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I. Introduction 
It is widely acknowledged that expectations are important for understanding the decision-

making of households and firms, as well as for explaining movements in economic and financial 

variables. Early work on the formation of beliefs posited that agents form expectations in a static or 

adaptive manner, but these theories eventually drew criticism because of their restrictions on agents’ 

information sets and allowance for agents to commit systematic forecast errors. In response to these 

criticisms, the full-information rational expectations (FIRE) model was developed, which assumes 

that all agents know the true structure of the economy and have access to the same information set. 

While the FIRE assumption remains the main paradigm for the formation of expectations, it 

implies that all agents are identical and therefore cannot generate the type of dispersion in agents’ 

expectations – that is, disagreement – observed in surveys or financial markets. Consequently, in 

recent years, the FIRE assumption has been replaced with a weaker form of rational expectations in 

which agents use available information efficiently subject to certain constraints. A prominent feature 

of these types of models is the presence of informational rigidities (IR) either in the form of sticky 

information [Mankiw and Reis (2002); Mankiw, Reis, and Wolfers (2003)] or noisy information 

[Woodford (2002); Sims (2003); Mackowiak and Wiederholt (2009)].  

While IR models can generate disagreement at the aggregate level, a key implication of 

almost all of these models is that heterogeneity in forecast behavior is not persistent at the individual 

level.1 That is, while agents can display differences in their forecast behavior at a point in time, their 

observed behavior over time should on average be the same.2 In particular, no agent should generate 

forecasts that are systematically more/less accurate compared to those of other agents.  

This paper examines this implication using point and density forecasts from the European 

Central Bank’s Survey of Professional Forecasters (ECB SPF). The survey elicits euro-area 

expectations for real GDP growth, inflation as measured by the harmonized index of consumer 

prices (HICP), and the unemployment rate. We analyze the forecast performance of participants to 

document empirical features that are of general interest for expectations models and have specific 

relevance for IR models. A central focus of this study is whether participants display comparable 

 
1 Coibion and Gorodnichenko (2012, 2015) test the predictions of the sticky information model and the noisy 
information model for various aspects of forecast behavior, including disagreement. However, they conduct 
the analysis at the aggregate level and do not consider this fundamental implication of the models at the 
micro level. 
2 The average observed behavior of agents refers to a sufficiently long time period in which individuals either 
update their information set on a comparable basis in the case of the sticky information model or are subject 
to a comparable set of shocks in the case of the noisy information model.   
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forecast accuracy or whether there are systematic differences and, if so, the sources of such 

differences.  

The results provide strong evidence of systematic differences in participants’ forecast 

accuracy. However, the differences are not time invariant, as would be the case if some participants 

were consistently more/less accurate than other participants. Rather, we find that the rank orderings 

of participants’ accuracy vary with the degree of difficulty of the forecasting environment. That is, 

some participants display higher relative accuracy in more tranquil environments, while other 

participants display higher relative accuracy in more volatile environments. In addition, forecast 

performance is positively correlated across target variables and horizons, with stronger correlation 

patterns for the density forecast data than for the point forecast data. This latter finding highlights 

one of the additional insights gained from extending the analysis beyond the point forecast data 

alone. 

Our study makes two contributions to the existing literature on the expectations formation 

process. The first contribution is the modeling strategy used for the empirical analysis. We adopt a 

panel data estimation framework in which the individual forecast performance regressions include 

participant fixed effects and time-specific cross-section averages of forecast performance as 

explanatory variables, with the latter variable providing a link to the work of Pesaran (2006). Among 

its many attractive features, the specification allows for a conventional testing procedure for equal 

forecast accuracy, as well as a flexible approach to control for changes in the degree of difficulty of 

the forecasting environment. The specification also allows for a richer description of participants’ 

forecast performance and a broader identification of possible sources of heterogeneity. 

The second contribution pertains to the features of forecast behavior that we document. 

Our results are consistent with other work reporting strong evidence of persistent heterogeneity 

across survey participants in the relative levels of point forecasts, uncertainty, and disagreement.3 

Accordingly, our findings do not support a central prediction of IR models and instead argue for the 

development of expectations models that not only can generate persistent heterogeneity in key 

features of forecast behavior but also can account for systematic differences in relative accuracy 

related to the nature of the forecasting environment.4 

The paper is organized as follows. The next section provides a summary of the literature 

evaluating the predictive performance of professional forecasters and testing for the comparability 

 
3 See Bruine de Bruin et al. (2011), Boero, Smith, and Wallis (2015), and Rich and Tracy (2021). 
4 While this line of research is beyond the scope of the current paper, we view our analysis as providing 
background and helping to inform the development of such a class of models. 
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of their accuracy. Section III discusses the modeling strategy and estimation framework used for the 

empirical analysis. Section IV describes the ECB SPF data. Section V reports the estimation results 

documenting systematic differences in participants’ relative forecast accuracy and how it varies with 

the difficulty of the forecasting environment. The section also explores other features and properties 

of participants’ forecast accuracy. Section VI concludes by discussing the implications of our 

findings. 

II. Literature Review 
This section reviews previous studies testing for differences in forecaster performance. 

Stekler (1987) examines monthly forecasts from the Blue Chip survey of economic indicators 

between 1977 and 1982, but restricts the analysis to a balanced panel resulting in 24 forecasters in 

the sample. While Stekler viewed the goal of identifying the “best” forecasters as problematic, he 

proposed a methodology that would instead determine whether there were “better” forecasters. His 

approach calculates the root mean squared error for each year to assign a rank to each forecaster, 

with the forecaster’s rankings then accumulated over the full sample period to produce a rank sum. 

His analysis indicated that there were significant differences in forecasting ability. Batchelor (1990), 

however, argued that Stekler’s conclusions relied on an incorrectly defined test statistic. When 

Batchelor applied the appropriate test statistic to the data, he concluded that the evidence did not 

reject the null hypothesis of equal forecasting ability. 

Christensen et al. (2008) examines the US Survey of Professional Forecasters (US SPF) and 

develops a test for equal forecasting accuracy that draws upon the forecast comparison test of 

Diebold and Mariano (1995). Their approach, however, is quite restrictive because it requires a 

balanced panel and a long time series of forecasts. Consequently, they are only able to study three 

individual forecasters. Their analysis yields mixed results, with tests suggesting equal predictive 

performance for some variables and not others. 

