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1 Introduction

Many forecaster and central bank assessments of future uncertainties are informed, at least in part, by

monitoring past forecast errors.1 As Reifschneider and Tulip (2019) review, this is the general approach

to gauging unconditional forecast uncertainty at the US Federal Reserve, the European Central Bank,

the Bank of England, the Reserve Bank of Australia, the Bank of Canada, and the Swedish Riksbank.

Practice on communicating these forecast uncertainties varies. Famously, the Bank of England’s

Monetary Policy Committee (MPC) represents its forecast densities as fan charts, with shades of red (for

inflation) and green (for GDP) representing regions with specified probabilities of outturns. Most analysis

of these fan charts has drawn on the Bank’s specification of the underlying probability distribution, defined

by a two-piece normal distribution, and devised evaluation tests for these density forecasts, making the

assumption that the density function is described fully. But in fact - and this is commonly ignored -

they describe only the inner 90 percent best critical region (BCR) of the forecast distribution. The BCR

characterizes the interval of shortest length with a target (nominal) coverage rate of 90 percent. The

MPC is effectively publishing what we call a censored density forecast.

Censored density forecasts offer a way for the forecaster to quantify forecast risks in the middle of the

density, ignoring the size but not the frequency of outlying forecast errors. This reflects, at a foundational

level, a Knightian distinction between known and unknown probabilities: the distinction between risk and

uncertainty. The censored region of the density acknowledges that there are (realized) unknown unknowns

or events not expected to recur that should be censored before quantifying known unknowns. Censored

densities also accord with the ideas formalized in Orlik and Veldkamp (2014) and Kozlowski, Veldkamp,

and Venkateswaran (2020) that economic agents know more about the probabilities of everyday events

than (black swan) events in the tails of a distribution, given these are rarely observed.

Censored density forecasts, therefore, do not require the forecaster to quantify forecast uncertainties

in the tails, beyond saying that there is, in sum, a 100α percent chance, where α ∈ (0, 1), of observing

these more “extreme” events. Under density forecast asymmetry, we emphasize, this need not imply that

100(α/2) percent of the probability mass falls in each tail. When the censoring bounds are shortest-

interval or best critical regions, the uncensored region need not lie between the 100(α/2) percent and the

100((1−α)/2) percent quantiles. Censored density forecasts require the forecaster to set these upper and

lower censoring thresholds, providing them scope to indicate asymmetries in the balance of (unknowable)

uncertainties. Contrasting value-at-risk (VaR) assessments, the censoring thresholds are unknown - and,

as we shall explain, data determined - rather than fixed at a given quantile. Censored density forecasts

provide a probabilistic impression of what will happen in the center of the distribution, whereas VaR

1Central banks also use model-based approaches and their subjective judgment to gauge future economic uncertainties.
But as emphasized by Ericsson (2002) and Knüppel (2018), quoting Wallis (1989), pp. 55-56: “The model-based approach
is of little help to the practitioner. It neglects the contribution of the forecaster’s subjective adjustments.”
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assessments censor both this and the right-tail region of the density.

Other central banks and official bodies, in effect, publish censored density forecasts that ignore the

outer observations by publishing confidence intervals around their forecasts. For example, the Congres-

sional Budget Office (CBO) shows surrounding its forecast for the budget deficit a range that includes

two-thirds of possible outcomes. Federal Reserve Board (FRB) staff forecasts, as presented historically

in either the Greenbook or the Tealbook created before each meeting of the Federal Open Market Com-

mittee (FOMC), show a 70 percent confidence interval as does the Reserve Bank of Australia.2 The

European Central Bank (ECB) shows, around its GDP and inflation forecasts, a range that represents

twice the mean absolute error. Under Gaussianity, this implies a 57.5 percent confidence interval.3 In

all of these examples, the forecast intervals are estimated based on past forecast performance. But the

forecast intervals only quantify an inner proportion of the underlying density forecast.

For bodies like these that provide a probabilistic interpretation of forecast error ranges, there is a

question of how they should be constructed. The CBO and the Federal Reserve (specifically the FOMC)

adopt a very simple parametric approach, fitting a normal distribution to past forecast errors, and use

the density function of this to define the range they indicate. While the Federal Reserve and the CBO

assume normality, they do not emphasize the distributional form of the inner confidence interval, as

they publish only a 70 percent interval and do not show intervals within this. In estimating this normal

density, as explained by Reifschneider and Tulip (2019), the FOMC uses errors from the last 20 years of

forecasts. This has the implication that the large errors associated with the recession of 2008-09 and the

pandemic of 2020 should be expected about once in 10 years. The MPC at the Bank of England states

that the parameters of the two-piece normal probability density that it uses to characterize the inner 90

percent of the forecast distribution are formed based on the MPC’s subjective judgment. Nevertheless,

the statistical reference point is provided by a normal distribution fitted to forecast errors over a 10-

year period. In practice, after the global financial crisis, judgment was used to exclude the associated

large forecasting errors from this calculation. The ECB similarly states that the mean absolute error is

calculated after a judgmental correction “for exceptional events.”

In this paper we develop a new statistical approach to the problem of estimating and then evaluating

censored densities for the errors associated with economic forecasts, or indeed with any set of observations.

Our approach lies midway between a nonparametric approach and assuming a parametric function applies

to the whole of the distribution.4 It requires neither subjective assessment of what constitutes an outlier

2The FOMC in the Summary of Economic Projections also emphasizes the approximate 70 percent interval. This
explains why we interpret the FRB staff forecast intervals below as 70 percent intervals. Strictly, under Gaussianity with
the length of the interval set as a one-standard-deviation error, the intervals cover 68 percent. Results below are robust to
analysis at 68 percent as opposed to 70 percent.

3Tulip and Wallace (2012), Appendix A, helpfully summarize the uncertainty measures used across various central banks.
4The Reserve Bank of Australia constructs its forecast error intervals using a nonparametric approach. It calculates

its equal-tailed interval forecasts from the quantiles of the error distribution. As discussed, equal-tailed intervals need not
equal BCR intervals for asymmetric distributions.
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nor parameterization of the outlier process. It involves fitting a parametric density to only the inner

100(1 − α) percent of observations, acknowledging that the outlying observations may be drawn from

a different but unknown distribution. The technique is of obvious use in the aftermath of the current

pandemic as an alternative to manual (judgment-based) adjustment.

Our approach thus offers an alternative to model-based methods such as Carriero et al. (2021), who,

when modeling and forecasting macroeconomic data, downweight extreme observations, such as those ob-

served during the COVID-19 pandemic, by allowing for both persistent and temporary heteroscedasticity.

Transitory outliers are modelled either by t-distributed error processes or by parameterizing an outlier

volatility state as in the so-called stochastic volatility outlier-adjusted (SVO) model of Stock and Watson

(2016). Like our approach, the SVO model requires the forecaster to specify how frequently outliers

occur. But unlike our approach, it requires making a choice about what density the outliers are drawn

from. The use of censored density forecasts can also be contrasted with dropping outlier observations in

estimation, as Schorfheide and Song (2020) propose when modeling in the aftermath of the pandemic.

The techniques needed for estimating censored distributions are well known. Observations in the

censored region are given a likelihood computed from the probability of the observation in question being

in the censored region. This method is easy to apply if the censoring is at known points. The probability

of being in the censored region then depends on the mass of the uncensored part of the distribution lying

between the known censor points. That is determined by the parameters describing the uncensored part

of the distribution. But this method does not work if the censoring applies to a known proportion of the

distribution rather than to observations outside known numerical limits. Accordingly, this paper develops

and then evaluates a fixed-point solution to the problem of estimating the parameters of a distribution

that applies to a known (central) proportion of a set of observations. We show that, for the GDP forecasts

produced by the MPC and the FRB staff, this approach results in a more Gaussian distribution than if

all the observations were assumed to be distributed according to the parametric distribution.

The next section of the paper sets out the parametric family of skewed distributions that we consider,

and illustrates their use in fitting FRB staff and MPC GDP growth forecast errors. Section 3 describes

the implications for estimation when the density function is not fully described. We propose a new fixed-

point estimator that fits the density acknowledging endogenous censoring of the outlying 100α percent of

observations. Section 4 explores the properties of this estimator via Monte Carlo experiments. Section

5 fits censored densities to the FRB and MPC GDP growth forecast errors. Section 6 proposes and

evaluates via Monte Carlo new calibration tests for censored density forecasts. Section 7 provides an

out-of-sample evaluation of censored densities fitted to the FRB and MPC error data. In so doing we

provide the first evaluation of the MPC’s own density forecasts that correctly acknowledges the censoring.

Section 8 concludes. An online Appendix contains supplementary details, results, and robustness checks.
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2 The Distribution of Forecast Errors

2.1 A Parametric Framework

The aftermath of the global financial crisis saw increased attention paid to forecast errors and their

distributional form; for example, see Alessi et al. (2014). Haldane (2012) noted how theory and evidence

suggest that macroeconomic data exhibit fat tails as well as skewness, and Adrian, Boyarchenko, and

Giannone (2019) emphasize non-Gaussian features when measuring the “vulnerability” of GDP growth

to downside risks. Using long-run historical data, Jordà, Schularick, and Taylor (2020) conclude that

growth is pervasively fat tailed and non-Gaussian.

It is clear that the 2020 pandemic has again raised questions about how forecast errors should be

treated. A related literature considers how models used to produce density forecasts should be designed,

given the extreme data realizations and consequent forecasting errors observed during the pandemic; for

example, see Schorfheide and Song (2020), Lenza and Primiceri (2020), Huber et al. (forthcoming), and

Carriero et al. (2021).

Our focus, instead, is the construction of density forecasts - and in due course censored density

forecasts - from historical forecast error data. But, consistent with this related literature, we start by

considering how more general density functions that allow for fat tails and skewness might be used to

produce density forecasts. These densities nest the two-piece normal and normal densities used by the

Bank of England and the Federal Reserve, respectively. Specifically, we consider the general family of

skew distributions defined in Arellano-Valle, Gómez, and Quintana (2005). But the analysis of censored

densities that follows could be performed for any parametric density function.5

Like the two-piece normal, the skew distribution of Arellano-Valle, Gómez, and Quintana (2005)

involves joining two distributions, with different scale (and perhaps shape) parameters. We return to the

issue, central to this paper, that the forecaster may wish to place no views on the outer 100α percent of

the distribution in Section 3.

A leading specific density within this family that we focus on is the two-piece t distribution described

by Fernandez and Steel (1998). This depends on, in addition to the location, scale, and skew parameters,

the number of degrees of freedom of the t-distribution. For robustness, in online Appendix A.1 we explore

more general and alternative skewed specifications for the MPC forecast errors, given that, as we shall see,

these data are less symmetric than the FRB error data. In general, we find that (in-sample) the two-piece

t fits the MPC data competitively relative to these alternatives. We therefore confine our attention to it

(and its limiting case, the two-piece normal distribution) here.

The density function of the two-piece t, 2Pt(ν,µ,σ,γ), is given as:

5We leave for future research the issue of how censored density forecasts should be produced from workhorse macroeco-
nomic forecasting models, such as vector autoregressive (VAR) models. For linear (parametric) VAR models this will require
assumptions about the distributional form of the errors to the model to apply only within censoring bounds. Nonparametric
VAR models, such as those developed by Huber et al. (forthcoming), may offer more flexibility.
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where γ is the scalar skew parameter, γ ∈ (0,∞), ν is the degrees of freedom of the standard Student t

distribution with location, µ, and scale, σ, and Γ(.) is the gamma function.

The mode of the distribution is µ but this is the same as the mean only if γ = 1. The probability

mass to the left of the mode is γ2/(γ2 + 1), while that to the right of the mode is 1/(γ2 + 1). So with

γ < 1 the distribution is skewed to the right and with γ > 1 it is skewed to the left. A large number

of degrees of freedom, ν, implies, of course, that the distribution is very close to normal, while a small

number of degrees of freedom indicates that extreme values are appreciably more common than would

be implied by a normal distribution with the same scale parameter.6

Given a scoring rule or loss function the parameters of this distribution can be estimated. Following

Gneiting and Raftery (2007), optimum score estimators or M-estimators involve maximizing the value

of the (proper) scoring rule over the sample. We focus on the logarithmic scoring rule corresponding to

maximum likelihood (ML) estimation.7

The log-likelihood function of a sequence of observations yt, t = 1, ..., T , where I(y) = 1 if y ≥ 0 and

I(y) = 0 if y < 0, is given as:
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For any given sample, the four parameters, µ, σ, γ and ν can be estimated by ML. Our sample

suffers from the drawback that the forecast errors relate to overlapping periods. Nevertheless, parameter

estimation by ML delivers consistent estimates (White, 1980).

2.2 Application to MPC and FRB Forecast Errors

We illustrate the use of the 2Pt, (2), in fitting the MPC’s and FRB staff’s forecast errors for GDP growth.

We focus attention on the MPC forecasts at the two-year horizon and the FRB’s forecasts at the one-

year horizon.8 In the online Appendix (Section A.4) we present results for other forecasting horizons. As

6In this specification the scale parameter to the left of the mode is σγ, while to the right of the mode it is σ/γ. In the

specification used by the MPC it is
(
σ2

1−φ

)1/2
to the left of the mode and

(
σ2

1+φ

)1/2
to the right of the mode. So it is easy

to express γ in terms of φ and vice versa.
7The logarithmic score is known to be more sensitive to outliers than alternatives such as the cumulative ranked proba-

bility score (CRPS). Future work might consider estimators that minimize CRPS loss along the lines of Gebetsberger et al.
(2018).

8The FRB has not always forecast GDP growth two years ahead. Hence we focus here on the longer and unbroken
sample of one-year-ahead forecasts.
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relevant, we summarize these below. Arguably, for an inflation targeting central bank, the longer-horizon

forecasts are of more interest. We consider forecasting errors relative to the modal forecast of the MPC

and the point forecast issued by the FRB staff in the Tealbook (previously the Greenbook), widely believed

to also be the mode, although, unlike the MPC, the FRB does not allow for density forecast asymmetry.

