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1 Introduction

Interest rate data are an important element of macroeconomic forecasting. Projections of

future interest rates are not only an important product themselves, but also typically matter

for forecasting other macroeconomic and financial variables. A popular class of forecasting

models is linear vector autoregressions (VARs) that include shorter- and longer-term interest

rates. However, in a number of economies, at least shorter-term interest rates have now been

stuck for years at or near their effective lower bound (ELB), with longer-term rates drifting

toward the constraint as well. In such an environment, linear forecasting models that ignore

the ELB constraint on nominal interest rates can be problematic along various dimensions.

For concreteness, we consider the case of the US, where the Federal Open Market Com-

mittee (FOMC) has set the target range for the federal funds rate no lower than 0-25 basis

points. The Committee maintained this target range over the seven-year stretch from De-

cember 2008 through December 2015, after the Great Recession, and has again maintained

this target range since March 2020, when the COVID-19 pandemic initiated a recession,

and indicated an intention to maintain the range for an extended period. Considering other

economies, the ELB may even be a bit below zero, with several central banks pursuiing

so-called negative interest rate policies (NIRP), albeit still at levels close to zero.1 Similar to

the US experience, policy rates observed under NIRP so far appear constrained to fall much

below zero.

In such an environment, a fundamental challenge for forecasting models is to appropri-

ately capture the existence of an ELB on interest rates and the resulting asymmetries in

predictive densities not only for interest rates, but also likely other economic variables. The

likelihood of a binding ELB may also affect economic dynamics and co-movements between

1For example, the Swiss National Bank is targeting a level of −75 basis points for its policy rate, while
the European Central Bank has maintained a deposit rate of −50 basis points since September 2019, the
culmination of a series of steps starting in December 2011 to gradually lower the rate from 25 basis points.
The repo rate of the Swedish Riksbank has been at or below 25 basis points since October 2014, bottoming
out at −50 basis points from February 2016 to January 2019, and remaining at 0 through 2020. One of the
most extensive episodes of monetary policy near the ELB has occurred in Japan, where policy rates have
been near zero since 2008, with the current policy rate at −10 basis points since 2016.
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different variables more broadly. At a mechanical level, the existence of an ELB calls for

treating nominal interest rates as variables whose observations are censored at their lower

bound.2 So far the literature has discussed a number of potential remedies to ELB com-

plications, in some cases taking a short-cut that avoids dealing with censoring. From a

macroeconomic perspective, Swanson and Williams (2014) have argued that it may be suf-

ficient to track longer-term nominal interest rates, as long as their dynamics have remained

unaffected by a binding ELB on shorter-term rates, and this has been done by, for example,

Debortoli, Gali, and Gambetti (2019). However, by 2020, even 10-year US Treasury yields

had fallen below 1 percent, with 5-year yields hovering just above 25 basis points.

In contrast, the finance literature has derived important implications of the ELB for the

entire term structure of interest rates. Following the seminal work of Black (1995), the term

structure literature views the ELB as a censoring constraint on nominal interest rates (as we

do), from which no-arbitrage restrictions are derived for yields of all maturities (which we do

not). The resulting restrictions are, however, non-trivial and have mostly been implemented

for models with state dynamics that are affine, homoskedastic, and time-invariant; see, for

example, Christensen and Rudebusch (2015), Krippner (2015), Bauer and Rudebusch (2016),

and Wu and Xia (2016).3

An upshot of the term structure literature is the availability of shadow-rate estimates,

such as those regularly updated by Wu and Xia (2016). Indeed, one possible choice for applied

work is to plug in these shadow-rate estimates as data points for the nominal short-term

interest rate during an ELB episode. However, while convenient, this plug-in approach risks

a generated regressor problem that could be substantial, as argued by, for example, Krippner

(2020). Mavroeidis (2020) notes that a plug-in approach rules out consistent estimation and

valid inference with a VAR, due to estimation error in the shadow rate that is often highly

2Alternatively, a bounded process for the nominal interest rate could be specified as in Bäurle, et al. (2016),
Chan and Strachan (2014), Iwata and Wu (2006), and Nakajima (2011) without a role for an uncensored
state variable to drive the nominal interest rate.

3Kim and Singleton (2012) also consider a quadratic-Gaussian specification with a shadow rate and find
that it fits data for Japan from 1995 to 2008 as well as a shadow-rate specification in the tradition of Black
(1995).
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autocorrelated and not asymptotically negligible. Shadow-rate estimates are model-specific

objects, fitted to best capture the dynamics of observed data through the lens of the model,

and can be quite sensitive to model choices (Christensen and Rudebusch (2015); Krippner

(2020)). An obvious remedy to these considerations is to integrate the shadow-rate inference

into the forecasting model.

In this paper, we develop a shadow-rate approach for accommodating the ELB in macroe-

conomic VARs commonly used in forecasting. To do so, we extend the unobserved compo-

nents model of Johannsen and Mertens (2021) to the general VAR setting. To handle the

ELB on interest rates, we model observed rates as censored observations of a latent shadow-

rate process in an otherwise standard VAR setup. The shadow rates are assumed to be

equal to observed rates when above the ELB. Our approach is made feasible by the develop-

ment of a shadow rate algorithm more computationally efficient than that of Johannsen and

Mertens (2021). In particular, we use a sequential procedure, which is embedded in a Markov

chain Monte Carlo (MCMC) sampler, to generate posterior draws from the latent shadow

rate process that is computationally much more efficient than the rejection sampling used

by Johannsen and Mertens (2021). We apply our shadow-rate approach to a medium-scale

Bayesian VAR (BVAR) with stochastic volatility that has already been shown to generate

competitive forecasts when ignoring the ELB (e.g., Carriero, Clark, and Marcellino (2019)).4

In our results, forecasts for interest rates obtained from a shadow-rate VAR for the US

since 2009 are clearly superior, in terms of both point and density forecasts, to predictions

from a standard VAR that ignores the ELB. These interest rates include not only the federal

funds rate but also longer-term bond yields. For other indicators of financial conditions and

measures of economic activity and inflation, the accuracy of forecasts from our shadow-rate

specification is on par with a standard VAR that ignores the ELB. Overall, our shadow-rate

4Apart from modeling interest rates at the ELB treatment, our setup follows Carriero, Clark, and Mar-
cellino (2019), who describe efficient MCMC methods for the estimation of a VAR with stochastic shock
volatilities when applied to a larger variable vector as in our application. Other studies documenting the
relevance of heteroskedasticity in VARs are Clark (2011), D’Agostino, Gambetti, and Giannone (2013), Clark
and Ravazzolo (2015), and Chan and Eisenstat (2018).
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specification successfully addresses the ELB and improves interest rate forecasts without

harming a standard VAR’s ability to forecast a range of other variables. In this respect, our

proposed approach could be seen as a helpful tool for preserving the practical value of VARs

for forecasting. In practical settings, presented with forecasts from standard VARs in which

interest rates fall below the ELB, consumers of forecasts could question the reliability or

plausibility of the forecasts of the other variables of interest. To these consumers, forecasts

of macroeconomic variables from a shadow-rate VAR that obeys the ELB could be seen as

more reliable or plausible even if their historical accuracy was no greater than that achieved

by a standard VAR ignoring the ELB.

As a simpler alternative to our shadow-rate VAR, a researcher might be interested in

estimating a standard VAR and merely truncating its predictive densities for nominal interest

rates to capture the ELB.5 Indeed, in terms of average forecast accuracy for the 2009-2020

period, we find important benefits for federal funds forecasts from such an approach. But,

when the policy rate is at the ELB, such an approach tends to place non-negligible odds on

an imminent departure from the bound at every period, which has not been borne out by

the relatively long-lived ELB episode seen in the US after 2008 (and other countries outside

our sample, as well). Moreover, in average forecast accuracy, this approach does not improve

the accuracy of forecasts of other interest rates. In addition, we compare forecasts from our

shadow-rate VAR against those obtained from the aforementioned plug-in approach, where

external shadow-rate estimates, like those from Wu and Xia (2016) or Krippner (2013, 2015),

are used as data, in place of the actual short-term interest rate, in an otherwise standard

VAR. As reported below, we find consistent benefits for point and density forecasting from

using the shadow-rate VAR across a wide range of variables.

To relate our approach to other shadow-rate work, we share with the term structure

literature on shadow-rate models the approach of modeling nominal interest rates as censored

5In this truncated VAR, forecasts for other variables are also affected by the truncation of predictive
densities for nominal interest rates through their effects in dynamic simulations of future values of all variables
included in the VAR system.
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variables, but we do not enforce any specific no-arbitrage (or other structural) restrictions.

As such, our approach is part of the literature that uses VARs (or other reduced-form

models) to derive forecasts and expectational errors of financial and economic variables

without imposing the restrictions of a specific structural model (such as an affine term

structure or DSGE model). Should the data satisfy such restrictions, they will also be

embodied in estimates derived from a more generic reduced-form model. The potential loss

in the efficiency of forecasts that do not expressively enforce such restrictions can be offset

by a gain in robustness obtained from not imposing restrictions that are false. In fact, as

argued by Joslin, Le, and Singleton (2013), the possible gains for forecasting from imposing

restrictions from the true term structure model may be small. Moreover, as in Johannsen

and Mertens (2021), economic forecasters may be interested in using time series models that

allow for features, such as time-varying parameters and stochastic volatilities, that may be

harder to embed in a formal no-arbitrage model.

In the context of structural VAR models (SVARs), Mavroeidis (2020) and Aruoba, et al.

