rearranging (C.1) and sending ∆ → 0

gives the evolution of beliefs

µ̇ = −µ(1− σ)βa
(
(1− σ)ã(S, I) + σa∗Ik

)
I. (C.2)

The Hamilton-Jacobi-Bellman for unknown agents is

(r + ν)VU(S, I, µ) = max
aU∈[a

¯
,1]
ru(aU)

+ σµβaU
(
(1− σ)ã(S, I) + σa∗Ik

)
I[VIk(S, I)− VU(S, I, µ)]

− βSã(S, I)
(
(1− σ)ã(S, I) + σa∗Ik

)
I∂SVU(S, I, µ)

+
(
βSã(S, I)

(
(1− σ)ã(S, I) + σa∗Ik

)
− γ
)
I∂IVU(S, I, µ)

− µ(1− σ)βaU
(
(1− σ)ã(S, I) + σa∗Ik

)
I∂µVU(S, I, µ).

Given an average action ã of unknown agents, there is an associated policy

function a(S, I, µ; ã) solving the problem of a given unknown agent. Now define

an operator J(ã)(S, I) = a(S, I, S/[1 − σ + σS]; ã) − ã. The equilibrium notion
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we adopt in this section is then that of a Markov perfect equilibrium, in which

all agents solve their individual problems taking the aggregate law of motion as

given, and the associated law of motion is consistent with individual behavior.

Definition C.1. A perfect recall Markov equilibrium consists of value functions

VU(S, I, µ) and VIk(S, I) for unknown agents and known infected agents together

with a policy function a(S, I, µ) for unknown agents such that:

• The functions VU(S, I, µ), a(S, I, µ) and VIk(S, I) solve the problems of the

unknown agents and known infected agents, respectively.

• The law of motion of the aggregate state is consistent with the policy function

of the unknown agents, or J(ã) = 0.

As Figure 8 shows, in the perfect recall Markov equilibrium agents take higher

actions everywhere in the state space and the length of the pandemic is reduced.
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Figure 8: Comparison of perfect Bayesian and perfect recall Markov equilibria.

D Solution algorithm

Our model with (large but) finitely many competitive agents is not computation-

ally tractable because the state space Z in (2.1) is very large.13 To make the

model computationally tractable, we make two approximations. First, we sup-

pose that the number of agents N is large and apply the strong law of large

numbers, which makes the transitions of the aggregate state deterministic as in

13To be specific, since there are N agents and 6 agent types, there are
(
N+5
5

)
combinations

of aggregate states. Even if we note that the distinction between Rk and D agents is payoff
irrelevant and combine them into one type, and N is small such as N = 100, the number of
possible states

(
104
4

)
= 4,598,126 is very large. With a more realistic N , which is of an order

over a million, the number of possible combinations is astronomical.
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(3.19). Under this approximation, we have Ik = σI and Iu = (1 − σ)I. Since

Rk +Ru +D = 1− S − I and an infected agent becomes symptomatic with prob-

ability σ, we have Rk +D = σ(1−S − I) and Ru = (1− σ)(1−S − I). Therefore

the belief µ(z) in (2.6) becomes

µ(z) =
S

S + Iu +Ru

=
S

S + (1− σ)I + (1− σ)(1− S − I)
=

S

1− σ + σS
.

Because the behavior of Rk, Ru, D agents does not affect state transitions, with a

slight abuse of notation we can define the minimal state space by

Z = {(S, I) |S ≥ 0, I ≥ 0, S + I ≤ 1} . (D.1)

Second, to aid in numerical accuracy, we produce the figures in the main text

by considering the continuous-time limit of our model and applying the finite-

state Markov chain method of Kushner and Dupuis (1992). The existence of

an approximate equilibrium can be established by arguments that are essentially

identical to those in Theorem 3.6.

D.1 Exponential grid

When solving for an SIR model numerically, because the fraction of infected agents

I varies by many orders of magnitude (say between 10−6 and 10−1), it is important

to use a grid that properly covers the relevant range of the state space, such

as an exponential grid. In general, suppose we would like to construct an N -

point exponential grid on a given interval (a, b), where the lower bound a is not

necessarily positive. A natural idea to deal with such a case is as follows.

Constructing exponential grid.

(i) Choose a shift parameter s > −a.

(ii) Construct an N -point evenly-spaced grid on (log(a+ s), log(b+ s)).