When calculating forecast errors for annual GDP growth, since GDP data are revised, we need to

decide which vintage of GDP data to use. Since the MPC explicitly sets out to forecast “mature” values

of GDP, as noted in footnotes to its fan charts, for UK GDP growth we focus, for now, on using the latest

available data vintage (from the quarterly national accounts published in February 2021) to define the

outturn. This delivers GDP errors from 1999q4-2020q3, a time series of 84 observations. In Section 7,

in out-of-sample analysis, we consider the use of second-release GDP data to measure the outturn. For

the FRB, the staff forecasts are released with a five-year lag. We consider their projections for quarter-

on-quarter growth in real GDP (annualized percentage points) from 1974q2-2014q4, a time series of 163

observations. Again the outturn needs to be defined, and following Reifschneider and Tulip (2019), we

define it using data published soon after the release of the forecast. Specifically, we define the outturn for

US GDP as the second-release GDP estimate. For the US, unlike the UK as discussed below, the use of

mature rather than second-release data to define the outturn has little effect on either the shape of the

forecast error histograms or the fitted densities.9

We show in the top panel (a) of Figure 1 the histogram of pre-pandemic (sample ends in 2018q3)

forecast errors for the UK. We define the forecast error as outturn minus forecast, so negative errors are

outturns below forecast. The bottom panel (b) of Figure 1 extends this sample through the pandemic

to 2020q3. Figure 2 shows the forecast errors for the US. Given the publication lags associated with the

Tealbook, for the US we have yet to observe the size of the FRB’s forecast errors for the 2020 pandemic

period. But it is likely that, as in the UK, especially in 2020q2 due to the lockdowns, the US will also see

a large negative forecasting error. To illustrate the likely consequences for the forecast error densities,

in panel (b) of Figure 2 we therefore append to the US sample of historical forecast error data a single

simulated (pandemic) error of −20 percent.

Figures 1 and 2 are full-sample histograms and use all available historical forecast error data. There are

always questions about the appropriate sample over which to estimate forecasting models (and evaluate

forecast accuracy). In the presence of parameter instability, due to structural breaks, there is a trade-off

between bias and forecast error variance when selecting the “optimal” window of data to use. When the

breaks are continuous rather than discrete, exponentially weighting observations within a window can be

effective; for example, see Pesaran, Pick, and Pranovich (2013).

Here, given relatively small samples, we elect to use as much data as possible when estimating the

unconditional densities of the forecast errors. Importantly the point of departure for our censored esti-

9Compare online Figure A6 with Figure 2 below.
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(a) Pre-pandemic

(b) Including pandemic

Figure 1: UK GDP Growth (two-years-ahead): MPC Forecast Error Histogram and Two-Piece Normal
and t Densities and Their Parameter Estimates

Note: Mature GDP estimates used to define the “outturn.” Pre-pandemic: 76 outturns used from 1999q4-2018q3. Including
pandemic: 84 observations used from 1999q4-2020q3. The darkest shaded green region indicates the 30% best critical region
of the 2Pt; the next band extends this to 60%, with the remaining region of the density in the palest shade.

mator, introduced in Section 3, is that it lets the whole sample (of length T ) determine which specific

observations within the sample to censor - for a specified coverage rate. This contrasts our understanding

of practice at the Bank of England and the FOMC. Elder et al. (2005) and Reifschneider and Tulip

(2019) state that the MPC and FOMC, respectively, use rolling 10-year and 20-year windows to inform

their estimates of uncertainty. At the Bank of England, in more recent years (post-financial crisis), in

fact shorter windows have been used. These, in effect, censor forecast error observations not believed

to be representative of current uncertainties. As well as ignoring all “old” data (certainly more than 40

quarters old) irrespective of their properties, this practice also ignores the censoring that is later imposed

when the MPC publishes the fan chart only for the central 90 percent of observations.

Figures 1 and 2 also show the estimated ML parameters of the two-piece t and two-piece normal

distributions fitted to the underlying forecast errors. In Figure 1, mimicking communication by the

MPC, the darkest shaded region on each figure indicates the 30 percent best critical region of the two-

piece t. The next band extends this to 60 percent with the remaining region of the density in the palest

shade. The MPC, of course, censors its density at 90 percent, an issue we turn to later. We also show on

the charts the density functions estimated by fitting two-piece normal distributions. Figure 2 shows, for

the US error data, the 70 percent confidence interval, as communicated by the FRB, in dark green.

What is most striking comparing panels (a) of Figures 1 and 2 is how the forecast error densities

8



(a) Pre-pandemic

(b) Simulated, including pandemic

Figure 2: US GDP Growth (one-year-ahead): FRB Forecast Error Histogram and Two-Piece Normal
and t Densities and Their Parameter Estimates

Note: Second-release GDP estimates used to define the “outturn.” Pre-pandemic: Sample from 1974q2-2014q4. Including
pandemic: sample from 1974q2-2014q4 plus a single simulated observation of -20%. The darkest shaded green region
indicates the 70% best critical region of the 2Pt.

for the UK are clearly skewed to the left, while those for the US are more symmetric, with the skew

parameters for both the 2PN and 2Pt close to unity. But there is evidence for non-Gaussian features

in the US, specifically fat tails, with ν estimated at 3.34. Of course, this US density is estimated on

pre-pandemic forecast error data; panel (b) anticipates what effect the likely large and negative forecast

error outturns will have. In the US, we see that the density remains quite symmetric, albeit with a small

increase in skew. For the two-piece t we see that fatter tails are needed post-pandemic; the two-piece

normal seeks to accommodate the simulated pandemic outlier observation of −20 percent via a higher

standard deviation/variance estimate.

The UK error densities warrant further discussion. The left skew mentioned above is especially

pronounced when the two-piece normal distribution is fitted to the GDP forecast errors. The top panel

of Figure 1 shows forecast errors of up to (minus) 8 percent; these arose from a failure to forecast

the global financial crisis recession of 2008-09. The number of degrees of freedom is low, at 2.39. It

can be seen (we defer statistical evaluation until Section 7) that the two-piece t fits the center of the

histogram better than the two-piece normal. This is confirmed by supplementary statistical evidence in

Appendix A.1. While the t distribution is often described as having fat tails, the counterpart of this is

a concentration of probability mass in the center of the distribution. The problem with the two-piece

normal distribution is not so much that it means the probability of extreme events is understated, but

9



rather that it understates the concentration of mass in the center of the distribution. It is also interesting

that the two-piece t suggests less forecast error bias (a lower value for µ) than the two-piece normal

density.

Comparing panels (a) and (b) of Figure 1 we isolate the effects of the pandemic. As in the US, these

effects are most marked for the two-piece normal density, where the skew clearly rises to fit the large

negative forecast error for 2020q2. In contrast, the parameters of the two-piece t change less, although

the pandemic does result in a lower value for ν as fatter tails are needed to accommodate this historically

unprecedented forecast error.

In summary, despite their greater flexibility, the t distributions still appear to have trouble accom-

modating the extremes of the histograms. If, instead of being fitted to the whole distribution, they were

fitted only to the central part, one might expect to see less skew and perhaps a higher number of degrees

of freedom. A normality assumption, for the central region of the density, might be appropriate after

all. We explore this issue next by fitting censored two-piece t and normal distributions to these forecast

errors.

3 Fitting Censored Distributions

There are different types of forecast intervals, which implies that one can construct different types of

censored density forecasts. We focus our discussion on the construction of BCR or shortest-interval

censored density forecasts. They represent the shortest range of possible outcomes that have the required

probability.10 In a decision theory framework, Wallis (1999) and Askanazi et al. (2018) show that the

shortest interval is the best prediction interval when the loss function takes an all-or-nothing form. This

is such that the loss (or cost) of an outturn falling outside the BCR in question is the same irrespective

of how far away from the BCR the outturn falls.

But we do briefly discuss the equal-tailed censored density that lies between the 100(α/2) percent and

the 100((1−α)/2) percent quantiles. Equal-tailed intervals differ from BCR forecasts under asymmetry of

the underlying density. Askanazi et al. (2018), Brehmer and Gneiting (2020), and Taylor (2021) provide

recent analysis comparing alternative ways to produce and evaluate such interval forecasts. We should

stress our points of departure from these authors. Unlike them, we quantify the density function within

the interval. And in evaluation, we assume that the censoring quantiles are known; hence, the elicitability

problems emphasized by Askanazi et al. (2018) and Brehmer and Gneiting (2020) for BCR intervals are

10To a Bayesian, the 100(1−α) percent best critical region/interval for y is the highest posterior density (HPD) interval:

Rα = {y : f(y) ≥ πα}, where

πα is the largest value for which P (y ∈ Rα) ≥ 1− α

An HPD interval has two main properties: (1) the density for every point inside the interval is greater than that for every
point outside the interval and (2) for a given probability the interval is of shortest length; see Hyndman (1996) for methods
to estimate HPD intervals.
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not present.

The principles of fitting BCR censored distributions when the censor points are given exogenously

are well understood. Typically it is clear whether observations are censored or not, but not where they

lie in the censored region. In that situation, Diks, Panchenko, and van Dijk (2011) have shown that in

computing the likelihood function, the censored observations are given a likelihood equal to the chance

of being in the censored region, conditional, of course, on the parameters of the distribution. This yields

ML estimates of the parameters, with standard properties.11

Although we use the censored likelihood function of Diks, Panchenko, and van Dijk (2011), the

situation we face is different in two respects, given our interest in forecast production rather than just

evaluation. First, while we require observations outside the 100(1−α) percent BCR (or shortest interval),

we do not wish their position to have any influence on the estimated parameters of the distribution. This

can be achieved if they are treated as though they are censored with a likelihood defined by the probability,

100α percent, of being in the censored region. Thus, conditional on known censor points, this difference

is not material for estimation.

The second difference, however, is material. In the situation we face, the censor points are defined

by the bounds of the 100(1 − α) percent BCR and thus by the parameter estimates. The “regularity

conditions” needed to prove, in particular, the asymptotic normality of ML estimators are violated because

the support of the density depends on its parameters, as in (3); for example, see Woodroofe (1972) and

Smith (1985). We now show that, in our case, the estimator degenerates in finite samples, and we develop

an alternative fixed-point estimator.

3.1 Motivating a Fixed-Point Estimator

If the lower cut point, beyond which data are censored, is yL and the upper cut point, above which data

are censored, is yU , then following Diks, Panchenko, and van Dijk (2011) the conventional way of setting

out the censored log likelihood, which we refer to as LCA, is:

logLCA =

 log(F (yL)) if (y < yL)
logL if (yL ≤ y ≤ yU )
log(1− F (yU )) if (y > yU )

 , (3)

where F (y) defines the CDF of the density function, F (y) =
∫ y
−∞ f(y)dy, and the BCR, set to define a

100α percent censored region, satisfies:

f(yU , β)− f(yL, β) = 0 (4)

F (yU , β)− F (yL, β) = 1− α. (5)

11Holzmann and Klar (2017) further analyze and confirm the good properties of the censored likelihood of Diks, Panchenko,
and van Dijk (2011) in forecast evaluation (as opposed to forecast production). They also propose alternative weighted
scoring rules that focus forecast evaluation on regions of specific interest. These could be of interest if the forecaster did
wish to emphasize specific regions within the uncensored region of the censored density forecast.
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We note that substitution of (4) for:

F (yL, β) = α/2 (6)

delivers an equal-tailed, as opposed to BCR or shortest-interval, censored density forecast.

This likelihood function, however, still assumes that the forecaster has a view on whether points are

likely to be in the upper or the lower tail of the distribution, notwithstanding that the density function

within those tails is not specified.

An alternative likelihood function, LCB , which is completely agnostic as to whether observations are

going to be above the upper cut point or below the lower cut point, can be defined, with conditions (4)

and (5) again imposed, as:

logLCB =

 log(1− (F (yU )− F (yL)) if (y < yL)
logL if (yL ≤ y ≤ yU )
log(1− (F (yU )− F (yL)) if (y > yU )

 . (7)

We subsequently show the advantages in estimation, especially in smaller samples, of the greater

structure provided by LCA.

In either case, estimation of β = [µ, σ, γ, ν], subject to (4) and (5), is difficult, indeed potentially

degenerate. This is because the censor points are treated as endogenous (or proportionate), rather than

fixed (assumed known) due to discontinuities (boundary problems), as movements in the BCR cut points

place observations either in the censored or the uncensored region.

Intuitively, for fixed (finite) T , we explain the degeneracy of full ML estimation of β, yL and yU as

follows. We illustrate for LCA, although the same point is pertinent for LCB . Consider:

max
β,yL,yU

∑
logLCA(yt, β) + λ1 (F (yU , β)− F (yL, β)− (1− α)) (8)

+ λ2 (f(yU , β)− f(yL, β)).

Suppose that we have a value of σ sufficiently small such that only one observation from a sample,

say, yA, is in the uncensored region and that this is the value given to the mode of the distribution, µ:

µ = yA. All other observations are then in the censored region - with, say, T1 observations below yL and

T2 observations above yU . Then, when the constraints are met:

logLCA = T1 logF (yL, β) + log f(yA, β) + T2 log(1− F (yU , β)). (9)

But as σ shrinks, for fixed T , log f(yA, β) will increase without limit:

logLCA →∞ as σ → 0. (10)

In the absence of censoring this would be offset by the likelihood associated with the other observations

falling. But with the censored likelihood, for fixed T , that is not the case. In other words, the censor

points yL and yU change as σ shrinks, but the probability of being in the censored tails, and thus F (yU , β)

12



and F (yL, β), will not change. For fixed T the overall log likelihood, logLCA, is therefore unbounded as σ

shrinks to zero; there is no interior solution.12

Accordingly, we suggest the following fixed-point estimator in finite samples. It is motivated by the

observation that, in large samples, estimates (for β) produced by maximizing logLC , with fixed censor

points, are independent of the censor points, provided all the uncensored observations are genuinely drawn

from the specified distribution.

The proposed fixed-point estimator is calculated by means of the following two steps:

Step 1: βr+1 = max
β

∑
logLCj (yt, β, yL,r, yU,r) (11)

Step 2: compute BCR of f(yt | βr+1)⇒ yL,r+1, yU,r+1 (12)

where we search over values of yL,r and yU,r (r = 1, ..., R∗) to minimize Pr+1 = (yL,r+1 − yL,r)2 +

(yU,r+1 − yU,r)2. If Pr+1 = (yL,r+1 − yL,r)2 + (yU,r+1 − yU,r)2 converges to zero as R∗ increases, this

provides a solution at which the ML estimates of the parameters of the censored distribution deliver

censor points that, when used in estimation, deliver the same parameter estimates.