(2021) consider shadow-rate approaches to identify and estimate impulse responses to mon-

etary policy shocks. Mavroeidis (2020) discusses various specification choices for the under-

lying reduced-form VAR model, similar to some that we also evaluate. In contrast, Aruoba,

et al. (2021) limit attention to settings where VAR forecasts depend on lagged actual rates,

but not lagged shadow rates.6 We differ from these studies in focusing on the implementation

of the shadow-rate approach in a reduced-form Bayesian VAR (with stochastic volatility),

and we evaluate its application to a medium-scale forecasting problem.7 To focus on this

6In Aruoba, et al. (2021), the shadow rate arises only contemporaneously when the VAR vector is shocked.
Similarly, Iwata and Wu (2006), Berg (2017), and Chan and Strachan (2014) consider only censoring of the
VAR’s left-hand side variables, without tracking the underlying, uncensored shadow rate as a potential
predictor. The inclusion of lagged shadow rates as VAR predictors could, however, be potentially relevant as
a means of tracking make-up policies at the ELB, as discussed by, among others, Reifschneider and Williams
(2000), Gust, et al. (2017), and Billi (2020).

7Johannsen and Mertens (2021) provide an out-of-sample forecast evaluation for short- and long-term
nominal interest rates in a model smaller than our VARs, and find their unobserved components shadow-rate
model to be competitive with the no-arbitrage model of Wu and Xia (2016), but do not consider forecasts
of other variables. Gonzalez-Astudillo and Laforte (2020) embed a shadow-rate model in an unobserved
components model and report improved point forecasts for economic and financial variables from the shadow-
rate approach.
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question, we abstract from uncertainty and possible drift in the level of the ELB, which

appears to be a reasonable approach at least in the context of the US.8

The remainder of this paper is structured as follows: Section 2 describes the modeling

and estimation of our shadow-rate VARs. Section 3 details the data used in our empirical

application. Section 4 presents shadow-rate estimates and resulting interest rate projections.

Section 5 provides a forecast evaluation, and Section 6 concludes.

2 Shadow-rate VARs

This section contrasts our shadow-rate approach with a conventional VAR, as well as related

alternatives. Throughout, we take the value of the lower bound, denoted ELB, as a given

and known constant. For brevity, we use the singular to refer to “the” nominal interest

rate, it, and its associated shadow rate, st. The framework is easily extended to the cases

where the ELB is binding for Ns interest rates of multiple maturities, which might arise, for

example, in the case of aggressive forward guidance or yield curve control.

A central element of our approach is to relate actual and shadow rates via a censoring

equation known from Black (1995):

it = max (ELB, st). (1)

As in the no-arbitrage literature on the term structure of interest rates (surveyed in Sec-

tion 1), the censoring function (1) implies that the shadow rate is observed and equal to

the actual interest rate when the latter is above the ELB.9 When the ELB is binding, so

8In our empirical application on US data, we consider the ELB to have a constant and known value of
25 basis points, consistent with other studies, such as Bauer and Rudebusch (2016), Wu and Xia (2016),
and Johannsen and Mertens (2021). Considering the euro area, for example, Wu and Xia (2020) model and
estimate a stochastic downward drift in the ELB level.

9The property that the shadow rate is identical to the actual rate when above the ELB makes our approach
based on Black (1995) distinct from others, like Lombardi and Zhu (2018), that define shadow rates more
broadly as a common factor of interest rates and possibly other variables intended to capture the stance of
monetary policy.
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that it = ELB, the shadow rate is a latent variable that can only take values below (or

equal to) ELB, which will inform our inference about st. Before turning to our VAR-based

specification of a process for st, we describe the conventional VAR approach.

2.1 Conventional VAR

A conventional VAR is a linear model for the evolution of a vector of observed data, yt.

Omitting intercepts, we have the following system of Ny equations for a VAR with p lags:

yt =

p∑
j=1

Aj yt−j + vt , with vt ∼ N(0,Σt). (2)

Anticipating our subsequent application, we assume time-invariant transition matrices, Aj,

but allow for time-varying shock volatilities, Σt, as in Clark (2011) and Carriero, Clark, and

Marcellino (2019).10 However, at this stage the system could also be represented more gen-

erally as a time-varying parameter VAR with stochastic volatility in the tradition of Cogley

and Sargent (2005), Primiceri (2005), and Cogley, Primiceri, and Sargent (2010). Critically,

VAR errors are typically assumed to have a symmetric distribution with unbounded support.

When yt includes the nominal interest rate, it, the resulting predictive densities will fail to

incorporate the effects of the effective lower bound, with particularly detrimental effect when

it is close to ELB. As a special case of (2), consider a random walk process for the nominal

interest rate, it = it−1+vt.
11 When it = ELB, the k-period-ahead point forecast still satisfies

the ELB, since Etit+k = ELB. But the associated density forecasts have 50 percent of their

mass below ELB as the linear model ignores the ELB constraint.

10In our empirical application, we follow Carriero, Clark, and Marcellino (2019) and assume that vt =
A−10 Λ−0.5t εt, where A0 is a lower unit-triangular matrix, Λt is a diagonal matrix, and the vector of its
diagonal elements is denoted λt, with log λt = log λt−1 + ηt, ηt ∼ N(0,Φ), and εt ∼ N(0, I). Other forms of
heteroskedasticity could also be specified.

11The random walk for it is a special case of the VAR in (2) with yt = it, p = 1, A1 = 1, and Aj = 0
∀ i > 1.
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2.2 Truncated VAR

An applied fix to the ELB problem could be to estimate a standard VAR that ignores the

ELB at the estimation stage, but then truncate the predictive densities for interest rates in

the simulation stage. This approach is adopted by, for example, Schorfheide and Song (2020)

in what they refer to as a poor man’s version of the shadow-rate approach. We include this

truncated VAR setup in our model evaluation.

When the ELB binds, the truncated VAR has a tendency to place substantial odds on a

subsequent rise in it above the ELB. To see this, consider again the special case of a random-

walk model for it. In this case, a forecast jump-off with it = ELB leads to a heavily skewed

predictive density that combines a point mass at ELB and a truncated normal distribution

for values above the bound. At the one-step-ahead horizon, the odds of the nominal interest

rate rising above the ELB are 50 percent (and increasing for longer horizons).12 The resulting

tendency to expect an imminent departure from the ELB contrasts with the shadow-rate

VAR that is described next. In the basic version of the shadow-rate approach, the VAR

vector includes the shadow rate, st, instead of the actual interest rate, it, and with st < ELB,

predictions of future interest rates will need to see projections of st rise above the ELB to

expect the same for it.

2.3 Shadow-rate VAR

The shadow-rate approach does not posit a VAR for the vector of observed variables, yt,

which contains the actual interest rate, it. Instead, a VAR is posited for a hypothetical data

vector, zt, that is identical to yt except for replacing it with st. Without loss of generality,

partition yt in a vector of Nx = Ny −Ns other variables, xt, that have unbounded support,

12While the probability of st+k > ELB remains at 50 percent at all horizons k > 0, the odds of it+k > ELB
are increasing with k, as the truncation it+i = max (st+i, ELB) is imposed at every step i = 1, 2, . . . , k.
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and the nominal interest rate it with xt ordered on top:

yt =

xt
it

 and let zt =

xt
st

 with it = max (ELB, st) . (3)

In the shadow-rate VAR approach we posit VAR dynamics for the partially latent vector

zt.
13 Analogously to (2) we have:

zt =

p∑
j=1

Aj zt−j + vt , with vt ∼ N(0,Σt). (4)

The shadow-rate VAR system is a non-linear state space model that consists of the kinked

measurement equation (3) and the linear state evolution described by the VAR in (4).14

Considering a standard VAR, Bernanke and Blinder (1992) proposed interpreting the

policy rate equation of the VAR as a feedback rule that describes monetary policy.15 In

a similar spirit, the shadow-rate equation of the VAR model in (4) can be thought of as

embedding a monetary policy reaction function that relates the shadow rate to the variables

included in the VAR (4).16 The actual policy rate follows the same reaction function, except

that the actual rate is constrained to not fall below the ELB. As a result, the policy pre-

scriptions from the model — evident in out-of-sample forecasts — obey the ELB on actual

policy rates. In contrast, in a standard VAR ignoring the ELB, the implied reaction function

relates the actual policy rate to the model’s variables and allows the reaction function to

prescribe a policy rate below the ELB.

Researchers might also be interested in allowing for potential time variation in parameters

of the VAR. For example, in (4), VAR residuals have time-varying volatility. We leave

13The extension to higher-order systems is straightforward and described in Appendix A.
14In addition, the shadow-rate VAR system includes any state equations needed to track parameter drift,

such as the time-varying volatilities embedded in Σt in the case of our application.
15The idea of capturing the systematic behavior of monetary policy by the policy rate equation of a VAR

has spawned a rich literature, including Christiano, Eichenbaum, and Evans (1996, 1999), and Rotemberg
and Woodford (1997).

16Using a smaller model in an unobserved components form, Johannsen and Mertens (2021) identify
monetary policy shocks from surprises to the shadow rate, using short-run restrictions.
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potential extensions to time variation in the VAR’s regression coefficients, Aj, to future work.

Identification of time-varying slope coefficients may become an issue since the shadow-rate

components of zt are latent when the ELB binds. Moreover, as noted by Mavroeidis (2020),

the constant-parameter version of (4) is consistent with work by Swanson and Williams

(2014), Debortoli, Gali, and Gambetti (2019), and Wu and Zhang (2019) that sees monetary

policy as unconstrained by the ELB (for example, through the use of unconventional policies)

so that economic dynamics remain unaffected by the ELB.

In reduced form, our shadow-rate VAR corresponds to what Mavroeidis (2020) refers to

as “censored SVAR (CSVAR).” The truncated VAR corresponds to the reduced form of a

“kinked VAR” in the terminology of Mavroeidis (2020), which is also used by Aruoba, et al.

(2021). However, as discussed above, our implementation of the truncated VAR consciously

disregards the implications of censoring for estimation of the VAR parameters, while the

shadow-rate VAR explicitly includes interest rate censoring.

2.4 Estimation and forecasting

Each of our models is estimated with an MCMC sampler, based on the methods of Carriero,

Clark, and Marcellino (2019) for large BVAR-SV models, with details provided therein. As

in their work, we use a Minnesota prior for the VAR coefficients Aj and follow their other

choices for priors as far as applicable, too.17 Throughout, we use p = 12 lags in a monthly

data set, which is described in further detail in Section 3. Here we briefly explain the

algorithm adjustments needed to handle the shadow rate as a latent process whose posterior

is truncated from above when the ELB binds.