D’Agostino, McQuinn, and Whelan (2012) point out that there are notable drawbacks to the 

approaches in these previous studies. The requirement of a balanced panel can significantly reduce 

sample size so that most of the information available from surveys is lost. In addition, metrics based 

on a period-by-period summation of ranks provide limited information about the nature of 

participants’ forecast errors on either an absolute or a relative basis. To remedy these shortcomings, 

D’Agostino, McQuinn, and Whelan (2012) develop a test for equal predictive performance that 

applies bootstrapping and Monte Carlo simulation techniques to a metric based on participants’ 

squared forecast errors. Importantly, their approach recognizes that comparing forecasts within an 

unbalanced panel can be challenging because of time-variation in the forecasting environment. In 
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particular, participants generating the same squared prediction error in different periods would not 

reflect comparable predictive ability if forecasting in some periods is easier/more difficult compared 

to others. Consequently, the metric used in D’Agostino, McQuinn, and Whelan (2012) involves an 

adjustment to participants’ squared forecast errors. 

 The approach of D’Agostino, McQuinn, and Whelan (2012) begins by constructing a 

normalized squared error statistic for each variable for each period for each participant. Abstracting 

from details related to data and survey features, the normalized squared error statistic for participant 
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j

t t hE + , is defined as: 

(1) 
( )

( ) ( )
( )
( )

2 2

, ,
, 22

,,
1

1
t

j j
t t h t t hj

t t h N
i

t t ht t t h
i

e e
E

eN e

+ +
+

++
=

= =

∑
 

where ,
j

t t he +  is participant j’s forecast error associated with the survey prediction in period t and the 

realization of the target variable in period t+h, and  ( )2
,t t he + is a measure of average forecast 

performance defined over the tN  survey participants in period t. Importantly, the metric in (1) 

depends on participant j’s forecast performance and the performance of the other forecasters. 

Consequently, the normalization is designed to control for changes in the forecasting environment 

by generating, for a given value of ( )2

,
j

t t he + , a lower (higher) value of ,
j

t t hE + when forecasters are 

collectively less (more) accurate compared to periods when they are more (less) accurate.  

For each forecaster, an average normalized squared error statistic can be calculated. Letting 
jT  denote the total number of surveys in which participant j appears and T denote the total number 

of surveys conducted, participant j’s average normalized squared error statistic is given by: 
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where ,
j

t t hE + is set to zero if participant j did not respond to that survey. Because the score in (2) is 

calculated as an average, it can account for participants entering and exiting the survey.  

A historical distribution of forecast performance can be derived using the score in (2) and 

the associated rank ordering of all participants. The test for equal forecast performance then 

proceeds by randomly reshuffling and reassigning individual forecasts of a given variable for a 



6 
 

particular survey. The same procedure is applied to each survey, resulting in a new sequence of 

forecasts for each participant that can be used to calculate an overall score from (2) and to construct 

a rank ordering. The process is repeated many times to generate a large number of simulated 

distributions of forecaster performance. The test for equal forecast performance compares the 

historical distribution of forecast performance to the simulated distributions. Under the null 

hypothesis of equal forecaster ability, the historical distribution of forecast performance should lie 

within selected percentiles of the simulated distribution that serve as confidence intervals. Segments 

of the historical distribution that lie below (above) the lower (upper) bootstrap confidence intervals 

are indicative of forecasters who are significantly better (worse) than their peers. 

D’Agostino, McQuinn, and Whelan (2012) apply their testing procedure to data from the US 

SPF. The sample period begins in 1968:Q4 and ends in 2009:Q3, with 309 forecasters appearing 

over the time period. Because participation rates vary among the forecasters, the analysis uses the 

full sample of forecasters and a restricted sample that excludes forecasters who provide fewer than 

10 forecasts. The bootstrap distributions involve 1,000 simulations and the 1st and 99th bootstrap 

percentiles serve as confidence bands. The results suggest that most forecasters display equal 

predictive performance, although there is evidence that a relatively small group of forecasters 

perform very poorly. 

Meyler (2020) examines the issue of equal forecasting ability for participants in the ECB 

SPF. As background, he notes that the testing procedure of D’Agostino, McQuinn, and Whelan 

(2012) relies on participants’ forecast errors being uncorrelated across periods. When the data in (1) 

involve overlapping forecast horizons (h >1), the conventional application of the testing procedure 

is not valid because of autocorrelation in the forecast errors. To remedy this situation, Meyler (2020) 

proposes separating the data across nonoverlapping forecast horizons. 

Meyler (2020) applies the bootstrapping and Monte Carlo simulation techniques of 

D’Agostino, McQuinn, and Whelan (2012) to quarterly one-year-ahead and one-year/one-year-

forward forecasts from the ECB SPF during the period 1999-2018. Given the structure of the 

survey instrument, the correction for autocorrelation involves grouping SPF rounds that are four 

quarters apart. To avoid the influence of forecasters with very limited participation, Meyler (2020) 

excludes forecasters who provide fewer than 20 forecasts for a particular target variable and horizon, 

resulting in the number of forecasters in the sample varying between 63 and 77 over the time 

period.5 He also performs a robustness check using pre- and post-global financial crisis samples. For 

 
5 As discussed shortly, Meyler (2020) applies his participation restriction to the full time period and not to the 
four quarterly sub-samples.  
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the analysis, the bootstrap distributions involve 1,000 simulations and the 1st and 99th bootstrap 

percentiles serve as confidence bands. The results provide little evidence of forecasters who perform 

significantly better or worse than their peers. 

The approach adopted by D’Agostino, McQuinn, and Whelan (2012) and Meyler (2020) is 

attractive for several reasons. As previously discussed, the metric in (1) controls for changes in the 

degree of difficulty in forecasting a variable over time and the score in (2) can account for the 

varying entry and exit of survey participants. Meyler (2020) also points out that the approach allows 

for the aggregation across target variables and horizons. There are, however, several issues 

pertaining to the methodology and data in D’Agostino, McQuinn, and Whelan (2012) and Meyler 

(2020) that appear problematic.   

One issue is related to the overlapping forecast horizons of the data. While the modification 

proposed in Meyler (2020) controls for autocorrelation in the forecast errors, it results in a 

significant loss of efficiency because of the reduced time series dimension of the data. Even if a 

respondent were to participate in every survey from 1999:Q1 through 2018:Q4, restricting the 

analysis to SPF rounds four quarters apart only allows for a maximum of 20 observations to 

compute the relevant score in (2) for each sub-sample associated with a target variable and horizon. 

The number of observations, however, will typically be lower for most respondents because they 

will not be full-time participants. 