The contribution of each observation to the log likelihood depends on whether it is in the censored

region or not. The log likelihood will not be continuous in the parameters because, for some parameter

sets, observations may be uncensored, while for others they will be censored. In large samples this effect

is likely to be small; the contribution of each observation to the total log likelihood is low. But in small

samples the discontinuities will be relatively greater and it may not be possible to find a solution for

which the quadratic term converges to zero. If the minimum Pr = (yL,r+1 − yL,r)2 + (yU,r+1 − yU,r)2 is

larger than zero, only an approximation will have been found. It has to be a matter of judgment as to

how good or bad that approximation is.13

In practice, in our experiments we found that, especially in moderate samples, maximization of L

or LCj (for fixed censor points) could prove problematic for some samples: the ML estimates of γ can

diverge. Similar findings are reported by Sartori (2006) and Azzalini and Arellano-Valle (2013) for their

skew normal and t densities (considered in more detail in Appendix A.1). This is because the likelihood

can be monotone and the Fisher information matrix singular at the discontinuity point when skewness

disappears, γ = 1. Accordingly, when sample sizes are small, in the spirit of Sartori (2006) and Azzalini

and Arellano-Valle (2013), to avoid boundary estimates we suggest in Step 1 maximization of a penalized

12A similar unboundedness of ML arises when estimating mixture densities with heterogeneous variances: the likelihood
goes to infinity as the variance of one of the component densities goes to zero. The mixture literature has adopted alternative
solutions to this problem including estimators on constrained parameter spaces and penalized estimators (for example, see
Chen, Tan, and Zhang (2008)) that can also be interpreted and developed within a Bayesian framework (for example,
see Hamilton (1991)). Variants of these approaches may also prove effective in our context and are left as a topic for
future research. As explained subsequently, our solution to unboundedness in this paper is an estimator motivated by the
observation, unique to censored density estimation, that ML is valid for exogenous censoring intervals.

13We found convergence typically tends to occur for R∗ < 20, which takes fewer than 30 seconds in Matlab on a standard
desktop.
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log-likelihood function, PLCj (yt, β), rather than LCj , where

PLCj (yt, β) =
∑

logLCj (yt, β)− 1

2
Pλ(|(γ − 1)|) (13)

and Pλ(|(γ − 1)|) is a nonnegative penalty function. We use the Lasso penalty, Pλ(|(γ − 1)|) = λ |(γ − 1)|,

where λ is a tuning parameter. When λ = 0 estimation reduces to LCj (yt, β); the higher the value of λ

the more deviations from symmetry are penalized. In the Monte Carlo experiments that follow, we select

λ by optimizing the in-sample censored fit,
∑

logLCj (yt, βR∗). We also experimented with the use of

this penalized estimator in the empirical application of Section 7, but found no penalty was required for

satisfactory estimation and convergence of the fixed-point estimator, that is, the estimates of λ = 0.14

4 Monte Carlo Evidence

We carry out Monte Carlo experiments to assess the performance of the proposed fixed-point estimator,

(11)-(12), in samples of different sizes as the degree of skew varies. We make comparison with the

penalized estimator, (13). We focus on censoring at 100α=10 percent, in keeping with MPC practice.

Here we evaluate the fixed-point estimator in the central case when not all of the underlying data are

drawn from the same (skewed) distribution: in particular when (what will be) the censored observations

come from a different distribution.

The online Appendix contains two additional sets of experiments that we summarize here. The

first experiment finds that the fixed-point estimator does well, relative to the uncensored estimator, at

recovering the parameters of skewed densities for larger samples. But in small samples and when the

underlying density is highly skewed, we find benefits to using the penalized censored estimator, with LCA

outperforming LCB . The second experiment assesses whether any parameter estimates produced when

fitting the censored two-piece t to the time series of forecast errors could have been, in reality, generated

by an underlying symmetric normal distribution. The experiments allow for serial correlation in forecast

errors as when multi-step-ahead forecasting. As well as again evidencing the benefits of LCA versus LCB ,

we find that when the data are censored so that the distribution is fitted only to the central 90 percent

of observations, for samples of error data of the length seen for the UK where the forecast error data

are skewed, the estimated value of the number of degrees of freedom has to be 2.7 (2.2) or lower under

LCA (LCB) before one can reject, at a 90 percent significance level, the hypothesis that the underlying

distribution is normal. We refer to this result below.

4.1 Performance for Mixed Distributions

We explore the performance of the censored estimators, under both LCA and LCB , when not all of the

underlying data are drawn from the same (skewed) distribution: in particular, we allow (what will be)

14Note the connection between use of PLCj (yt, β) and Bayesian a posteriori estimates with a Laplace prior on (γ − 1).
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the censored observations to be drawn from a different distribution. T observations are first drawn from a

two-piece t distribution, where (ν, µ, σ, γ) = (5, 0, 1, 1.5) and (5, 0, 1, 2.5). But then each of the 10 percent

of these T observations that fall outside the 90 percent BCR defined by yL and yU , as estimated for

each replication, is dropped and replaced, depending on whether it falls below yL or above yU , with a

random draw from a uniform density between −10 and yL or yU and +10, respectively.15 Comparison

is made with the uncensored ML estimator, L. We also report results for PLCj (yt, β). We do not report

(for space reasons) results for PLCj (yt, β) when γ = 1.5, since, as will be seen, the utility of the penalized

estimators, relative to the unpenalized ones, is found to be greater in populations with high skew.

The mean, median, and standard deviation (across the 1000 replications) of the estimates of the four

parameters are shown in Table 1.16 We also report the proportion (averaged across the R replications)

of the T observations that, for the censored estimators, are classified as falling in the censored region.

Table 1 reports results for T = 40, 100, 500, and 1000, noting the Bank of England’s use of just 40

error observations to estimate its error densities. Let us consider the larger sample results first. When

T = 1000, we find that the censored estimators, again especially LCA, do a good job of estimating the

true parameter values, despite the censoring. They also correctly place 10 percent of observations in the

censored region. But, as expected, the uncensored estimator - which assumes all T observations come

from a single density - is not able to return estimates that are as accurate. It tends to over estimate 1/v

(that is, under estimate v), in an attempt to capture the 10 percent of tail observations drawn from the

uniform densities.

As T decreases and γ increases, we again observe a higher chance that the censored estimates for γ

diverge for some replications: as the mean estimates for γ again become too large, with the standard

deviation estimates for γ elevated. Table 2 shows that in smaller samples this afflicts LCB more than LCA.

The median estimates for LCA are closer to the true parameter values than the mean ones, especially so

for smaller T . For T = 40 and γ = 2.5, focusing on the median estimates for γ, LCA is considerably more

accurate than LCB , with LCB again tending, for an increasing number of replications, to overestimate γ

(and underestimate σ). Use of the penalized estimator mitigates this small-sample concern further. The

median estimates for the penalized estimator, under LCA, are within 10 percent of the true parameter

estimates when T = 40. But it does not eliminate the risk of the skewness estimates diverging, as the

mean estimates from PLCA still diverge suggesting that in any specific application with small samples care

should be exercised, and parameter estimates closely inspected, if boundary values are to be avoided.

The uncensored estimator continues to over estimate 1/v in small samples.

15Stock and Watson (2016), for example, also use the uniform density to model outliers.
16To mitigate computational issues when v →∞, we found it helpful to work with 1/v rather than v.
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5 Censored Densities Fitted to the MPC and FRB Forecast
Errors

We now fit the censored density functions to the MPC and FRB staff forecast error data for GDP, as seen

in Figures 1 and 2. We use LCA because, consistent with the Monte Carlo evidence and attempts to fit

LCB to the forecast errors (reported in Section A.6.1 of the online Appendix), LCA better avoids boundary

solutions for γ when fitting the two-piece normal distribution. In all cases Pr = 0 (for large r), confirming

satisfactory estimation. The online Appendix (see Tables A4 and A5) provides supplementary results

for other forecast horizons and when censoring the MPC’s density forecasts at 30 percent rather than 10

percent, as in practice, and vice versa for the FRB. We refer to relevant aspects of these supplementary

results in the discussion below. In summary, as expected, these tables reveal that the variances of the

uncensored Gaussian forecast error densities increase with the forecast horizon. But this is often not the

case for the skewed and fat-tailed densities (when they differ from the Gaussian density, which, as seen,

they do for the UK but not the US sample). The skew of the uncensored densities tends to increase with

the forecast horizon in the UK but decrease in the US.

Censored forecast error densities at the 10 percent level are shown for the UK in Figure 3 and for the

US, censoring at 30 percent, in Figure 4. In each case, pre-pandemic densities are again shown in panel

(a) and densities including the pandemic in panel (b). As before, the US densities in panel (b) involve

appending to the actual forecast error data a single artificial observation of −20 percent to simulate the

likely effects of the forecast errors made during COVID-19.

Looking at the UK first (pre-pandemic) and comparing Figure 3 with the uncensored distributions

of Figure 1, we see that not allowing the outlying 10 percent of errors to influence the shape of the

distribution has a considerable effect on skewness when using the MPC’s preferred two-piece normal

density. For the 2PN, the degree of skew present in Figure 3 is lower than when outlying errors are

not censored. Many of the negative forecast errors (observed during the global financial crisis) are now

censored, placed in the left tail, rather than accommodated, as in Figure 1, via a higher skew estimate.

The degree of skew drops further when censoring these two-years-ahead forecast errors at 30 percent

(see online Table A4). It remains the case, however, that a t distribution with a low number of degrees

of freedom, 2.17, is needed to capture the peak of the error distribution.17 Similar results are seen

when forecasting one year ahead (see online Table A4). At h = 1 (effectively a current-quarter nowcast)

the uncensored forecast error density is much more Gaussian than at the longer forecast horizons and

censoring has different effects: the estimates of γ continue to be reduced by censoring, and increasingly

so when censoring at 30 percent. But given that the uncensored nowcast error density is effectively

symmetric, this means the censored densities become right-skewed.

17This smaller value for ν falls outside the 90 percent simulated small-sample confidence interval for a normal density;
see Table A3.
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Once the forecast error data are updated to include the pandemic, as illustrated in Figure 3, we see

a modest increase in skew for the 2Pt, but a larger increase for the 2PN. But as Table 2 shows, when

symmetry is imposed and an uncensored Gaussian density is fitted, we see the error standard deviation

rise due to the pandemic from 1.98 to 3.20. By contrast, when either the uncensored t density or one of

the uncensored two-piece densities is fitted, the effects of the pandemic shock do not show up so obviously

in increased volatility, that is, a higher standard deviation/variance estimate. In turn, if a censored rather

than an uncensored Gaussian density is fitted, we again see no clear rise in the variance of the density

due to the pandemic. While there remains evidence for skew, the skew estimates are similar pre- and

post- pandemic when the censored 2PN and 2Pt densities are fitted. Similar results are again seen when

forecasting one-year-ahead. We cannot compare the nowcast errors before and after the pandemic, since

the MPC did not report its usual fan chart forecast in 2020q2 when the UK economy was shut down for

the first time due to COVID-19.

Turning to the US results, Figure 4 reveals that censoring (at 30 percent) eliminates the need, seen

in Figure 2, for a fat-tailed density.18 The degrees of freedom parameter rises from 3.34 in Figure 2 to,

in effect, infinity in Figure 4. But there is slightly more evidence for a modest degree of left skew when

censored rather than uncensored 2PN and 2Pt densities are estimated. At shorter forecast horizons,

pre-pandemic (see online Table A5), the skew is to the right. But this skew is less pronounced when

censoring at 10 percent rather than 30 percent. Comparing panels (a) and (b) in Figure 4, we observe

few differences to the parameters of the censored 2PN and 2Pt densities before and after the pandemic.

This robustness to the pandemic shock is not shared by the uncensored symmetric Gaussian density,

however, as Table 2 reveals. As with the UK error data, if an uncensored Gaussian density is used,

the pandemic shock shows up via a higher standard deviation. But use of a censored Gaussian density

places the pandemic and the global financial crisis as outliers in the censored left tail and, accordingly,

the standard deviation is similar before and including the pandemic. We also see this robustness when

censoring at 10 percent rather than 30 percent (see online Table A5). The standard deviation of the

censored Gaussian density is considerably smaller than its uncensored counterpart. This result applies

across forecasting horizons, with the standard deviation lower still when censoring at 10 percent. The

standard deviation of the censored Gaussian density (see Table 2) is a little over 2, in line with the

estimates when the more fat-tailed t density or asymmetric 2PN or 2Pt densities are used, whether

censored or uncensored. The censored Gaussian density also has a standard deviation similar to that

of these fat-tailed and asymmetric densities at shorter forecasting horizons when continuing to censor

at 30 percent. But when fewer observations are censored, at 10 percent, evidence for fat tails (with a

18Online Table A5 shows that when censoring fewer observations, at 10 percent, a fat-tailed density is still needed. We
note that for the UK, in contrast, fat-tailed densities are preferred when censoring at both 30 percent and 10 percent.
Online Figure A4 also shows for the US that if an additional simulated pandemic error observation of (plus) 20 percent is
appended to the error sample, to capture the rapid bounce-back of GDP in 2020q3, then while ν rises, fat tails are still
required.
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Table 2: Standard deviation, σ, and skew, γ, of the censored and uncensored densities fitted to the UK
(MPC) and US (the FRB staff) historical forecast errors pre-pandemic and including the pandemic

height Pre-pandemic Incl. pandemic
S.D. σ N t 2PN 2Pt N t 2PN 2Pt
UK Uncens 1.98 0.94 1.39 1.00 3.20 0.81 1.37 0.86

Cens 1.32 0.95 1.36 0.97 1.43 0.82 1.44 0.90
US Uncens 2.88 1.95 2.87 1.94 3.25 1.90 3.20 1.89

Cens 2.16 2.17 2.16 2.18 2.21 2.20 2.17 2.19
Pre-pandemic Incl. pandemic

Skew γ N t 2PN 2Pt N t 2PN 2Pt
UK Uncens 1.00 1.00 1.99 1.21 1.00 1.00 3.13 1.21

Cens 1.00 1.00 1.25 1.14 1.00 1.00 1.49 1.22
US Uncens 1.00 1.00 0.97 1.03 1.00 1.00 1.14 1.07

Cens 1.00 1.00 1.12 1.09 1.00 1.00 1.12 1.12

Note: Estimated Standard Deviation (S.D.) and skew of the censored (Cens) and uncensored (Uncens) densities fitted
to two-years-ahead GDP growth forecast errors in the UK and one-year-ahead errors in the US. Reflecting institutional
practice, the censored densities are at 100α=10% in the UK and 100α=30% in the US.

low estimated degrees of freedom parameter) remains. As a result, the censored Gaussian densities have

higher standard deviation estimates than their t counterparts.

By way of contrast, as shown in Section A.6.2 of the online Appendix, if uncensored two-piece t and

normal densities are fitted not to all the UK forecast errors as in Figure 1, but to a sub-sample of GDP

growth errors before or after the global financial crisis, we also find less skew than in Figure 1. This is

especially so for the two-piece normal density. This supports the view that analyzing forecast errors over

a rolling window, as is apparently practiced at the Bank of England, also amounts to a form of censoring.