Provided that data on st and thus zt were always observed, estimation of the shadow-

17All VAR coefficients, Aj , have independent normal priors; all are centered around means of zero, except
for the first-order own lags of certain variables as listed in Table 1. As usual, different degrees of shrinkage
are applied to own- and cross-lag coefficients. Prior variances of the jth-order own lag are set to θ1/j

θ4 .
The cross-lag of the coefficient on variable m in equation n has prior variance equal to θ1/j

θ4 · θ2 · σ̂2
n/σ̂

2
m.

The intercept of equation n has prior variance θ3 · σ̂2
n. In all of these settings, σ̂2

n is the OLS estimate of the
residual variance of variable n in an AR(1) estimated over the entire sample. The shrinkage parameters are
θ1 = 0.05, θ2 = 0.5, θ3 = 100, θ4 = 2, and θ5 = 1.
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rate VAR in (4) would be straightforward to do with existing Bayesian MCMC methods for

VARs.18 However, when the data include observations for which the ELB is binding, not

only does st become a latent variable, but it is also subject to the constraint that st ≤ ELB

when it = ELB.

The shadow-rate VAR system consisting of (3) and (4) belongs to a class of condition-

ally Gaussian unobserved components models, for which Johannsen and Mertens (2021)

have derived a generic shadow-rate sampling approach that can be nested inside an other-

wise standard MCMC sampler for the VAR estimation. The Johannsen-Mertens approach

employs the conditionally linear, Gaussian structure of the model to derive a truncated

normal posterior for the vector of unobserved shadow rates in the system, given draws of

other model parameters, such as the VAR coefficients Aj, and the stochastic volatilities cap-

tured by Σt.
19 Crucially, this truncated normal posterior pertains to the entire trajectory

of unobserved shadow rates (or the ensemble of trajectories in the case of multiple ELB

periods), necessitating draws from a multivariate truncated normal. Johannsen and Mertens

(2021) successfully employ rejection sampling to generate joint draws from this multivari-

ate shadow-rate posterior. However, in more general applications, rejection sampling can

become computationally tedious and highly inefficient.20

Specifically, consider the following setup for the shadow-rate VAR given by (3) and (4):

Values for the VAR coefficients {Aj}pj=1 and error variances {Σt}Tt=1 are given and the data

for {xt}Tt=1 are known. We further assume that at t = 1, p lags of the data for xt are known,

18General textbook treatment is provided in, for example, Koop (2003) and Canova (2007). For the case of
a medium-scale system with stochastic volatilities in the VAR residuals, as used in our application described
further below, efficient methods are described by Carriero, Clark, and Marcellino (2019).

19For the remainder of this section, references to the shadow-rate posterior are understood as pointing to
the posterior distribution of shadow rates conditional on other model parameters and other latent states,
such as the sequence of the time-varying variance of covariance matrices for the residuals, {Σt}Tt=1.

20For example, in an application like ours with monthly data for the US covering the years 2009 through
2015, the shadow-rate posterior is a multivariate truncated normal with (at least) 72 elements, necessitating
a rejection whenever a single element out of these 72 should lie above the ELB. For illustrative purposes,
consider the case where the shadow rate draws were iid with an individual probability of being below ELB
of π = 0.95. The probability of all 72 draws lying below the ELB is then merely 0.9572 = 0.02. Of course,
in reality, we can expect positive serial correlation among adjacent shadow rates, but not every element’s
probability of falling below the ELB need be as high as 0.95, either.
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and that the initial p lags of the shadow-rate vector, s0, s−1, . . ., s−p+1, are known.21

The shadow-rate st is unknown at least for some t.22 For ease of notation, we normalize

time subscripts so that the first time the ELB is binding occurs at t = 1. In addition,

denote the last ELB observation by T ∗ ≤ T (where T is the length of the data sample),

so that st is unknown for 1 ≤ t ≤ T ∗.23 For simplicity we refer to the entire sequence

{st}T
∗

t=1 as “unobserved,” which corresponds to the case of a single ELB episode. However,

the procedures described below also apply when multiple ELB episodes occur between t = 1

and T ∗, so that only some, but not all, values of st in this window are unobserved. In

addition, we define the vector ȳt that contains the observed data except for observations of

the actual interest rate at the ELB; we have ȳt = xt when the ELB is binding, and ȳt = [x′t s
′
t]
′

otherwise. As noted above, the vector of all observed variables is yt.

For ease of reference, we collect all unobserved shadow rates in a vector S and all obser-

vations of ȳt in a vector Ȳ , and observations of yt in a vector Y :24

S =



sT ∗

sT ∗−1

...

s2

s1


, and Ȳ =



ȳT

ȳT−1
...

ȳ0

ȳ−p+1


, and Y =



yT

yT−1
...

y0

y−p+1


. (5)

The task of the shadow-rate sampler is then to sample S |Y , which includes the information

that S ≤ ELB (where the inequality is element-wise). Following Johannsen and Mertens

(2021), the shadow-rate sampler builds on solving the “missing value” problem of charac-

terizing S | Ȳ . The missing-value problem does not condition on information that the ELB

21Assuming that the ELB has not been binding for t < 1, we have observations on st = it for t =
0,−1, . . . ,−p+ 1.

22Recall that the shadow rate is known (and identical to the actual rate) when it > ELB.
23Using more general notation, we could denote the time index of the first observation with a binding ELB

by T0 + 1, and consider the setup laid out here as normalizing the time index at T0 = 0.
24The vector S is intended to capture only unobserved shadow rates. In the case of a single ELB episode

lasting from t = 1 through T ∗, S consists of the entire sequence {st}T
∗

t=1. In the case of multiple ELB
episodes, observations where st = it > ELB are excluded from entering S.
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has been binding for certain observations, and thus does not impose S ≤ ELB. As shown

in Johannsen and Mertens (2021), the linear structure of the model and its Gaussian error

distribution results in a posterior of the missing-value problem that is a multivariate nor-

mal, with the solution of the shadow-rate sampler being given by a corresponding truncated

multivariate normal:25

S | Ȳ ∼ N (µ,Ω) (6)

⇒ S |Y ∼ TN (µ,Ω,−∞, ELB) . (7)

The moments µ and Ω can be recursively computed using a standard Kalman smoother,

and draws can be generated via a corresponding smoothing sampler.26 Our paper extends

the Johannsen-Mertens approach to a generic VAR with details provided in Appendix A.

A further contribution of our paper is the implementation of the shadow-rate sampler via

Gibbs sampling, following Geweke (1991), and adapted to the variance-covariance structure

of the VAR(p) case, rather than the rejection sampling employed by Johannsen and Mertens

(2021). Depending on parameter values, a (well-known) issue with rejection sampling from

the truncated normal is a possibly low acceptance rate. In our case, the acceptance proba-

bility in sampling from (7) critically depends on VAR parameters and the observed data for

macroeconomic and financial variables (other than the federal funds rate). As reported fur-

ther below, when VAR parameters are drawn from the eventual posterior of our shadow-rate

VAR, the acceptance probability that draws from the missing-value problem will lie below

the ELB is fairly high. However, this need not be the case in general, and does not hold,

for example, when our VAR is estimated while treating observations for the federal funds

rate as missing (rather than censored) data when the ELB binds. Our adaptation of the

25The notation S ∼ TN(µ,Ω, a, b) denotes a truncated multivariate normal distribution for the random
vector S, with typical elements sj , where a ≤ sj ≤ b ∀ j, and where µ and Ω are the mean vector and
variance-covariance matrix of the underlying normal distribution.

26Alternatively, the moments µ and Ω could be computed using the sparse methods of Chan and Jeliazkov
(2009).
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Gibbs sampling approach of Geweke (1991) to the VAR(p) case, with details described in

Appendix A, provides a more efficient solution to the shadow-rate sampling problem.

In out-of-sample forecasting, for every model considered (standard/truncated/shadow

rate), we simulate draws from the predictive density of yt+k at forecast origin t by recursive

simulations. In each case, to generate draws from the h-step-ahead density, VAR residuals,

vt+k, are drawn for k = 1, 2 . . . , h.27 In the case of the standard VAR, conditional on

current and lagged data for yt, the simulation is standard and iterates over (2). For the

truncated VAR, the iteration also proceeds using (2), but applies the censoring function (1)

to predictions for interest rates at every step of the forecast simulation.28 In contrast, for

the shadow-rate VAR, simulation of the predictive densities jumps off MCMC draws for st,

st−1, . . . st−p+1 that are used to initialize recursions over (4). In the case of the baseline

shadow-rate VAR, censoring of predicted interest rates is applied only at the level of the

measurement equation (1), while uncensored draws of lagged shadow rates are fed into the

VAR equation (4) to simulate subsequent predictions of yt+k.

3 Data

Our data set consists of monthly observations for 18 macroeconomic and financial variables

for the sample 1959:03 to 2020:09, taken from the October 2020 vintage of the FRED-MD

database maintained by the Federal Reserve Bank of St. Louis. The variables and their

transformations to logs or log-differences are listed in Table 1. Reflecting the raw sample,

transformations, and lag specification, the sample for model estimation always begins with

1960:04. Critically, the data set includes the federal funds rate, which was constrained by

the ELB from late 2008 through late 2015, and has been again starting in March 2020.

27As described in, for example, Carriero, Clark, and Marcellino (2019), draws from vt+k ∼ N(0,Σt+k)
are conditioned on an MCMC draw of the underlying model parameters and SV states and involve forward
simulation of the SV processes.