(iii) Take the exponential and subtract s.

The remaining question is how to choose the shift parameter s. Suppose we

would like to specify the median grid point as c ∈ (a, b). Since the median of the

evenly-spaced grid on (log(a+ s), log(b+ s)) is 1
2
(log(a+ s) + log(b+ s)), we need
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to take s > −a such that

c = exp

(
1

2
(log(a+ s) + log(b+ s))

)
− s ⇐⇒ s =

c2 − ab
a+ b− 2c

.

Note that in this case s + a = c2−ab
a+b−2c

+ a = (c−a)2

a+b−2c
, so s + a is positive if and

only if c < a+b
2

. Therefore, for any c ∈
(
a, a+b

2

)
, it is possible to construct an

exponentially-spaced grid with end points (a, b) and median point c.

To solve the model in Section 4 numerically, we construct finite grids for S, I

and define the minimal state space Z in (D.1) by the Cartesian product of the

S, I grids. For the S-space (fraction of susceptible agents), we use a 100-point

uniform grid on [10−8, 1]. For the I-space we use a 400-point exponential grid

on [10−8, 1] with a median point of 10−4. We now write these grids as ΣS =

{0, 1/NS, . . . , 1− 1/NS, 1} and ΣI = {I0, I1, . . . , INI}, and define

∆−Ii = Ii − Ii−1 i = 1, . . . , NI

∆+
Ii = Ii+1 − Ii i = 0, . . . , NI − 1

and declare ∆−I0 = ∆+
INI

= 0 and ∆S = 1/NS. We then write Σ := ΣS × ΣI .

D.2 Perfect Bayesian Markov competitive equilibrium

We consider the numerical method for computing the perfect Bayesian equilibrium.

Let Vh(S, I) be the value function of type h = U, Ik agents, ã(S, I) be the policy

function of unknown agents, and let partial derivatives be denoted by ∂S etc. In

this case the Hamilton-Jacobi-Bellman equation for the unknown agent becomes

(r + ν)VU(S, I) = max
aU∈[a

¯
,1]
ru(aU)

+ σµβaU
(
(1− σ)ã(S, I) + σa∗Ik

)
I[VIk(S, I)− VU(S, I)]

− βSã(S, I)
(
(1− σ)ã(S, I) + σa∗Ik

)
I∂SVU(S, I)

+
(
βSã(S, I)

(
(1− σ)ã(S, I) + σa∗Ik

)
− γ
)
I∂IVU(S, I). (D.2)

We suppose that at an arbitrary (S, I) ∈ Σ there are three possible transitions, to

(S − ∆S, I), (S, I − ∆−I ) and (S, I + ∆+
I ), with associated probabilities p−S, p−I
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and p+I given by

p−S =
∆t

∆S

βSã(S, I)(
(
(1− σ)ã(S, I) + σa∗Ik

)
I, (D.3a)

p±I =
∆t

∆±I
max

{
±
[
βSã(S, I)

(
(1− σ)ã(S, I) + σa∗Ik

)
− γ
]
I, 0
}
. (D.3b)

The probability with which an unknown agent becomes known infected is then

puk = ∆tσµβaU
(
(1− σ)ã(S, I) + σa∗Ik

)
I, (D.4)

where the superscript indicates this is the probability of transitioning from the

unknown u state to the known infected state k. The Bellman equation for unknown

agents is then

VU(S, I) = max
aU∈[a

¯
,1]

∆tru(aU) + e−(r+ν)∆tpuk[VIk(S, I)− VU(S, I)]

+ e−(r+ν)∆t
(
p−SVU(S −∆S, I + ∆S) + p−IVU(S, I −∆−I ) + p+IVU(S, I + ∆+

I )
)

+ e−(r+ν)∆t
(
1− p−S − p−I − p+I − puk

)
VU(S, I).