Another issue concerns the metric in (1) to control for changes in the forecasting 

environment. While the normalization scheme may seem reasonable, other approaches are available 

to capture the effect of a common element leading most participants to display higher or lower 

accuracy in a period. For example, time fixed effects is a common approach used to control for 

aggregate shocks in a panel data setting.6 It is important, therefore, to investigate the appropriateness 

of the normalization scheme and to consider alternative modeling strategies that can serve the same 

purpose. In addition, Meyler (2020) points out that a drawback of the normalized metric in (1) is 

that it involves an asymmetric treatment of accuracy at the individual level versus the aggregate level. 

Specifically, a forecaster who makes a relatively large error when forecast errors on average are small 

will incur a large penalty, whereas a forecaster who makes a relatively small error when forecast 

errors on average are large will not benefit much. 

A final issue is that D’Agostino, McQuinn, and Whelan (2012) and Meyler (2020) restrict 

their attention to point forecasts. In the case of the US SPF and the ECB SPF, however, matched 

density forecasts are also available to test for equal predictive ability across forecasters. Taken 
 

6 We discuss the issue of modeling a common element across forecasters in more detail in the next section.   
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together, these issues raise questions about the reliability and robustness of the conclusions in 

D’Agostino, McQuinn, and Whelan (2012) and Meyler (2020) and motivate our study. 

III. An Empirical Framework to Test for Equal Forecast Accuracy 

In contrast to other studies, we propose a heterogeneous panel data model to test the 

hypothesis of equal forecast accuracy across survey participants. Specifically, the empirical analysis is 

based on the following specification for each participant j and survey in period t: 

(3) ( ), , ,
j j

t t h j j t t h t t hFP FPα λ ε+ + += + +   

where ,
j

t t hFP +  and ,t t hFP +  denote a forecast performance (FP) metric at the individual and average 

(cross-section) level, respectively, and ,
j

t t hε +  is the error term. For the moment, we only note that 

higher (lower) values of the FP  and FP measures denote lower (higher) forecast accuracy and defer 

a more detailed discussion of the specific metrics until the next section.  

There is a close parallel between the variables and structure in (3) and those in (1). On a 

general level, the panel data model can be viewed as a regression-based analogue to the methodology 

used in D’Agostino, McQuinn, and Whelan (2012) and Meyler (2020). As we argue, however, there 

are several advantages to our empirical framework. First, the participant-specific intercepts and 

slopes allow for a deeper exploration into the issue of heterogeneity. In particular, we can evaluate 

individual forecast performance through two channels: a participant fixed effect α  and a time-

varying component ( )FPλ  related to the average forecast performance of participants in a survey. 

The linear specification in (3) also addresses Meyler’s (2020) criticism about the normalized metric in 

(1) and its asymmetric treatment of forecast accuracy at the individual level versus the aggregate 

level. 

The specification in (3) also lends itself to a convenient and straightforward test of equal 

forecast accuracy through the joint restriction 0jα =  and 1jλ =  across all survey participants. The 

testing procedure formalizes the idea that if participants are identical on average, then their observed 

behavior should be similar and individuals should not display forecasts that are systematically 

more/less accurate compared to those of other participants. That is, everyone should look 

indistinguishable from each other over time. Importantly, the specification in (3) also nests two 

alternative approaches to control for changes in the forecastability of a variable. For example, the 

normalization procedure adopted by D’Agostino, McQuinn, Whelan (2012) and Meyler (2020) 
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corresponds to the special case of the jα ’s being jointly equal to zero. Alternatively, the application 

of time fixed effects corresponds to the case of equality of the jλ ’s. Consequently, we have the 

additional capability to evaluate specific approaches to address the issue of variation in the 

forecasting environment. 

Another point of consideration is the important role of FP  in our analysis. A typical 

concern that emerges in estimating panel data models is the cross-sectional correlation across units. 

Estimators that fail to account for cross-sectional dependence turn out to be inefficient and 

inconsistent [Sarafidis and Wansbeek (2012)]. Our modeling strategy allows us to interpret FP  as 

cross-section averages of dependent variables and to view this regressor within the context of the 

common-correlated effects (CCE) procedure of Pesaran (2006). This procedure not only accounts 

for dependence across participants but also provides the basis to view FP  as a proxy for an 

unobserved common factor, such as an aggregate shock, that impacts the forecasting environment 

and generates higher or lower accuracy across participants in a period. Accordingly, the movements 

in FP  are a very natural way to describe time variation in the forecasting environment. 

Another advantage of our estimation framework is that it can account for conditional 

heteroscedasticity and autocorrelation in the model disturbance terms. As previously discussed, the 

latter issue arises when the data involve overlapping forecast horizons (h >1) and is problematic for 

the approach adopted by D’Agostino, McQuinn, and Whelan (2012) and Meyler (2020). In contrast, 

we can apply the Newey-West (1987) covariance matrix modified for use in a panel data setting to 

obtain robust standard errors for the estimated parameters in (3). Consequently, we do not need to 

separate the panel into survey rounds at a specified distance apart as in Meyler (2020), but instead we 

can exploit the efficiency gains from using all of the information on participants in a collective 

manner.  

Our modeling strategy also lends itself to making interpersonal and intrapersonal 

comparisons. Because of the nature of the regression equations in (3), it is useful to note that the 

estimated values for α  and λ  across participants will be centered around 0 and 1, respectively. By 

partitioning the parameter space into four quadrants around these means, as shown in Figure 1, we 

can examine the relationship between the estimated parameter pairings ( )ˆˆ ,j jα λ  for evidence of 

patterns in participants’ forecast behavior. 

If we were to reject the null hypothesis of equal predictive performance, then one possibility 

for this outcome is that a scatterplot of the estimated parameter pairings in Figure 1 would 
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principally run from the ( )0, 1α λ< <  quadrant up through the ( )0, 1α λ> >  quadrant. In this 

hypothetical configuration, the former quadrant would indicate there are participants who are more 

accurate on average than their peers irrespective of the forecasting environment, while the latter 

quadrant would indicate there are participants who are less accurate on average than their peers 

irrespective of the forecasting environment.7 There is, however, a second possible configuration 

where the estimated parameter pairings principally run from the ( )0, 1α λ< >  quadrant down 

through the ( )0, 1α λ> <  quadrant, implying that relative forecast performance varies with changes 

in the forecasting environment. Specifically, participants in the ( )0, 1α λ< >  quadrant are relatively 

more accurate in a tranquil environment and then relatively less accurate as the environment 

becomes more volatile. The opposite case holds for participants in the ( )0, 1α λ> < quadrant. 

Inspection of the scatterplot can also be informative about the dispersion of the estimated 

parameter pairings. 