28In our application, there are three interest rate variables: the federal funds rate, plus nominal yields on
5- and 10-year Treasury bonds. Censoring is applied to predictions of all three of them in the case of the
truncated VAR as well as the shadow-rate VAR.
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In addition to the federal funds rate, our data set contains two longer-term interest rates,

measuring the yields on Treasury bonds with maturities of 5 and 10 years. Data for the

federal funds rate and these two longer-term yields are shown in Figure 1. During and

following the Great Recession, longer-term bond yields remained solidly or well above the

ELB. The 10-year (5-year) Treasury yield declined from 2.4 percent (1.5 percent) in December

2008 to a low of 1.5 percent (0.6 percent) in July 2012 and then moved higher. Since the

COVID-19 outbreak and the FOMC’s quick and substantial easing of monetary policy, bond

yields have been lower than they were following the Great Recession and much closer to the

ELB. From April through September 2020, the 10-year (5-year) Treasury yield averaged 0.7

percent (0.3 percent).

In our application with US postwar data, the value of ELB is set to 25 basis points, which

was the upper end of the FOMC’s target range for the federal funds rate between late 2008

and 2015, and has been again since the spring of 2020.29 As a matter of consistency with

this convention, we set readings for the federal funds rate to 25 basis points when estimating

the shadow-rate VAR (not when including the federal funds rate in a standard VAR that

ignores the lower bound constraint). Yields with maturities of five years and longer stayed

above 25 basis points in the data and can thus be treated as part of the vector xt, defined

in Section 2, for the purpose of model estimation.30

4 Shadow-rate estimates

Figure 2 reports our shadow-rate estimates associated with the federal funds rate, along with

a comparison to measures from Krippner (2013, 2015) and Wu and Xia (2016) based on affine

term structure models. Panel (a) of the figure compares full-sample estimates using data

through September 2020 (black/red line with the credible set indicated by gray shading) to

29See, for example, Wu and Xia (2016) and Johannsen and Mertens (2021).
30The lower bound constraint is an issue when simulating the predictive density for these yields, but it is

not relevant for estimating the VAR.
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quasi-real-time estimates (solid red line with the credible set indicated by dotted lines).31 The

quasi-real-time estimates are the end-of-sample estimates produced by recursive estimation

of the model starting in January 2009. Panel (b) compares our full-sample estimate to the

Krippner and Wu-Xia measures.

The full-sample estimates show the shadow rate dropping sharply starting in 2009, reach-

ing a nadir of about −1.7 percent in late 2011. The rate then gradually rose and reached

the ELB in early 2016, following the Federal Reserve’s first increase in the federal funds

rate in December 2015 (when the FOMC raised the target range from 0-25 basis points to

25-50 basis points). The rate dropped precipitously in early 2020, with the posterior median

reaching about −90 basis points in May 2020, and hovered near that level through the end

of our sample in September 2020. As might be expected, the quasi-real-time estimates have

more time variability than do the full sample estimates, but follow a quite similar contour.

As might also be expected, the quasi-real-time estimates are less precise, with credible sets

wider than those of the full sample estimate (more so for the 2009-2015 period than 2020,

as might be expected, given that, at this time, little history is available on the current ELB

episode).

Although our VAR does not impose the restrictions of an affine term structure model, our

shadow-rate estimates have some similarities to the Krippner and Wu-Xia measures based

on affine term structure models. As indicated in Panel (b) of Figure 2, our estimate and the

Wu-Xia series move together from 2009 through 2013. But over the remainder of the ELB

episode following the Great Recession, as our estimate gradually rose to the ELB over the

course of 2014 and 2015, the Wu-Xia series fell and then rose sharply. Our estimate also

follows the same general contours as the Krippner measure, although the Krippner series

shows much sharper declines.

Figure 3 provides some comparisons to assess the effects of shadow-rate modeling and

enforcement of the ELB in model estimation. Panel (a) compares shadow-rate (black) and

31To be clear, in the full sample case, the model is estimated with data for 1960:04 through 2020:09, but
the figure omits the period of 1960-2008 during which the ELB did not bind.
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missing-data (red) draws for the shadow rate st obtained from the posterior of our baseline

shadow-rate VAR. Shadow-rate draws are obtained from the truncated posterior for st that

satisfies the ELB, and described by the problem of drawing from S|Y in (7). Missing-data

draws are obtained from the underlying (and untruncated) posterior of the missing data

problem, which ignores the ELB, and correspond to draws from S|Ȳ in (6). For much of

the sample, the posteriors obtained from these alternatives are very similar.32

These results might suggest that an approach that treats observed policy rates at the

ELB as missing values might be a close alternative to shadow-rate sampling that explicitly

accounts for the ELB.33 However, such a conclusion would neglect the effects of enforcing the

ELB as part of the shadow-rate sampling on inference for other VAR parameters and state

variables (like SV). As discussed by Waggoner and Zha (1999) in the context of conditional

forecasting, conditioning estimates on information when the ELB was binding could (and

should) embody non-trivial information about the relevant parameters of the VAR.

To illustrate these effects, Panel (b) compares missing-data posteriors obtained from two

sets of VAR estimates: In the baseline (red), parameter and SV draws reflect shadow-rate

sampling (as shown also in Panel (a)). In the alternative version (blue), parameters and SV

are drawn while treating the policy rate at the ELB as missing data and without requiring

that missing data draws lie below the ELB. The comparison highlights the non-negligible

effects of shadow-rate sampling, which takes into account observations of interest rates at

the ELB, on model estimates of parameters and SV. Without forcing the draws of missing

interest rate observations to lie at or below the ELB, the upper bound of the posterior

credible set rises sharply above the ELB for much of the 2009-2011 period and again in 2020,

which contradicts observations of the federal funds rate that were at the ELB during those

times. In contrast, the use of shadow-rate sampling, as opposed to a missing-data approach,

leads to estimates of parameters and SV that increase the odds of obtaining missing-data

32Early in the Great Recession episode and in the early months of the COVID-19 episode, using a missing
data approach without fully enforcing the ELB led to draws of interest rates above the ELB, whereas with
the full shadow-rate treatment, the interest rate distributions remained at or below 25 basis points.

33Such a missing data approach has been used by, for example, Del Negro, et al. (2017).
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draws for the shadow rate that lies below the ELB (for observations when the ELB binds).

5 Forecast evaluation

We conduct an out-of-sample forecast evaluation in quasi-real time, where we simulate fore-

casts made from January 2009 through September 2020. For every forecast origin, each

model is re-estimated based on growing samples of data that start in 1959:03. (As indicated

in tables provided in the supplementary appendix, we obtain very similar results when we

shorten the sample to end in December 2017 to avoid the unusual volatility of the COVID-19

pandemic).34 Of course, in either case the evaluation window is relatively short and largely

informed by a single ELB episode. Forecasts made prior to 2009 are not considered, due to

the absence of observed interest rates at the ELB in postwar US data. All data are taken

from the October 2020 vintage of FRED-MD; we abstract from issues related to real-time

data collection.

5.1 Average performance 2009–2020

Tables 2, 3, and 4 provide results on point and density forecast accuracy, measured by root

mean squared error (RMSE, computed around mean forecasts), mean absolute error (MAE,

computed around median forecasts), and continuous ranked probability score (CRPS), re-

spectively.35 The reported forecast horizons are h = 3, 6, 12, and 24 months.

To facilitate comparisons, we report RMSE, MAE, and CRPS results as relative to the

baseline of a standard VAR that simply takes the forecasts as given and does nothing to obey

ELB constraints, so that entries of less (more) than 1 mean a given forecast is more (less)

34In companion work we investigate the use of outlier-adjusted versions of the SV model to handle the par-
ticular swings in data seen since the outbreak of COVID-19 (Carriero, et al., 2021). Through the use of latent
states to capture outliers, the outlier-adjusted procedures discussed there retain a conditionally Gaussian
representation, and combination with the shadow-rate sampling methods described here is straightforward.
For the sake of parsimony, we maintain a standard SV specification in the present paper, which should,
however, not materially affect the relative comparisons shown here.

35The online appendix also reports median absolute deviations (MAD) around median forecasts.
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accurate than the baseline. To roughly gauge the significance of differences with respect to

the baseline, we use t-tests as in Diebold and Mariano (1995) and West (1996), denoting

significance in the tables with asterisks. In light of the concerns of Bauer and Rudebusch

(2016) with the use of mean forecasts for interest rates near the ELB constraint, we also

report results for median forecasts evaluated with a mean absolute error loss function (MAE).

Measured by MAE, the performance of median forecasts is qualitatively similar to the RMSE

performance of the corresponding mean predictions. However, quantitatively, the gains from

applying the shadow-rate VAR are even more substantial in the case of interest rates.

As a starting point, consider the simplest possible approach to obeying the constraints

of the ELB: simply truncating interest rate forecasts to rule out values below the ELB.

As indicated in columns 2-5 of the tables, this simple approach is helpful in one respect

but harmful or of little consequence in others. In particular, the truncated specification

materially improves federal funds rate forecasts, with RMSE, MAE, and CRPS ratios of

roughly 0.5 to 0.8 for h = 3, 6, 12, and 24 (except for a relative RMSE near 1 for h=24). But

the truncated approach harms the accuracy of forecasts of Treasury bond yields at horizons

of 6 months and more. For example, with h = 12, the RMSE, MAE, and CRPS ratios for

the 10-year Treasury yield are 1.34, 1.29 and 1.24, respectively. For indicators of economic

activity, measures of inflation, and other financial indicators, the truncated approach has

little consistent effect on accuracy. In a few cases, the truncated approach yields forecasts

more accurate than the standard VAR baseline (e.g., for PCE inflation), whereas in some

others, the truncated forecasts are less accurate than the baseline (e.g., the unemployment

rate).

