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1 Introduction

Dynamic optimization problems are ubiquitous in economics, and since closed form expressions for

such problems are available only in isolated special cases, quantitative work requires the use of

numerical methods for their solution. In this paper we solve a number of dynamic optimization

problems that arise naturally in economic applications by employing the Markov chain approxima-

tion (MCA) method of Harold Kushner and Paul Dupuis. Although expositions and applications

of this method already exist in the economics literature,1 the method has several advantages over

alternative approaches to continuous-time optimization problems that remain unexploited. To the

best of our knowledge, this paper is the first to outline such advantages by means of examples taken

from the economics literature.

The most common approach to solving continuous-time optimization problems is the method

of finite-differences, which has recently been applied to a number of economic environments by

Achdou et al. (2017). In this method, one first establishes that the value function is a (viscosity)

solution of a partial differential equation known as the Hamilton-Jacobi-Bellman equation, before

replacing derivatives with quotients and solving the ensuing finite system of equations. In contrast,

the MCA method approximates the solution to the continuous-time control problem by replacing

it with a simpler problem in which the state evolves according to a Markov chain assuming finitely

many values. The method formalizes the intuitive idea that if the discrete-time process is “close”

to the original process, then the value function of the discrete-state problem should also be close

to the original value function.

The criteria necessary for the convergence of the value function of the latter problem to that of

the original problem are referred to as local consistency conditions. These amount to the require-

ment that the increments of the chain possess the first- and second-order conditional moments of

the original process, at least up to a term that is second-order in the time increment. One benefit

to proceeding in this manner is that arguments from discrete-time dynamic programming already

familiar to economists — such as the contraction mapping theorem and Blackwell’s conditions —

are applicable to this new problem and ensure the convergence of the numerical algorithms. Fur-

ther, even in the presence of non convexities and in multiple dimensions, the Markov chain may

1See, e.g., Barczyk and Kredler (2014b), Barczyk and Kredler (2014a), and Golosov and Lucas Jr (2007).

2



often be chosen so as to eliminate the need for costly root-finding, without sacrificing the global

convergence of the algorithm.

We first establish a connection between the above approaches by showing that a limiting case

of one widely used finite-difference scheme is equivalent to a particular case of the MCA method.

Formally, we show that a limiting version of the implicit finite-difference scheme of Achdou et al.

(2017) is equivalent to using the MCA method for a certain chain with negligible timestep and

solving the resulting Bellman equation using policy function iteration. Establishing this connection

is useful since it means that the former algorithm amounts to making two choices, a choice of chain

and a choice of solution method, neither of which may be optimal for a given problem. The two

classes of examples given in this paper illustrate the benefits of a more general approach.

The first example shows the benefits of departing from policy function iteration. It is well known

that policy function iteration converges at a quadratic rate near the solution, and so typically re-

quires a small number of iterations for convergence. However, updating the value function using

this algorithm requires solving a linear system of equations, which becomes very costly computa-

tionally as either the number of gridpoints increases or the sparsity structure of the matrix becomes

more complex. One therefore expects that the implicit finite-difference method slows down rapidly

as one increases the number of gridpoints or the dimension of the state variable. Section 3 confirms

this point by considering variations of a problem common in economics, in which an infinitely lived

risk-averse agent makes a consumption-savings choice in the presence of idiosyncratic risk and/or

discrete choices over a durable good. We show that for standard parameters and moderate grid

sizes, variations of the modified policy function iteration of Puterman and Shin (1978) can lead

to an increase in the speed of convergence of more than an order of magnitude relative to policy

function iteration, with no loss of accuracy.

The second example we consider applies the MCA method to (stationary) portfolio problems

with highly correlated state variables, a situation that arises in many general equilibrium models

with financial frictions. This property poses some difficulties, as it may be impossible to satisfy the

local consistency requirements using only transitions to immediately adjacent points. We provide

three algorithms of increasing complexity and accuracy for the parsimonious selection of non local

points. The first two proceed in an elementary manner, while the third draws upon the abstract
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construction in Bonnans et al. (2004), which has recently been applied to general equilibrium

models by d’Avernas and Vandeweyer (2019). The purpose of this example is to again illustrate

the flexibility of the MCA approach, and to emphasize that the choice of chain is separate from the

choice of solution method for the resulting system of equations. Indeed, although we draw upon

the aforementioned papers in the contruction of our locally consistent chains, for the stationary

problems with which we are concerned, the solution to the individual portfolio problem may be

found more rapidly using policy function iteration than with the “false transient” approach more

commonly used for time-dependent problems.

As an illustration of this last point, we embed these portfolio problems into a general equilibrium

macrofinance model with time-varying volatility in the spirit of Brunnermeier and Sannikov (2014).

Given prices, the law of motion for the aggregate state, and the continuation values of the agent,

we use the MCA method to discretize the individual problem and compute the policy functions.

We then impose market-clearing requirements and consistency between individual and aggregate

laws to obtain a single map on continuation values, which we iterate upon until convergence. As

with the rest of the literature, we are unable to establish convergence of our algorithm to the

competitive equilibrium. However, as we are primarily concerned with the solution to individual

control problems we leave further investigation of the computation of equilibria to future work. For

clarity and to aid the reader in the implementation of details, Appendix fA tests the speed and

accuracy of all methods considered in the paper by applying them to linear-quadratic problems,

for which policy and value functions are attainable in closed form. All code used in this paper is

written in Python and available upon request.

2 Motivating example

In this section we outline the MCA method in the context of the stochastic one-sector neoclassical

growth model. Although this example may be easily solved via a number of different numerical

methods, it serves to give an intuitive account of how the method works and to contrast it with the

finite-difference method. As we noted in the introduction, the basic idea here is to approximate the

solution by solving a simpler problem in which the state evolves according to a chain that assumes

only finitely many values. The value function associated with this simpler problem will be a good

approximation to the original value function if for any given control vector, the increments of the

4



chain share the same first and second conditional moments as the original process.

2.1 Setup

Suppose that a social planner wishes to maximize the expected lifetime utility of an infinitely lived

representative agent with preferences over consumption

U(c) = E
[
ρ

∫ ∞
0

e−ρtu(ct)dt

]
.

We assume that capital and consumption goods may be costlessly transformed into one another,

and so the sole state variable is the capital stock, which evolves according to the law of motion

dkt = [f(kt)− δkt − ct]dt+ σ(kt)dZt, (1)

for some smooth function f satisfying the Inada conditions, constant δ > 0, Brownian motion

(Zt)t≥0 and smooth function σ. For simplicity suppose σ vanishes outside of some interval [k, k]

and that at these boundary points we impose c(k) ≤ f(k)− δk and c(k) ≥ f(k)− δk, respectively,

where f(k) > δk. Given any k0 ∈ [k, k] a natural way to solve this problem is to replace the law of

motion (1) with the discrete counterpart

kt+∆t = kt + (f(kt)− δkt − ct)∆t +
√

∆tσ(kt)Xt (2)

for some ∆t > 0, where (Xt)
∞
t=0 is an i.i.d. sequence of random variables with mean zero assuming

the values ±1. Using standard dynamic programming arguments,2 one may show that the value

function for the discretized problem is the unique fixed point of the functional equation BV = V ,

where

BV (k) = max
c≥0

∆tu(c) + e−ρ∆tE
[
V
(
k + (f(k)− δk − c)∆t +

√
∆tσ(k)X

)]
(3)

subject to c(k) ≤ f(k) − δk and c(k) ≥ f(k) − δk. One may show that T is a contraction on the

space of continuous functions on [k, k], so the fixed point may be found by applying it repeatedly

to an arbitrary initial guess.

The finite-state Markov chain method of Kushner and Dupuis (2001) approximates the original

problem in a fundamentally different way. Instead of (2), we consider an optimal control problem

in which the capital stock assumes values in a finite grid S := {k, k + ∆k, . . . , k − ∆k, k}, where

∆k = (k − k)/N for some N > 1. We construct the chain such that the increments possess the

2As outlined in, e.g., Stokey (1989).
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same conditional mean and variance as (2). Specifically, if ct = c, then the transition probabilities

of the Markov chain given kt = k are supported on {k −∆k, k, k + ∆k} and given by

p(k, k + ∆k, c) =
∆t

∆2
k

(
σ2(k)

2
+ ∆k[f(k)− c− δk]+

)
p(k, k −∆k, c) =

∆t

∆2
k

(
σ2(k)

2
+ ∆k[f(k)− c− δk]−

)
p(k, k, c) = 1− p(k, k −∆k, c)− p(k, k + ∆k, c)

(4)

where x± := max{±x, 0} for x ∈ R. Associated with (4) we have the Bellman operator

B̃V (k) = max
c≥0

∆tu(c) + e−ρ∆tE
[
V (k′)

]
(5)

where again we impose the requirements c(k) ≤ f(k)−δk and c(k) ≥ f(k)−δk. Using the stochastic

formulation of dynamic programming given in Stokey (1989), it is easy to show that the operator

in (5) is a contraction and so the (unique) fixed point in the space of continuous functions on [k, k]

may be found simply by iterating successively on an arbitrary guess. Now note that the conditional

mean of ∆kt ≡ kt+∆t − kt is

E[kt+∆t − kt|kt = k] = −p(k −∆k, c)∆k + p(k + ∆k, c)∆k = ∆t(f(k)− c− δk)

where for brevity we omit the dependence of probabilities on the original point. Further, the

conditional variance E[(kt+∆t − kt)2|kt = k]− E[(kt+∆t − kt)|kt = k]2 of ∆k is

∆t

(
σ2k2 + ∆k|f(k)− c− δk| −∆t(f(k)− c− δk)2

)
.

As ∆t,∆k → 0, the law of motion for this problem converges to the law of motion (2). One may

then use weak convergence arguments to show formally that fixed points of the operators defined

in (3) and (5) also converge to one another (and the value function of the original problem).

Why is this construction useful, given that both (3) and (5) lead to a discrete Bellman equation?

The main point here is that in the second discretization, when the agent contemplates how varying

the control (consumption) alters tomorrow’s payoffs, she need only compare local continuation

payoffs; so the shape or regularity of the value function is irrelevant. Using (4), the functional

equation may be written

(1− e−ρ∆t)

∆t
V (k) = max

c≥0
ρu(c) + e−ρ∆t

(
[f(k)− c− δk]+V F − [f(k)− c− δk]−V B

)
(6)
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Figure 1: Value functions in a one-sector growth model with non concave technology

where V F and V B are approximate forward and backward derivatives. The crucial difference

between (3) and (6) is that in the latter, optimal consumption is available in closed form, regardless

of the shape of either the value function or production function and the non concavity in the

problem. To illustrate, suppose that utility is logarithmic and the production function is f(k) =

max
{√

k, 5
√
k − 5

}
. Figure 1 shows the computed value functions for the parameters (ρ = 1, δ =

0.05, k = 1, k = 20, N = 1000), for both a deterministic (σ = 0) and a stochastic (σ = 0.4 in

interior, vanishing at boundaries) case, and Figure 2 shows the corresponding policy functions.