Estimation of (3) also allows us to generate a forecast performance profile for each 

participant based on the predicted values of the model ( )FP  where: 

(4)  ( ), ,
ˆˆj

t t h j j t t hFP FPα λ+ += +  

The behavior of the performance profiles depends on the nature of the forecasting environment as 

well as the quadrants of the parameter space. As we vary the value of FP , the performance profile 

of participants located in the ( )0, 1α λ< <  quadrant will run below the profile of those located in  

the ( )0, 1α λ> > quadrant. In the case of participants in the ( )0, 1α λ< >  quadrant and 

( )0, 1α λ> < quadrant, however, their profiles will display crossings that reflect changes in the rank 

orderings of forecast accuracy that vary with the forecasting environment.  

Our earlier discussion of IR models highlighted the absence of a mechanism to generate 

persistent heterogeneity in forecast accuracy for a given target variable and horizon. However, we 

can extend the analysis to consider other aspects of forecast behavior. Specifically, IR models would 

also imply that the estimated parameter pairing or the predictive performance of a participant should 

not display systematic patterns over time. We can also use our empirical framework to investigate 

 
7 Recall from the previous discussion that higher (lower) values of the individual FP measures are associated 
with less (more) accurate forecasts.  
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these implications. For example, information on ( )ˆˆ ,j jα λ can determine the quadrant location of a 

participant. In addition, we can calculate the following average relative forecast performance metric: 

(5) ( ) ( ) ( ), ,
1

1
T

j j
j t t h t t h

t
FP FP FP FPT + +

=

− = −∑   

where ,
j

t t hFP + is set to ,t t hFP +  if participant j did not respond to that survey. The metric in (5) is 

similar to the score previously described in (2) and provides an assessment of a participant’s overall 

forecast performance. Evidence that a participant’s estimated parameter pairings tend to locate in 

the same quadrant or evidence of a positive association between metrics from (5) across target 

variables and horizons would indicate that a participant’s forecast behavior displays similar features.8 

Taken together, our modeling strategy provides a unified empirical framework to analyze the 

forecast behavior of ECB SPF participants and inform models of the expectations formation 

process. With regard to IR models, our approach affords several avenues by which to gauge whether 

there are systematic differences across participants as well as similar behaviors for an individual 

participant. Moreover, our approach uses conventional estimation and testing procedures and also 

accounts for a range of econometric issues arising from the nature of the survey instrument and 

data. Importantly, changes in the degree of difficulty in forecasting a variable does not present a 

challenge to our study or require the adoption of some type of split sample analysis. Rather, time 

variation in the forecasting environment is an integral element in our methodology and plays a 

central role in our ability to compare and contrast various features of participants’ predictive ability. 

IV. The European Central Bank Survey of Professional Forecasters 
The ECB SPF began in January 1999 and provides a quarterly survey of forecasts for the 

euro area. The survey draws its pool of panelists from both financial and nonfinancial institutions, 

with most, but not all, located in the euro area. Meyler (2020) notes that the principal aim of the 

survey is to solicit expectations about inflation, real GDP growth, and unemployment, although the 

questionnaire also contains a noncompulsory section asking participants for their expectations of 

other variables and to provide qualitative comments that inform their quantitative forecasts.9 The 

ECB SPF asks panelists for forecasts at short-, medium- and longer-term horizons, including both 

“rolling” and “calendar year” variants. The survey is fielded in February, May, August, and 

 
8 While the empirical analysis in Section V restricts its attention to pairwise comparisons of participants’ 
forecast accuracy across either different target variables/same horizon or different horizons/same target 
variables, we can extend the dimensions under consideration.  
9 The additional expectations pertain to variables such as wage growth, the price of oil, and the exchange rate.   
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November, with a little under 50 panelists on average responding per survey. For additional details 

about the ECB SPF, see Garcia (2003) and Bowles et al. (2007). 

We examine forecasts for real GDP growth, inflation as measured by the harmonized index 

of consumer prices (HICP), and the unemployment rate. This choice partly reflects the structure of 

the survey instrument that asks respondents to submit both point- and density-based forecasts for 

these three macroeconomic variables.10 Because D’Agostino, McQuinn, and Whelan (2012) and 

Meyler (2020) restrict their analyses to point-based forecasts, the inclusion of both types of forecasts 

offers an important robustness check. For the density forecasts, participants report their subjective 

probability distribution of forecasted outcomes as a histogram using a set of intervals provided in 

the survey. While the ECB SPF occasionally changes the number of closed intervals for the 

histogram, it has essentially maintained a common bin width for the closed intervals throughout its 

history.11 

With regard to forecast horizons, we examine point and density forecasts that involve rolling 

one-year-ahead and one-year/one-year-forward horizons. Compared to calendar year horizons, an 

advantage of the rolling horizons is that the horizon length remains constant through time and 

allows us to treat the data as quarterly observations on a set of homogeneous series. As Garcia 

(2003) notes, there is a temporal misalignment between the target variables because of differences in 

the data frequency and publication lags of the variables. Specifically, real GDP growth is published 

quarterly with a two-quarter lag, while HICP inflation and the unemployment rate are published 

monthly with a one-month lag and a two-month lag, respectively.12 

Our study analyzes surveys conducted from 1999:Q1–2018:Q3, with forecast evaluation 

ending in 2019:Q3 for all series. The ECB SPF, like other surveys, has experienced entry and exit of 

respondents over time. Moreover, occasionally participants do not respond to the complete 

questionnaire or to individual items within the questionnaire. As noted by Meyler (2020), 

participants provide the highest number of forecasts for HICP inflation and the lowest number for 

unemployment, with the number of forecasts at the one-year-ahead horizon exceeding that at the 

 
10 The ECB SPF is among a small, but growing number of surveys that solicit both point and density 
forecasts. Other notable surveys include the US SPF (published by the Federal Reserve Bank of Philadelphia), 
the Bank of England Survey of External Forecasters, and Federal Reserve Bank of New York Survey of 
Consumer Expectations. 
11 The only deviation in this design started with the 2020Q2 survey in response to the COVID-19 outbreak. 
The (nearly) constant interval width of the ECB SPF density forecasts is in contrast to the US SPF density 
forecasts, which have experienced periodic changes in interval widths. 
12 For example, the 2010Q1 survey questionnaire asks respondents to forecast one-year-ahead output growth 
from 2009Q3–2010Q3. For HICP inflation, the corresponding forecast horizon is December 2009–
December 2010. For the unemployment rate, the corresponding forecast is for November 2010.  
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one-year/one-year-forward horizon. Participants also report more point forecasts than density 

forecasts. Given the unbalanced panel structure of the ECB SPF, we only include participants at 

each individual target variable/horizon who provide at least 50 forecasts.  Further, we only consider 

matched point and density forecasts to maintain comparability across the types of forecasts.13 

Consequently, the number of participants varies from 34 (HICP inflation at the one-year-ahead 

horizon) to 21 (unemployment rate at the one-year/one-year-forward horizon). Compared to the 

number in Meyler’s (2020) study, the number of participants in our panel is smaller, although the 

number of recorded forecasts for each participant is notably higher.14 

An extremely important consideration for the analysis is the issue of data vintage to 

construct realizations of the target variables. As is the case for most macroeconomic data for most 

countries, euro-area macroeconomic statistics tend to be revised from preliminary releases. 