Our proposed shadow-rate specification for accommodating the ELB performs better

in forecasting than does simple truncation. Results for these specifications are covered in

columns 10-13 of Tables 2, 3, and 4. Compared to the standard VAR baseline, the shadow-

rate specification significantly improves forecasts of not only the federal funds rate (FFR) but

also bond yields, without harming the forecasts of indicators of economic activity, measures
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of inflation, and other financial indicators. With our preferred approach to accommodating

the ELB, RMSE ratios for FFR forecasts for h = 3, 6, 12, and 24 range from 0.34 to 0.52,

the MAE ratios range from 0.26 to 0.35, and the CRPS ratios range from 0.28 to 0.34, with

statistical significance of all of the MAE and CRPS gains.36 The funds rate forecasts from the

shadow-rate specification are more accurate than those from the truncated specification. In

addition, unlike the approach based on truncation, the shadow-rate VAR improves forecasts

of 5- and 10-year Treasury yields, more so at longer horizons than at shorter horizons. For

example, the shadow-rate model’s RMSE ratios for the 5-year yield decline from 0.93 at

h=3 to 0.70 at h=24, with very similar results of density forecast accuracy as measured by

the CRPS. In the case of the Baa-Treasury spread, the shadow-rate specification performs

much better than the truncated specification, and its forecasts are quite a bit more accurate

than those obtained from the standard VAR for h = 6, 12, and 24 (and on par for h = 3).

Finally, for the indicators of economic activity, stock price returns, and the exchange rate, the

treatment of the ELB on interest rates does not seem to bear consistently and importantly

on forecast accuracy. RMSE, MAE, and CRPS ratios for the truncated and shadow-rate

specifications are often close to 1. In fact, to take real consumption and non-farm payrolls

as examples, the RMSE ratios are all 1.00 (for each of four forecast horizons and three

specifications). In some cases, our preferred shadow-rate specification yields forecasts a little

more accurate than the standard VAR (e.g., 24-months-ahead point forecasts for hourly

earnings). This specification also tends to improve forecasts of housing starts, perhaps the

most interest-rate-sensitive activity indicator in the model. In a few cases, our preferred

forecasts are somewhat less accurate than the baseline (e.g., 24-months-ahead forecasts for

capacity utilization).

In addition, we compare point and density forecasts from our preferred shadow-rate

VAR against those obtained from a plug-in approach, where external shadow-rate estimates,

36As reported in the online appendix, gains for median absolute deviations around the median predictions
(MAD) from the shadow-rate VAR are even maximal, since the median forecasts for the reported horizons
correctly predict the FFR outcome for at least half the times during our evaluation window, leading to
perfect MAD scores of 0.
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specifically from Krippner (2013, 2015) and Wu and Xia (2016), are used as data, in place

of the actual short-term interest rate, in an otherwise standard VAR. Following the spirit of

the shadow-rate literature, and different from the truncated VAR discussed before, forecasts

from the plug-in VAR are simulated without censoring the resulting (shadow) interest rate

projections. Similar to the case of our shadow-rate VAR, forecasts for nominal interest

rates are censored only after the dynamic simulations for all variables (and all horizons)

have been done. As reported in Tables 5 and 6, we find consistent benefits for point and

density forecasting from using the shadow-rate VAR across a wide range of variables. Note

that the forecasts obtained from the plug-in VAR are based on the latest vintages of full-

sample estimates for the shadow rates from Krippner and Wu-Xia. Since these shadow-

rate estimates abstract from one-sided filtering challenges (and other revisions), the results

reported in Tables 5 and 6 likely understate the gains that could be achieved in (quasi-)real-

time forecasting from our preferred shadow-rate VAR when compared to a plug-in approach.

In addition, our online appendix reports various robustness checks, with fairly similar

results to what is reported here. In particular, in light of concerns raised by Krippner (2020),

we replace various interest rates with alternative measures of similar maturities. Replacing

the 10-year Treasury yield, as used in our baseline, with the 20-year Treasury yield has little

effect on our results. Using the 3-month Treasury bill rate, instead of the federal funds

rate, also delivers broadly similar forecast comparisons; if anything, these T-bill results favor

the shadow-rate VAR a little more than what is reported here for the funds-rate-based

specification. We also consider alternative versions of the truncated and shadow-rate VAR

based on setting the ELB to 12.5 basis points (rather than 25 basis points). While the ELB

tends to bind a little less often in this case, the forecast comparisons tend to display similar

patterns as in our baseline results. Finally, the online appendix reports alternative forecast

comparisons, derived from a slightly shorter evaluation period, ending in 2017:12, to avoid

having data related to the outbreak of the COVID-19 pandemic in 2020 affect the results.

While the economic effects of the pandemic left a heavy mark on readings of macroeconomic
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and financial variables in 2020 — see, for example, our companion work in Carriero, et al.

(2021) — they did not materially affect the relative model forecast comparisons reported

here.

5.2 Interest rate forecasts made at selected origins since 2009

To this point, the results presented have focused on the average performance of the various

models over the entire evaluation sample. In broad terms, these comparisons show that our

proposed shadow-rate specification performs best for forecasting the federal funds rate, with

the truncated approach not quite as good, and the standard VAR materially worse. To get

a better understanding of this relative performance, and also to get a glance at the absolute

performance, it is instructive to compare the point and density forecasts of the federal funds

rate for selected forecast origins. Figure 4 reports a set of point forecasts (medians) and 68

percent bands of distributions, at horizons of 1 through 24 months, in December of 2013,

2014, 2015 (when the FOMC raised the funds rate), 2016, and 2018. In this figure, the actual

path of the federal funds rate is represented by green dots.

To illustrate the effects of ignoring the ELB, Panel (a) of Figure 4 compares forecasts

from a standard VAR ignoring the ELB with forecasts from the truncation approach, using

a forecast origin of 2013:12, two years before the FOMC actually raised the funds rate target

from the ELB.37 In this case, the point forecast from ignoring the ELB (solid red line) proves

a little more accurate than the forecast obtained with the truncation approach (solid blue

line), although this do-nothing point forecast is negative for the entire forecast horizon, in

contrast with the ELB. The uncertainty around the do-nothing point forecast is also generally

larger than for the truncated model, in particular at longer horizons.

The remaining panels of Figure 4 compare forecasts from the truncation approach (black

line with gray shading) to those from our shadow-rate specification (blue lines), for forecast

37For brevity, our discussion will abstract from nuances of the real-time data flow, and simply refer to
forecasts being “made” at (or even “in”) the month of a particular forecast origin, even though the underlying
data would have been available in FRED-MD only in a subsequent month.
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origins in December 2013, 2014, 2015, 2016, and 2018. In the examples for the years before

the FOMC raised the funds rate target above the ELB, the point forecasts from the shadow-

rate specification are much more accurate than those from the model using truncation. The

differences are clearly large in 2013, 2014, and 2015, when the shadow-rate forecast is at

or just slightly above the ELB throughout the forecast horizon, whereas the truncation-

based forecast rises throughout the horizon. Throughout most of our evaluation window,

the median forecasts from the shadow-rate model correctly predict that the FFR will stay

at the ELB. Moreover, considering forecasts made in 2013, 2014, and 2015, it is also striking

that the forecast intervals are much narrower with the shadow-rate specification. Although

the same basic patterns prevail in subsequent years, the specifics of the pictures evolve. In

the case of forecasts made in 2015:12, both the shadow rate and the truncation approaches

show increases in the funds rate, but the shadow rate’s increase is later and much smaller

than that projected by the truncated specification.

In the 2016:12 and 2018:12 cases, both coming after the FOMC had raised the funds rate

off of the ELB, forecasts from the shadow rate and truncated specifications are relatively

similar. In Panel (e), depicting forecasts made in 2016:12, both models underpredict the

increase in the funds rate that eventually happens. Given the earlier behavior of the FFR,

neither model had enough information to predict the sharp increase in the FFR that would

have taken place in the following months. Finally, Panel (f) shows forecasts made in 2018:12

— with the forecast horizon extending out to 2020:12 — with the COVID-19 period included

in the evaluation sample. Both specifications predict a decline in the funds rate over the first

9 months that was sharper than actually occurred, but starting in March 2020, the funds

rate fell much faster than the models predicted. Of course, no model could have predicted

— 15 months ahead — the outbreak of the pandemic and the easing of monetary policy that

followed.

From a mechanical perspective, the tendency of the truncated VAR to place larger odds on

interest rate increases near the ELB reflects its dependence on lagged actual rates, which are
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censored, rather than the uncensored shadow rates, as discussed in Section 2. The impact of

modeling interest rate (actual rates, not shadow rates) forecasts via the uncensored shadow-

rate dynamics is illustrated in Figure 5. Panels (a) and (b) of the figure compare actual rate

densities generated by the shadow-rate VAR (densities also shown in Panels (b) and (d) of

Figure 4) for jump-off dates 2013:12 and 2015:12, against the underlying predictive densities

of the shadow rate. Panels (c) and (d) depict predictive densities generated upon entry into

the ELB periods beginning in 2009 and 2020. As shown in all panels of Figure 5, predictive

densities for the shadow rate are highly persistent, reflecting the persistence of actual rates

observed prior to the ELB data in our sample. As a result, when the shadow rate is seen to

lie substantially below the ELB, expectations that the actual rate will depart from the ELB

are pushed out substantially.

From an economic perspective, the shadow-rate VAR can capture lower-for-longer or

make-up elements of the Federal Reserve’s monetary policy strategy through the dependence

of predicted interest rates on lagged notional rates as suggested by, for example, the models

of Reifschneider and Williams (2000), Gust, et al. (2017) and Billi (2020). Moreover, the

shadow-rate estimates are informed by observed data on longer-term yields and economic

conditions, which enables the estimates to pick up on the effects of unconventional policies,

such as forward guidance and asset purchases, through these channels.

5.3 Forecasts made since the outbreak of COVID-19 in 2020

The period following the outbreak of the COVID-19 pandemic in the US and the aggressive

easing of monetary policy by the FOMC provides an opportunity for a case study of predicted

interest rate dynamics from our shadow-rate VAR as compared to a standard VAR that

ignores the ELB and a VAR approach that relies on truncation. Figure 6 shows the evolution

of federal funds rate forecasts over selected origins between January and September 2020.