We used policy function iteration and imposed a tolerance of maximum error between successive

iterations of 10−8. In both cases, convergence occurs in less than 0.03 seconds using the standard

languages in Python and an Intel Core i7-8650U processor, beginning with an initial guess of zero

net saving.

We now compare the above approach with a class of finite-difference methods that have been

applied to a number of economic problems of interest by Achdou et al. (2017), who in turn build

upon the earlier application of Candler (2001). We first (heuristically) derive the appropriate partial
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Figure 2: Policy functions in one-sector growth model with non concave technology

differential equation in order to motivate the algorithm.3 Using the discrete-time version of the

principle of optimality, for any t, h > 0 we have

V (k, t) = max
c

[∫ t+h

t
u(c(s))ds+ V (k(t+ h), t+ h)

]
.

Subtracting V (k, t) from both sides, dividing by h and using Ito’s lemma gives

0 = max
c
u(c) +

∂V

∂t
+ [f(k)− c− δk]

∂V

∂k
+
σ(k)2

2

∂2V

∂k2
.

A common approach to solving the above partial differential equation is to approximate the partial

derivatives with various choices of difference quotients and solve the resulting finite system of

equations. Achdou et al. (2017) proceed in this manner and consider two formulations of the

method, which they term explicit and implicit. In this section we focus only on the latter. To

understand the algorithm, fix a rectangular grid S for [k, k]× [0, T ] for some T > 0 with increments

∆k and ∆T in each dimension, and imagine we are given a terminal value V (k, T ). For each

3For details we refer to Achdou et al. (2017) and Tourin (2013) and the references therein. Our goal is not to

recapitulate the theory of finite-difference methods but to instead relate it to Markov chain approximation methods.
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(kj , tn) ∈ S write V n(kj) = V (kj , tn) and define V n+1 as the solution to(
1

∆t
+ ρ

)
V n+1 =

V n

∆t
+ u(cn) + [f(kj)− cnj − δkj ]+(V n+1)F

− [f(k)− c− δk]−(V n+1)B +
σ(k)2

2
(V n+1)C

(7)

where cn solves maxc≥0 ∆tu(cn) + [f(k)− c− δk]+(V n)F − [f(k)− c− δk]−(V n)B and F,B and C

superscripts denote forward, backward and central differences, respectively,

V F (kj) =
V (kj+1)− V (kj)

∆k

V B(kj) =
V (kj)− V (kj−1)

∆k

V C(kj) =
V (kj−1)− 2V (kj) + V (kj+1)

∆2
k

.

In practice, for small grids convergence is rapid and insensitive to changes in the timestep when

the latter is large. To understand why, note we may write the fixed point of (7) as maxc∈Γ(k) u(c)+

TIFD(c)V , where

TIFD(c) = [f(k)− c− δk]+V F (k)− [f(k)− c− δk]−V B(k) +
σ(k)2

2
V C(k)− ρV (k). (8)

If we set ∆t = ∞, then the implicit method may be written as follows: fix V0; find c0 solving

maxc∈Γ(k) u(c) + TIFD(c)V0; find V1 solving 0 = u(c0) + T (c0)V1; replace V0 with V1 and repeat

until convergence. The method fits within the framework of Puterman and Brumelle (1979), who

establish the convergence of algorithms of this form when T (c)−1 ≤ 0. Finally, if we denote the

operator associated with the Markov chain defined by (4) by T (c; ∆t) = [e−ρ∆tP (c)− I]/∆t, then

the following allows us to understand both the convergence properties of the implicit method and

its relationship to the Markov chain approximation method.

Lemma 2.1. For any policy c we have lim∆t→0 T (c; ∆t) = TIFD(c).

Proof. Simply compare the right-hand side of (8) with

T (c; ∆t)V = −(1− e−ρ∆t)

∆t
V + e−ρ∆t

(
[f(k)− c− δk]+V F − [f(k)− c− δk]−V B +

σ(k)2

2
V C

)
from which the result follows by taking limits.

Lemma 2.1 shows that the implicit finite-difference method of Achdou et al. (2017) amounts

to solving the original problem by considering a particular Markov chain and a particular solution

method (policy function iteration) for the resulting system of equations. Although Achdou et al.
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(2017) acknowledge a connection between Markov chain approximation methods and their finite-

difference approach, we know of no analysis that provides the student of economics with guidance

on which method to use in any particular situation. The remainder of this document is devoted to

precisely this task by illustrating the benefits of departing from implicit finite-difference schemes

for a number of economic problems. We first outline the method formally before turning to these

examples.

2.2 Formal overview

This section provides a general overview of the theory developed in Kushner and Dupuis (2001). We

focus only on fixing consistent notation and stating the relevant results and definitions necessary

to understand subsequent examples and refer the reader to the text for details. We are interested

in continuous-time control problems of the following form.

Definition 2.1. Let B := (Bt)t≥0 be a standard n-dimensional Brownian motion defined on a

probability space (Ω,F , P ), and denote by (Ft)t≥0 the associated natural filtration. For a fixed

compact set U ∈ Rm define C to be the set of admissible controls, the set of stochastic processes

(ut)t≥0 adapted to (Ft)t≥0 such that ut ∈ U for all t ≥ 0. For some functions F : Rn × U → R,

µ : Rn × U → Rn and µ : Rn × U → Rn×n we consider the optimal control problem

V (x) = max
u∈C

E
[∫ ∞

0
e−ρtF (xt, ut)dt

]
dxt = µ(xt, ut)dt+ σ(xt, ut)dBt

x0 = x.

We refer to x and u as the state and control variables, F as the payoff function, and µ and σ as

the drift and diffusion functions.

The law of motion for the state is a shorthand for

xt = x0 +

∫ t

0
µ(xs, us)ds+

∫ t

0
σ(xs, us)dBs (9)

where the final term is to be interpreted as an Ito integral. For the examples of this paper we make

the following assumption.

Assumption 2.1. The functions F, µ, and σ are continuous, bounded, and Lipschitz.

10



Assumption 2.1 can be weakened without affecting the validity of the approach. However,

it covers many examples of interest to us and ensures that a weak solution to (9) exists and is

unique for any admissible control, so that the value function in Definition 2.1 is well-defined. To

reduce a problem of the form in Definition 2.1 to a finite-state problem, we must specify how to

approximate the underlying state and objective function. The following introduces the notion of a

locally consistent approximating Markov chain, which captures the requirement that the first and

second conditional moments coincide with the drift and diffusion coefficients up to a term that

vanishes with the timestep.

Definition 2.2. A finite-state Markov chain approximation to the processes (xt)t≥0 satisfying

(9) for some admissible control (ut)t≥0 consists of a family of Markov chains (ξh)h>0 with finite

state spaces (Sh)h>0, together with a family of time increment functions (∆ht(x, u))h>0 satisfying

limh→0 supx,u ∆ht(x, u) = 0 and infx,u ∆ht(x, u) > 0 for all h > 0. Defining ∆h
nx = ξhn+1 − ξhn the

approximation is locally consistent if

Ehx,n,u[∆h
nx] = ∆ht(x, u)µ(x, u) + o(∆ht(x, u))

Ehx,n,u[(∆h
nx− Ehx,n,u[∆h

nx])2] = ∆ht(x, u)σ(x, u)σ(x, u)t + o(∆ht(x, u))
(10)

where Ehx,u,n denotes the conditional expectation of the chain ξh at time tn given (ξhn, u
h
n) = (x, u),

where uhn := uthn and t0 = 0 and ∆htn = tn+1 − tn = ∆ht(ξhn, u
h
n). In what follows we refer to (10)

as the mean and covariance consistency requirements, respectively.

We will drop superscripts and subscripts for expectations, since the appropriate operator will

be obvious from the context. For each ξh we approximate the objective in Definition 2.1 as

E
[∫ ∞

0
e−ρtF (xt, ut)dt

]
≈ E

[ ∞∑
n=0

e−ρt
h
n∆htnF (ξhn, u

h
n)

]
. (11)

For each h > 0, associated with the Markov chain ξh and control process (ut)t≥0, we define the

continuous-time processes ξ
h

and uh as the right-continuous and piecewise constant processes that

coincide with the above chains at the times (tn)n≥0. The sum on the right-hand side of (11) is

approximately E
[∫∞

0 e−ρtF (ξ
h
t , u

h
t )dt

]
with the only difference being the continuous discounting on

the intervals [tn, tn+1), which necessarily vanishes as h → 0. The weak convergence arguments of

Kushner and Dupuis (2001) are applied to these continuously interpolated processes, so that all

approximations to the original process are defined on the same path space. However, for each h > 0

the value function we solve numerically corresponds to the control problem with objective (11) and

state evolving according to xh, and so may be solved with discrete-time techniques.
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Definition 2.3. Given a family of Markov chains {ξh}h>0 locally consistent with (9) for each

control, define the approximate value functions

V h(x) = max
u∈C

E

[ ∞∑
n=0

e−ρt
h
n∆htnF (ξhn, u

h
n)

]

ξh0 = x

for any h > 0, where the maximum is once again over the set of all admissible controls.

The finite-state Markov chain approach applies discrete-time dynamic programming arguments

problems of the form in Definition 2.3 rather than the original problem in Definition 2.1. This leads

to the Bellman equation for the controlled Markov process being given by

V h(x) = max
u∈U

∆tF (x, u) + e−ρ∆tEu[V h(x′)] (12)

where x evolves according to the given approximating Markov chain. We will consider problems

with discounting and uniformly bounded payoff functions, so that there are no subtleties regarding

the applicability of the principle of optimality, and the fixed point of (12) coincides with the

sequence problem given in Definition 2.3. Familiar arguments, such as those outlined in Stokey

(1989), show that the right-hand side defines a contraction on the space of continuous functions

defined on some compact subset of the state space. Finally, Kushner and Dupuis (2001) show that

under standard assumptions on the functions defined in the original problem Definition 2.1, local

consistency ensures convergence of the approximate value functions to the true value function. The

following is Theorem 5.2 on page 293 of Kushner and Dupuis (2001).

Theorem 2.2. Under Assumption 2.1 we have V h(x)→ V (x) as h→ 0.

The MCA method may be used to solve problems in which there are jumps in the state variable.