But it is ad hoc and inconsistent with the fact that the density is later, at a second step, censored. In

fact, when only forecast errors since the global financial crisis are used, there is no skew to the two-piece

normal and the preferred density is normal (symmetric) with a variance similar to that of the two-piece

t in Figure A4. One implication of this type of censoring is that the probability of large forecast errors

is much lower than in Figure 1 or Figure 3.

In summary, we conclude that inference on the estimated parameters is affected if the censored nature

of the forecast density is acknowledged, especially when fitting, as is common, Gaussian distributions to

past forecast errors. Censored error densities are, as hoped, more robust to shocks such as the global

financial crisis and COVID-19 pandemic than uncensored Gaussian densities. For the UK, where, unlike

in the US, there is clear evidence of asymmetry to uncensored forecast error densities perhaps explaining

the MPC’s decision to use the 2PN, we also see much less evidence for skew in the 2PN when censoring

outlying observations. The shape of fan charts (estimated from past forecast errors) can be materially

affected by whether the censoring is accommodated in estimation. As we shall see below, we also find

that censoring delivers forecast error densities that exhibit fewer temporal instabilities than when an

uncensored Gaussian density is used.
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Figure 3: UK GDP Growth (two-years-ahead): Forecast Error Histogram and 10% Censored Two-Piece
Normal and t Densities and Their Parameter Estimates Using LCA

Note: Latest release GDP estimates used to define the “outturn.” Pre-pandemic: 76 outturns used from 1999q4-2018q3.
Including pandemic: 84 observations used from 1999q4-2020q3. The darkest shaded green region indicates the 30% best
critical region of the 2Pt; the next band extends this to 60% and the palest shade to 90%.
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Figure 4: US GDP Growth (one-year-ahead): FRB Forecast Error Histogram and 30% Censored Two-
Piece Normal and t Densities and Their Parameter Estimates Using LCA

Note: Second release GDP estimates used to define the “outturn.” Pre-pandemic sample from 1974q2-2014q4. Including
pandemic sample from 1974q2-2014q4 plus a single simulated observation of -20%. The darkest shaded green region indicates
the 70% best critical region of the 2Pt.

20



6 Evaluation of Censored Density Forecasts

Uncensored density forecasts are defined to be well calibrated when they coincide with the true but

unknown density. In such a case, their probability integral transforms (PITS) with respect to the outturns

are uniformly distributed over the interval (0, 1); for example, see Diebold, Gunther, and Tay (1998).

In this section, we propose and evaluate moment-based calibration tests for multi-step-ahead censored

density forecasts. These tests develop those of Knüppel (2015) and allow for the serial correlation of

the PITS that is expected when multi-step-ahead density forecasting. We emphasize how these tests

can be placed within the framework of Rossi and Sekhposyan (2019), and thereby, in the situations

described therein, can accommodate parameter estimation error under the null hypothesis of correct

calibration. Henceforth, we abstract from issues associated with estimation error for the parameters of

the forecasting model. In our applications, the underlying models and parameters used by the MPC and

FRB are unknown (certainly to outsiders).

The point of departure when evaluating censored density forecasts is to acknowledge that while the

PITS should be uniformly distributed within the uncensored region of the density, the PITS need not

be uniformly distributed in the censored region. Indeed, given that the censored region of the density

forecast is not known probabilistically, one cannot compute PITS if and when the outturn falls in the

censored region. Instead, what is required for a well-calibrated censored density forecast is that, as for an

interval forecast (cf. Christoffersen (1998)), the frequency of outturns in the censored region should equal

the nominal size, α. Subject to satisfying such a coverage condition, one cannot discriminate between

competing censored density forecasts in the censored region.

Let f and F continue to denote the (time-varying) probability and cumulative density functions of the

(two-sided) h-step-ahead censored density forecast made at time t, and let yt+h denote the subsequently

observed outturn, with t = 1, ..., T now denoting the out-of-sample evaluation period.

The forecast density is censored at 100α percent (α ∈ (0, 1)), between the thresholds yL,t and yU,t,

where yU,t > yL,t, such that
yU,t∫
yL,t

f(yt) = 1− α. The PITS are defined, in the usual way, as zt+h = F (yt+h).

Given the censoring, we also define PIT censoring thresholds zL,t = F (yL,t) and zU,t = F (yU,t); for

example, zL,t = 0.05 and zU,t = 0.95 for 10 percent censoring with symmetric thresholds (about the

mean). zL,t and zU,t are known by forecasters when they make their forecasts.

The censored density forecast f(yt) is well calibrated when the subset of PITS, zct+h, defined as those

elements of zt+h between zL,t and zU,t:

zct+h = zt+h ∈ [zL,t, zU,t], (14)

are uniformly distributed between (zL,t, zU,t). So calibration involves testing E(zct+h) = 0.5(zL,t + zU,t)

= 0.5 and V ar(zct+h) = (1/12)(zU,t − zL,t)
2. Outside of the uncensored range, zL,t < zt+h < zU,t,
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calibration of f(yt) requires correct coverage:

1

T

T∑
t=1

I(zt+h ≤ zL,t) + I(zt+h ≥ zU,t) = α. (15)

A joint test of uniformity, (14), and coverage, (15), is therefore required. We proceed by adding a

coverage rate condition to the test of Knüppel (2015) as follows.

Let wt(.) be a threshold-weight function, such that

wt(zt+h) = I(zL,t ≤ zt+h ≤ zU,t), (16)

where for uncensored densities, wt(zt+h) = 1. Let H(.) denote a real-valued function of zct+h. Berkowitz

(2001) uses H(zt+h) = Φ−1(zt+h), while Knüppel (2015) considers the standardized PITS, H(zt+h) =
√

12(zt+h − 1
2 ).

For censored densities, we consider a censored form of the standardized PITS:

υt+h = H(zct+h) =
√

12/(zU,t − zL,t)2
(
zct+h − 0.5(zL,t + zU,t)

)
, (17)

such that under the null of correct calibration, looking at the first four moments, υt+h is uniformly

distributed with an expectation of 0, variance of 1, skewness of 0, and kurtosis of 1.8, respectively.

Let s = s1, s2, ..., sN be a sequence of positive and finite integers, where N is the number of moment

conditions under consideration (N = 4 here). Let ms = E(υst+h) denote the s-th uncentered moment of

υt+h, and let m̂s = T−1
∑T
t=1 υ

s
t+h denote its sample counterpart.

Define υt+h =
[
υs1t+h, υ

s2
t+h, ..., υ

sN
t+h

]′
,m = [ms1 ,ms2 , ...,msN ]

′
and m̂ = [m̂s1 , m̂s2 , ..., m̂sN ]

′
. Let ΩT

denote the long-run covariance matrix of the vector, dt =
[
υs1t+h −ms1 , υ

s2
t+h −ms2 , ..., υ

sN
t+h −msN

]′
,

where:

ΩT = T−1
T∑
t=1

E
(
υt+hυ

′
t+h

)
+ T−1

h−1∑
j=1

T∑
t=1

[
E
(
υt+hυ

′
t+h−j

)
+

T∑
t=1

E
(
υt+h−jυ

′
t+h

)]
. (18)

Then let D̂ = [m̂−m]
′

and Ω̂ be an estimator of ΩT such that Ω̂−ΩT
p→ 0. Importantly, therefore, a

heteroskedasticity and autocorrelation consistent (HAC) estimator can be used to estimate the covariance

matrix consistently, as serial dependence is expected for correctly calibrated multi-step-ahead density

forecasts.

Under the null hypothesis of correct calibration:19

β̂s1,s2,...,sN = TD̂Ω̂−1D̂
d→ χ2

N . (19)

19See Knüppel (2015) for details in the uncensored case. Rossi and Sekhposyan (2019) (see their Corollary 6) generalize
to maintain parameter estimation error under the null hypothesis in these raw-moment-based tests. Given how we use
historical forecast error data in our application, we continue to abstract from parameter estimation error. But we note
how estimation error of the parameters used to construct the densities could be preserved in our censored calibration test
when, as in Rossi and Sekhposyan (2019), parameter estimation error is maintained under the null hypothesis of correct
calibration.
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As discussed by Knüppel (2015), operationally we break this test statistic down into the sum of two

independent test statistics calculated using the odd and even moments. While asymptotically equivalent,

this test differs in small samples and was preferred by Knüppel (2015) on the basis of Monte Carlo

simulations.

For censored densities, we add an additional moment condition to test coverage:

Dt+h = wt (zt+h)− (1− α). (20)

The test statistic β̂c then follows as the square of the standard normal test statistic of the sample

proportion D̂α =
(

1
T

∑T
t=1Dt+h

)
:

β̂c = TD̂αΩ̂−1α D̂α
d→ χ2

1, (21)

where Ω̂α is an HAC estimator of the long-run covariance of the sample proportion.20 Like the uncondi-

tional coverage rate test of Christoffersen (1998), β̂c tests the coverage of the censored density forecast

but does not test whether the zeros and ones come clustered together over time. When multi-step-ahead

forecasting, under correct calibration these zeros and ones need not be independent.

If interest is in testing coverage proportions in the upper and lower tails individually, rather than

constructing an overall coverage test as here, then a χ2
2 variant of β̂c could be used instead. As Askanazi

et al. (2018) explain, a consequence of using BCRs is that under correct unconditional coverage, no other

set of interval forecasts (extracted from the same density forecast) with shorter intervals can also satisfy

the coverage rate condition.

Finally, we construct an overall test for calibration of censored density forecasts as the sum of the two

independent test statistics, (19) and (21), such that under the null of correct calibration of the censored

density forecast:

B̂ = β̂s1,s2,...,sN + β̂c
d→ χ2

N+1. (22)

6.1 Monte Carlo Evidence

In this section we analyze the size and power properties of our proposed test statistic, (22). To understand

performance when multi-step-ahead forecasting, we consider one-, two-, and four-step-ahead forecasts by

assuming yt is generated, respectively, by the moving average MA(0), MA(1), or MA(3) processes:

yt = εt (23)

yt = εt + ρεt−1 (24)

yt =

3∑
j=0

ρjεt−j (25)

20Under temporal independence, required for one-step-ahead densities, this amounts to β̂c = T
(

1
T

∑T
t=1Dt+h

)2
/(1 −

α)α.
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where εt ∼ iidN(0, 1) or εt ∼ iid2Pt(500, 0, 1, 1.5). We set ρ = 0.275, a value also used by Rossi and

Sekhposyan (2019).

The forecaster then constructs one-, two-, and four-step-ahead censored density forecasts of yt from

N(0, 1), N(0, (1 + ρ2)−1), or N(0, (1 +
3∑
j=1

ρ2j)−1), respectively, with the BCR (identical to equal-tailed)

censoring intervals set as zL,t = α/2 and zU,t = (1− α/2).

We compare the censored calibration test, (22), against its uncensored counterpart (namely, the four-

moments test of Knüppel (2015)), the (uncensored) two-degrees-of-freedom likelihood ratio (LR) test

of Berkowitz (2001), and a two-sided variant of the censored LR test proposed by Berkowitz (2001).

This test is detailed in Appendix A.5 and, like (22), ignores the magnitude but not the frequency of

forecast failure in both tails. Both of these Berkowitz-type tests are adapted, as discussed by Knüppel

(2015), to the case of serially correlated PITS by testing Φ−1(zt+h) for zero mean and unit variance

but not zero autocorrelation. Following Knüppel (2015), we consider the quadratic spectral kernel HAC

estimator of Andrews (1991), noting that, as found in Knüppel (2015) for uncensored tests, results are

similar if a Bartlett kernel as in Newey and West (1987) is used instead. We analyze performance for

T = 50, 100, 250, and 1000, censoring at 100α = 10 percent and 100α = 30 percent and use 10, 000 Monte

Carlo simulations in each case.

6.1.1 Size analysis

To assess the size properties of the tests presented, we assume εt ∼ iidN(0, 1), implying that the fore-

caster’s Gaussian densities are correctly calibrated and deliver uniform PITS. To distinguish the censored

and uncensored tests, we introduce outliers to the tails. Specifically, in the simulations when zt+h ≤ zL,t

or when zt+h ≥ zU,t, zt+h is discarded and re-drawn from a truncated Gaussian density with mean either

equal to 0 (when zt+h ≤ zL,t) or 1 (when zt+h ≥ zU,t), a standard deviation of 0.05 and truncation

intervals defined as [0, zL,t) for the left tail and (zU,t, 1] for the right tail. This implies that the PITS are

uniform only between zL,t and zU,t.

Panels A and B of Table 3 report the actual size of the tests at the nominal size of 5 percent when

censoring at 100α = 10 percent and 100α = 30 percent. The censored test, (22), is seen to have good

size properties from sample sizes of 100. Importantly, this is the case even when the PITS are serially

correlated. For a sample size of 50, the test is a little under-sized. By contrast, the censored LR test of

Berkowitz (2001) is under-sized even as T increases, except when the PITS are serially uncorrelated as

for one-step-ahead forecasts. As anticipated, both of the uncensored tests interpret nonuniformity of the

tail PITS as miscalibration, and hence, when censoring at 100α = 30 percent, rejection rates rise as T

increases. This feature is not seen when censoring at 100α = 10 percent, due to fewer nonuniform PITS,

but we note that this feature re-emerges when T increases beyond 1000.
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6.1.2 Power analysis

To assess power, we introduce two misspecifications designed to draw out the ability of the censored

calibration test to identify failures of the forecaster to characterize correctly the uncensored region of the

density and the frequency of outliers. First, the forecaster is assumed to censor too few observations, given

the outliers that affect yt. We proceed initially as in the size experiments, with the 100α = 30 percent

tail PITS randomly drawn from truncated Gaussian densities. But then to test power, the forecaster is

assumed to censor only at 10 percent - meaning the censored density is now misspecified in the tails.

Panel C of Table 3 shows that the censored test, (22), has good power properties for larger T . In smaller

samples, power as expected is lower. But the power of (22) is always much higher than the other tests,

including the censored LR test of Berkowitz (2001).

Second, we introduce a distributional misspecification. We assume εt ∼ iid2PN(0, 1, 1.5), implying

that the forecaster’s Gaussian densities are now incorrectly calibrated, given yt is left skewed, implying

nonuniformity of the PITS. Since the misspecification applies across the forecast density, we expect to

find that the more the density is censored the lower the power of the test. This is indeed what panels D

and E of Table 3 show.

7 Production and Evaluation of Out-of-Sample MPC and FRB
Censored Density Forecasts

To illustrate the real-time utility and behavior of the proposed censored density forecasts, we now produce

and evaluate censored density forecasts for UK and US GDP growth. The forecasts are produced as if in

real time. For the UK, we also evaluate the ex post accuracy of the MPC’s published density forecasts,

but we extend (we might argue, correct) previous studies by acknowledging the censoring. This exercise

also serves as an illustrative example of what data-based forecasts, acknowledging censoring, could have

been presented in real time to the MPC and FOMC.