In January 2020, prior to the outbreak of COVID-19 in the US, forecasts from all model

variants could, of course, not yet foresee the outbreak of COVID-19, and predicted the FFR
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to hover around its then-value of about 1.5 percent for the next two years.38 Once the

outbreak of COVID-19 hit the US economy, in March and April, the point forecast from a

standard VAR puts the funds rate well below the ELB for the entire forecast horizon, with

substantial probability mass on very negative rates. At subsequent forecast origins, the point

forecast was close to the ELB, but substantial mass in the predictive distribution remained

in negative territory. At the other extreme, the approach of truncating federal funds rate

predictions at the ELB resulted in point forecasts that had the federal funds rate gradually

rising over the forecast horizon, with substantial probability mass on quite high rates. These

results reflect the dependence of predicted values in the truncated VAR on lagged actual

rates, which are censored, rather than the uncensored shadow rates.

Through the first half of the year, the point forecast of the funds rate from the shadow-

rate approach remained at the ELB throughout the forecast horizon. In later months, the

point forecast from the shadow-rate VAR shows a small increase in the funds rate after

12 months or so. In all cases, the predictive distributions from the shadow-rate VAR are

considerably narrower than those obtained with the truncation approach.

Forecasts of the federal funds rate from the shadow-rate VARs reflect the predicted

evolution of the shadow rate (not shown in the interest of chart readability). As noted

before, shadow rates reflect the unconstrained policy rate prescriptions of the feedback rule

for monetary policy that is implied by the VAR in (4).39 As a reference point, the Federal

Reserve Bank of Cleveland regularly publishes a set of policy path prescriptions obtained

from monetary policy rules in the tradition of Taylor (1993, 1999). Prescriptions are derived

from seven different rules and for three alternative sets of forecasts for economic conditions;

similar to our shadow-rate concept, all prescriptions ignore the ELB.40 Some of these rules

38Nevertheless, uncertainty bands generated from the standard VAR assigned odds of over 30 percent to
the event of the funds rate falling below the ELB after a year and a half.

39The interpretation of the shadow-rate VAR as embedding the monetary feedback rule for the federal
funds rate extends arguments made by, for example, Bernanke and Blinder (1992), Christiano, Eichenbaum,
and Evans (1996, 1999), and Rotemberg and Woodford (1997) in the context of a standard VAR to the
shadow-rate case.

40The rule results and documentation are available at https://www.clevelandfed.org/en/

our-research/indicators-and-data/simple-monetary-policy-rules.aspx. Prescriptions from a sim-
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are so-called “inertial” rules that generate prescriptions with strong lagged dependence on

past policy rates. At the ELB, inertia with respect to lagged unconstrained prescriptions (or

so-called notional rates) can capture lower-for-longer policies as discussed by, for example,

Billi (2020), and resemble the form of the feedback rule embedded in our shadow-rate VAR.

With data available as of December 1, 2020, the median rule prescription calculated by

the Federal Reserve Bank of Cleveland puts the federal funds rate at about −50 basis points

in 2020:Q4 and −70 basis points for the first three quarters of 2021. In comparison, our

shadow-rate estimates for the COVID-19 period from April through September 2020 are

modestly negative (about −40 basis points in September 2020), which broadly aligns with

unconstrained prescriptions of common policy rules.41 Moreover, the shallow funds-rate path

predicted by the shadow-rate VAR is also much closer to survey expectations obtained from

Blue Chip Financial Forecasts and the Survey of Professional Forecasters (SPF).42

6 Conclusion

Motivated by the prevalence of lower bound constraints on nominal interest rates, this paper

develops a tractable approach to including a shadow-rate specification in medium-scale VARs

commonly used in macroeconomic forecasting. Our model treats interest rates as censored

observations of a latent shadow-rate process in an otherwise standard VAR setup, with the

shadow rate allowed to go below the ELB when the actual interest rate is at the ELB,

and with the shadow rate equal to the observed interest rate when the ELB is not binding.

Our approach extends the specific unobserved components model of Johannsen and Mertens

(2021) to the general VAR setting. By using a computationally more efficient shadow-

ilar set of policy rules are also computed by staff at the Board of Governors and presented to the FOMC
ahead of each of its meetings as part of Tealbook Book B; see also Board of Governors of the Federal Reserve
System (2020).

41We refer to rule prescriptions that ignore the ELB on the federal funds rate as “unconstrained.”
42For example, the 2020:Q3 SPF does not see any significant rise in the 3-month Treasury rate before the

end of 2023, which is an even shallower path than the funds-rate projections from the shadow-rate VAR
shown in Panel (e) of Figure 6 for September 2020. The 2021:Q1 SPF sees a modest rise in short-term
interest rates over the course of 2023.
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rate sampling algorithm than Johannsen and Mertens (2021), together with the recursive

methods of Carriero, Clark, and Marcellino (2019) for efficient estimation of Bayesian VARs

with stochastic volatility, our approach is easily applied to a medium-scale VAR system.

We use our shadow-rate approach to form forecasts from a medium-scale BVAR with

stochastic volatility. In our results, forecasts for interest rates obtained from a shadow-rate

VAR for the US since 2009 are clearly superior, in terms of both point and density forecasts,

to predictions from a standard VAR that ignores the ELB. These interest rates include not

only the federal funds rate but also longer-term bond yields. For other indicators of financial

conditions and measures of economic activity and inflation, the accuracy of forecasts from

our shadow-rate specification is broadly on par with a standard VAR that ignores the ELB.

Overall, our shadow-rate specification successfully addresses the ELB and improves interest

rate forecasts without harming a standard VAR’s ability to forecast a range of other variables.

A Shadow-rate sampling

This appendix provides further details on the application of a shadow-rate sampler in a VAR

context that can be embedded in an otherwise standard MCMC estimation. Throughout,

we take as given values of all parameters (incl. SV) of the shadow-rate VAR in (4). These

parameter values can be obtained from standard MCMC steps (and based on previously

sampled “data” for {zt}Tt=1) as described in, for example, Carriero, Clark, and Marcellino

(2019)). Here we focus on the MCMC step concerned with sampling from the shadow-rate

problem stated in (7) for given values of the VAR parameters {Aj}pj=1 and {Σt}Tt=1. For ease

of notation, references to {Aj}pj=1 and {Σt}Tt=1 will be suppressed from the conditioning sets

described below. Moreover, the value of ELB is a known constant. For ease of exposition,

we continue to focus on the case of a scalar shadow rate, st, which can, however, be easily

generalized to the case of Ns > 1.

27



A.1 Gibbs sampling from the truncated multivariate normal

While the joint density from a multivariate normal (MVN) distribution can be factorized

into a product of univariate normal densities, the same property does not generally extend

to the truncated MVN density, as discussed by, for example, Geweke (1991). In our context,

this means that draws from the missing-value problem, S | Ȳ ∼ N (µ,Ω) in (6), could be

recursively obtained by a sequence of univariate normal draws, but not so for the corre-

sponding shadow-rate problem S |Y ∼ TN (µ,Ω,−∞, ELB). However, consider a single

element of S, denoted st, and let s1:t−1 and st+1:T denote the vectors of all elements of S

that precede and follow st, respectively.43 Conditional on s1:t−1 and st+1:T (as well as Y ), st

has a univariate truncated normal distribution,

st
∣∣ s1:t−1, st+1:T ,Y ∼ TN

(
µ1:t−1,t+1:T , ω1:t−1,t+1:T ,−∞, ELB

)
, (8)

with moment parameters µ1:t−1,t+1:T and ω1:t−1,t+1:T identical to those obtained from the

corresponding missing-value problem:44

st
∣∣ s1:t−1, st+1:T , Ȳ ∼ N

(
µ1:t−1,t+1:T , ω1:t−1,t+1:T

)
. (9)

As discussed by Geweke (1991), Gelfand, Smith, and Lee (1992), and references therein,

the fact that conditional distributions of the truncated MVN are also truncated normals

means that the problem of obtaining draws from the truncated MVN can be addressed with

a Gibbs sampler, which we also pursue. For now, we abstract from estimating the VAR,

and consider solely the shadow-rate sampling problem for given VAR parameters. Adopting

43In the case of Ns > 1, so that st is not scalar, the argument made here applies to a single scalar element
of st conditional on values for the remainder of the shadow-rate vector, as well as s1:t−1, st+1:T , and Y .

44For recent treatments, see, for example, Horrace (2005) and Chopin (2011). The argument also extends
to the case in which the truncation bounds vary from one element of the vector to another, which also
allows us to handle where the sequence s1:T covers observations where the ELB does not bind, so that
st = it > ELB. To handle those cases, the shadow-rate sampling problem can be stated more generally
as S |Y ∼ TN (µ,Ω,−∞, I), where I is the vector of all actual rates, and the inequality S ≤ I applies
element-wise. Note that observations of it for which the ELB does not bind are included in Ȳ so that the
distribution of the missing-value problem in (6) collapses on a point mass, st = it, for those observations.
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language from Geweke (1991), a Gibbs sampler generates a draw from (7) by performing N

passes over (8), at each pass iterating over t = 1, 2, . . . T .45 Specifically, let S(n) denote a

draw of S from the nth pass of the Gibbs sampler, with typical element s
(n)
t . At each pass

n = 1, 2, . . . , N , the Gibbs sampler iterates from t = 1, 2 . . . , T and draws

s
(n)
t

∣∣ s(n)1:t−1, s
(n−1)
t+1:T ,Y (10)

We keep S(N) = {s(N)
t }Tt=1 as the draw from (7). Appendix A.4 describes in further detail

how this Gibbs sampler for the shadow-rate problem is embedded in our MCMC sampler for

the shadow-rate VAR.

Our implementation of the Gibbs sampling steps for the shadow-rate problem in (8) ex-

ploits the particular structure of the VAR(p) setting to derive the conditional moments

µ1:t−1,t+1:T , ω1:t−1,t+1:T without ever having to compute the entire mean vector, µ, and

variance-covariance matrix, Ω, of the full shadow-rate problem in (7), which can be sub-

stantial in size because S is a vector of size T · Ns.
46 For example, in our application to

monthly US data, and considering only the ELB episode witnessed from 2008:12 through

2015:12, we have T = 85 and Ns = 1 (as the ELB has only been binding for the federal

funds rate in our data set over this period).