Although we do not strive for the most general framework possible, we outline here the theory

necessary to solve a problem of particular interest to economists, in which a risk-averse consumer

faces a consumption-savings problem with fluctuating income and may consume discrete amounts

of a durable consumption good. The state variable for the agent will consist of her wealth, her

income, and the current value of the durable good. This necessitates a discussion of jump processes,

since the purchase of the durable good will coincide with a fall in wealth that does not vanish with

the length of the time interval. We therefore consider a jump-diffusion process of the form

dxt = µ(xt, uDt)dt+ σ(xt)dZt + dJt(uJt) (13)
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where (Jt)t≥0 is a jump process defined by

Jt =

∫ t

0

∫
Γ
q(xs−, uJs, ρ)N(dsdρ). (14)

In (14) one interprets the integrand q(xs−, uJs, ρ) as the size of the jumps at time s, with ρ denoting

the realization of uncertainty and supported in some compact set Γ. The quantity N is a Poisson

random measure with intensity density h(dtdρ) = λdt×Π(dρ), meaning E[N(A)] =
∫
A h(dtdρ) for

all Borel A. The control vector is written ut := (uDt, uJt) to illustrates that some components

affect only the drift and others affect only the jumps. For the case of interest to us we may assume

that ρ is supported at a single point and that the jumps in (13) correspond to purchases of the

durable good. It may help to imagine that the “jumps” are arriving at a constant exogenous rate

λ > 0, but that they coincide with a movement in the state variable only when q(xt−, uJt, ρ) 6= 0.

To construct a locally consistent Markov chain for (13), one begins with a locally consistent

Markov chain for the diffusion component and obtains the approximation by independently drawing

from this and the jump component. The definition of a locally consistent finite-state Markov chain

now includes an additional component, qh, representing the jumps of the Markov chain. The manner

in which the transition probability given in Definition 2.4 is constructed from the probabilities

associated with the diffusion term has an intuitive interpretation. We may interpret it as arising

by drawing from a jump process with probability λ∆t and drawing from the continuous part with

probability 1− λ∆t.
4

Definition 2.4 (Local consistency with jumps). A family of finite-state Markov chains {ξh}h>0

with state spaces {Sh}h>0 is locally consistent with the jump diffusion (13) if for each h > 0 there

exist transition probabilities {phD(x, x′)}x,x′∈Sh and functions qh such that:

1. The family of Markov chains defined by {phD(x, x′)}x,x′∈Sh is locally consistent with the dif-

fusion process (zt)t≥0 defined by dzt = µ(zt, ut)dt+ σ(zt)dZt;

2. The functions (qh)h>0 satisfy |qh(x, uJ)− q(x, uJ)| → 0 as h→ 0 uniformly in (x, uJ); and

3. For some δh(x, u) = o(∆t(x, u)),

ph(x, x′, u) = (1− λ∆t − δh(x, u))phD(x, x′, u) + (λ∆t + δh(x, u))1x+qh(x,uJ )=x′ .

4The following definition is less general than that in Kushner and Dupuis (2001) but is sufficient to cover the

example in Section 3.3.
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The analogue of Theorem 2.2 for the case of controlled jump processes is outlined in Chapter 13

of Kushner and Dupuis (2001). To solve control problems of the form in Definition 2.1, we therefore

need only solve the Bellman equation (12) for some choice of locally consistent approximating

Markov chain. This is important because the literature on dynamic programming with finite state

spaces contains a wealth of techniques for solving finite-state Markov decision problems. Section 3

illustrates the benefits of this viewpoint by solving an income fluctuation problem using modified

policy function iteration. Section 4 deals with a more involved point that the MCA method is

well-suited to solving problems with high correlation among multiple state variables, for which the

construction of convergent finite-difference schemes is particularly difficult, and not considered in

the analysis of Achdou et al. (2017).

3 Alternative solution methods for finite-state problems

In the one-sector growth model of Section 2, we constructed a locally consistent chain for the capital

process and solved the resulting system of equations using policy function iteration. The algorithm

converged in a small number of iterations, which is unsurprising given that policy function iteration

is known to converge locally at a quadratic rate. However, the updating step in policy function

iteration requires solving a linear system of equations. The computational cost of this operation

grows rapidly when the number of gridpoints increases or the sparsity structure of the transition

matrix becomes more complex, both of which occur naturally as the dimension grows.

In our first application we therefore illustrate the benefits of employing the modified policy

function iteration algorithm of Puterman and Shin (1978). This algorithm generalizes value function

iteration by updating the value function a fixed number of times between successive updates of the

policy function. In this case convergence is known to occur only at a linear rate, and so will

typically require more iterations than policy function iteration. However, crucially, at no point in

the algorithm do we need to solve a linear system of equations. Further, we show that an analogue

of the modified policy function remains applicable even when the timestep vanishes, and so is well

suited to settings in which the state variable may change by a large amount instantaneously, as is

the case in problems in which one must choose consumption in a fixed finite set. To the best of our

knowledge, this generalized policy function iteration is novel, and in practice appears quite useful.
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The construction of the approximating chain in the one-sector growth model of Section 2 re-

quired no delicate choices, since in one direction a chain can only move up, down, or stay at the

same point. In higher dimensions, one may need to consider transitions to diagonal directions or

even non local transitions. We return to this point in Section 4. For ease of exposition this section

isolates the benefits of modified policy function iteration relative to policy function iteration, and so

considers a problem for which a chain requires no subtle construction. Section 3.2 applies modified

policy function iteration to an income fluctuation problem in which income is the product of two

diffusion processes. Section 3.3 considers a variation of an income fluctuation problem with discrete

choices over a durable good and uses the normalization used prior to Lemma 2.1 to establish that

an analogue of modified policy function iteration is applicable even when the timestep is sent to

zero. The appendix verifies the accuracy of these methods for linear-quadratic problems.

3.1 Modified and generalized policy function iteration

We briefly recapitulate here the arguments and algorithms of Puterman and Brumelle (1979) and

Puterman and Shin (1978) in order to fix ideas and to explain our generalization. Suppose we have

a finite-state Markov chain with state space S of cardinality |S|, and time increment ∆t ∈ R|S|

and that at each point x ∈ S the control u may assume values in some subset U of Euclidean

space, with the associated transition probabilities P : S2 × U → [0, 1]. The dynamic programming

equation for the discrete-state problem with flow payoff function f and discount rate e−ρ∆t is

V (x) = max
u∈U

∆t(x)f(x, u) + e−ρ∆t(x)
∑
x′∈S

P (x, x′, u)V (x′) x ∈ S. (15)

Defining β(x) := e−ρ∆t(x) and F (x, u) = ∆t(x)f(x, u), we can (with some abuse of notation) write

this in matrix form as V = maxû∈U |S| F (û) + βP (û)V , where dependence of F, β, and V on the

state is omitted and P (û) ∈ R|S|×|S| is the matrix of transition probabilities. For any û ∈ U |S|

define T (û) := e−ρ∆tP (û)− I and write the Bellman equation as

0 = max
û∈U |S|

F (û) + T (û)v =: B(v) (16)

where the second equality defines B : R|S| → R|S|. Policy function iteration is then the following:

• Choose v0 arbitrarily.

• Choose û(v0) to solve B(v0) = F (û(v0)) + T (û(v0))v0 = maxû∈U |S| F (û) + T (û)v0.

• Given û(v0), define v1 as the value of adhering to û(v0), v1 = −T (û(v0))−1F (û(v0)).
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• Replace v0 with v1 in the above and repeat until convergence.

We write û(v) for the control that attains the maximum in (16) and abbreviate ûn := û(vn). The

updating law may be written

vn+1 = −T (û(vn))−1F (û(vn)) = vn − T (û(vn))−1B(vn). (17)

A key insight of Puterman and Brumelle (1979) is that policy function iteration is essentially

an abstract version of Newton’s method and inherits some of the same properties, such as rapid

(quadratic) convergence near the solution. However, as we noted earlier, the updating step in

policy function iteration requires the solution of a linear system of equations of a size as large as

the number of gridpoints. Computational time therefore grows very rapidly as one increases the

grid size or dimension, motivating the search for alternatives to policy function iteration.

To this end, note that if T = βP − I then −T (ûn)−1 =
∑∞

j=0(βP (ûn))j and (17) becomes

vn+1 = vn +
∞∑
j=0

(βP (ûn))jB(vn). (18)

Modified policy function iteration simply truncates this sum at a finite integer k,

vn+1 = vn +
k∑
j=0

(βP (ûn))jB(vn). (19)

The non negativity of P ensures that vn+1 ≥ vn if B(vn) ≥ 0. Further, the case k = 0 corresponds

to value function iteration and policy function iteration arises as k → ∞. Puterman and Shin

(1978) establish rates of convergence in the case in which T (û) = βP (û) − I for some β ∈ (0, 1)

and transition matrix P . However, for our purposes it is useful to note that there exist analogues

of (19) for a general T that retain the monotonicity. For an arbitrary T and normalizing function

C : S × U |S| → R we define a generalized modified policy function iteration algorithm by

vn+1 = vn +

k∑
j=0

(I + T̃ (ûn))jB̃(vn) (20)

where T̃ (ûn)(x, x′) := T (ûn)(x, x′)/C(x, ûn) and B̃(vn)(x) := B(vn)/C(x, ûn) for all x, x′ ∈ S, and

ûn is defined as in the above. The presence of the normalization C(·, ûn) leaves the fixed point

unchanged and may be chosen so that the resulting algorithm retains the monotonicity of policy

function iteration.
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Lemma 3.1. If C is chosen so I + T̃ (ûn) ≥ 0 for all n ≥ 0, then B(vn) ≥ 0 implies B(vn+1) ≥ 0

for all n ≥ 0. Consequently, the sequence defined by (20) is monotone increasing if B(v0) ≥ 0.

Proof. For any v, w ∈ R|S| we have B(w) = maxû∈U |S| F (û) + T (û)w ≥ F (û(v)) + T (û(v))w and so

B(w) ≥ B(v) + T (û(v))(w − v). For any n ≥ 1 and (v, w) = (vn, vn+1) we then have

B(vn+1) ≥ B(vn) + T (ûn)(vn+1 − vn)

= B(vn) + T (ûn)
k∑
j=0

(I + T̃ (ûn))jB̃(vn)

= (I + T̃ (ûn))k+1B(vn) ≥ 0

as claimed.

The possibility of applying a version of the above algorithm to more general operators than

those of the form T = βP − I is mentioned in Puterman and Brumelle (1979).5 Our interest in this

generalization arises because we will apply the algorithm to a normalized operator similar to that

appearing in Lemma 2.1. Specifically, if P (∆t) : U |S| → R|S|×|S| denotes the transition probability

functions arising from a discretization using the MCA method with constant timestep ∆t, then we

apply (20) to T (û) = lim∆t→0(e−ρ∆tP (û,∆t) − I)/∆t for û ∈ U |S|. In the examples that follow,

we will always choose C to be the least value such that I + T̃ (ûn) ≥ 0 always. This is convenient

because it will avoid the need to choose the timestep so that the transition probabilities remain in

the unit interval throughout the iterative process.

3.2 Income fluctuation problem

We first consider the problem of an infinitely lived agent who may borrow and lend at a risk-free rate

and who faces idiosyncratic income risk. As emphasized by Achdou et al. (2017), this is a natural

application for an economist, as such problems are an integral component of Bewley-Huggett-

Aiyagari incomplete markets models, which form the backbone of much of modern macroeconomics.