Specifically, we construct censored density forecasts by recursively fitting censored normal, t, two-piece

normal (2PN), and two-piece t (2Pt) densities to the MPC and FRB historical forecast errors. These four

censored densities are fitted unconditionally, albeit recursively adding an extra observation each quarter,

to the historical forecast error data dating back to 1998q1 for the UK and to 1974q2 for the US. That is,

expanding estimation windows are used. By way of contrast, and following actual practice by the FOMC

and the Bank of England, we compare these densities with uncensored Gaussian density forecasts fitted

to rolling samples of historical forecast errors over 20-year (in the US) and 10-year (in the UK) windows.

All of these densities are estimated as if in real time. Namely, we use real-time GDP data vintages

from the Bank of England and the Federal Reserve Bank of Philadelphia. At each forecasting origin, the

outturn is defined to be the latest vintage of data, but lagged to reflect both publication lags and the fact
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Table 3: Size and power of censored and uncensored moment-based and LR density forecast evaluation
tests

MA0 MA1 MA3
Panel A: Size α=0.1

T 50 100 250 1000 50 100 250 1000 50 100 250 1000

β̂s1,s2,...,s4 0.03 0.04 0.05 0.05 0.03 0.03 0.04 0.05 0.02 0.03 0.03 0.04

B̂ 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05
Uncens LR 0.06 0.06 0.06 0.07 0.04 0.04 0.04 0.05 0.03 0.03 0.03 0.04
Cens LR 0.05 0.05 0.05 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Panel B: Size α=0.3

β̂s1,s2,...,s4 0.14 0.45 0.94 1.00 0.12 0.43 0.94 1.00 0.10 0.40 0.93 1.00

B̂ 0.03 0.04 0.04 0.05 0.02 0.04 0.04 0.05 0.02 0.04 0.04 0.05
Uncens LR 0.29 0.51 0.88 1.00 0.26 0.48 0.86 1.00 0.26 0.47 0.86 1.00
Cens LR 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03

Panel C: Power tail

β̂s1,s2,...,s4 0.05 0.07 0.11 0.27 0.04 0.07 0.10 0.27 0.04 0.06 0.09 0.25

B̂ 0.08 0.18 0.39 0.95 0.07 0.18 0.37 0.94 0.07 0.17 0.36 0.93
Uncens LR 0.05 0.06 0.08 0.20 0.03 0.04 0.06 0.17 0.03 0.03 0.05 0.16
Cens LR 0.05 0.06 0.09 0.31 0.03 0.04 0.07 0.27 0.03 0.04 0.07 0.26

Panel D: Power skew α=0.1

β̂s1,s2,...,s4 0.73 1.00 1.00 1.00 0.71 1.00 1.00 1.00 0.55 0.98 1.00 1.00

B̂ 0.28 0.84 1.00 1.00 0.10 0.42 0.97 1.00 0.07 0.23 0.86 1.00
Uncens LR 0.99 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.82 0.99 1.00 1.00
Cens LR 0.98 1.00 1.00 1.00 0.84 1.00 1.00 1.00 0.70 0.98 1.00 1.00

Panel E: Power skew α=0.3

β̂s1,s2,...,s4 0.73 1.00 1.00 1.00 0.71 1.00 1.00 1.00 0.55 0.98 1.00 1.00

B̂ 0.07 0.24 0.73 1.00 0.03 0.10 0.29 0.95 0.03 0.07 0.20 0.82
Uncens LR 0.99 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.82 0.99 1.00 1.00
Cens LR 0.95 1.00 1.00 1.00 0.72 0.98 1.00 1.00 0.53 0.92 1.00 1.00

Note: The table reports empirical rejection frequencies for the four tests. The nominal size is 5% and the number of Monte
Carlo replications is 10,000. Panels A and B test size when censoring, respectively, at 100α=10% and 100α=30% . Panel C
reports the power when the forecast density is misspecified in the tails. Panels D and E report the power when the forecast
density is misspecified in not capturing the skew in the data-generating process: panel D reports power when censoring at
100α=10%, panel E censoring at 100α=30%.
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that the one has to wait one or two years to define the forecast error (for the one- or two-years-ahead

forecasts). Note that, for the UK, the use of early rather than the latest vintage data to define the

outturns against which the forecast errors are defined represents a change from above, when we focused

on the latest vintage outturns, given MPC objectives. Here, to mimic real-time use, we recursively use

the latest vintage of GDP data available at the time the forecast was produced. Demonstrating the

importance of GDP data revisions in the UK, we observe far more skew in the full-sample densities of

the forecast errors when real-time rather than final (as of the time of writing this paper) vintage data

are used; see Figures A1 and A2.

We start making forecasts for UK GDP growth in 2003q2 for 2005q1 (two years ahead), and recursively

update the sample so that the final forecast we make is in 2018q4 for growth in 2020q3. This means

our out-of-sample window for UK GDP growth is from 2005q1 to 2020q3. For the US, the out-of-sample

window is forecasts for outturns from 1994q2 to 2014q4 one year ahead.

Consistent with the earlier Monte Carlo evidence, statistical problems can arise when fitting a censored

2PN density. In particular, for the UK error data we do get divergent estimates of skew for some recursive

estimates; see Figure A5 in the Appendix. The 2Pt density, however, is well behaved, and for the UK,

we focus on it henceforth.

7.1 Tracking the Temporal Evolution of the Censored Intervals

Before evaluating the censored density forecasts, we track their evolution over time. In so doing, we shed

light on the temporal behavior of ex ante expectations of knowable uncertainty, defined as the censoring

bounds yU,t − yL,t at 10 percent. For parsimony, Figure 5 plots these 10 percent censoring bounds or 90

percent forecast intervals for the more flexible censored 2Pt density, as computed in real time from the

historical forecast errors for UK GDP growth, rather than the censored 2PN, t and normal densities. This

censored density is compared with censoring bounds extracted from the rolling (uncensored) Gaussian

density (rolling N) and the censoring bounds extracted from the MPC’s own judgment-informed 2PN

density forecasts, as published in the Inflation now Monetary Policy Reports. Figure 6 provides an

analogous plot of the 70 percent forecast intervals for US GDP growth. Alongside these ex ante censoring

intervals, we plot the ex post forecast error - the outturn.

Turning to the UK first, Figure 5 reveals that the 90 percent intervals from all three approaches

widened appreciably in the aftermath of the negative forecast errors observed over the period of the

global financial crisis. The MPC judgment-based forecasts picked up this increased uncertainty earlier

than the data-based estimators, which, as expected, adjust only at a lag. For MPC and censored 2Pt,

this increase in ex ante uncertainty is largely explained by a fall in the lower bound. This fits a narrative

of heightened downside risk after the global financial crisis, confirmed in Figure 7, which plots the

recursively estimated skew parameters. Extending the production of the error intervals beyond periods
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Figure 5: Real-time UK GDP 90% ex ante forecast error intervals, yU,t− yL,t, and ex post forecast errors
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Notes: Two-years-ahead forecast errors for outturns from 2005q1-2020q4; second-release GDP estimates used to define

outturns. Dates refer to the ex post forecast error outturn, with the forecast made two years previously.

of time when outturn data are available, Figure 5 reveals that the censoring bounds from the uncensored

Gaussian density widen sharply, once the large negative outturns observed in 2020 due to the pandemic

are considered. In contrast, the censored 2Pt interprets the extreme outturns of the COVID-19 period as

outliers. Accordingly, it places them in the censored region of the density so that similar estimates are

observed pre-pandemic (also see Figure 7). 2Pt is temporally more stable.

For the US, in Figure 6 we again observe higher uncertainty when an uncensored Gaussian density is

fitted to a rolling 20-year window of forecast errors. As in the UK, we see the width of the 70 percent

interval from rolling N widen in the aftermath of the negative forecast errors made during the global

financial crisis. We also see wider intervals than the censored 2Pt in the early sample from 1995 to

2000. By contrast, the censoring intervals from the censored 2Pt density are both narrower and again

more stable over time. As noted by Reifschneider and Tulip (2019), forecast-error-based estimates of

uncertainty are sensitive to the sample period. But our results show that this sensitivity and the volatility

of the estimates diminish when a censored density is fitted to the error data. Figure 8 also shows how

the standard deviation of the 2PN density is very stable over time, in contrast to the temporal changes

seen in the uncensored rolling N density. It is this temporal variation that motivates the use of models

of time variation in forecast error variances, as in, for example, Clark, McCracken, and Mertens (2020).

Our results therefore suggest that censored densities exhibit more temporal stability in their moments,

notably the variance, than when an uncensored Gaussian density is fitted unconditionally to a rolling

window of forecast errors. This is consistent with arguments in Orlik and Veldkamp (2014): real-time

estimation of densities with non-normal tails is prone to large changes in the variance - new observations

“wag the tail” of the whole density. Since variance is the expected squared distance from the mean,

changes in the probabilities of outliers have large effects on the conditional variance. There is less need

to model time variation in forecast error standard deviations or variances when outliers are censored.
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Figure 6: Real-time US GDP 70% ex ante forecast error intervals, yU,t− yL,t, and ex post forecast errors
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Notes: One-year-ahead forecast errors for outturns from 1994q2-2014q4; second-release GDP estimates used to define

outturns. Dates refer to the ex post forecast error outturn, with the forecast made one year previously.

Figure 7: Real-time data-based and MPC parameters for the UK GDP error density
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Notes: Two-years-ahead forecasts. Second-release GDP estimates used to define outturns. Dates refer to the outturn, with

the forecast made two years previously. The censored density is censored at α=0.1.

Figure 8: Real-time data-based parameters for the US GDP error density
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Notes: One-year-ahead forecasts. Second-release GDP estimates used to define outturns. Dates refer to the outturn, with

the forecast made one year previously. The censored densities are censored at α=0.3.
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7.2 Evaluation

Finally in Table 4 we evaluate these competing censored density forecasts using the censored PITS test,

(22). To complement this, we show the proportion of occasions on which an error outturn fell in the

outer, censored part of the error distribution, as computed as if in real time. And we report the censored

likelihood density score, as a means to compare relative forecast accuracy, although emphasis is on the

absolute calibration tests.

Diks, Panchenko, and van Dijk (2011) propose conditional and censored logarithmic scores and discuss

their interpretation and properties. They find that a particular censored scoring rule is “proper” and

performs well in many cases, and so in our application we focus on it.21 Their average censored logarithmic

score is in fact the out-of-sample analogue of logLCA, as seen in (3):

LS
C

A =
1

T

∑T

t=1

[
{I(yt − yL,t)(1− I (yt − yU,t))} log f(yt)+

I (yt − yU,t) log(1− F (yU,t)) + (1− I (yt − yL,t)) logF (yL,t)

]
(26)

Tests of equal forecast performance, across competing censored density forecasts, can be constructed

based on their LS
C

values, as discussed in Diks, Panchenko, and van Dijk (2011) and Gneiting and

Ranjan (2011). In Table 4, we report tests of the relative accuracy of each data-based censored density

forecast relative to the benchmark rolling Gaussian uncensored density, as used in practice by the Bank

of England and the FOMC.

Table 4 shows that, for the UK, the greater speed at which the MPC, using its judgment, adjusted

to the negative shocks of the global financial crisis delivers well-calibrated forecasts according to the

censored evaluation test. This reflects the better coverage rate of the MPC relative to the data-based

estimators. For space reasons we do not report results, but we note that in the period since the global

financial crisis the coverage and calibration of the data-based censored densities are much better and on

a par with those from the MPC. Indeed, as shown in Table 4 for the out-of-sample period as a whole, the

censored density forecasts, especially 2Pt, provide more accurate forecasts than both the rolling Gaussian

and the MPC densities when the scoring rule is consulted. These gains are statistically significant.

For the US, Table 4 shows that all five approaches deliver well-calibrated censored density forecasts

with coverage rates falling a little short of 70 percent. The scoring rules indicate statistically significant

gains from use of the censored Gaussian densities over the rolling Gaussian density preferred by the

FOMC.

21Holzmann and Klar (2017) provide further justification. A scoring rule is said to be “proper” if it always ranks the true
conditional density forecast above any incorrect density forecast; see Gneiting and Raftery (2007). As Diks, Panchenko, and
van Dijk (2011) and Gneiting and Ranjan (2011) explain, care has to be exercised when evaluating densities over regions
of interest to ensure the scoring rule is proper. An alternative scoring rule, the continuous ranked probability score, is also
popular. It too can be straightforwardly applied to censored density forecasts, in effect by integrating the quantile scores
between zL,t and zU,t. See Holzmann and Klar (2017) for details.
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Table 4: Out-of-sample evaluation of alternative censored density forecasts for UK and US GDP growth
(errors in predicting actual conditions for the period indicated): p-values from the censored PITS test,

(22), the coverage rate of the censored forecast and the LS
C

A score

PITS Coverage LS
C

A

UK: 2005q1-2020q3
Censored 2Pt 0.003 0.778 -1.699∗

Censored 2PN 0.003 0.762 -1.712∗

Censored t 0.006 0.762 -1.755
Censored N 0.000 0.698 -1.771∗

Uncens Rolling N 0.239 0.841 -1.904
MPC 0.100 0.825 -2.510∗

US: 1994q2-2014q4
Censored 2Pt 0.311 0.687 -1.920
Censored 2PN 0.635 0.675 -1.877∗

Censored t 0.337 0.711 -1.916
Censored N 0.719 0.687 -1.878∗

Uncens Rolling N 0.493 0.687 -1.948

Note: The UK censored densities are at α = 0.1; the US censored densities are at α = 0.3. Uncens denotes an uncensored
density. Asterisk indicates rejection of the null hypothesis of equal forecasting performance between the indicated density
and rolling N at the 95% significance level using HAC standard errors.

8 Conclusion

This paper proposes censored density forecasts as a new tool to communicate forecast uncertainties

probabilistically, but in a way that acknowledges that some forecast uncertainties, specifically in the tails

of the density, are simply not quantifiable.

Censored density forecasts assume that the probabilities in the outer tails are unknown and may well

be drawn from a different (unknown) distribution to the inner region of the density specified paramet-

rically. Like recent work that has allowed for outliers when modeling the macroeconomy in response

to the COVID-19 shock (for example, see Carriero et al. (2021)), censored density forecasts require an

assumption about how often outliers occur. But they have the relative attraction of not requiring an

assumption about what density any outliers are then drawn from. Indeed, we establish via Monte Carlo

that the censored density forecasts do a good job at inferring the true density even in the absence of

outliers.