Consequently, a choice must be made about the relevant release associated with a participant’s 

forecast. Following Meyler (2020), we construct realizations of the target variables for HICP 

inflation and the unemployment rate using monthly data from the first full release.15 For real GDP 

growth, we construct realizations of the target variables using quarterly data from the second 

estimate. We have considered other approaches to construct realizations of the target variables as 

additional robustness checks.16 

The ability to assess a participant’s forecast performance requires not only the choice of data 

vintages but also measures of point and density forecast accuracy. For the point forecasts, we adopt 

the absolute error as the metric: 

(6) [ ],
POINT j j

t t h t h t t hFP X E X+ + += −  

where t hX +
 denotes the realized value of the relevant ECB SPF target variable in period t+h and 

[ ]j
t t hE X + denotes the reported point forecast from participant j in the survey at date t. 

For the density-based accuracy measure, we adopt the absolute rank probability score 

(ARPS) as the metric: 

 
13 We also exclude any participant whose probabilities for a density forecast do not sum to unity. 
14 Recall from the earlier discussion that Meyler divides the forecasts into separate quarterly rounds. We have 
also experimented with a lower threshold of 40 participants and obtained similar results.  
15 Specifically, if the target variable is one-year-ahead HICP inflation, we use the first full release reporting the 
value of the price index in month t+12. The same release is used to obtain the value of the price index in 
month t.  
16 We used current vintage data as one robustness check. As another robustness check, we construct growth 
rates using the first full release to obtain the value of the price index in month t and the second estimate for 
the level of real GDP in quarter t. The results changed very little using these alternative approaches.  



14 
 

(7) ,
1 1 1

1
1

tk i i
DENSITY j j

t t h g t g t h
i g gt

FP p I
k+ +

= = =

= −
− ∑ ∑ ∑  

where we assume there are tk  bins associated with the histogram for the survey at date t, the 

probability assigned by respondent  j to the gth bin is j
g tp , and g t hI +  denotes an indicator variable 

that takes a value of one if the actual outcome in period t+h is in the thg interval of the histogram 

from the survey at date t. The ARPS has the property that a participant receives “credit” by 

assigning probability in bins close to the bin containing the actual outcome.17 

The evaluation of the ECB SPF density forecasts requires additional discussion beyond the 

selection of a metric. To the extent that respondents place any probability in either open interval, the 

manner chosen to close off the open intervals will affect the value of the forecast performance 

metric in (7). We follow a common—although ad hoc—assumption and close the exterior open 

intervals by assigning them twice the width of the interior closed intervals. We also need to address 

the issue of the location of probability mass associated with the density forecasts. We again draw 

upon common practices and assume that the probability mass is distributed uniformly within each 

bin of the histogram. Finally, we exclude the 2009:Q1 one-year-ahead real GDP growth density 

forecast data because many respondents placed significant probability in the lower open interval of 

the histogram in this survey.18 

V. Empirical Results 
It is instructive to begin by examining the behavior of the average forecast performance 

metrics ( )FP  to compare forecastability across the variables as well as to identify low- and high 

variance episodes. Figure 2 plots the movements of ( )FP  for the point forecasts and density 

 
17 The squared error metric used in D’Agostino, McQuinn, and Whelan (2012) and Meyler (2020) provides an 
alternative to the absolute value norm in (6) and (7). However, measures based on the squared norm are more 
sensitive to outliers compared to measures based on the absolute value norm. Our subsequent discussion also 
points out that predictive performance can be sensitive to the treatment of open intervals of the density 
forecasts, with the sensitivity again being higher when using a squared norm. Because the absolute value norm 
helps to mitigate both of these concerns, we adopt this metric for the distance calculations in the paper. 
However, we used the squared norm for the point forecasts and density forecasts for robustness and found 
similar results.  These results are available upon request. 
18 For this survey, the significant probability mass at the lower open interval corresponded to a growth rate of 
“-1 percent or less” and was due to the survey design of the density forecasts and its inability to provide 
sufficient coverage for the pessimistic point predictions of output growth. For individuals who either 
reported point predictions below -1 percent or wanted to indicate significant downside risk, they assigned 
most of their probability to the open-ended interval. See Abel et al. (2016) for further discussion. 
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forecasts of real GDP growth, HICP inflation, and the unemployment rate at the one-year-ahead 

horizon, while Figure 3 provides the corresponding information at the one-year/one-year-forward 

horizon. The metrics are plotted based on the realization of the target variable, with gray bars 

indicating recessions as determined by the Euro Area Business Cycle Dating Committee of the 

Center for Economic Policy Research.19 

As shown, there is generally a close correspondence between the point and density forecast 

performance metrics for the same target variable and horizon. While the difficulty of forecasting 

outcomes around the time of the global financial crisis and the euro-area debt crisis is evident, the 

data speak to other episodes associated with sizable forecast errors that are not uniform in their 

timing across the three target variables. Consequently, there is sufficient variability in the forecasting 

environments to mitigate concerns that our results are largely driven by just a few events. In terms 

of the pattern of the forecast errors, they are highest for real GDP growth around the time of the 

global financial crisis. For HICP inflation, they are highest around the time of the global financial 

crisis as well but are also elevated toward the beginning of the sample and during the middle of the 

last decade. For the unemployment rate, the forecast errors are again largest around the time of the 

global financial crisis, although they are also elevated at the beginning of the sample and around the 

time of the euro-area debt crisis. 