Omitting terms independent of aU , dividing by r∆t and sending ∆t → 0, the

maximization problem becomes

max
aU∈[a

¯
,1]
u(aU) + p̄ukr−1[VIk(S, I)− VU(S, I)]

where p̄uk = puk/∆t. This problem is equivalent to

max
aU∈[a

¯
,1]
u(aU) + caU

(
(1− σ)ã(S, I) + σa∗Ik

)
,

where

c = σµβr−1[VIk(S, I)− VU(S, I)]I. (D.5)

When the utility function takes the form (4.1), the first-order condition rearranges

to aU = aFOC
U := [−c]−1/α and the optimal choice of aU is therefore

aU = 1c≥0 + (1− 1c≥0) max
{
a
¯
,min

{
1, aFOC

U

}}
. (D.6)
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Note that the linear system characterizing the value function of the unknown

agents is

0 =ru(aU) + p̄ukVIk(S, I)

+ p̄−IVU(S, I −∆−I ) + p̄+IVU(S, I + ∆+
I ) + p̄−SVU(S −∆S, I + ∆S)

+
(
r + ν + p̄−S + p̄−I + p̄+I + p̄uk

)
VU(S, I). (D.7)

We then iterate upon the policy function aU . Beginning with an arbitrary guess

aU , we compute the value function of the unknown agent by solving the linear

system (D.7), replace aU with the implied policy function aU in (D.6), and repeat

until convergence.

D.3 Efficient action

We consider the numerical method for computing the efficient action. Taking the

limit as ∆ → 0 in the main text, one can show that the value function of the

planner is of the form W (S, I,D) = DuD−C(S, I), where C solves the Hamilton-

Jacobi-Bellman equation

(r + ν)C(S, I) = min
aU∈[a

¯
,1]
r
(
(1− σ + σS)[−u(aU)] + σI[−u(a∗Ik)]

)
+ νC̄vacI

+ γδσI[−uD]− βSIaU
(
(1− σ)aU + σa∗Ik

)
∂SC(S, I)

+ [βSaU
(
(1− σ)aU + σa∗Ik

)
− γ]I∂IC(S, I),

where

C̄vac :=
σ

r + γ
(−γδuD − ru(a∗Ik)) (D.8)

is interpreted as the cost of the pandemic (in terms of utility) when the vaccine

has arrived. We first construct a locally consistent Markov chain for the law of

motion of the state variables. The local consistency requirements are given by

E[∆XS] = −∆tβSIaU
(
(1− σ)aU + σa∗Ik

)
+ o(∆t) (D.9a)

E[∆XI ] = ∆t

(
βSIaU

(
(1− σ)aU + σa∗Ik

)
− γI

)
+ o(∆t). (D.9b)

For an arbitrary (S, I) ∈ Σ there are three possible transitions, to (S−∆S, I), (S, I−
∆−I ) and (S, I + ∆+

I ), with associated probabilities p−S, p−I and p+I . The local
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consistency requirements (D.9) become

−∆Sp
−S = −∆tβSIaU

(
(1− σ)aU + σa∗Ik

)
+ o(∆t)

−∆−I p
−I + ∆+

I p
+I = ∆t

(
βSaU

(
(1− σ)aU + σa∗Ik

)
− γ
)
I + o(∆t).

Inspection reveals it will suffice to set

p−S =
∆t

∆S

βSIaU
(
(1− σ)aU + σa∗Ik

)
(D.10a)

p+I =
∆t

∆+
I

βSIaU
(
(1− σ)aU + σa∗Ik

)
(D.10b)

p−I =
∆t

∆−I
γI (D.10c)

To ensure the chain remains on the grid we declare that at I = 1 we have aU ≤
â1(S), the point at which 0 = βSaU((1− σ)aU + σa∗Ik)− γ. For S > 0 we have

â1(S) =
1

2βS(1− σ)

(
−βSσa∗Ik +

√
[βSσa∗Ik ]

2 + 4γβS(1− σ)
)
.

We then have the Bellman equation

C(S, I) =ν∆tC̄vacI + min
aU∈[a

¯
,1]
−∆tr

(
(1− σ + σS)u(aU) + σIu(a∗Ik)

)
−∆tγδσIuD

+ e−(r+ν)∆t
(
p−SC(S −∆S, I) + p+IC(S, I + ∆+

I ) + p−IC(S, I −∆−I )
)

+ e−(r+ν)∆t(1− p−S − p+I − p−I)C(S, I).

Omitting terms independent of the controls, using (D.10) and sending ∆t → 0

gives

min
aU∈[a

¯
,1]
− r(1− σ + σS)u(aU) + βSIaU

(
(1− σ)aU + σa∗Ik

)
[−CBS]

+ βSIaU
(
(1− σ)aU + σa∗Ik

)
CFI .