We interpret the fan chart forecasts produced by the MPC at the Bank of England as a leading example

of, in effect, a 10 percent censored density forecast. This is because the MPC does not quantify the outer

10 percent of its forecast density, an important feature of its forecast that has hitherto been overlooked.

We also suggest how the interval forecasts produced by many other central banks and organizations, such

as the Federal Reserve and the ECB, can be re-interpreted as censored density forecasts.

We then examine the consequences of censoring both for the production of density forecasts and for

their ex post evaluation. Accordingly, we first propose and then evaluate, through Monte Carlo, a new

fixed-point estimator that fits a potentially skewed and fat-tailed density to the inner observations but
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does not take a view on what distribution the outer observations come from. Our estimator is relevant

to any researcher with a small sample of data who is concerned that the outermost observations may be

drawn from a distribution different from that defining the central observations. Second, we propose and

evaluate a new calibration test for censored density forecasts.

We illustrate the utility of the proposed methods to produce and evaluate censored density forecasts

in a context relevant for many central banks and professional forecasters. Specifically, we consider how

censored density forecasts can be produced and evaluated using the historical GDP growth forecast errors

made by the Federal Reserve Board staff and the MPC. Concentrating on the aftermath of the economic

shocks associated with the global financial crisis and the COVID-19 pandemic, we find that the shape

of the estimated density forecast is affected by whether one acknowledges censoring or not. There is

less evidence for skewed and fat-tailed error densities when outer observations are censored. In other

words, shocks in the tails do “wag” the whole density, as emphasized by Kozlowski, Veldkamp, and

Venkateswaran (2020). Given the importance of assessments of skew for statements about the balance

of risks in the macroeconomy (for example, see Adrian, Boyarchenko, and Giannone (2019)), this paper

therefore demonstrates that the choice of statistical estimator used to produce the density forecast is more

than a dry statistical issue. Censoring also delivers forecast error densities that exhibit fewer temporal

instabilities than when an uncensored Gaussian density is used.

An important question for future research is whether the degree of censoring should vary over time.

This could reflect the judgment of the forecaster: at times when the forecaster is especially uncertain

about her probability forecasts, she may choose to censor a higher percentage of her density forecasts.

By setting the censoring at 10 percent, the MPC, for example, is stating that there is a one-in-ten chance

that the unexpected happens, although its use of shortest-interval censored density forecasts allowing for

asymmetries in the inner density means that this 10 percent need not be evenly split between the left

and right tails of the forecast density. Indeed, forecasters could communicate such asymmetries directly

if they wish to alert the public to upside or downside uncertainties, as opposed to upside and downside

risks.
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Knüppel, Malte (2018). “Forecast-error-based estimation of forecast uncertainty when the horizon is in-

creased.” International Journal of Forecasting, 34(1), pp. 105–116. doi:10.1016/j.ijforecast.2017.08.006.

Kozlowski, Julian, Laura Veldkamp, and Venky Venkateswaran (2020). “The tail that wags the econ-

omy: Beliefs and persistent stagnation.” Journal of Political Economy, 128(8), pp. 2839–2879.

doi:10.1086/707735.

Lenza, Michele and Giorgio E. Primiceri (2020). “How to estimate a VAR after March 2020.” Working

paper 27771, National Bureau of Economic Research. doi:10.3386/w27771.

Newey, Whitney and Kenneth West (1987). “A simple, positive semi-definite, heteroskedasticity and

autocorrelation consistent covariance matrix.” Econometrica, 55(3), pp. 703–708. doi:10.2307/1913610.

Orlik, Anna and Laura Veldkamp (2014). “Understanding uncertainty shocks and the role of black swans.”

Working paper 20445, National Bureau of Economic Research. doi:10.3386/w20445.

Pesaran, M. Hashem, Andreas Pick, and Mikhail Pranovich (2013). “Optimal forecasts in the presence of

structural breaks.” Journal of Econometrics, 177(2), pp. 134–152. doi:10.1016/j.jeconom.2013.04.002.

Reifschneider, David L. and Peter Tulip (2019). “Gauging the uncertainty of the economic outlook using

historical forecasting errors: The Federal Reserve’s approach.” International Journal of Forecasting.

doi:10.1016/j.ijforecast.2018.07.016. Forthcoming.

Rossi, Barbara and Tatevik Sekhposyan (2019). “Alternative tests for correct specification of conditional

predictive densities.” Journal of Econometrics, 208(2), pp. 638–657. doi:10.1016/j.jeconom.2018.07.008.

35

https://doi.org/10.1016/j.jeconom.2020.11.006
https://doi.org/10.1080/00031305.1996.10474359
https://doi.org/10.3386/w26962
https://doi.org/10.1080/07350015.2014.948175
https://doi.org/10.1016/j.ijforecast.2017.08.006
https://doi.org/10.1086/707735
https://doi.org/10.3386/w27771
https://doi.org/10.2307/1913610
https://doi.org/10.3386/w20445
https://doi.org/10.1016/j.jeconom.2013.04.002
https://doi.org/10.1016/j.ijforecast.2018.07.016
https://doi.org/10.1016/j.jeconom.2018.07.008


Sartori, Nicola (2006). “Bias prevention of maximum likelihood estimates for scalar skew normal

and skew t distributions.” Journal of Statistical Planning and Inference, 136(12), pp. 4259–4275.

doi:10.1016/j.jspi.2005.08.043.

Schorfheide, Frank and Dongho Song (2020). “Real-time forecasting with a (standard) mixed-

frequency VAR during a pandemic.” Working Paper 20-26, Federal Reserve Bank of Philadelphia.

doi:10.21799/frbp.wp.2020.26.

Smith, Richard L. (1985). “Maximum likelihood estimation in a class of non-regular cases.” Biometrika,

72, pp. 67–90. doi:10.1093/biomet/72.1.67.

Stock, James H. and Mark W. Watson (2016). “Core inflation and trend inflation.” Review of Economics

and Statistics, 98(4), pp. 770–784. doi:10.1162/REST a 00608.

Taylor, James W. (2021). “Evaluating quantile-bounded and expectile-bounded interval forecasts.” In-

ternational Journal of Forecasting, 37(2), pp. 800–811. doi:10.1016/j.ijforecast.2020.09.007.

Tulip, Peter and Stephanie Wallace (2012). “Estimates of uncertainty around the RBA’s forecasts.”

Research Discussion Paper 2012-07, Reserve Bank of Australia. URL https://ideas.repec.org/p/rba/

rbardp/rdp2012-07.html.

Wallis, Kenneth F. (1989). “Macroeconomic forecasting: A survey.” Economic Journal, 99(394), pp.

28–61. doi:10.2307/2234203.

Wallis, Kenneth F. (1999). “Asymmetric density forecast of inflation and the Bank of England fan chart.”

National Institute Economic Review, 167, pp. 106–112. doi:10.1177/002795019916700111.

White, Halbert (1980). “A heteroskedasticity-consistent covariance matrix estimator and a direct test

for heteroskedasticity.” Econometrica, 48, pp. 817–838. doi:10.2307/1912934.

Woodroofe, Michael (1972). “Maximum likelihood estimation of a translation parameter of a truncated

distribution.” Annals of Mathematical Statistics, 43, pp. 113–122. doi:10.1214/aoms/1177692707.

36

https://doi.org/10.1016/j.jspi.2005.08.043
https://doi.org/10.21799/frbp.wp.2020.26
https://doi.org/10.1093/biomet/72.1.67
https://doi.org/10.1162/REST_a_00608
https://doi.org/10.1016/j.ijforecast.2020.09.007
https://ideas.repec.org/p/rba/rbardp/rdp2012-07.html
https://ideas.repec.org/p/rba/rbardp/rdp2012-07.html
https://doi.org/10.2307/2234203
https://doi.org/10.1177/002795019916700111
https://doi.org/10.2307/1912934
https://doi.org/10.1214/aoms/1177692707


A Online Appendix: Supplementary Results for:

Censored Density Forecasts: Production and Evaluation by
Mitchell and Weale

A.1 Estimation of skew densities

In order to explore the suitability of the two-piece t and normal distributions, the focus of the main paper,

we consider the general family of skew distribution parameterizations defined in Arellano-Valle, Gómez,

and Quintana (2005) and Rubio and Steel (2014).22 Like the two-piece normal of Fechner (1897), this

family of distributions involves joining two distributions, but not necessarily normal, with different scale

parameters σ1 and σ2 on either side of the location parameter, µ. Specifically, Arellano-Valle, Gómez,

and Quintana (2005) reparameterize these two scale parameters in terms of a common scale, σ, and a

skewness parameter, α, and define the family of distributions as:

f(yt|µ, σ, α) =
2

σ (a(α) + b(α))
f

(
yt − µ
σb(α)

)
if yt < µ (A.1)

f(yt|µ, σ, α) =
2

σ (a(α) + b(α))
f

(
yt − µ
σa(α)

)
if yt ≥ µ (A.2)

where f is a symmetric density and a(α) and b(α) are known and positive asymmetry functions. Asym-

metries are introduced when a(α) 6= b(α).

A leading specific density within this family (when a(γ) = γ, b(γ) = 1/γ, for γ > 0 and f(.) is the t

density) that we focus on in the main paper is the two-piece t distribution described by Fernandez and

Steel (1998):23

f(yt|µ, σ, γ) =
2

σ (γ + 1/γ)

Γ
(
ν+1
2

)
Γ
(
ν
2

)
(πν)

1/2

[
1 +

(yt − µ)2

γ2νσ2

]−(ν+1)/2

if yt < µ (A.3)

f(yt|µ, σ, γ) =
2

σ (γ + 1/γ)

Γ
(
ν+1
2

)
Γ
(
ν
2

)
(πν)

1/2

[
1 +

γ2(yt − µ)2

νσ2

]−(ν+1)/2

if yt ≥ µ. (A.4)

This estimates, as well as the location and scale parameters, the number of degrees of freedom of the

t-distribution.

Generalizations of (A.1)-(A.2) involve introducing additional (shape) parameters; see Rubio and Steel

(2015). Rubio and Steel’s (2015) five-parameter double two-piece distribution (DTP) uses different scale

but also different shape parameters either side of the mode, µ. The DTP family contains the original

two-piece densities as a subclass, as well as a four-parameter distribution (DTSH) that varies only the

22Arellano-Valle, Gómez, and Quintana (2005) generalize Mudholkar and Hutson (2000), who introduced the so-called
epsilon-skew-normal family of densities. This family reparameterizes Fechner (1897) so that the two-piece normal is re-
expressed in terms of an explicit skewness parameter. When this parameter equals zero, the epsilson-skew normal density
reduces to the normal density.

23This is an instance of the so-called two-piece scale (TPSC) family of densities introduced by Rubio and Steel (2015)
when a(α) = σ1/σ, b(α) = σ2/σ; σ1 and σ2 denotes the scale of each of the two distributions being joined.
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shape on each side of the mode. Rubio and Steel (2015) define the DTP as:

f(yt|µ, σ1, σ2, δ1, δ2) =
2ε

σ1
f

(
yt − µ
σ1

; δ1

)
if yt < µ (A.5)

f(yt|µ, σ1, σ2, δ1, δ2) =
2(1− ε)
σ2

f

(
yt − µ
σ2

; δ2

)
if yt ≥ µ (A.6)

where

ε =
σ1f (0; δ2)

σ1f (0; δ2) + σ2f (0; δ1)
; (A.7)

or

f(yt|µ, σ, γ, δ1, δ2) =
2

σc(γ, δ1, δ2)
f (0; δ2) f

(
yt − µ
σb(γ)

; δ1

)
if yt < µ (A.8)

f(yt|µ, σ, γ, δ1, δ2) = f (0; δ1) f

(
yt − µ
σa(γ)

; δ2

)
if yt ≥ µ (A.9)

where

c(γ, δ1, δ2) = b(γ)f (0; δ2) + a(γ)f (0; δ1) . (A.10)

Special cases of DTP include the distribution considered by Zhu and Galbraith (2010) that allows the

number of degrees of freedom in (A.3)-(A.4) to be different on each side of the mode. Note also how the

DTP includes four-parameter two-piece scale (TPSC) distributions, such as the two-piece t distribution

seen in (A.3)-(A.4), by setting δ1 = δ2 = δ, when f(.) is a t density. Rubio and Steel (2015) also consider

the subfamily of two-piece shape (TPSH) distributions obtained when σ1 = σ2 = σ in (A.5)-(A.6). This

produces distributions with different shape parameters in each direction; following Rubio and Steel (2015)

let ζ explain the difference between the shapes on either side of the mode, where δ1/δ2 = b∗(ζ)/a∗(ζ) and

{a∗(ζ), b∗(ζ)} are positive differentiable functions.

We consider five-parameter DTP and four-parameter DPSC and TPSH distributions with f(.) chosen

to be the t density and the symmetric sinh-arcsinh (SAS) distribution of Jones and Pewsey (2009),

denoted sJP with asymmetry parameter ε. The SAS distribution allows for both heavier and lighter tails

than the normal distribution, which is a special case when δ1 = δ2 = 1 and γ = 0.

As a robustness check on the results in Section 2 of the main paper, we compare the in-sample fit

of the two-piece t distribution with these other classes of distributions when fitted to the MPC GDP

forecast errors as seen in panel (a) of Figure 1. We consider both mature GDP outturns (as in Figure 1)

and second-release GDP outturns when measuring the forecast error. As in Rubio and Steel (2015), we

compare via classical information criteria (the Akaike and Bayesian information criteria: AIC and BIC)

based on the ML estimates. Estimation makes use of the sn package in R and R packages available at

http://rpubs.com/FJRubio/DTP and http://rpubs.com/FJRubio/BTV.24 For comparison purposes, we

24We note that estimation of the two-piece normal and t densities in the main paper was performed in Matlab. Results
were also cross-checked and verified with those from R using the sn and twopiece packages.
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also consider the skew normal distribution of Azzalini (1985) and the skew t distribution of Azzalini and

Capitanio (2003).25 The skew normal of Azzalini (1985) is defined by the density function

f(yt|µ, σ, α) =
2

σ
φ(
yt − µ
σ

)Φ(α
yt − µ
σ

) (A.11)

where φ and Φ denote the standard normal probability density function and distribution function, re-

spectively, and α, which regulates the skew or shape. The skew t of Azzalini and Capitanio (2003) is

defined by the density function

f(yt|µ, σ, α, ν) =
2

σ
f(
yt − µ
σ
|µ, σ, ν)F (α

yt − µ
σ

√
ν + 1

ν +
(
yt−µ
σ

)2 |µ, σ, ν + 1) (A.12)

where f and F denote the Student t density function and distribution function, respectively, with ν

degrees of freedom. Again α regulates the shape; when α = 0 the skew t reduces to the t and when

α = 0 and ν = ∞ the density reduces to the Gaussian with mean µ and standard deviation σ. And we

consider the Normal Laplace distribution of Ramierez-Cobo et al. (2010), which is the convolution of a

normal distribution and a two-piece Laplace distribution with location 0 and two parameters α and β.