Suppose that preferences over consumption are given by

U(c) = E

[
ρ

∫ ∞
0

e−ρt
c1−γ
t

1− γ
dt

]
(21)

and that wealth evolves according to

dat = [rat − ct + yt]dt (22)

5See the bottom of their page 64. We unfortunately cannot access the references that elaborate on this point.
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where r > 0 is fixed and (yt)t≥0 denotes the income of the agent. We will also assume that the

agent faces a borrowing constraint of the form at ≥ a for all t ≥ 0 and some a.6 We assume yt = ezt

where zt := z1t + z2t for z1 and z2 satisfying

dzit = −θizitdt+ σidZit (23)

for i = 1, 2, where Z := (Z1t, Z2t)t≥0 is two-dimensional Brownian motion. When approximating

(23) we assume the volatility vanishes near the boundary, but omit this from the notation for

brevity. To construct our chain we must specify the state space, the transition probabilities, and the

(possibly state-dependent) timestep. Write a for the maximum level of wealth in the discretization,

and z1, z1, z2 and z2 for the lower and upper bounds for the income processes. For a vector of

integers N = (Na, N1, N2), define the state increments

(∆a,∆1,∆2) = ((a− a)/Na, (z1 − z1)/N1, (z2 − z2)/N2)

and the individual grids Sa = {a + ∆a, . . . , a−∆a} and Si = {zi + ∆i, . . . , zi −∆i} for i ∈ {1, 2}

and define the state space Sh := Sa×S1×S2. We choose our transition probabilities so that if the

chain is at point x := (a, z1, z2) ∈ Sh at time t then the possible values at time t+ ∆t lie in the set

∆(x) := {(a, z1, z2), (a±∆a, z1, z2), (a, z1 ±∆1, z2), (a, z1, z2 ±∆2)} .

One may check that the following defines a locally consistent chain for any c,

p(a±∆a, z1, z2) =
∆t

∆a
[ra− c+ ez1+z2 ]±

p(a, z1 ±∆1, z2) =
∆t

∆2
1

(
σ2

1

2
χ1(z1) + ∆1[−θ1z1]±

)
p(a, z1, z2 ±∆2) =

∆t

∆2
2

(
σ2

2

2
χ2(z2) + ∆2[−θ2z2]±

) (24)

where χi(zi) := 1zi /∈{zi+∆i,zi−∆i} and i = 1, 2, provided the timestep is chosen so that the above

probabilities lie in the unit interval. The borrowing constraint is imposed by requiring c ≤ ra+ y

when a = a + ∆a. To ensure that the process remains on the grid, we impose c ≥ ra + y for

a = a−∆a, although for a sufficiently large upper limit this will not bind. The Bellman equation

is then

V (x) = max
c≥0

∆t
c1−γ

1− γ
+ e−ρ∆tE[V (x′)] (25)

6The state-dependence of the constraint set means that this does not fit into the framework of Section 2.2. This

may be dealt with by introducing the notion of a reflecting boundary. For brevity of notation we omit these details.
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for all x ∈ Sh, where the expectation operator is defined by (24). Optimal consumption solves

max
c≥0

c1−γ

1− γ
+ e−ρ∆t

(
[ra− c+ ez1+z2 ]+V Fa − [ra− c+ ez1+z2 ]−V Ba

)
which again requires no nonlinear root-finding.

Numerical illustration: We now compare computational times for the above algorithms

for a fixed set of parameters. To the extent possible we adopt the parameters of Appendix F in

Achdou et al. (2017), who consider a two-dimensional problem and compare the performance of their

implicit finite-difference scheme with the endogenous grid method of Carroll (2006). Arguments

analogous to those provided for the one-sector neoclassical growth model in Section 2 reveal that

the implicit finite-difference method of Achdou et al. (2017) is asymptotically equivalent to using

policy function iteration for the probabilities (24) as the timestep vanishes. To contrast the method

with the literature, we therefore compare policy function iteration with the algorithms of Section

3.1.

Following Achdou et al. (2017) we fix γ = 2, r = 0.03, and ρ ≈ 0.0526, corresponding to a

discrete-time discount parameter of β = 0.95. With a single income state variable Achdou et al.

(2017) target an annual autocorrelation of 0.95, which implies θ = − ln(0.95) ≈ 0.0513. Since the

stationary solution to (23) is Gaussian with mean zero and variance ν2 := σ2/(2θ), their choice

of ν = 0.2 implies σ ≈ 0.064. To illustrate the effect of changing the sparsity structure of the

transition matrix on the performance of different methods, we consider two choices for the income

process. In each case we choose the parameters of Achdou et al. (2017) for the first component of

income. In the first case we set z2 = 0 so that the problem becomes two-dimensional, while in the

second we choose (θ2, σ2) = (θ1, σ1). For each choice we solve the above problem using the modified

and generalized modified policy function iteration algorithms of Section 3.1 for a number of grid

sizes and relaxation steps. In the former case we must also specify a timestep with the property

that the probabilities in (24) remain bounded within the unit interval. This can be found either by

experimentation or by imposing a priori bounds on consumption and checking ex-post that they

do not bind. We adopt the latter approach, and conjecture, (and verify ex-post) that consumption

never exceeds two and a half times interest and labor income. Note that this experimentation is

unnecessary in the case of generalized modified policy function iteration, in which the timestep has

been sent to zero, and it is for this reason that we record the output of both exercises.
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PFI VFI k = 10 k = 50 k = 100

(200, 10) 0.090998 5.519102 0.720007 0.231040 0.131687

(300, 15) 0.102996 11.164892 1.498263 0.449940 0.386003

(400, 20) 0.228000 22.833399 3.744893 0.970725 0.785935

(500, 25) 0.462520 45.173126 6.354166 1.827667 1.178174

Table 1: Time until convergence: 2D, MPFI

We now record the speed of convergence for policy function iteration (recall this is the implicit

method of Achdou et al. (2017) for ∆t =∞), value function iteration, and modified value function

iteration with k = {10, 50, 100}, and four standard deviations in each dimension of the grid and a

tolerance between successive iterations of 10−6. All figures are in seconds and all calculations were

performed using Python and an Intel Core i7-8650U processor. Table 1 gives the time until conver-

gence (in seconds) for both modified and generalized policy function iteration in two dimensions.

In this example there appears to be almost no gain from departing from policy function iteration.

Table 3 repeats the analysis for a three-dimensional problem. For the third and fourth choices of

grids, modified policy function iteration is easily an order of magnitude faster than policy function

iteration. Table 4 gives the analogous results for the case of generalized modified policy function

iteration. Note that the generalized modified policy function iteration has the advantage that one

need not worry about the timestep being chosen such that the probabilities lie in the unit interval,

which in more general settings than the above may be non-trivial to ensure. As a result, it does

not appear that one approach is always better than the other and we believe both are of interest.

We again emphasize that Appendix A tests the speed and accuracy of all methods considered in

the paper by applying them to linear-quadratic problems, for which policy and value functions are

attainable in closed form.

3.3 Durable consumption and discrete choice

One interesting property of the generalized modified policy function iteration given in Section 3.1

is that it remains applicable even as the timestep vanishes. This is useful for discrete-choice models

in which there are large and instantaneous changes in wealth. To illustrate, we now consider
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PFI k = 0 k = 10 k = 50 k = 100

(200, 10) 0.073000 1.999446 0.214006 0.088995 0.081000

(300, 15) 0.153181 5.468211 0.519973 0.194000 0.126002

(400, 20) 0.290641 13.241435 1.153003 0.329534 0.249995

(500, 25) 0.454972 23.043634 2.156318 0.652476 0.414068

Table 2: Time until convergence: 2D, Generalized MPFI

PFI VFI k = 10 k = 50 k = 100

(45, 15, 15) 2.091480 17.713820 2.058243 0.582666 0.379533

(60, 20, 20) 15.324209 59.655353 6.204724 1.677848 1.043586

(75, 25, 25) 57.241754 154.524114 18.712221 4.767470 3.716390

(90, 30, 30) 166.705059 396.583344 52.665829 14.400837 8.748964

Table 3: Time until convergence: 3D, MPFI

PFI k = 0 k = 10 k = 50 k = 100

(45, 15, 15) 4.307563 15.962657 1.417314 0.493199 0.837331

(60, 20, 20) 16.961107 55.899013 5.327223 1.497001 1.622843

(75, 25, 25) 77.082336 207.281934 16.123330 4.166059 3.322334

(90, 30, 30) 220.458093 427.963283 42.920192 10.515165 7.004953

Table 4: Time until convergence: 3D, Generalized MPFI
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a variation of the income fluctuation problem of Section 3.2 in which the agent has preferences

over non durable consumption that may assume a continuum of values, as well as a durable good

that may assume only finitely many values. This is similar to a continuous-time version of the

model of Fella (2014), who extends the endogenous grid method of Carroll (2006) to allow for both

adjustment costs and discrete choices. The MCA method may be applied to this case without any

delicate choices of grids or any need for interpolation of the function. In this case the amount by

which that wealth changes upon purchase of the durable good does not vanish as the size of the

grid tends to zero, and so we are not able to restrict attention to adjacent transitions. However, as

we shall see, this does not cause any major problems.

Assume the agent has preferences over non durable and durable consumption given by

U(c,D) := E
[
ρ

∫ ∞
0

e−ρtu(ct, Dt)dt

]
(26)

for some u and denote the values of durable consumption by SD := {D,D + ∆D, . . . , D +ND∆D}

for some D,ND and ∆D. Note that in contrast to previous examples, this grid SD is a primitive

of the problem, and not a choice made in the discretization. We again suppose that income is of

the form yt = ezt for some mean-reverting (zt)t≥0, and model the choice of the durable good as

follows. At any instant the agent makes a binary choice indicating whether she wishes to change

the durable good. However, the opportunities to change the durable good only arrive stochastically

at some constant rate λ > 0. As λ → ∞ this approximates a situation in which the durable good

may change instantaneously. If p denotes the price of the durable good, then for some constants θ

and σ with θ > 0 the laws of motion for assets at, log income zt and durable consumption Dt are

dat = [rat + ezt − ct]dt− pdDt(qt)

dzt = −θztdt+ σdZt

dDt(qt) = dJt(qt)

(27)

where (Jt)t≥0 is a jump process with arrival rate λ and qt ∈ {(0, 0, 0), (−p∆a, 0,∆D)} indicates

the desired change conditional on the jump’s arrival. We first define the discretized problem for a

positive timestep before considering operators that arise in the limit as we send this quantity to

zero, as per the discussion following Lemma 3.1.

First, define the equispaced grids S := Sa × Sz × SD, where Sa := {a + ∆a, . . . , a − ∆a}

and Sz := {z + ∆z, . . . , z − ∆z} for some integers Na, Nz ≥ 1 and bounds a, a, z and z, where
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(∆a,∆y) := ((a − a)/Na, (z − z)/Nz). To ensure that income remains on the grid, we impose

p∆D = K∆a for some K ≥ 1. We first define the transition probabilities for wealth and income,

p(a±∆a, z,D) =
∆t

∆a
[ra+ ez − c]±

p(a, z ±∆z, D) =
∆t

∆2
z

(
σ2

2
χ(z) + ∆z[−θz]±

)
where χ(z) := 1z /∈{z+∆z ,z−∆z} and define the transitions for the durable good

p(a− p∆D, z,D + ∆a) = λ1qt=(−p∆a,0,∆D)∆t

where qt := (qat, qzt, qDt) ∈ {0, (−p∆a, 0,∆D)}. The Bellman equation is then

0 = max
c,q

u(c,D) + T (c, q; ∆t)V

where

T (c, q; ∆t) = u(c,D) +
1

∆t

(
e−r∆tE[V (a′, z′, D′)]− V (a, z,D)

)
.