Dividing by −r(1− σ + σS) gives

max
aU∈[a

¯
,1]
u(aU) + βSaU

(
(1− σ)aU + σa∗Ik

)I(CBS − CFI)

r(1− σ + σS)
. (D.11)

Note that (D.11) is of the form

G(a, b, c) := max
aU∈[a,b]

u(aU) + caU
(
(1− σ)aU + σa∗Ik

)
, (D.12)
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where c := βSI
(
CBS − CFI

)
/[r(1 − σ + σS)]. If c ≥ 0 then aU = 1. Otherwise

the objective function is concave, and we only need to evaluate the first-order

conditions. The first-order condition condition for (D.12) when u is CRRA is

0 = a−αU + c(σa∗Ik + 2(1− σ)aU). (D.13)

Lemma D.1. For any 0 < a < b, the solution to (D.12) is

aU(c) = b1c≥0 + (1− 1c≥0) max
{
a,min

{
aFOC
U (c), b

}}
,

where aFOC
U (c) solves (D.13).

To avoid overflow in the code we divide all quantities by ∆t and consider the

limit of the above as ∆t → 0. The linear system we solve at each stage is

0 =− r
(
(1− σ + σS)u(aU) + σIu(a∗Ik)

)
− γδσIuD + νC̄vacI

+ p̄−SC(S −∆S, I) + p̄+IC(S, I + ∆+
I ) + p̄−IC(S, I −∆−I )

− (r + ν + p̄−S + p̄+I + p̄−I)C, (D.14)

where for each direction we have p̄ = p/∆t. We then iterate upon the policy

function aU . Beginning with an arbitrary guess aU , we compute the planner’s

objective function by solving the linear system (D.14), replace aU with the implied

policy function aU in Lemma D.1, and repeat until convergence.

D.4 Perfect recall Markov equilibrium

We consider the numerical method for computing the perfect recall Markov equi-

librium. We define a grid for beliefs Σµ = {0, 1/Nµ, . . . , 1 − 1/Nµ, 1} for some

integer Nµ ≥ 1. Let Σ := ΣS × ΣI × Σµ.

For unknown agents, we must specify the transition probabilities for their be-

liefs and the probability with which they become known infected. The latter

quantity is simply (D.4). We suppose that at an arbitrary (S, I, µ) ∈ Σ, there

are four possible transitions, to (S −∆S, I, µ), (S, I −∆−I , µ), (S, I + ∆+
I , µ) and

(S, I, µ − ∆µ), with associated probabilities p−S, p−I , p+I and p−µ. The local

consistency requirements for the aggregate state are again satisfied if we choose

p−S, p−I and p+I according to (D.3). Using (C.2), the local consistency require-

ment for the belief variable is

−∆µp
−µ = −∆t(1− σ)µβaU

(
(1− σ)ã(S, I) + σa∗Ik

)
I + o(∆t),
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which will be satisfied if we choose

p−µ =
∆t

∆µ

µ(1− σ)βaU
(
(1− σ)ã(S, I) + σa∗Ik

)
I =

1

∆µ

(1/σ − 1)puk, (D.15)

where puk is given by (D.4). The Bellman equation for unknown agents is then

VU(S, I, µ) = max
aU∈[a

¯
,1]

∆tru(aU) + e−(r+ν)∆t
∆µσ

1− σ
p−µ[VIk(S, I)− VU(S, I, µ)]

+ e−(r+ν)∆t
(
p−SVU(S −∆S, I + ∆S, µ) + p−IU(S, I −∆−I , µ;u)

)
+ e−(r+ν)∆t

(
p+IVU(S, I + ∆+

I , µ) + p−µVU(S, I, µ−∆µ)
)

+ e−(r+ν)∆t

(
1− p−S − p−I − p+I − p−µ − ∆µσ

1− σ
p−µ
)
VU(S, I, µ).

Omitting terms independent of aU , dividing by r∆t and sending ∆t → 0, the

maximization problem becomes

max
aU∈[a

¯
,1]
u(aU)

+ p̄−µr−1

(
∆µσ

1− σ
[VIk(S, I)− VU(S, I, µ)] + VU(S, I, µ−∆µ)− VU(S, I, µ)

)
,

where p̄−µ = p−µ/∆t. Using (D.15), this problem is equivalent to

max
aU∈[a

¯
,1]
u(aU) + caU

(
(1− σ)ã(S, I) + σa∗Ik

)
,

where

c =
µβ

r∆µ

(∆µσ[VIk(S, I)− VU(S, I, µ)] + (1− σ)[VU(S, I, µ−∆µ)− VU(S, I, µ)])I.