The Normal Laplace density has heavier tails than the normal density.

Table A1 shows the ML parameter estimates and the AIC and BIC values for these 12 density

functions when fitted to the two-years-ahead UK GDP growth forecast error data considered in Section

2.2 and plotted in panel (a) of Figure 1. Looking across both forecast error series (defined using final

and second-release GDP outturns), we see that the two-piece t fits the data competitively relative to the

alternatives. While improvements in in-sample fit are achieved by the more flexible DTP and TPSC (with

four or five parameters), the more parsimonious (three-parameter) two-piece t is always ranked in the

top half of the 12 densities in terms of goodness of fit, according to both the AIC and the BIC. The ML

parameter estimates, across the different densities, also confirm the impression from Figure 1 and Figure

A1 (below) that asymmetries are important for UK GDP growth. There is also, consistent with results

in the main paper, evidence that allowing for fat tails improves fit. For both sets of GDP forecast errors,

the two-piece normal density (and the skew normal density of Azzalini (1985)) do not fit the data as well

as the two-piece t (and the skew t density of Azzalini and Capitanio (2003)). When using second-release

data, as in Figure A1, we also see that the skewed normal densities have divergent skew parameters, in

contrast to the skewed t densities.

25The skew t distribution of Azzalini and Capitanio (2003) has also found recent application in macroeconomics; for
example, see Adrian, Boyarchenko, and Giannone (2019).
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Table A1: Pre-pandemic UK GDP two-years-ahead forecast error: 1999q4-2018q3: ML estimates of
different skewed and fat-tailed density functions and AIC and BIC values

GDP (mature data outturns)

AIC BIC µ̂ σ̂ γ̂ or α̂ ν̂ δ̂ ζ̂
2Pt 294.57 303.90 0.03 1.01 1.30 2.51
2PN 327.28 331.94 0.90 1.35 2.13
DTP SAS 288.33 299.98 −1.13 15.45 −0.98 7.95 −0.96
DTP t 297.21 308.87 0.35 1.10 0.44 2.93 −0.08
TPSC SAS 296.06 305.38 −0.16 0.52 0.22 0.52
TPSH SAS 291.91 301.23 −0.21 0.62 0.60 −0.17

sJP 293.91 303.23 −0.22 0.56 (ε̂) −0.22 (β̂) 0.55
SN 304.15 311.14 1.46 3.00 −4.83
St 293.12 302.44 0.50 1.33 −1.20 2.75

Normal Laplace 294.58 303.90 0.65 4.76 0.62 (β̂) 0.79
N 327.28 331.94 −0.74 2.03
t 327.28 331.94 −0.74 2.03 15.78

GDP (second-release outturns)

AIC BIC µ̂ σ̂ γ̂ or α̂ ν̂ δ̂ ζ̂
2Pt 275.51 284.84 0.54 0.67 2.50 2.93
2PN 281.08 288.08 1.14 0.29 10.00
DTP SAS 271.82 283.47 −0.41 9.11 −0.95 9.13 −0.95
DTP t 276.20 287.86 0.46 0.98 0.63 26.06 −0.90
TPSC SAS 275.46 284.78 0.56 0.60 0.75 0.60
TPSH SAS 272.78 282.10 0.01 0.74 0.85 −0.39

sJP 282.32 291.65 1.77 0.02 (ε̂)− 6.64 (β̂) 1.22
SN 279.90 286.89 1.15 2.93 −311573.60
St 275.07 284.39 0.85 1.78 −6.17 3.19

Normal Laplace 275.08 284.41 0.48 5.24 0.58 (β̂) 0.40
N 319.97 324.63 −1.05 1.93
t 319.97 324.63 −1.05 1.93 12.60
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A.2 Additional Monte Carlo results for the fixed-point estimator: Perfor-
mance for different sample sizes

This set of simulations tests the performance of the censored estimator, under both LCA and LCB , in

samples of different sizes as the degree of skew varies. Comparison is made with the uncensored ML

estimator, L. T observations are drawn from a two-piece t distribution, where (ν, µ, σ, γ) = (5, 0, 1, 1.5)

and (5, 0, 1, 2.5). γ = 1.5 and γ = 2.5 correspond to moderate and high (positive) skew. We consider

T = 40, 100, 500, and 1000, noting the Bank of England’s use of just 40 observations to estimate its

forecast error densities. We focus on censoring at 100α=10 percent, also in keeping with MPC practice.

We report results based on R = 1000 replications. For γ = 2.5, we also report results for PLCj (yt, β).

We do not report results for PLCj (yt, β) when γ = 1.5, since, as will be seen, the utility of the penalized

estimators, relative to the unpenalized ones, is found to be greater in populations with high skew.
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The mean and median values and the standard deviations (across the 1000 replications) of the esti-

mates of the four parameters are shown in Table A2. We also report the proportion (averaged across

the R replications) of the T observations that, for the censored estimators, are classified as falling in the

censored region.

Not surprisingly, for large samples (T = 1000) Table A2 shows higher standard errors for the param-

eters fitted to the censored data using the fixed-point method than to the uncensored data by ML. At

the same, time, however, the results confirm that in large samples the censored estimators work well,

especially when skew is moderate (γ = 1.5) rather than extreme (γ = 2.5): under both LCA and LCB when

γ = 1.5 the mean and median values equal (to two decimal places) those in the data-generating process.26

When γ = 2.5, LCA continues to have this property but there is extra noise in the estimates for LCB , which

imposes less structure than LCA. This is seen by LCB showing deviations from the true parameter estimates

for γ. These deviations reflect a few outlying estimates, for some iterations, with the median values closer

to the true parameter values than the mean ones. Both LCA and LCB correctly place, on average across R,

10 percent of observations in the censored region with little variation even for small T .

Once the sample size drops to 100, problems with estimation of γ start to appear. This is so for LCA

but especially LCB . An increasing number of the R draws return inaccurate (high, divergent) estimates

of γ: the median parameter estimates remain closer to the true values than the mean ones.27 With LCA

there is slight evidence of bias (looking at the mean across replications) when the true γ = 1.5; but when

LCB is used instead, we can see that the mean parameter estimate for γ is contaminated by some very high

values (for these draws this is accompanied by extremely low values for σ). Essentially the divergence

problems reported by Sartori (2006) and Azzalini and Arellano-Valle (2013) emerge. The problem is worse

when γ = 2.5 than when γ = 1.5, and there is evidence of it even when the distribution is not censored

and the likelihood function L is used. These problems become more acute when the sample drops to 40

observations. At this stage, the mean estimates for γ from LCA, LCB and L all give contaminated results

due to the increased risk that for some replications the estimates for γ diverge. Use of the penalized

estimator does help in these smaller samples, when γ = 2.5 especially for LCB . While it does not prevent

the mean estimate for γ (across replications) from rising above the true value, the median estimates are

closer to the true values than when a penalty is not imposed. We therefore conclude that in very small

samples it may prove helpful, in effect, to have a prior that the data are symmetric. But even if they are

not, imposing this view via the penalized estimator improves the accuracy of the median estimates even

when the data are in fact highly skewed. The penalized censored estimators continue to place 10 percent

of the 40 observations in the censored region. In larger samples (for example, T = 1000), imposing a

26Convergence was also satisfied, with Pr converging to zero. An alternative and simpler method that would also work
in large samples would be to set fixed censor points to exclude the upper and lower 10 percent of observations. This would
allow the parameters to be estimated straightforwardly.

27We note that if we were to assume negative rather than positive skew in the data-generating process, that is, γ = 1/γ,
then the estimated γ are at risk of diverging to zero rather than infinity.
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penalty does cause γ to be underestimated slightly, and in turn σ to be overestimated. But this bias is

relatively modest, about 1 percent for LCA (for the median estimates) and about double this for LCB .
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A.3 Additional Monte Carlo results for the fixed-point estimator: Small sam-
ple confidence intervals

In this set of Monte Carlo experiments we are interested in testing whether any parameter estimates

produced when fitting the censored two-piece t to the time series of forecast errors could have been, in

reality, generated by an underlying symmetric normal distribution. Since our time series of pre-pandemic

UK forecast errors has 76 observations, we carry out our Monte Carlo test for samples of the same length,

as well as considering the smaller sample of T = 40 and larger samples, T = 500 and 1000. An issue we

have to address is that the forecast errors relate to GDP growth over multiple quarters. If (unobserved)

quarterly forecast errors are independently distributed, then errors over four quarters will follow a moving

average process. If the underlying distribution is symmetric normal, then so too will be the four-quarter

errors. Thus, in order to generate the data used in this experiment we draw T + 3 values, each denoted

by uk from a normal distribution with unit variance. We then construct T observations

εk = (uk + uk+1 + uk+2 + uk+3) /2; k = 1, ..., T (A.13)

so that εk has the same variance as uk but also follows the moving average process that arises from

analysis of four-quarter forecast errors. To each set of T observations we fit the skewed t distributions,

both uncensored and on the assumption that the distribution is fitted only to the central 90 percent of

the observations. The true parameters values are (1/ν, µ, σ, γ) = (0, 0, 1, 1).
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Table A3 shows the mean, median, and standard deviation of each parameter taken from the R = 1000

draws, together with the upper and lower 90 percent confidence limits. These are calculated by taking

the 50th and 950th values of the ordered parameter estimates across the 1000 Monte Carlo replications.

A number of things stand out from Table A3, beyond the obvious point that the fit of LCA and LCB is

much worse, with the confidence intervals wider, with small samples than with T = 1000 observations.

1/ν cannot be expected to be symmetric around its true value of zero, so a bias inevitably exists in the

small-sample estimates. A related bias appears in the estimate of σ. A low number of degrees of freedom

and a high value of σ are both ways of accommodating observations distant from the mode, so bias in one

implies a bias in the other. There is little evidence of bias in the mode, µ, since the confidence limits are

reasonably symmetric. γ appears skewed to the right, especially so for small samples and for LCB rather

than LCA; the confidence limits are asymmetric.

When the distribution is not censored the estimates for σ and γ in Table A3 are better determined than

when censor points are estimated simultaneously. This is not very surprising. But for smaller samples a

bias does appear in L’s estimates for µ. It is also worth noting that, even when the distribution is not

censored, when T = 76 an estimate of 1/0.14 = 7 degrees of freedom has a 5 percent chance of arising

from an underlying normal distribution.

When the data are censored so that the distribution is fitted to only the central 90 percent of observa-

tions, the estimated value of the number of degrees of freedom has to be 2.7 (2.2) or lower under LCA (LCB)

before one can reject, at a 90 percent significance level, the hypothesis that the underlying distribution

is normal.

There is again evidence of a higher possibility of divergence in the censored estimates of γ (and in

turn those for σ) for smaller samples as evidenced by a higher standard deviation for γ. But LCA is less

contaminated than LCB by some high values for γ. Contamination for both estimators is worse when T

drops from 76 to 40, which should be borne in mind in our out-of-sample application (Section 7). We

note that the median estimates for γ from LCA and LCB remain accurate, close to unity, even when T = 40.

But, as seen from comparison with Table 1 (in the main paper), this feature is specific to the situation

when there is no skew in the population data. Recall we found that when there is population data skew,

the median estimates for γ from LCA and LCB differ from the true value - and the penalized estimators

are likely to be preferred in such small samples. Table A3 shows that with symmetric data the penalized

estimators continue to lower the chance of divergent estimates for γ.

Overall, Table A3 shows that in small samples LCA continues to be preferred to LCB as its estimates for

the four parameters are better determined: its mean and median estimates are closer to the true values

with lower standard deviations and tighter and more symmetric confidence bands. But (even without the

population data skew considered in Table 1 in the main paper, and Table A2) there remains a chance in
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smaller samples that estimation using LCA delivers divergent values for γ. So in practice, including in the

out-of-sample application in Section 7, we recommend looking closely at the parameter estimates for fear

they involve an (economically) unappealing boundary value for γ. If the estimated value of γ diverges,

the resulting density in effect becomes a half or folded density; for an illustration of such a cliff-edged

density see Figure A1 (in this online Appendix). If estimates do diverge, based on the results in Table 1

and Table A2, we suggest use of our penalized estimator as it is found to mitigate, albeit not eradicate,

the possibility of boundary values in small samples. Moreover, in any applications when estimation does

appear to reflect divergence - with the estimates of γ (or 1/γ) rising above a threshold value of say 5

or 10 implying a half or folded density - the estimates might be rejected and model/density estimation

reconsidered.
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A.4 Censored densities fitted to MPC and FRB GDP forecast errors: Cross-
horizon and censoring at 10 percent and 30 percent results

Tables A4 and A5 report the estimated parameters of the censored and uncensored densities fitted to the

UK and US forecast error data at various forecasting horizons, pre-pandemic and including the pandemic

with censoring at 100α=10 percent and 100α=30 percent. These results are referenced in Section 5 of

the main paper.
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Table A4: Standard deviation, σ, skew, γ, and degrees of freedom, ν, of the censored and uncensored
densities fitted to the UK historical GDP forecast errors pre-pandemic and including the pandemic:
estimated parameters at different forecasting horizons (in quarters), h, with censoring at α=0.1 and
α=0.3

Pre-pandemic Incl. pandemic
N t 2PN 2Pt N t 2PN 2Pt

S.D. σ
h = 1 Uncens 1.07 1.07 1.07 1.07 - - - -

Cens 70 1.03 0.83 0.89 0.76 - - - -
Cens 90 1.08 1 1.06 1.06 - - - -

h = 5 Uncens 1.77 0.93 1.57 0.93 3.06 0.81 1.79 0.82
Cens 70 1.12 0.99 1.21 0.94 1.16 0.86 1.14 0.86
Cens 90 1.26 0.95 1.26 0.93 1.28 0.81 1.36 0.77

h = 8 Uncens 1.98 0.94 1.39 1.00 3.20 0.81 1.37 0.86
Cens 70 1.17 0.84 1.21 0.79 1.20 0.76 1.23 0.76
Cens 90 1.32 0.95 1.36 0.97 1.43 0.82 1.44 0.90