In the case of Ns = 1, drawing from (8) requires a draw from the (univariate) truncated

normal distribution.47 We implement this draw by application of uniform-inverse-transform

sampling as follows. Dropping time subscripts, consider the problem of drawing the scalar

s ∼ TN(µ, ω2,−∞, ELB), which is equivalent to drawing v ∼ TN(0, 1,−∞, v̄) with v̄ =

45When the sequence s1:T includes observations t where the ELB does not bind, the posterior in (9)
collapses on a point mass, st = it > ELB, and those cases can be skipped. (Formally, the support of the
truncated normal in (8) could be viewed as being bounded from above by it for all observations t.)

46By exploiting sparsities and the recursive structure of the VAR’s state space representation, our approach
echoes recent advances in the field of sampling from the truncated MVN distribution made by Cong, Chen,
and Zhou (2017), albeit specialized to the VAR(p) that we intend to investigate further. Other advances in
Gibbs sampling from the truncated MVN distribution are discussed by Robert (1995), Damien and Walker
(2001), Chopin (2011), and Botev (2017).

47In the case of Ns > 1, (8) represents a draw from the multivariate truncated normal, which can be
broken down further into a sequence of Gibbs sampling steps consisting of draws of univariate truncated
normals, as described by, for example, Geweke (1991).
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(ELB − µ)/σ and s = µ+ σ v. The support of v is v ≤ v̄, over which its probability density

function (pdf) and cumulative distribution function (cdf), fv(v) and Fv(v), are given by:

fv(v) =
φ(v)

Φ(v̄)
, Fv(v) =

Φ(v)

Φ(v̄)
, (11)

where φ(·) and Φ(·) are the standard normal pdf and cdf , respectively, and draw

u ∼ U(0, 1) =⇒ v = F−1v (u) = Φ−1 (u · Φ(v̄)) , (12)

where U(0, 1) is the uniform distribution over the [0, 1] interval, and Φ−1(·) is the inverse

normal cdf . Alternatively, rejection sampling could be used, or a combination of both

approaches that reflects the (computationally) optimal acceptance probability for application

of the rejection sampling approach; see, for example, Geweke (1991), Chopin (2011), and

Botev (2017).48

To derive µ1:t−1,t+1:T , ω1:t−1,t+1:T , we now focus on the moments of the (unconstrained)

missing-value problem stated in (9), understanding that draws for st are to be generated

from the constrained shadow-rate problem in (8).

A.2 Shadow-rate VAR in companion form

Written in companion form, the VAR(p) in (4) is characterized by Markov dynamics of a

state vector that tracks zt and p− 1 of its lags. Consequently, it is sufficient to consider no

more than p lags and leads of zt in the derivation of µ1:t−1,t+1:T , ω1:t−1,t+1:T .

We employ the following companion form notation for the VAR (omitting intercepts),

48However, in our application, potential gains from applying a combination approach appeared so far to
be limited if not negative. At least in our MATLAB programming environment, direct application of the
trandn.m routine provided by Botev (2017) underperformed relative to uniform-inverse-transform sampling.
A likely cause for the somewhat surprising performance of the latter appears to be our use of large pre-
generated random arrays as opposed to generating pseudo-random values one-at-a-time as done in the case
of trandn.m.
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adapted to the partitioning of zt into xt and st:

Zt = AZt−1 +Btwt , wt ∼ N(0, I) , (13)

and let Cx and Cs be selection matrices so that xt = CxZt and st = CsZt.

To construct this companion form, consider for concreteness the case of a second-order

system, with p = 2, and let

Xt =

 xt

xt−1

 , St =

 st

st−1

 , Zt =

Xt

St

 =



xt

xt−1

st

st−1


, (14)

with A =



A1
xx A2

xx A1
xs A2

xs

I 0 0 0

A1
sx A2

sx A1
ss A2

ss

0 0 I 0


, Bt =



Bx,t

0

Bs,t

0


, (15)

whereBx,t andBs,t are conformable partitions of a factorization Σ0.5
t of the variance-covariance

matrix of VAR residuals in (4), so that Σt = Σ0.5
t (Σ0.5

t )
′

and Σ0.5
t =

[
B′x,t B′s,t

]′
.49

49Without loss of generality, we can, but do not have to, assume that Σ0.5
t is lower triangular. In our

application, based on the VAR-SV model of Carriero, Clark, and Marcellino (2019), we have Σ0.5
t = A−10 Λ0.5

t ,
where A0 is a unit-lower-triangular, and Λ0.5

t is a diagonal matrix of stochastic volatilities.
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A.3 Moments of the missing-value problem

Given the VAR(p) structure of the model, and using the companion-form notation introduced

above, the posterior density of the Gaussian missing-value problem in (9) simplifies as follows:

f
(
st
∣∣ s1:t−1, st+1:T , Ȳ

)
= f

(
st
∣∣ st−p:t−1, st+1:t+p, xt−p:t+p

)
= f

(
st
∣∣Zt−1, Zt+p, xt

)
= f

(
st
∣∣Zt−1, Zt+p − Zt+p|t−1, v

x
t

)
, (16)

where Zt+p|t−1 = E(Zt+p|Zt−1) = Ap+1Zt−1 and vxt = xt − E(xt|Zt−1) = Cxvt.

Observations t with t + p ≤ T : As stated above, we assume that we have observations

for at least p initial lags of st at t = 1, and can thus always condition on st−p:t−1. Deferring

a description of cases where t + p > T for later, we first consider observations for t with

t+ p ≤ T and define the following signal vector:

Z t+p =

Zt+p − Zt+p|t−1

vxt

 =

∑p
j=0A

p−jBt+j wt+j

CxBtwt

 . (17)

The moments µ1:t−1,t+1:T and ω1:t−1,t+1:T follow from Gaussian signal extraction applied to

the case of inference on st given the signal Z t+p and prior information captured by Zt−1:

µ1:t−1,t+1:T = E(st|Zt−1, Zt+1, xt) = E(st|Zt−1) + J tZ t+p, (18)

with J t = Cov
(
st,Z t+p

∣∣Zt−1
) (

Var
(
Z t+p

∣∣Zt−1
))−1

, (19)

Var
(
Z t+p

∣∣Zt−1
)

=

∑p
j=0A

p−jBt+jB
′
t+j

(
Ap−j)′ ApBtB

′
tC
′
x

CxBtB
′
t (Ap)′ CxBtB

′
tC
′
x

 , (20)

Cov
(
st,Z t+p

∣∣Zt−1
)

=

CsBtB
′
t (Ap)′

CsBtB
′
tC
′
x

 , (21)
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and ω1:t−1,t+1:T = Var (st|Zt−1, Zt+1, xt) = CsBtB
′
tC
′
s

− Cov
(
st,Z t+p

∣∣Zt−1
) (

Var
(
Z t+p

∣∣Zt−1
))−1

Cov
(
st,Z t+p

∣∣Zt−1
)
. (22)

To compute the Kalman-smoothing gain J t and residual variance Var (st|Zt−1, Zt+1, xt)

efficiently, and robustly to numerical round-off errors (which could otherwise imply non-

positive-definite values for variance-covariance matrices) we employ a QR factorization that

builds on some of the fast-array algorithms presented by Kailath, Sayed, and Hassibi (2000).

Specifically, consider a factorization of the joint variance-covariance matrix of the signal,

Z t+p, and unknown state, st:
50

Vart−1


Z t+p

st


 = LL′ = MM ′, (23)

where L and M are the following square matrices of length Nz ·p+Ns along each dimension:

L =

 Vart−1 (Z t+p)
0.5 0

J t

(
Vart−1 (Z t+p)

0.5)′ Vart−1 (st|Z t+p)
0.5

 (24)

M =


ApBt Ap−1Bt+1 . . . A1Bt+p−1 Bt+p

CxBt 0 . . . . . . 0

CsBt 0 . . . . . . 0

 . (25)

The matrix M is straightforward to construct. Crucially, L is a lower triangular matrix, and

its transpose, L′, can directly be obtained from a QR factorization of M ′, M ′ = QL′ (where

Q is an orthogonal matrix that can be ignored for our purpose). The Kalman-smoothing

gain, J t, and the square root of the residual variance of st are contained in appropriate

partitions of L.

50For brevity, we let Vart−1 (·) denote Var (·|Zt−1). In addition, for any positive-(semi)definite square
matrix P , P 0.5 denotes a (not necessarily positive-(semi)definite) lower-triangular factorization, such that

P = P 0.5
(
P 0.5

)′
.
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Based on (16), it follows that Vart−1 (st|Z t+p) = ω1:t−1,t+1:T , which is the desired second

moment needed for the shadow-rate sampling problem in (8) of drawing st conditional on

the remainder of the shadow-rate path.

Observations t with t + p > T : When the ELB is binding near the end of the data

sample, in particular for t with t+ p > T , the signal vector must be limited to include only

leads of st and xt up to T . Specifically, letting t = T − k (with k < p), the adapted signal

vector is shortened to a length of Nz · k +Nx as follows:

ZT,k =

ZT − ZT |T−k−1

vxt

 =

∑k
j=0HkA

k−jBt+j wt+j

CxBtwt

 , (26)

where Hk =

[
INz ·k 0Nz ·(p−k)

]
is a selection matrix selecting the first Nz · k elements out of

a vector of length Nz · p.51 The expressions for J t and Var (st|Zt−1, Zt+1, xt) in (19) and (22)

are adjusted accordingly.