Table 1 and Table 2 present formal tests for equal predictive ability using the point forecasts 

and density forecasts, respectively. We estimate the parameters in (3) using ordinary least squares 

(OLS), with standard errors computed using the Newey-West (1987) covariance matrix estimator 

modified for use in a panel data set.20 Letting ( ) ( ) ( )1 1 2 2
ˆ ˆ ˆ ˆˆ ˆ ˆ, , , ,..., ,N Nθ α λ α λ α λ =  

 denote the vector 

of estimated parameters of the model, we construct the following Wald test statistic for the joint null 

hypothesis that 0iα =  and 1iλ =  for all i  =1,…,N participants included in the panel for a 

particular target variable and horizon: 

(8) ( ) ( ) ( )1
0 0

ˆ ˆ ˆvarW θ θ θ θ θ−′  = − −   

 
19 For example, the metric associated with the forecasts of HICP inflation from 2015Q1-2016Q1 is plotted at 
2016Q1. As a reminder, we plot the ( )FP  value for the 2009:Q1 one-year-ahead point forecasts of real GDP 

growth in Figure 2 but do not include these data in the analysis owing to the exclusion of the matched density 
forecasts. Unlike the absolute error metric, the ARPS metric is restricted to fall in the range between 0 and 1.    
20 We allow the error terms to follow a fourth-order moving average process to account for the overlap of 
forecast horizons.  
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Because our estimation approach nests two common approaches to control for variability in the 

forecasting environment, we can also use the estimated parameter vector θ̂  and the estimated 

variance-covariance matrix ˆvar( )θ  to construct Wald test statistics for the validity of the 

normalization approach ( )1 2 0Nα α α= = = =  or the use of time fixed effects ( )1 ... Nλ λ= = . 

As shown by the values of the test statistic, we strongly reject the hypothesis of equal 

predictive ability in all cases except for the point forecasts of inflation at the one-year horizon.21 In 

terms of controlling for changes in the forecast environment, we reject the normalization approach 

and the use of time fixed effects in all cases except for the point forecasts of inflation at the one-year 

horizon. Consequently, while the normalization approach used in D’Agostino, McQuinn, and 

Whelan. (2012) and Meyler (2020) may have intuitive appeal and plays a key role in their analyses, 

the data do not support this approach. 

To gain insight into the sources for the rejection of equal predictive ability, Figure 4 and 

Figure 5 display scatterplots of the individual estimated parameter pairings ( )ˆˆ ,j jα λ  for the point 

forecasts and density forecasts, respectively. The patterns are striking in their similarity across target 

variables and horizons as well as for the point and density forecasts. The estimated parameter 

pairings do not support the idea that, looking across all forecasting environments, there are some 

participants who are typically more accurate and other participants who are typically less accurate. 

Rather, the estimated parameter pairings display a strong inverse relationship consistent with the 

view that participants’ relative predictive performance varies with the forecasting environment. 

Moreover, the patterns do not indicate clustering and do not suggest that the inverse association 

reflects the behavior of a few participants. Rather, the observations largely fall in the ( )0, 1α λ< >  

and ( )0, 1α λ> <  quadrants at a similar frequency and are fairly disperse within each quadrant. 

There are, however, two notable differences for the estimated parameter pairings across the 

point and density forecasts. First, the slopes of the linear relationships between the estimated 

parameter pairings are typically steeper for the density forecasts as compared to the point forecasts. 

As we discuss in more detail shortly, this implies that the “crossing point” for the forecast 

performance profiles of participants in the ( )0, 1α λ< >  and ( )0, 1α λ> <  quadrants – that is, the 

level of average forecast performance where there is a switch in their relative accuracy – is lower for 

density forecasts. 

 
21 The different degrees of freedom reflect the varying number of respondents meeting the participation 
restriction for the various target variables and horizons. 
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A second difference concerns the relative precision of the estimated parameter pairings. To 

illustrate this feature of the data, we adopt Monte Carlo simulation techniques and generate 1,000 

draws of the parameter pairings vector for each target variable and horizon using the estimated joint 

normal distribution for ( ) ( ) ( )1 1 2 2
ˆ ˆ ˆ ˆˆ ˆ ˆ, , , ,..., ,N Nθ α λ α λ α λ =  

. Figure 6 and Figure 7 plot the 

distributions for the point forecasts and density forecasts, respectively, where the estimated pairings 

are in black and the simulated pairings are in gray. As shown, the distributions for the density 

forecasts are much tighter as compared to the point forecasts. The differences in the degree of 

precision are notable and consistent with the evidence in Tables 1 and 2 that the rejections of the 

various hypotheses are generally stronger for the density forecast data. We will also explore how 

these differences bear upon issues related to the quadrant location of a participant.  

The evidence in Tables 1 and 2 and in Figures 4 and 5 suggests two principal reasons why 

our conclusions differ from those of D’Agostino, McQuinn, and Whelan (2012) and Meyler (2020). 

In their approach, D’Agostino, McQuinn, and Whelan (2012) and Meyler (2020) only relate 

predictive performance to average forecast performance and impose the same inverse weighting 

scheme across participants. However, we find notable and statistically significant variability across 

participants’ fixed effects and slope coefficients that speaks to the importance of both dimensions as 

well as parameter flexibility to characterize predictive performance. The broader and more general 

nature of our approach affords greater scope to identify differential behavior among forecasters and 

gauge the persistence of the heterogeneity. 

 Drawing upon our earlier discussion, we can examine the implications of the estimation 

results for the forecast performance profiles of participants. To do so, we select a participant from 

each of the four quadrants associated with a target variable and horizon. While any scatterplot can 

be used for the exercise, it is convenient to use the one-year-ahead point forecasts of the 

unemployment rate for this illustration. Using the estimated parameter pairing for each participant 

identified by the red circles in the relevant panel in Figure 4, we vary the average forecast 

performance metric ( )FP  and trace out the corresponding forecast performance profiles.  

 Figure 8 depicts the forecast performance profiles of the four participants that closely align 

with our expected behaviors. The performance profiles of the participants in the ( )0, 1α λ< < and 

( )0, 1α λ> >  quadrants, respectively, are typically the lowest and highest, and then steadily widen as 

the forecast environment transitions from low to high variance. In contrast, the performance 

profiles of the participants in the ( )0, 1α λ> <  and ( )0, 1α λ< > quadrants cross at 0.435, which 



18 
 

corresponds to the 40th percentile of the FP values. At values below the crossing, the participant in 

the ( )0, 1α λ< > quadrant displays greater relative forecast accuracy, while the opposite holds for 

the participant in the ( )0, 1α λ> < quadrant at values above the crossing.22 

The performance profiles offer a visual perspective into our methodology and findings. As 

shown, a key aspect of our study is the ability to discern and categorize divergent forecast accuracy, 

which is especially important owing to the higher incidence of participants in the ( )0, 1α λ< > and 

( )0, 1α λ> <  quadrants. Consequently, we expect the rank orderings of participants to display 

considerable variability as the degree of difficulty of the forecasting environment changes.  