The optimal policy for the durable good is q := (−p∆a, 0,∆D)1V (a−K∆a,z,D+∆D)>V (a,z,D). For our

illustration we follow Fella (2014) and assume preferences of the form u(c,D) = ln c + η ln(D + ι)

for some η, ι > 0, so that the problem of finding optimal consumption is identical to the problem

in Section 3.2 with γ = 1. We now define T̃ (c, q) = lim∆t→0 T (c, q; ∆t). Simplification gives

T̃ (c, q) = u(c,D) +
1

∆a
[ra+ ez − c]+[V (a+ ∆a, z,D)− V (a, z,D)]

+
1

∆a
[ra+ ez − c]−[V (a−∆a, z,D)− V (a, z,D)]

+
1

∆2
z

(
σ2

2
χ(z) + ∆z[−θz]+

)
[V (a, z + ∆z, D)− V (a, z,D)]

+
1

∆2
z

(
σ2

2
χ(z) + ∆z[−θz]−

)
[V (a, z −∆z, D)− V (a, z,D)]

+ λ(V (a− qa, z + qz, D + qD)− V (a, z,D))− rV (a, z,D).

(28)

Numerical illustration: For simplicity we retain the same parameters for the process for income

as in Section 3.2. Our preferences are of the form used on page 339 of Fella (2014) and are ordinally

equivalent to the value (in our notation) η = 1/0.77−1. We also follow Fella (2014) in our choice of

interest rate r = 0.06, discount parameter ρ = − ln(0.93), and ι = 0.01 and set the upper bound for

durable consumption to be roughly 10 times the unconditional average of income. Table 5 gives the

time until convergence for generalized modified policy function iteration, with a tolerance between

successive iterations of 10−6. Once again we find that modified policy function is significantly faster

than policy function iteration for the larger grids.
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PFI k = 0 k = 10 k = 50 k = 100

(50, 10, 10) 0.884064 2.792081 0.431957 0.194795 0.216002

(100, 20, 10) 8.636564 19.146504 2.899576 1.217550 0.790998

(150, 30, 10) 35.807196 77.942358 8.511809 3.947027 3.726132

(200, 40, 10) 103.424154 220.948103 31.568330 7.669892 5.873974

Table 5: Time until convergence for discrete choice problem

4 Problems with highly correlated state variables

This section applies the MCA method to a general equilibrium model with financial frictions in

the spirit of Brunnermeier and Sannikov (2014). There is a unit mass continuum of infinitely lived

agents with preferences over a single consumption good. Agents may be one of two types, termed

experts and households. Experts have access to a linear production technology subject to aggregate

depreciation shocks, and all agents have access to a risk-free technology with exogenous return

(a storage technology). Capital may be transformed one-for-one into consumption and the sole

tradable asset for all agents is a risk-free bond in zero net supply. To illustrate the flexibility of

the MCA approach, we allow for time-varying volatility correlated with the depreciation shocks. A

growing number of models in the macrofinance literature possess high correlation between multiple

state variables and it poses difficulties for the construction of locally consistent chains.

Section 4.1 outlines an environment and Section 4.2 formulates the problem and equilibrium

notions recursively. Section 4.3 outlines a general approach for solving a single decision problem

with perfect correlation among multiple state variables. Section 4.4 uses the policy functions of

Section 4.3 and imposes the requirements that the law of motion of the wealth share be consistent

with individual decisions and bond market-clearing. Section 4.5 ties the above observations together

to summarize the algorithm and computes an example.

4.1 Setup

Agents may be one of two types, indexed i ∈ {E,H}, and referred to as experts and households,

respectively. There is a unit mass of each type indexed by j ∈ [0, 1]. Both types of agents are

infinitely lived with the same flow utility function but they differ in their discount rates, with
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preferences over sequences of a single consumption good represented by

Ui(c) = E

[
ρi

∫ ∞
0

e−ρit
c1−γ
t

1− γ
dt

]
for some ρH , ρE > 0 and γ ∈ (0, 1). Aggregate capital in the economy at time t ≥ 0 is denoted

kt, and the amount held by the jth agent of type i is denoted kjit. When the jth agent of type

i invests a fraction ιjit of her capital in new capital, the flow output of consumption produced is

(Πi − ιjit)k
j
itdt and the law of motion of her capital stock is

dkjit = ιjitk
j
itdt+ σtk

j
itdZt (29)

where Z = (Zt)t≥0 is a Brownian motion common to all agents. The increments of Brownian motion

in (29) may then be thought of as representing stochastic depreciation shocks. The linearity in the

investment production technology implies that the price of capital is constant (and here is unity).

We also assume that agents have access to a risk-free storage technology with exogenous and

constant real return r. The volatility (σt)t≥0 evolves over time according to

dσt = θ(σ − σt)dt+ σσdZt (30)

for some positive θ, σ and σσ, where the Brownian motions in (29) and (30) coincide. Agents

may trade a risk-free bond in zero net supply with (endogenously determined) return denoted

(rt)t≥0. An agent with wealth at must choose capital kt, bond bt and storage ht holdings satisfying

kt + bt + ht = at. When an agent of type i ∈ {E,H} adheres to choices (cit, hit, kit)t≥0 for

consumption, storage, and capital, her wealth evolves according to

dat = [rtat + (r − rt)hit − cit + (Πi − rt)kit]dt+ σtktdZt. (31)

Note that market-clearing for investment requires the price of capital in terms of consumption to

be unity, with investment ultimately determined by the consumption-savings decision. It is for this

reason that investment is omitted from (31). We then have the following.

Definition 4.1. The problem of an agent of type i ∈ {E,H} at time t ≥ 0 with state (a, σ) is

Vit(a, σ) = max
c,k,h≥0

E

[
ρi

∫ ∞
t

e−ρi(τ−t)
c1−γ
τ

1− γ
dτ

]
daτ = [rτaτ + (r − rτ )hτ − cτ + (Πi − rτ )kτ ]dτ + στkτdZτ

dστ = θ(σ − στ )dτ + σσdZτ

(at, σt) = (a, σ).

(32)
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The notion of competitive equilibrium in this economy is standard: agents maximize utility and

markets clear. We first formulate this in a sequential manner.

Definition 4.2 (Competitive equilibrium; sequential formulation). Given an initial distribution

of wealth (aji0) for i ∈ {E,W} and j ∈ [0, 1] and initial volatility σ0, a competitive equilibrium

consists of a stochastic process r = (rt)t≥0 for the risk-free rate, stochastic processes (V j
it)t≥0

and (cjit, h
j
it, k

j
it)t≥0 for i ∈ {E,W} and j ∈ [0, 1] such that V j

i solves (32) with associated policy

functions (cji , h
j
i , k

j
i ) given r and (aji , σ0), and the markets for consumption and bonds clear at all

dates almost surely. The goods market-clearing condition is∫ 1

0
cjEtdj +

∫ 1

0
cjHtdj =

∫ 1

0
[ΠE − ιjEt]k

j
Etdj +

∫ 1

0
[ΠH − ιjHt]k

j
Htdj

and the bond market-clearing condition is

0 =

∫ 1

0
(1− hjEt − k

j
Et)dj +

∫ 1

0
(1− hjHt − k

j
Ht)dj.

The homotheticity of flow utility and the log-linearity of the law of motion for wealth then give

the following, which motivates our subsequent search for a recursive formulation.

Lemma 4.1 (Homogeneity). For any process (rt)t≥0 and i ∈ {E,W} there exist processes (V it)t≥0

and (cit, hit, kit)t≥0 such that Vit(a, σ) = V it(σ)a1−γ/(1 − γ) and cit(a, σ) = cit(σ)a, hit(a, σ) =

hit(σ)a and kit(a, σ) = kit(σ)a, respectively, for all t, a, σ ≥ 0.

In what follows we abuse notation slightly and write Vi for V i. Using the linearity of policy

functions in Lemma 4.1, aggregate consumption, storage and capital demand may be written as

functions of policy functions and the wealth share of experts,

xt :=

∫ 1
0 a

j
Etdj∫ 1

0 a
j
Etdj +

∫ 1
0 a

j
Htdj

. (33)

Section B.2 shows that the wealth share evolves according to the law of motion

dxt = µx(xt, σt)xtdt+ σx(xt, σt)xtdZt

for some µx and σx depending on the policy functions of each agent. We now focus on Markov

equilibria in which all equilibrium quantities are time-independent functions of (x, σ).

4.2 Markov equilibria

We now suppose that rt = r(xt, σt), µxt = µx(xt, σt) and σxt = σx(xt, σt) for all t ≥ 0 almost surely

for some functions r, µx and σx. The problem (32) may be written in the following form.
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Definition 4.3. For any functions r, µx and σx, state (a, x, σ) and i ∈ {E,W}, the problem of the

ith type of agent may be written

Wi(a, x, σ) = max
ct,kt≥0

E

[∫ ∞
0

ρie
−ρit c

1−γ
t

1− γ

]
dt

dat = [r(xt, σt) + (r − r(xt, σt))ht − ct]atdt+ ktatdRt

dxt = µx(xt, σt)dt+ σx(xt, σt)xtdZt

dσt = θ(σ − σt)dt+ σσZt

(a0, x0, σ0) = (a, x, σ)

where dRt = (Πi − r(xt, σt))dt+ σtdZt.

Lemma 4.1 implies that the value functions in Definition 4.3 assume the form

Wi(a, x, σ) = Vi(x, σ)
a1−γ

1− γ

for some function Vi, with associated policy functions of the form

(ci(a, x, σ), hi(a, x, σ), ki(a, x, σ)) =
(
ci(x, σ)a, hi(x, σ)a, ki(x, σ)a

)
for all (a, x, σ).

Definition 4.4 (Markov equilibrium). A Markov equilibrium consists of functions for the risk-

free rate and drift and diffusion for the wealth share, together with value functions Vi and policy

functions (ci, hi, ki) for i ∈ {E,H} solving (4.3), such that for all (x, σ) we have

0 =
(
1− kE(x, σ)− hE(x, σ)

)
x+

(
1− kH(x, σ)− hH(x, σ)

)
[1− x]

and the law of motion for the wealth share is consistent with individual policy functions.