A.4 MCMC estimation of shadow-rate VAR

So far, this appendix has described a Gibbs sampler that generates draws for the shadow

rate, according to (7), taking specific values for VAR parameters, {Aj}pj=1 and {Σt}Tt=1, as

given.52 Here we describe how the shadow-rate Gibbs sampler is embedded into the MCMC

estimation of the shadow-rate VAR system. (Our specification of the heteroskedasticity

that is captured by {Σt}Tt=1 follows Carriero, Clark, and Marcellino (2019), and details of

generating draws from {Aj}pj=1 and {Σt}Tt=1 follow their procedures.)53

51In the case of t = T (and thus k = 0), the signal vector collapses to ZT,0 = vxt .
52Given shadow-rate data, our implementation of the stochastic-volatility VAR (4) follows closely the setup

of Carriero, Clark, and Marcellino (2019), where Σt can be broken further down into a set of slope parameters
of a Cholesky factorization and a latent vector process representing stochastic volatilities. Nevertheless, for
brevity, we refer here to {Σt}Tt=1 as a set of VAR “parameters.”

53Specifically, we let vt = A−10 Λ−0.5t εt, where A0 is a lower unit-triangular matrix, Λt is a diagonal matrix,
and the vector of its diagonal elements is denoted λt, with log λt = log λt−1 + ηt, ηt ∼ N(0,Φ), and
εt ∼ N(0, I). Other forms of heteroskedasticity could also be specified. For the purpose of our discussion, we
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Denoting the mth MCMC draws of the VAR parameters {Aj}pj=1, {Σt}Tt=1, and the

shadow rates {st}Tt=1, byAm, Σm and Sm, respectively, and denoting (as before) the observed

data by Y , the MCMC sampler iterates over the following three blocks, for m = 1, 2, . . . ,M .

S(m)|A(m−1),Σ(m−1),Y (27)

A(m)|S(m),Σ(m−1),Y (28)

Σ(m)|S(m),A(m),Y (29)

Henceforth, we will refer to iterations over (27)– (29), as “the MCMC sampler.” We use

M = 1200 draws, of which an initial 200 burn-in draws are discarded.

The first block of the MCMC sampler, given by (27), consists of a sequence of Gibbs

sampling steps, iterating over (8) for t = 1, 2, . . . , T , with details described earlier in this

appendix. The Gibbs sampler for the truncated MVN is a single-move sampler that draws

one observation of st at a time (conditional on previously sampled values for all others).

Consequently, a single pass from the Gibbs sampler for the truncated normal does not

generate a direct draw from S(m)|A(m−1),Σ(m−1),Y .54 Nevertheless, repeated iterations

over (27), (28), and (29), with each pass over the shadow-rate block in (27) captured by

a single pass of the Gibbs sampler in (10), will eventually generate draws from the joint

posterior density of A, Σ, and S.55

In order to achieve higher computational efficiency, we conduct multiple passes of the

Gibbs sampler at every iteration, m, of the MCMC sampler.56 In doing so, we exploit

subsume the slope parameters A0 and variance parameters Ω in the block of parameters denoted by {Σt}Tt=1.
Our MCMC sampler also reflects the ordering of steps in SV estimation recommended by Del Negro and
Primiceri (2015).

54In contrast, in the case of the linear missing-value problem in (6), multi-move sampling is feasible. The
missing-value problem has a linear Gaussian state space representation, and a Kalman-smoothing sampler
can directly draw from the (untruncated) multivariate normal distribution of the problem, for example, by
employing the methods described in Durbin and Koopman (2002).

55Formally, the mth draw from the shadow-rate block in (27) is then obtained by a single iteration over

s
(m)
t

∣∣ s(m)
1:t−1, s

(m−1)
t+1:T ,A

(m−1),Σ(m−1),Y for T = 1, 2, . . . , T and holding m fixed.
56Our approach of embedding the procedures for drawing from the truncated MVN into the MCMC

sampler with multiples passes at each MCMC step builds on ideas developed by Waggoner and Zha (1999)
in the context of simulating forecasts under soft restrictions.
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the fact that the Kalman-smoothing gains, J t, and residual variances Var (st|Zt−1, Zt+1, xt),

described in (19) and (22) above, depend only on prior draws of the VAR parameters A(m−1)

and Σ(m−1), but not the sampled path for the shadow rate, S(m). As noted already by Geweke

(1991), the second-moment matrices required for multiple passes of the Gibbs sampler for

the truncated MVN need to be computed only once (given A(m−1) and Σ(m−1)), which makes

it computationally relatively cheap to conduct multiple Gibbs passes. Denoting the number

of Gibbs passes by N , we retain only the output sampled in the Nth pass, treating the initial

N − 1 as burn-in passes. Similar to Waggoner and Zha (1999), the motivation behind our

approach is to hand over a draw S(m) to the remaining MCMC steps that avoids the higher

serial dependence between MCMC steps resulting from the previously described single-pass

approach, while also being computationally relatively cheap to produce compared to other

elements of the MCMC setup.

Formally, for every MCMC draw m, we implement the shadow-rate sampling block in (27)

with N Gibbs passes as follows: For each n = 1, 2, . . . , N , (and holding m fixed) iterate over

s
(m,n)
t

∣∣ s(m,n)
1:t−1 , s

(m,n−1)
t+1:T ,Y for t = 1, 2, . . . , T . (30)

For each m, we initialize the first Gibbs pass with s
(m,0)
t = s

(m−1,N)
t , ∀ t, and we retain

S(m) = {s(m,N)
t }Tt=1 as the mth draw of the sequence of shadow rates. In our application, we

employ N = 201 Gibbs passes over (30), and thus 200 burn-in passes for every step, m, of

the MCMC sampler.
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Table 1: List of variables

Variable FRED-MD code transformation Minnesota prior

Real Income RPI ∆ log(xt) · 1200 0
Real Consumption DPCERA3M086SBEA ∆ log(xt) · 1200 0
IP INDPRO ∆ log(xt) · 1200 0
Capacity Utilization CUMFNS 1
Unemployment UNRATE 1
Nonfarm Payrolls PAYEMS ∆ log(xt) · 1200 0
Hours CES0600000007 0
Hourly Earnings CES0600000008 ∆ log(xt) · 1200 0
PPI (Fin. Goods) WPSFD49207 ∆ log(xt) · 1200 1
PPI (Metals) PPICMM ∆ log(xt) · 1200 1
PCE Prices PCEPI ∆ log(xt) · 1200 1
Federal Funds Rate FEDFUNDS 1
Housing Starts HOUST log(xt) 1
S&P 500 SP500 ∆ log(xt) · 1200 0
USD / GBP FX Rate EXUSUKx ∆ log(xt) · 1200 0
5-Year Yield GS5 1
10-Year Yield GS10 1
Baa Spread BAAFFM 1

Note: Data obtained from the 2020:10 vintage of FRED-MD. Monthly observations from
1959:03 to 2020:09. Entries in the column “Minnesota prior” report the prior mean on the
first own-lag coefficient of the corresponding variable in each BVAR. Prior means on all other
VAR coefficients are set to zero.
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Figure 1: Interest rate data

(a) Full data sample
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Note: All interest rates quoted as annualized percentage rates. Data obtained from FRED-
MD; for further details see section 3.
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Figure 2: Shadow-rate estimates

(a) Full-sample vs quasi-real time
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(b) Other shadow-rate estimates
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Note: Panel (a) compares smoothed and quasi-real time shadow-rate estimates from our
baseline shadow-rate VAR. The quasi-real-time estimates are the end-of-sample estimates
produced by recursive estimation of the model starting in January 2009. Each estimation
conditions on available data since 1959:03, but the figure omits the period prior to 2008
during which the ELB did not bind. Posterior medians are shown as thick lines; grey shaded
areas and thin lines depict 90 percent uncertainty bands. Panel (b) compares the smoothed
shadow-rate estimates (also shown in Panel (a)) against updated estimates obtained from
Krippner (2013, 2015) and Wu and Xia (2016).
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Figure 3: Effect of imposing ELB on shadow-rate estimates

(a) Missing-data and shadow-rate draws
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(b) Missing-data draws from different VARs
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Note: Panel (a) compares shadow-rate (black) and missing-data (red) draws for st obtained
from the posterior of our baseline shadow-rate VAR. Shadow-rate draws are obtained from
the truncated posterior for st that satisfies the ELB. Missing-data draws are obtained from
the underlying (and untruncated) posterior of the missing data problem that ignores the
ELB. Panel (b) displays missing-data posteriors obtained from two sets of VAR estimates: In
the baseline (red), parameter and SV draws reflect shadow-rate sampling. In the alternative
version (blue), parameters and SV are drawn while treating the policy rate at the ELB as
missing data and without requiring that missing data draws lie below the ELB. In this panel,
medians are reported as thick lines and 90 percent uncertainty bands are reported with the
grey shaded area or thin lines.
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Figure 4: Predictive densities for the federal funds rate
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Note: Predictive density for the federal funds rate, simulated out of sample at different jump-off

dates for different models. Panel (a) compares predictions from the standard VAR against those

from the truncated VAR. The remaining panels compare predictions from the truncated VAR

against those from the shadow-rate VAR. Realized values for the federal funds rate are shown as

green diamonds and were set equal to the ELB value of 25 basis points from 2008:12 until 2015:12,

and then again as of 2020:04.
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Figure 5: Predictive densities for shadow and actual rate
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Note: Predictive density for the shadow rate (shaded area, light blue) and actual federal funds

rate (solid lines, dark blue), simulated out of sample at different jump-off dates from our baseline

shadow-rate VAR. The medians of the predictive densities are shown as thick lines (shadow rate:

white dashes, actual federal funds rate: dark blue). The 68 percent bands are shown as shaded

areas (shadow rate), and thin solid lines (actual federal funds rate), respectively. For the actual

rate, the 68 percent bands collapse to the ELB of 25 basis points, when the corresponding bands

of the shadow-rate density lie entirely below the ELB.
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Figure 6: Predictive densities for the federal funds rate in 2020
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Note: Predictive density for the federal funds rate, simulated out of sample at different jump-off

dates for different models. Realized values for the federal funds rate are shown as green diamonds

(set equal to the ELB value of 25 basis points as of 2020:04).
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