To gain a better appreciation of the extent of the variability, we now consider all of the 

participants associated with the one-year-ahead point forecasts of unemployment. Specifically, we 

construct rank orderings based on participants’ forecast accuracy evaluated at five equally spaced 

values spanning the range of FP  for this target variable and horizon. Table 3 reports the results. To 

facilitate the discussion, we list the participants based on their rankings at the lowest selected value 

of FP . We can then examine how the rankings change as the forecasting environment becomes 

more difficult. As shown, the pattern of the rank orderings is consistent with the evidence from the 

scatterplot of the estimated parameter pairings in the lower left panel of Figure 4. Some individuals 

largely maintain the same rankings either because they tend to be highly accurate (#96), highly 

inaccurate (#36), or close to the average most of the time (#16). There are also examples of 

dramatic improvements (#91, #52) and dramatic declines (#1, #2) in rankings as the forecasting 

environment changes from easy to difficult. However, it is more typical to observe individuals who, 

as the forecasting environment turns more challenging, become relatively more accurate (#15, #98) 

or relatively less accurate (#4, #89), resulting in rank orderings that are predominantly marked by 

crossings. 

 
22 It is important to recall that the quadrants characterize a participant’s forecast accuracy relative to the 
(cross-section) average. For example, participants in the ( )0, 1α λ< <  quadrant display forecasts that are 
systematically more accurate than the average. However, this does not imply that these participants’ forecasts 
always outperform those of individuals in other quadrants. Consequently, there is no inconsistency with the 
figure displaying an additional crossing at 0.781 in which the participant in the ( )0, 1α λ> <  quadrant begins 

to display greater relative forecast accuracy compared to the participant in the ( )0, 1α λ< <  quadrant. The 

crossing point corresponds to the 84th percentile of the FP values and is associated with a high-variance 
episode, which is the type of forecasting environment in which participants in the ( )0, 1α λ> <  quadrant 
display enhanced performance.    
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The analysis up to this point has examined forecast data for the target variables and horizons 

in isolation. However, there is scope to investigate if there are similarities in the data across target 

variables and horizons. For example, while the scatterplots show that the estimated parameter 

pairings principally lie in the ( )0, 1α λ< > and ( )0, 1α λ> < quadrants, they do not indicate the 

extent to which the pairings for a participant tend to locate in the same quadrant. Another 

consideration is the extent to which a participant’s predictive performance for a target variable and 

horizon correlates with performance for other target variables and horizons. These additional 

features are informative for the development or evaluation of expectations models where, in the 

latter case, our previous discussion has noted the relevance for IR models.   

Our investigation into the location of the parameter pairings for a participant requires more 

than simply focusing on the quadrant associated with the estimates. We must also account for the 

uncertainty associated with the estimates. Consequently, we use the distributions in Figures 6 and 7 

generated from 1,000 simulations and calculate the aggregate percentage of parameter pairings 

located in each quadrant based on all relevant simulations for a participant. Figure 9 and Figure 10 

report the highest aggregate percentage in a quadrant for a participant’s point forecasts and density 

forecasts, respectively. The values are the ratio of the combined number of simulated parameter 

pairings for a participant that fall in each quadrant to the total of 6,000 simulations. For purposes of 

comparison, we present the results for the 23 participants included in all six combinations of target 

variables and horizons.23 Using 50 percent as an arbitrary threshold, the evidence in Figure 9 shows 

only modest support for the idea that a participant’s parameter pairings tend to locate in the same 

quadrant. Specifically, the histogram bars show that only a third of the participants exceed the 

threshold criterion. For those participants who exceed the threshold criterion, the percentages 

generally are not significantly higher than the 50 percent value.  

A very different picture emerges when we look at the density forecasts. There are now 19 

participants who exceed the threshold criterion and the calculated percentages are notably higher 

than the 50 percent value in many cases. Particularly noteworthy are the two participants whose 

forecast behavior suggests almost no affiliation with the other three quadrants across the six 

combinations of target variables and horizons. The results in Figure 9 and Figure 10 are consistent 

with the evidence from Figure 7 and are another example of the different conclusions that can be 

drawn between the point and density forecasts. Moreover, the two types of data lead to a very 

different narrative describing the connection between a participant’s predictive performance and the 

 
23 We have also extended the analysis to include the other participants in our study and the results are similar.  
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nature of the forecasting environment, with the density forecasts indicating that there is considerably 

more overlap. 

We can also use the average relative forecast performance metrics in (5) to make various 

comparisons across the forecast data, where lower values again indicate better predictive 

performance. Because of the large number of comparisons, we only provide a summary of the 

results. Overall, we find that forecast performance correlates positively across horizons and target 

variables in almost all cases. There are, however, differences across various dimensions that are 

worth noting. One difference is a continuation of earlier discussions and concerns the type of 

forecast data. Specifically, we find that the density forecast data generate a much stronger association 

than the comparable point forecast data. The top panel in Figure 11 is representative of this finding 

and shows scatterplots of the average relative forecast performance metrics for inflation at the two 

forecast horizons for the point forecast data and density forecast data, respectively. While the point 

forecast data indicate a modest correlation of 0.43, the correlation of 0.77 for the density forecast is 

nearly twice as high. Looking across all of the pairwise combinations of target variables and 

horizons, the correlations for the point forecast data are typically in the 0.2-0.4 range, while the 

correlations for the density forecast data are in the 0.7-0.8 range. 

Another feature of forecast performance that emerges is that the correlations are generally 

higher for the same target variable at different horizons than for different target variables at the 

same horizon. An ordered ranking of the correlations indicates that the lowest three values are 

associated with inflation and GDP growth at the two forecast horizons and GDP growth and 

unemployment at the one-year/one-year-forward horizon. In contrast, the highest three values are 

associated with unemployment (using both types of forecast data) and inflation at the two forecast 

horizons. While a more detailed analysis is beyond the scope of the current paper, such behavior 

could reflect some type of heterogeneity in participants’ loss functions or processing capacity that is 

in turn related to information acquisition or signal monitoring. 

 A further examination of forecast performance across the target variables reveals two other 

features. First, there tends to be a stronger correlation at the shorter horizon. The middle panel of 

Figure 11 shows scatterplots of the average relative forecast performance metrics for GDP growth 

and unemployment. Unlike the pattern at the one-year-ahead horizon, there is much less of a 

translation of forecast performance from unemployment into GDP growth at the one-year/one-

year-forward horizon. Second, there is less of a linkage between forecast performance for GDP 

growth and inflation than there is for GDP growth and unemployment. The bottom panel of Figure 

11 shows the scatterplots of the corresponding average relative forecast performance metrics at the 
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one-year-ahead horizon. For inflation and GDP growth, forecast performance actually shows a 

slight inverse relationship.24 In the case of GDP growth and unemployment, however, there is a 

meaningful positive association. 