For each agent the Hamilton-Jacobi-Bellman equation for the value function is of the form

ρW = max
c,h,k≥0

ρ(ca)1−γ

1− γ
+
[
r + (r − r)h− c+ (Π− r)k

]
aW1 +

σ2k
2

2
a2W11 + µxxW2

+
σ2
xx

2

2
W22 + σxxσkaW12 + σkaσσW13 + σxxσσW23 + θ(σ − σ)W3 +

σ2
σ

2
W33.

(34)

We impose r ≥ r and henceforth omit storage choice from the agent problems. We compute

equilibria by solving a discretized version of the above problem for an arbitrary function for the

risk-free rate on a grid and then iterate over this function until convergence. Prior to elaborating
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upon the search for equilibria we explain how to solve the individual problem (34). This poses

some difficulties, as standard constructions fail to work when there is a high correlation between

the state variables. To see why, suppose that (Xt)t≥0 is a two-dimensional process satisfying

dXt = µ(Xt)dt+ σ(Xt)dZt

where µ : R2 → R2, σ : R2 → R2×m and (Zt)t≥0 is m-dimensional Brownian motion. Now define

coefficients aij(X) = (σσT )ij for i, j = 1, 2. Suppose that µ and σ vanish outside of some domain

[−M,M ]2, and set S := S1 × S2 where S1 and S2 are arbitrary uniform grids with increments ∆1

and ∆2, respectively. Denote an arbitrary element of S by x = (x1, x2) and consider a Markov

chain such that if the chain is at point x at time t, then the possible values at time t+ ∆t are

∆(x) : = {(x1, x2), (x1 ±∆1, x2), (x1, x2 ±∆2), (x1 ±∆1, x2 ±∆2), (x1 ±∆1, x2 ∓∆2)}. (35)

The set (35) is simply the set of adjacent points in R2. It is easy to check that if

aii −
∑
j 6=i
|aij |∆i/∆j ≥ 0, (36)

for i = 1, 2, then for sufficiently small ∆t > 0 the following define a locally consistent chain

p(x1 ±∆1, x2) =
∆t

∆2
1

(
1

2
[a11 − |a12|∆1/∆2] + ∆1µ1(x)±

)
p(x1, x2 ±∆2) =

∆t

∆2
2

(
1

2
[a22 − |a12|∆2/∆1] + ∆2µ2(x)±

)
p(x1 ±∆1, x2 ±∆2) =

∆t

∆1∆2

1

2
a+

12

p(x1 ±∆1, x2 ∓∆2) =
∆t

∆1∆2

1

2
a−12.

However, the above construction will fail to work whenever (36) fails for some point in the domain,

since the expressions for probabilities may be negative, leading to the inapplicability of standard

dynamic programming arguments and instability in the associated numerical algorithms. Indeed,

when (36) fails it may be impossible to exactly match the moments of the increments of the

underlying process using only local transitions. To illustrate, consider a drift-free diffusion process

of the form (dx1t, dx2t) = (σ1(x)dZt, σ2(x)dZt) for some functions σ1 and σ2, where (Zt)t≥0 is

one-dimensional Brownian motion. In this case we havea11 a12

a21 a22

 =

 σ1(x)2 σ1(x)σ2(x)

σ1(x)σ2(x) σ2(x)2

 .
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In order for the above expressions for probabilities to be non negative, we need σ1(x)2/∆1 ≥

|σ1(x)σ2(x)|/∆2 and σ2(x)2/∆2 ≥ |σ1(x)σ2(x)|/∆1. This is only true if |σ1(x)|/∆1 = |σ2(x)|/∆2

and so cannot be assured to hold everywhere for arbitrary σ1 and σ2. A different construction is

necessary for such a process, one that may call for non local transitions. Section 4.3 is devoted to

this construction, explaining the general process before turning to the particular problem in (34).

For expositional purposes we present three separate algorithms of increasing complexity, although

in practice it appears that the third dominates the first two.

4.3 Chain construction with high correlation

We first illustrate the construction of a locally consistent chain for a drift-free process of the form

(dx1t, dx2t) = (σ1(x)dZt, σ2(x)dZt) on a domain of the form [0,M1] × [0,M2], for functions σ1, σ2

and constants M1,M2 > 0. We fix integers N1, N2 ≥ 1 and define ∆i = Mi/Ni for i = 1, 2 and

Sh = {∆1, . . . ,M1 −∆1} × {∆2, . . . ,M2 −∆2}. (37)

We also write (σ1, σ2) := (σ1(xt)/∆1, σ2(xt)/∆2) and w := σ1/σ2. An arbitrary member of Sh is of

the form (i∆1, j∆2) for i ∈ {1, . . . , N1− 1} and j ∈ {1, . . . , N2− 1}. We impose two restrictions on

the possible transitions (m1,m2) from a point (i∆1, j∆2): the state may only leave the grid from a

point adjacent to the boundary; and the number of increments that the state may move in either

direction cannot exceed a fixed integer m ≥ 1. This translates into the restriction

|m1| ≤ min{m,min{i− 1, N1 − 1− i}}

|m2| ≤ min{m,min{j − 1, N2 − 1− j}}.
(38)

The set of non zero integer pairs satisfying (38) is denoted Γ(i, j). In constructing our chain we

consider two cases that differ in the number of points to which the state may travel. First, suppose

that at any (x1, x2) = (∆1i,∆2j) ∈ Sh, the transitions assume only three values: for some (m1,m2),

(∆x1,∆x2) ∈ {(0, 0), (∆1m1,∆2m2), (−∆1m1,−∆2m2)}

If the non zero values occur with equal probability p ∈ (0, 1/2), then the mean consistency require-

ment is satisfied for all (m1,m2), and the covariance consistency requirements are

2p∆2
1m

2
1 = ∆t∆

2
1σ

2
1 + o(∆t)

2p∆1∆2m1m2 = ∆t∆1∆2σ1σ2 + o(∆t)

2p∆2
2m

2
2 = ∆t∆

2
2σ

2
2 + o(∆t).

(39)
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x1−Δ1 x1 x1ΔΔ1 x1Δ2Δ1 x1Δ3Δ1

x2−Δ2

x2

x2ΔΔ2

x2Δ2Δ2

x2Δ3Δ2

Figure 3: Optimal transition selection

First, note that if we can find n integers satisfying m2 = m1σ2/σ1, then (39) will be satisfied

with zero o terms if ∆t = 2pm2
1/σ

2
1 = 2pm2

2/σ
2
2. In general we choose a non zero integer pair to

minimize |m2 − m1σ2/σ1| and adjust ∆t such that either the first or third requirement in (39)

holds. We proceed on a case-by-case basis to ensure that the timestep never vanishes: if m1 ≥ m2,

set ∆t = 2pm2
1/σ

2
1 and if m2 > m1, set ∆t = 2pm2

2/σ
2
2.

Figure 3 depicts this process. The slope of the line is σ2/σ1, the red dots represent the transitions

satisfying (38), and the black dot represents the (m1,m2) selected. This picture suggests that the

approximation may be made more accurate by placing some probability on a point adjacent to the

black dot. To formalize this, define the candidate o terms in (39) as e1, e2 and e3, respectively, and

expand the possible transitions to five points:

(∆x1,∆x2) ∈ {(0, 0),±(∆1m11,∆2m12),±(∆1m21,∆2m22)}

for some quadruple m = (m11,m12,m21,m22). For some p ∈ (0, 1/2), we declare the probability of
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(∆x1,∆x2) ∈ {(∆1m11,∆2m12), (∆1m21,∆2m22)} equal to p, given (i∆1, j∆2) ∈ Sh define

z = min(1, w)(m2 −m1/w)

(m1,m2) = argmin
{
|j′ − i′/w| | (i′, j′) ∈ Γ(i, j)

} (40)

The first pair m1 = (m1,m2) will be the one selected in the three-point approximation. Geometri-

cally, one may interpret z as the distance between the two black dots in Figure 3. The selection of

our second point, m2, will depend upon the signs of z and w − 1, as this determines whether the

adjacent point lies to the left, right, above, or below the original point, and may be summarized as

m21 = m11 + (w ≤ 1)(2(z > 0)− 1)

m22 = m12 + (w > 1)(2(z ≤ 0)− 1).
(41)

We place probability p(1− |z|) on m1 and p|z| on m2, and the timestep is ∆t = ∆tp where

∆t = (w > 1)
(m11)2

σ2
1/2

+ (w ≤ 1)
(m12)2

σ2
2/2

. (42)

The description and accuracy of this five-point approximation is summarized in the following.

Lemma 4.2 (Five-point approximation). Given p ∈ (0, 1/2), define an approximation to the process

(dx1t, dx2t) = (σ1(xt)dZt, σ2(xt)dZt) by declaring, for x ∈ Sh, p(x1, x2) = 1− 2p and

p(x1 ±m11∆1, x2 ±m12∆2) = p|z|

p(x1 ±m12∆1, x2 ±m22∆2) = p(1− |z|)

where z and m are chosen according to (40) and (41), and ∆t is given by (42). Two of the three

local consistency requirements may be satisfied exactly, and the remaining requirement has relative

error proportional to 2p∆2
2z(1− z)/m2

1.

The above two methods are intuitive to us as they require only minimization of errors in the local

consistency requirements. To improve accuracy, however, we may draw upon the geometric analysis

of Bonnans et al. (2004). Note that the local consistency requirements for our drift-free process will

hold exactly if the transitions are symmetric about the origin and the non negative components

are selected from a subset Γ̂(i, j) ⊆ Γ(i, j) with probabilities {∆tηξ|ξ ∈ Γ̂(i, j)} satisfying

∑
ξ∈Γ̂(i,j)

ηξξξ
T =

 σ2
1/2 σ1σ2/2

σ1σ2/2 σ2
2/2

 . (43)
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The set of sums of the form on the left-hand side of (43) is a convex cone. Bonnans et al. (2004)

approximate a solution to (43) by projecting the right-hand side onto this cone. Denote the set of

positive semi-definite n× n matrices by PSDn and define F : PSDn → R3 and R : R3 → R3 by

F (a) = (a11,
√

2a12, a22)T

R(z) = ((z1 − z3)/
√

2, z2, (z1 + z3)/
√

2).
(44)

Note that the function R is a rotation and that the cone C := {R(F (a))|a ∈ PSD2} points

“upwards” in R3. We define H : C → R2 by H(x) = (x1/x3, x2/x3) and identify the set of

covariance matrices with the disc D := H(R(F (PSD2))). The boundary of the set D corresponds

to those covariance matrices associated with perfectly correlated diffusion processes, in which case

a11a22 = a2
12. To describe our selection criteria, we identify integer pairs (p, q) with the fraction

q/p, and given q/p and q′/p′ define the child q′′/p′′ := (q + q′)/(p+ p′). Given a point in the grid,

we choose transitions Γ̂(i, j) by beginning near the origin before passing from adjacent points to

their children. For any q/p write ξpq = [p, q]T and Xpq = ξpqξ
T
pq = [p, q]T [p, q], and given q/p and

q′/p′ define H(q/p, q′/p′) to be the plane generated by Xpq and Xp′q′ and identify it with its range

under F . The associated projection operator is PH(q/p, q′/p′) = A(ATA)−1AT , where

A =


p2 (p′)2

√
2pq

√
2p′q′

q2 (q′)2

 .
We will be concerned only with the case in which σ1, σ2 ≥ 0. For a fixed m ≥ 1 we approximate a

solution to (43) as follows, where we write ahih = (σσT )ij/(∆i∆j).
7

Algorithm 4.3. Define (q/p, q′/p′) = (1/1, 0/1) if ah11 ≥ ah22 and (q/p, q′/p′) = (1/0, 1/1) other-

wise. Notice that we then have q/p ≥ ah22/a
h
11 ≥ q′/p′. We then update directions as follows:

1. If max{p+ p′, q + q′} > m then stop. Otherwise, go to Step 2.

2. If ah22/a
h
11 ≥ (q+q′)/(p+p′), return to Step 1 with q′/p′ = (q+q′)/(p+p′). Otherwise, return

to Step 1 with q/p = (q + q′)/(p+ p′).