Skew γ
h = 1 Uncens 1.00 1.00 0.97 1.08 - - - -

Cens 70 1.00 1.00 0.64 0.66 - - - -
Cens 90 1.00 1.00 0.86 0.86 - - - -

h = 5 Uncens 1.00 1.00 1.42 1.11 1.00 1.00 2.25 1.18
Cens 70 1.00 1.00 1.14 1.03 1 1 1.16 1.08
Cens 90 1.00 1.00 0.99 1.05 1.00 1.00 1.16 1.14

h = 8 Uncens 1.00 1.00 1.99 1.21 1.00 1.00 3.13 1.21
Cens 70 1.00 1.00 0.90 0.87 1.00 1.00 1.01 0.99
Cens 90 1.00 1.00 1.25 1.14 1.00 1.00 1.49 1.22

dof ν
h = 1 Uncens - 1000 - 1000 - - - -

Cens 70 - 2.42 - 3.03 - - - -
Cens 90 - 9.26 - 1000 - - - -

h = 5 Uncens - 2.26 - 2.33 - 1.51 - 1.58
Cens 70 - 3.48 - 2.29 - 1.80 - 1.88
Cens 90 - 2.63 - 2.37 - 1.50 - 1.30

h = 8 Uncens - 2.01 2.39 - 1.39 - 1.55
Cens 70 - 1.40 1.22 - 1.20 - 1.18
Cens 90 - 2.10 2.17 - 1.37 - 1.78

Note: Estimated parameters of the 100α=10% (Cens 90) and 100α=30% (Cens 70) and uncensored (Uncens) densities.
Post-pandemic estimates are not available at h = 1 as the MPC chose not to report its fan chart forecasts in 2020q2.
Pre-pandemic sample (with dates referring to the outturn) is from 1998q1-2019q4 at h = 1, 1999q1-2018q3 at h = 5 and
1999q4-2018q3 at h = 8. Incl. pandemic sample (with dates referring to the outturn) is from 1998q1-2019q4 at h = 1,
1999q1-2020q3 at h = 5 and 1999q4-2020q3 at h = 8. Latest vintage GDP estimates used to define the GDP growth
outturns.
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Table A5: Standard deviation, σ, skew, γ, and degrees of freedom, ν, of the censored and uncensored
densities fitted to the US historical GDP forecast errors pre-pandemic and including the pandemic:
estimated parameters at different forecasting horizons (in quarters), h, and censoring at α=0.1 and
α=0.3

Pre-pandemic Incl. pandemic
N t 2PN 2Pt N t 2PN 2Pt

S.D. σ
h = 1 Uncens 2.17 1.91 2.11 1.83 2.27 1.73 2.57 1.64

Cens 70 1.91 1.85 1.69 1.72 1.87 1.87 1.74 1.74
Cens 90 2.14 1.59 2.07 1.51 2.17 1.64 2.14 1.52

h = 3 Uncens 2.98 2.27 2.96 2.27 3.34 2.18 3.17 2.19
Cens 70 2.46 2.48 2.49 2.21 2.47 2.24 2.53 2.24
Cens 90 2.66 2.24 2.66 2.23 2.72 2.15 2.69 2.13

h = 5 Uncens 2.88 1.95 2.87 1.94 3.25 1.90 3.20 1.89
Cens 70 2.16 2.17 2.16 2.17 2.21 2.20 2.20 2.18
Cens 90 2.45 1.90 2.46 1.86 2.47 1.88 2.51 1.89

Skew γ
h = 1 Uncens 1.00 1.00 0.82 0.81 1.00 1.00 1.23 0.83

Cens 70 1.00 1.00 0.66 0.70 1.00 1.00 0.73 0.73
Cens 90 1.00 1.00 0.78 0.77 1.00 1.00 0.82 0.80

h = 3 Uncens 1.00 1.00 1.09 1.02 1.00 1.00 1.26 1.06
Cens 70 1.00 1.00 0.90 0.93 1.00 1.00 0.94 0.93
Cens 90 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.04

h = 5 Uncens 1.00 1.00 0.97 1.03 1.00 1.00 1.14 1.07
Cens 70 1.00 1.00 1.12 1.08 1.00 1.00 1.14 1.14
Cens 90 1.00 1.00 1.01 1.05 1.00 1.00 1.07 1.08

dof ν
h = 1 Uncens - 7.78 - 1000 - 1000 - 3.47

Cens 70 - 1000 - 1000 - 1000 - 1000
Cens 90 - 2.53 - 2.59 - - 2.42

h = 3 Uncens - 4.45 - 4.48 - 3.35 - 3.41
Cens 70 - 1000 - 3.82 - 4.18 - 4.10
Cens 90 - 4.37 - 4.17 - 3.08 - 2.99

h = 5 Uncens - 3.36 - 3.34 - 2.80 - 2.79
Cens 70 - 1000 - 1000 - 1000 - 1000
Cens 90 - 2.99 - 2.70 - 2.70 - 2.85

Note: Estimated parameters of the 100α=10% (Cens 90) and 100α=30% (Cens 70) and uncensored (Uncens) densities.
Pre-pandemic sample (with dates referring to the outturn) is from 1967q1-2014q4 across h. Incl. pandemic estimates are
simulated and involve appending a single error of −20% to the pre-pandemic sample of forecast errors. Second-release GDP
estimates used to define the GDP growth outturns.
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A.5 Two-sided variant of the censored LR test of Berkowitz

Here we set out a two-sided variant of the censored LR test proposed by Berkowitz (2001). This ignores

the degree of forecast failure in both the left- and right-hand-side tails but importantly accounts for their

frequency. For expositional ease, we suppress dependence of the PITS, zt, on the forecast horizon, h.

Specifically, following Berkowitz (2001), take an inverse normal CDF transformation, Φ−1, of the

PITS to define z∗t = Φ−1(zt); and define z∗L,t = Φ−1(zL,t) and z∗U,t = Φ−1(zU,t) such that:

z∗c,t = z∗t if z∗L,t ≤ z∗t+h ≤ z∗U,t (A.14)

z∗c,t = z∗L,t if z∗t < z∗L,t (A.15)

z∗c,t = z∗U,t if z∗t > z∗U,t (A.16)

so that the log likelihood function for estimation of the mean and standard deviation, m and s, of z∗t ,

which should be (0, 1), respectively, under correct calibration, is given as:

L(m, s | z∗c,t) =
∑

z∗L,t<z
∗
c,t<z

∗
U,t

log
1

s
φ

(
z∗c,t −m

s

)
(A.17)

+
∑

z∗c,t=z
∗
L,t

log Φ

(
z∗L,t −m

s

)

+
∑

z∗c,t=z
∗
U,t

log

(
1− Φ

(
z∗U,t −m

s

))
.

Therefore, a censored (or tail) LR test statistic can be constructed as:

LRtail = −2(L(0, 1)− L(m̂, ŝ)), (A.18)

that is distributed χ2(2) under the null hypothesis that the censored density forecast is correctly calibrated

(that is, m = 0 and s = 1). This two-degrees-of-freedom variant of Berkowitz’s test (see Clements (2004))

does not test for independence in the PITS; we should not expect independence, under correct calibration,

for forecast horizons greater than one.

A.6 Fitting uncensored and censored densities: Robustness

Here we report supplementary empirical results referred to in the main body of the paper.

Figure A1 shows the uncensored two-piece t and normal densities fitted to two-years-ahead UK forecast

errors using the second-release GDP growth data as the outturn. Comparison with Figure 1, which shows

analogous densities but with outturns measured using “mature” estimates of GDP, reveals that data

revisions matter. Figure A1 indicates more skew to the forecast errors when second-release data are used

as outturns. For the two-piece normal density, the skewness parameter diverges to 102 post-pandemic.

For the two-piece t density, γ rises from 1.3 to 2.6.
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Figure A2 shows the censored two-piece t and normal densities fitted to forecast errors using the

second-release GDP growth data as the outturn. Again we see much more skew than for the corresponding

density estimates using final vintage data; cf. Figure 3. Including pandemic data, the quadratic criterion,

Pr, converges to a value of 0 but only for the two-piece t densities. For the two-piece normal densities,

despite experimentation, it did not prove possible to obtain satisfactory estimation and Pr > 0 even

as r → ∞. The estimated densities failed to meet the requirements of a BCR (that is, the probability

density of being at either censoring point should be equal); we therefore do not report them in Figure

A2.

Figure A3 reports the censored densities fitted to UK GDP growth but using a 30 percent censoring

region. This reveals yet more evidence for symmetry.

Figure A4 complements Figure 4 in the main text, by exploring the properties of the censored densities

fitted to US GDP growth errors when two simulated observations of -20% and +20% are added to the

real FRB forecast error data. As anticipated, when the outliers fall in both tails, the uncensored density

is more Gaussian and there is less evidence for skew than in Figure 4. Recall that the implication of the

modest skew in Figure 4 is to allow the downside uncertainties to exceed the upside uncertainties.

Figure A5 illustrates the property, reported in the main paper: that the skew parameter of the

censored 2PN often diverges when fitted recursively (out-of-sample) to the UK GDP errors. In contrast,

the fat tails of the 2Pt prevent this from happening.

Figure A6, as referenced in the main paper, shows that the use of mature (specifically, 2018q4-vintage)

GDP estimates rather than second-release GDP estimates to define the “outturn” has little effect on either

the shape of the forecast error histograms or the fitted densities in the US; cf. Figure 2 (in the main

paper) and A6.
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(a) Pre-pandemic

(b) Including pandemic

Figure A1: UK GDP Growth (two-years-ahead): MPC Forecast Error Histogram and Uncensored Two-
Piece Normal and t Densities and Their Parameters

Note: Second-release GDP estimates used to define the “outturn.” Pre-pandemic: 76 outturns used from 1999q4-2018q3.
Including pandemic: 84 observations used from 1999q4-2020q3. The darkest shaded green region indicates the 30% best
critical region of the 2Pt; the next band extends this to 60% with the remaining region of the density in the palest shade.
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(a) Pre-pandemic

(b) Including pandemic

Figure A2: UK GDP Growth (two-years-ahead): Forecast Error Histogram and 10% Censored Two-Piece
Normal and t Densities and Their Parameters Using LCA

Note: Second-release GDP estimates used to define the “outturn.” Pre-pandemic: 76 outturns used from 1999q4-2018q3.
Including pandemic: 84 observations used from 1999q4-2020q3. The darkest shaded green region indicates the 30% best
critical region of the 2Pt; the next band extends this to 60% with the palest shade extending to 90%. Blue 2PN density
not shown post-pandemic as the fixed-point estimator did not converge.
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Figure A3: UK GDP Growth (two-years-ahead): Forecast Error Histogram and 30% Censored Two-Piece
Normal and t Densities Using LCA Updated to 2020q3

Note: 84 including the pandemic forecast error observations used, 1999q4-2020q3. Mature GDP estimates used to define
the “outturn.” The shaded green region indicates the 70% best critical region of the 2Pt
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(a) Uncensored
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(b) 30% Censored

Figure A4: Simulated Post-pandemic US GDP Growth (one-year-ahead): FRB Forecast Error Histogram
and Uncensored and 30% Censored Two-Piece Normal and t Densities Using LCA

Note: Second-release GDP estimates used to define the “outturn.” Including pandemic sample from 1974q2-2014q4 plus
two artificial observations of -20%. and +20%. The darkest shaded green region indicates the 70% best critical region of
the 2Pt.
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Figure A5: UK GDP Growth (two-years-ahead): Real-time Estimates of the Standard Deviation and
Skew Parameters Using the 10% Censored 2PN Density
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200

400

600 γ: Censored 2PN 

Note: Second-release data used to define GDP outturns. 84 including the pandemic forecast error observations used,

1999q4-2020q3. Dates refer to the target, with the forecast made two years previously.

Figure A6: US GDP growth (one-year-ahead): FRB Forecast Error Histogram and Uncensored Two-Piece
Normal and t Densities Using Mature Outturns

Note: 2018q4-vintage GDP estimates used to define the mature outturns for GDP growth. Forecast error sample is 1974q2-

2014q4 (pre-pandemic). The darkest shaded green region indicates the 70% best critical region of the 2Pt.
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A.6.1 Censored densities: Use of LCB

Figure A7 shows the consequences of fitting LCB rather than LCA to the UK (two-years-ahead) GDP

forecast errors, with mature data used to define GDP outturns. The quadratic criterion, Pr, converges

to a value of 0. Recall that LCA distinguishes the lower from the upper tail, with each having its own

probability. This means that the process of fitting is likely to place some observations in each tail rather

than locating all the censored observations in only one of the tails as in LCB - our focus here. The expected

number of observations in each tail depends on the skew parameter.

Figure A7 indicates both less evidence for asymmetry relative to LCA (Figure 3) and that the nature

of the observed asymmetry for the 2Pt has switched from right to left skew. This is because all of the

censored observations associated with the global financial crisis and the pandemic are now in the left

tail. As a result, the distribution is more symmetric because no attempt is made to place any censored

observations in the right-hand tail, as in Figure 3 using LCA. We also find, however, that even when

no effort is made to accommodate the recession (given that the recessionary data are censored), a low

number of degrees of freedom is estimated.

A23



-10 -8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5
Two-piece t (2Pt) 

__

 Param.   
  = 1.70 
  = -0.82
  = 0.79 
  = 0.67 

__ Two-piece normal (2PN) 
 Param.   
  = -0.72
  = 1.18 
  = 0.82

(a) Pre-pandemic

(b) Including pandemic

Figure A7: UK GDP Growth (two-years-ahead): MPC Forecast Error Histogram and 10% Censored
Two-Piece Normal and t Densities and Their Parameters Using LCB

Note: Mature GDP estimates used to define the “outturn.” Pre-pandemic: 76 outturns used from 1999q4-2018q3. Including
pandemic: 84 observations used from 1999q4-2020q3. The darkest shaded green region indicates the 30% best critical region
of the 2Pt; the next band extends this to 60% with the palest shade extending to 90%.
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A.6.2 Densities using specific windows of data

Figures A8-A9 follow in the spirit of practice at the Bank of England by plotting some illustrative

(uncensored) densities fitted to specific (rolling) samples of UK GDP growth forecast error data.

We select the sample period carefully/subjectively, aware of the effects of the global financial crisis in

2008 on the GDP forecast errors. Accordingly, Figure A8 considers a sample of MPC (two-years-ahead)

forecast error data before the global financial crisis, while Figure A9 considers a sample after the global

financial crisis but before the pandemic. Experimentation revealed that the choice of estimation window

for these uncensored densities could have a large effect on the shape of the densities fitted to the GDP

forecast errors. The dates referenced in the figures refer to outturns, with the forecasts made two years

previously.
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Figure A8: UK GDP Growth (two-years-ahead): Forecast Error Histogram and Uncensored Two-Piece
Normal and t Densities and Their Parameters Fitted to Error Data from 1999q4-2008q2

Figure A9: UK GDP Growth (two-years-ahead): Forecast Error Histogram and Uncensored Two-Piece
Normal and t Densities and Their Parameters Fitted to Error Data from 2011q2-2018q3
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