(D.16)

When the utility function takes the form (4.1), the first-order condition rearranges

to aU = aFOC
U := [−c]−1/α and the optimal choice of aU is therefore

aU = 1c≥0 + (1− 1c≥0) max
{
a
¯
,min

{
1, aFOC

U

}}
. (D.17)

Note that the linear system characterizing the value function of the unknown
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agents is

0 =ru(aU) +
∆µσ

1− σ
p̄−µVIk(S, I) + p̄−µVU(S, I, µ−∆µ)

+ p̄−IVU(S, I −∆−I , µ) + p̄+IVU(S, I + ∆+
I , µ) + p̄−SVU(S −∆S, I + ∆S, µ)

+

(
r + ν + p̄−S + p̄−I + p̄+I + p̄−µ +

∆µσ

1− σ
p̄−µ
)
VU(S, I, µ). (D.18)

We then iterate upon the policy function aU . Beginning with an arbitrary guess

aU , we compute the value function of the unknown agent by solving the linear

system (D.18), replace aU with the implied policy function aU in (D.17), and

repeat until convergence.

E Calibrating uD

We calibrate the flow utility from death uD based on the case study from Sweden,

which did not introduce mandatory lockdowns. For this purpose, we first obtain

the daily cumulative number of reported cases and deaths for Sweden from Johns

Hopkins University CSSE (Footnote 12). Let NC,t, ND,t be the cases and deaths up

to date t. We divide these numbers by the populationN = 10.38×106 to obtain the

population shares of reported cases Ct := NC,t/N and deaths Dt := ND,t/N . We

compute the case fatality rate as δCFR,t := Dt/Ct. Figure 9a shows the evolution

of the case fatality rate. The fact that the CFR peaked at around 12 percent in

May 2020 and has settled down below 2 percent at the time of writing suggests

that the reporting rate has significantly changed over time and that the reported

cases are unreliable.

We thus estimate the fraction of the infected population It using the accounting

equation from the SIR model

Dt+1 −Dt = γδIFRIt ⇐⇒ It =
Dt+1 −Dt

γδIFR

. (E.1)

To control for the day-of-week effect (deaths seem to be unreported over the week-

end), we take the 7-day moving average of (E.1), which is plotted in Figure 9b.

The estimated peak prevalence is thus maxt It = 0.0663. Finally, we choose the

value for uD to match the peak prevalence in the model and obtain uD = −12.22.

As a robustness check, we also compute uD from the value of statistical life.

Consider an individual consuming a constant flow normalized to 1 and facing a

small probability d of death for one period. Letting β ∈ (0, 1) be the agent’s
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(a) Case Fatality Rate ( percent) over
time.

(b) Estimated prevalence over time.

Figure 9: Case Fatality Rate and estimated prevalence in Sweden.

discount factor, p be the willingness to pay to avoid the possibility of death, V be

the continuation value of being alive, and VD be the continuation value of being

dead, by definition we have

(1− β)u(1− p) + βV = (1− β)u(1) + β((1− d)V + dVD). (E.2)

Using V = u(1) and VD = uD, (E.2) simplifies to

(1− β)u(1− p) = (1− β − βd)u(1) + βduD. (E.3)

The value of statistical life v is defined by the willingness to pay p scaled such

that one life is saved on average, so v = p/d. Since

u(1− p) ≈ u(1)− u′(1)p = u(1)− u′(1)vd

by the Taylor approximation, solving (E.3) for uD, we obtain

uD ≈ u(1)− 1− β
β

u′(1)v. (E.4)

Since u(1) = 0 and u′(1) = 1 for the CRRA utility (4.1), (E.4) further simplifies

to

uD ≈ −
1− β
β

v. (E.5)

Hall et al. (2020) note that the Environmental Protection Agency (EPA) recom-
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mends using v = $7.4 million in 2006,14 when per capita consumption was about

$31,000. Thus the value of life in units of one period consumption is

v =
7,400,000

31,000
= 238.7,

and with 5 percent annual discounting, the flow utility from death in (E.5) is

uD = −0.05× 238.7 = −11.94,

which is very similar to the value we obtained from the case study from Sweden.

14https://www.epa.gov/environmental-economics/mortality-risk-valuation
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