Choose Sh = {(p, q), (p′, q′)} and ηpq, ηp′q′ ≥ 0 satisfying ηpqXpq + ηp′q′Xp′q′ = PH(q/p, q′/p′)ah.

7We are using some further properties that are specific to this problem to avoid redundancies. For example, our

covariance matrix is never diagonally dominant, and for simplicity we omit reference to a tolerance level.
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Finally, for the above weights we define probabilities pi = ηi∆t. This leaves us with one more

degree of freedom for the timestep. For simplicity we proceed analogously to the earlier algorithms

and choose the tiemstep so that p0 + p1 = p for some fixed p ∈ (0, 1/2). This amounts to choosing

∆t = p/(η0 + η1), with implied probabilities pi = pηi/(η0 + η1).

The accuracy of the above three methods across a number of different grids is illustrated in the

context of linear-quadratic problems in Appendix A.2. We find that all three give approximations

of increasing accuracy as the grid sizes increase. For simplicity, in what follows we apply the

five-point approximation given in Lemma 4.2. Prior to applying this algorithm to the problem

(34), we outline two simplifications. By Lemma 4.1 the value function of each agent satisfies

aW12(a, x, σ) = (1 − γ)W2(a, x, σ) and aW13(a, x, σ) = (1 − γ)W3(a, x, σ). Substituting into (34)

then gives

ρW = max
c,k≥0

ρ(ca)1−γ

1− γ
+
[
r − c+ (Π− r)k

]
aW1 +

σ2k
2

2
a2W11 + [µxx+ σxxσk(1− γ)]W2

+
σ2
xx

2

2
W22 + [θ(σ − σ) + σkσσ(1− γ)]W3 + σxxσσW23 +

σ2
σ

2
W33.

For convenience we define yt := ln at and note that by Ito’s lemma we obtain a control problem

with state (y, x, σ), controls (c, k), flow payoffs ρc1−γe(1−γ)y/(1− γ) and law of motion

dyt =
(
r − ct + (Π− r)kt − σ2

t k
2
t /2
)
dt+ σtktdZ

(1)
t

dxt =
(
µx + σtσx(1− γ)kt

)
xtdt+ σxxtdZ

(2)
t

dσt =
(
θ(σ − σt) + σtσσ(1− γ)kt

)
dt+ σσdZ

(2)
t

(45)

where (Z(1), Z(2)) are now independent. Although this system is not the original one faced by the

agent, the above homogeneity arguments show that it leads to the same value function. This does

not allow us to completely eliminate the correlation between the state variables, and so the solution

of the associated portfolio problem requires non local transitions. However, crucially, the diffusion

terms exhibiting high correlation are not controlled by the agent. To outline our approximation to

(45), first define the infinite grid Sy = {. . . ,−∆y, 0,∆y, . . . } for log wealth, and the finite grids

Sx = {0,∆x, . . . , 1−∆x, 1}

Sσ = {Σ,Σ + ∆σ, . . . ,Σ−∆σ,Σ}
(46)

for x and σ, where ∆x = (1 − 0)/Nx and ∆σ = (Σ − Σ)/Nσ, and define S = Sy × Sx × Sσ. To

ensure that the process remains on (46), we alter (30) so that σσ vanishes at Σ and Σ. For clarity,
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we write the transition probabilities as the sum of the transitions for individual wealth, and the

drift and diffusion for the aggregate state, respectively,

p(X ′) = p(1)(X ′) + p(2)(X ′) + p(3)(X ′)

for any X ′ = (y′, x′, σ′) 6= X = (y, x, σ), with p(X) chosen such that probabilities sum to unity.

The transitions in log wealth are

p(1)(y + ∆y, x, σ) =
∆t

∆2
y

(
σ2k

2
/2 + ∆y

[
r + (Π− r)k

])
p(1)(y −∆y, x, σ) =

∆t

∆2
y

(
σ2k

2
/2 + ∆y

[
c+ σ2k

2
/2
]) (47)

for some ∆t specified below. For the drift terms for the aggregate state we have

p(2)(y, x+ ∆x, σ) =
∆t

∆x

(
[µxx]+ + σxxσ(1− γ)kt

)
p(2)(y, x−∆x, σ) =

∆t

∆x
[µxx]−

p(2)(y, x, σ + ∆σ) =
∆t

∆σ

(
[θ(σ − σ)]+ + σσσ(1− γ)kt

)
p(2)(y, x, σ −∆σ) =

∆t

∆σ
[θ(σ − σ)]+.

For the diffusion component we follow the non local selection criteria

p(3)(y, x±m12∆x, σ ±m13∆σ) = p|z|

p(3)(y, x±m22∆x, σ ±m23∆σ) = p(1− |z|)

where the transitions and weights are given by Lemma 4.2. Using homogeneity and eliminating

probabilities independent of controls, the maximization in the discrete Bellman equation becomes

max
c,k≥0

∆t
ρc1−γ

1− γ
+ e−ρ∆t

[
p(2)(y, x+ ∆x, σ)

∆xV
F,x

1− γ
+ p(2)(y, x, σ + ∆σ)

∆σV
F,σ

1− γ

]
+ e−ρ∆t

[
p(1)(y + ∆y, x, σ)[e(1−γ)∆y − 1] + p(1)(y −∆y, x, σ)[e−(1−γ)∆y − 1]

] V

1− γ

Dividing by ∆te
−ρ∆t , eliminating terms independent of the controls and abbreviating gives

0 = max
c,k≥0

eρ∆t
ρc1−γ

1− γ
+

[e−(1−γ)∆y − 1]

(1− γ)∆y
V c+ (σxxV

F,x + σσV
F,σ)σk

+
1

∆2
y

(
[e(1−γ)∆y − 1]

(
σ2k

2
/2 + ∆y(Π− r)k

)
+ (1 + ∆y)[e

−(1−γ)∆y − 1]σ2k
2
/2
) V

1− γ
.

(48)

We then have the following. The proof and expressions for the constants are in Appendix B.3.
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Lemma 4.4. For i ∈ {E,H} the policy functions for consumption are ci = ρ
1/γ
i V

−1/γ
i eρ∆t/γEc(∆y)

and the capital policy function for the expert is

k = (E1/E2)

(
Π− r
γσ2

+
σxxV

F,x + σσV
F,σ

E1γσV

)+

where E1, E2 and Ec depend only upon ∆y and tend to unity as ∆y → 0.

4.4 Market-clearing and consistency

Lemma 4.4 calculated policy functions for a discretized version of the problem of an agent facing

given continuation values, risk-free rate, and law of motion of the wealth share. We wish to

construct a map that iterates upon the continuation values of each agent, and so we now impose

two requirements: the market for bonds clears and the law of motion of the aggregate state is

consistent with individual policy functions. Using Lemma 4.4, the bond market-clearing condition

becomes

(E1/E2)

(
Π− r
γσ2

+
σxxV

F,x + σσV
F,σ

E1γσV

)+

x ≤ 1 (49)

with equality if r > r. Note the inequality in (49) may be strict if the storage technology is utilized

in equilibrium. The left-hand side of (49) is decreasing in r so there are two cases to consider: if

k(r)x ≤ 1 then r = r; otherwise r solves k(r)x = 1. Rearranging gives

r = max

{
r,Π +

σ

E1V
(σxxV

F,x + σσV
F,σ)− γσ2

x
(E1/E2)−1

}
. (50)

Substituting (50) into the expression for capital in Lemma 4.4 gives

k =

(
min

{
(E1/E2)

(
Π− r
γσ2

+
E−1

1

γσV
(σxxV

F,x + σσV
F,σ)

)
,

1

x

})+

. (51)

Expressions (50) and (51) give the risk-free rate and capital policy function consistent with bond

market-clearing, given continuation values and law of motion for the wealth share. We now impose

consistency between individual and aggregate laws of motion to obtain a single map defined on

continuation values.

Lemma 4.5. If V F,x
E ≤ 0 everywhere then

σxx = σx(1− x)

(
min

{
(E1/E2)[Π− r]/σ2 + E−1

2 σσV
F,σ
E /[σVE ]

γ + (1− x)E−1
2 x[−V F,x

E ]/VE
,

1

x

})+

, (52)

and the drift in the wealth share is

µxx =
[(
ρ

1/γ
H V

−1/γ
H − ρ1/γ

E V
−1/γ
E

)
Ec(∆y) + (Π− r)k − σ2k

2
x
]
x(1− x)

where k is given by (51).
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Given continuation values and functions for the risk-free rate and drift and diffusion of the

wealth share, Lemma 4.4 gives the policy functions for the discretized problem. Expression (50)

gives the market-clearing interest rate as a function of the law of motion of wealth, and Lemma 4.5

imposes consistency between individual and aggregate laws of motion.

Prior to summarizing the equilibrium we show that one may proceed as in Section 2 and

simplify our problem by considering the limit ∆t,∆y → 0. Subtracting the value function from

both sides of the discrete Bellman equation and dividing by the timestep gives an equation of the

form 0 = maxc,k ρu(c) + T (c, k; p,∆y)V for some T . As with the growth model in Section 2, when

p,∆y → 0 we have convergence to a non-trivial operator.

Lemma 4.6. For any c, k we have limp,∆y→0 T (c, k; p,∆y) = T (c, k) where

T (c, k)V = −
(
ρ− (1− γ)(r − c+ (Π− r)k − γσ2k

2
/2)
) V

1− γ
+
(
[µxx]+ + σxxσk

) V F,x

1− γ

+
(
[θ(σ − σ)]+ + σσσk

) V F,σ

1− γ
+ [µxx]−

[−V B,x]

1− γ
+ [θ(σ − σ)]−

[−V B,σ]

1− γ

+
(1− |z|)

∆t(1− γ)
(V (x+m12∆x, σ +m13∆σ) + V (x−m12∆x, σ −m13∆σ)− 2V )

+
|z|

∆t(1− γ)
(V (x+m22∆x, σ +m23∆σ) + V (x−m22∆x, σ −m23∆σ)− 2V ).