VI. Conclusion 
This paper develops an alternative empirical framework to investigate whether ECB SPF 

participants display systematic differences in their predictive performance. While the nature of the 

accuracy of professional forecasters is of interest by itself, our study draws further motivation from 

IR models and the implication that the forecast data should not display evidence of persistent 

heterogeneity. In addition to making comparisons of accuracy across participants, we investigate the 

correlation patterns of participants’ accuracy across parameter configurations, target variables, and 

horizons. As a robustness check, we also consider the evidence from density forecasts, which 

represent a data source that has been largely overlooked in previous analyses. 

Based on forecasts for output, inflation, and unemployment, we find strong evidence of 

systematic differences in participants’ accuracy that are not related to innate ability but instead are 

episodic in nature. By way of a simple illustration, the results suggest that participants largely divide 

into two “camps”: those who display relatively better forecasting performance in low-variance times 

and those who do so in high-variance times. Consistent with this view, we find considerable 

variability in the rank orderings of participants. The analysis from examining the data across 

parameter quadrants, target variables, and horizons sheds light on additional features that help to 

enhance the forecast profile of participants, although the results can be sensitive to the type of 

forecast data. Compared to the point forecast data, the density forecast data indicate marked 

similarities in the forecast behavior of participants. In terms of the illustration introduced above, 

participants tend to locate in the same “camp” across target variables and horizons. There is also a 

positive and meaningful relationship between the forecast performances of a target variable across 

different horizons. On balance, we conclude that participants do not display comparable forecast 

behavior and that observed differences are not due to random variation. 

It is evident that heterogeneity is a prominent feature of expectations data. While various 

models of expectations formation have been successful at generating differential forecast behavior, 

they typically are unable to account for the systematic nature of the differences documented in this 

study. It would be interesting and important to determine if these same empirical features are 

 
24 This is the only instance where the average relative forecast performance metrics display a negative 
relationship.  
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present in other survey data.25 If so, then the findings would argue further for the development of 

expectations models that can generate persistent heterogeneity in key features of forecasters’ 

behavior, but can also account for the differential effects of the forecast environment on predictive 

performance. The opportunity to explore and identify the key underpinnings in the course of such a 

development would serve as fertile ground for future research. 

 

  

 
25 The US SPF would seem to be a natural candidate for such an investigation. It is unclear, however, if a 
parallel analysis can be conducted for the US SPF because of differences in the survey instrument. 
Specifically, the US SPF does not feature “rolling” forecast horizons.  
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Table 1 

( ), , ,
POINT j jFP FPj jt t h t t h t t hα λ ε= + ++ + +  

 Equal Predictive Ability 

: 0 10H andj jα λ= =  

Normalization Approach 

: 00 1 2H Nα α α= = = =  

Time Fixed Effects 

:0 1 2H Nλ λ λ= = =  Point Forecast Data 

GDP growth: 
one-year-ahead 

2 (62) 375.4 **χ =  2 (31) 84.4 **χ =  2 (30) 278.8**χ =  

GDP growth: 
one-year/one-year-
forward 

2 (58) 244.7 **χ =  2 (29) 68.1**χ =  2 (28) 143.9 **χ =  

Inflation: 
one-year-ahead 

2 (68) 77.7χ =  2 (34) 41.1χ =  2 (33) 29.3χ =  

Inflation:  
one-year/one-year-
forward 

2 (62) 156.2 **χ =  2 (31) 90.9 **χ =  2 (30) 80.4 **χ =  

Unemployment: 
one-year-ahead 

2 (56) 134.5**χ =  2 (28) 58.0 **χ =  2 (27) 58.1**χ =  

Unemployment: 
one-year/one-year-
forward 

2 (48) 225.8**χ =  2 (24) 42.0 *χ =  2 (23) 100.1**χ =  

Note: Degrees of freedom are reported in parentheses. 
** Significant at the 1% level 
 * Significant at the 5% level 
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Table 2 

( ), , ,
DENSITY j jFP FPj jt t h t t h t t hα λ ε= + ++ + +  

 Equal Predictive Ability 

: 0 10H andj jα λ= =  

Normalization Approach 

: 00 1 2H Nα α α= = = =  

Time Fixed Effects 

:0 1 2H Nλ λ λ= = =  Density Forecast Data 

GDP growth: 
one-year-ahead 

2 (62) 337.5**χ =  2 (31) 235.5**χ =  2 (30) 160.6 **χ =  

GDP growth: 
one-year/one-year-
forward 

2 (58) 371.2 **χ =  2 (29) 173.1**χ =  2 (28) 100.6 **χ =  

Inflation: 
one-year-ahead 

2 (68) 352.6 **χ =  2 (34) 208.8**χ =  2 (33) 103.2 **χ =  

Inflation:  
one-year/one-year-
forward 

2 (62) 345.6 **χ =  2 (31) 273.5**χ =  2 (30) 134.3**χ =  

Unemployment: 
one-year-ahead 

2 (56) 324.2 **χ =  2 (28) 141.1**χ =  2 (27) 106.0 **χ =  

Unemployment: 
one-year/one-year-
forward 

2 (48) 138.6 **χ =  2 (24) 69.8**χ =  2 (23) 74.6 **χ =  

Note: Degrees of freedom are reported in parentheses. 
** Significant at the 1% level 
 * Significant at the 5% level 
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Table 3 

Rank Orderings of Forecast Accuracy: Point Forecasts of One-Year-Ahead Unemployment 
Rate   

Forecaster ID 0.25FP =   0.50FP =  0.75FP =  1.25FP =  2.0FP =  
1 1 5 15 20 23 
37 2 2 5 9 12 
96 3 1 2 6 7 
2 4 16 23 27 27 
89 5 7 12 17 18 
23 6 6 11 14 16 
26 7 14 20 21 22 
54 8 17 22 23 25 
20 9 4 8 8 8 
4 10 15 17 18 20 
95 11 12 10 10 9 
94 12 8 7 7 6 
16 13 13 13 11 10 
39 14 3 4 3 3 
38 15 19 18 15 15 
24 16 10 6 4 5 
5 17 22 19 19 17 
15 18 18 14 12 11 
98 19 21 16 13 14 
56 20 23 24 25 24 
33 21 24 26 26 26 
31 22 25 25 24 21 
22 23 11 3 2 2 
52 24 20 9 5 4 
91 25 9 1 1 1 
42 26 26 21 16 13 
36 27 28 28 28 28 
29 28 27 27 22 19 
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