Further, if ρ > (1−γ)
(
r − c+ (Π− r)k − γσ2k

2
/2
)

then the above algorithm is globally convergent.

A proof of Lemma 4.6 is contained in Appendix B.3. We can now simplify the expressions in

Lemma 4.4 and Lemma 4.5 by setting E1, E2, Ec = 1 and summarize them as follows.

Proposition 4.7. The policy functions for consumption are ci = ρ
1/γ
i V

−1/γ
i for i ∈ {E,H} and

the capital policy function for the expert is

k =
1

γσ2

(
Π− r + [xσxσV

F,x + σσσV
F,σ]/V

)+
If V F,x

E ≤ 0 everywhere then the volatility of the wealth share satisfies

σxx = σx(1− x)

(
min

{
[Π− r]/σ2 + σσV

F,σ
E /[σVE ]

γ + (1− x)x[−V F,x
E ]/VE

,
1

x

})+

(53)

For this value, the interest rate is

r = max

{
r,Π +

σ

V
(σxxV

F,x + σσV
F,σ)− γσ2

x

}
.

and the drift in the wealth share is

µxx =
[
ρ

1/γ
H V

−1/γ
H − ρ1/γ

E V
−1/γ
E + (Π− r)k − σ2k

2
x
]
x(1− x).
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4.5 Summary and example

We now summarize the algorithm for computing the competitive equilibrium. For the following

write Sxσ := Sx × Sσ for Sx and Sσ given in (46).

Algorithm 4.8 (Individual problems). Given grid values for the risk-free rate and wealth share

{r(x, σ), µx(x, σ), σx(x, σ)}(x,σ)∈Sxσ ,

for each i ∈ {E,H} the value and policy functions are found as follows:

1. Define consumption and expert investment using Proposition 4.7.

2. For these policy functions, solve 0 = ρu(c) +T (c, k)V for V , where T is given in Lemma 4.6.

3. Return to Step 1 and repeat until convergence.

Algorithm 4.9 (Computation of competitive equilibrium). Given an initial guess

V = (VE(x, σ), VH(x, σ))(x,σ)∈Sxσ

for the value functions for each agent, an approximate equilibrium is found as follows:

1. Given the value functions of the agents, calculate the risk-free rate and law of motion of the

wealth share using Proposition 4.7.

2. Using the prices and law of motion found in Step 1, use Algorithm 4.8 to update VE and VH .

3. Return to Step 1 and repeat until convergence.

Numerical illustration: We have calculated an example for the following parameters:

(γ = 0.5, ρ = (0.2, 0.1), θ = 1, (Σ,Σ) = (0.1, 0.4), σ = 0.25,

σσ = 0.2,ΠE = 0.065, r = 0, N = (120, 60),m = 4).

With a tolerance of 10−6 for both the consumer’s problem and the updating step for the aggregate

law, it converges in less than 3 seconds beginning from an initial guess in which r, µx and σx are

identically zero, where we again use Python and an Intel Core i7-8650U processor. Unfortunately,

it is difficult to assess the accuracy of the resulting solution, since we know of no closed form so-

lutions to which we may compare the output. However, for the same degree of tolerance between

successive iterations, the algorithm is an order of magnitude faster than the “false transient” ap-

proach employed in d’Avernas and Vandeweyer (2019), which is roughly analogous to employing

value function iteration. Figure 4 gives the interest rate, Figure 5 gives the drift in the wealth

share, and Figure 6 gives the volatility of the wealth share.
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Figure 4: Interest rate
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Figure 5: Drift in wealth share µxx
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Figure 6: Drift in wealth share σxx

5 Conclusion

In this paper we explore several applications of the Markov chain approximation (MCA) method

of Harold Kushner and Paul Dupuis to optimal control problems in economics, illustrating some

unutilized benefits. We first show that for certain choices of the approximating chain, the MCA

method with policy function iteration coincides with a limiting version of the implicit finite dif-

ference scheme of Achdou et al. (2017). We then demonstrate the benefits of a more general

specification by means of two examples. In the first, we use variations of modified policy function

iteration to solve income fluctuation problems, both with and without discrete choices. In the

second, we show how the MCA method may be applied to problems with high correlation among

state variables. In both cases, the MCA is robust and easy to apply and can result in an increase

in speed of more than an order of magnitude over finite-difference methods.
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Bonnans, J. Frédéric, Élisabeth Ottenwaelter, and Housnaa Zidani (2004). “A fast algorithm

for the two dimensional HJB equation of stochastic control.” ESAIM: Mathematical Modelling
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A Linear-quadratic regulator problem

To verify the accuracy of the algorithms, this section records closed form expressions for a class of linear-

quadratic control problems. Lemma A.1 treats the standard case of an infinite-horizon linear-quadratic

regulator problem, while Lemma A.3 treats the (slightly non standard) case in which volatility is linear in

the state variable. The former will be useful for calculating the benefits associated with modified policy

function iteration, while the latter will illustrate the applications of non local transitions. Suppose that the

objective to be maximized is ∫ ∞
0

e−ρtE[F (xt, ut)]dt

where for some symmetric positive definite matrices Q and R the flow payoffs are given by

F (x, u) = −1

2
xTQx− 1

2
uTRu (54)

where x ∈ Rn and u ∈ Rq are the state and control vectors, respectively, for some n, q ≥ 1. Now suppose

that for someA ∈ Rn×n, B ∈ Rn×q and σ : Rn → Rn×m the law of motion for the state is

dxt = [Axt +But]dt+ σ(x)dZt

where Z := (Zt)t≥0 is m-dimensional Brownian motion. Write µ(x, u) = Ax+Bu for the drift as a function

of the state and controls, and note that the Hamilton-Jacobi-Bellman equation is

ρV (x) = max
u∈Rq

F (x, u) +

n∑
i=1

µi(x, u)Vi(x) +
1

2

n∑
i=1

n∑
j=1

aijVij(x) (55)

where aij(x) = (σ(x)σ(x)T )ij . If σ is constant then we obtain the following.

Lemma A.1. The solution to (55) is V (x) = −xTPx/2− d, where P is a symmetric matrix that solves

ρP = Q+ PA+ATP − PTBR−1BTP (56)

the constant term is d = [2ρ]−1trace(σσTP ), and the policy function is

u = −R−1BTPx. (57)
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Corollary A.2. The drift in the state variables (A−BR−1BTP )x.

Note that P solves (56) if and only if it solves the undiscounted problem

0 = Q+ P (A− ρI/2) + (A− ρI/2)TP − PTBR−1BTP

and so the analysis for the discounted case follows from results from the undiscounted case, with A replaced

by A − ρI/2. The standard linear-quadratic regulator problem analyzed in Lemma A.1 assumes constant

volatility. To illustrate the flexibility of the method in treating some cases that appear difficult with finite-

differences, we consider here an extension of the standard linear-quadratic framework in which the volatility

is linear in the state variables. The flow payoff remains (54) for some symmetric positive definite matrices Q

and R, but the law of motion for the state variables is now dxt = [Axt + But]dt+ σxtdZt where σ ∈ Rn×n

(and so σxt ∈ R2), and Z is scalar Brownian motion.

Lemma A.3. If σ is a multiple of the identity, then the value function is V (x) = −xTPx/2 where P solves

0 = Q+ P (A+ [σ2 − ρ]I/2) + (A+ [σ2 − ρ]I/2)TP − PTBR−1BTP. (58)

Lemma A.3 will be useful to illustrate how the FSMC method may be used to deal with problems for

which the covariance matrix is degenerate, a case that appears difficult to analyze via other means.

We now use the closed form expressions for value functions and policy functions in Lemma A.1 and

Lemma A.3 to verify the accuracy of the Markov chain approximation method. There are many tests that

we could conduct. We choose only a select few to illustrate the points highlighted in the main text and to

provide confidence in the results recorded in the main text.

A.1 Independent noise

We first consider a three-dimensional problem with independent noise terms. This corresponds to the above

with σ a diagonal matrix with main diagonal written [σ0 σ1 σ2]. We consider domains in R3 of the form

[0,M0]× [0,M1]× [0,M2] for constants M0,M1 and M2. Now define ∆i = Mi/Ni for i = 0, 1, 2 and

S0 = {∆0, . . . ,M0 −∆0}

S1 = {∆1, . . . ,M1 −∆1}

S2 = {∆2, . . . ,M2 −∆2}.

(59)

We then let our grids be S = S0 × S1 × S2 and adopt the transition probabilities

p(x0 ±∆0, x1, x2) =
∆t

∆2
0

(
σ2

0

2
+ ∆0(Ax+Bu)±0

)
p(x0, x1 ±∆1, x2) =

∆t

∆2
1

(
σ2

1

2
+ ∆1(Ax+Bu)±1

)
p(x0, x1, x2 ±∆2) =

∆t

∆2
2

(
σ2

2

2
+ ∆2(Ax+Bu)±2

)
.

(60)

42



PFI VFI k = 10 k = 50 k = 100

(10, 10, 10) 0.236000 2.603990 0.295002 0.103997 0.113002

(20, 20, 20) 3.393991 17.368586 2.179996 0.569999 0.360012

(30, 30, 30) 34.720209 91.956503 10.794555 2.621202 1.228853

(40, 40, 40) 313.784663 388.433260 45.388144 10.365834 6.247165

(50, 50, 50) 1233.153091 1516.802365 155.727188 36.417583 20.135882

Table 6: Generalized MPFI: Time until convergence

We wish to avoid case-by-case technicalities and so consider problems with a single control. We normalize

R = 1 and write B = [b0, b1, b2]T . The Riccati equation and policy function from Lemma A.1 become

ρP = Q+ PA+ATP − PTBBTP

u = −BTPx.
(61)

We choose parameters for which the drift is always negative. Using (59) the maximization becomes

max
u≤0

−1

2
u2 + e−ρ∆t

(
b0V

B0 + b1V
B1 + b2V

B2
)
u

and so the optimal control is obvious u = min{e−ρ∆t
(
b0V

B0 + b1V
B1 + b2V

B2
)
, 0}. We will choose our

timestep to be as large as possible while ensuring that the expressions for probabilities lie in the unit interval.

If we restrict attention to controls such that Ax+Bu ≤ 0 in each component the above probabilities will lie

in the unit interval provided

1 ≥ ∆t

(
σ2

0

∆2
0

+
σ2

1

∆2
1

+
σ2

2

∆2
2

+
(Ax+Bu)−0

∆0
+

(Ax+Bu)−1
∆1

+
(Ax+Bu)−2

∆2

)
.

To use the above to obtain an appropriate state-dependent timestep we require a bound on the control u.

For this we will choose u to be 3 × the true optimal policy function. Table 6 and Table 7 document the time

until convergence for modified policy function iteration and the associated average percentage error with the

closed form solution. Table 8 and Table 9 perform the analogous exercise for the generalized algorithm.

A.2 Perfectly correlated noise

We now verify the accuracy of the Markov chains constructed in Section 4.3. In all of the following cases

we set Q equal to the identity, omit drift and controls, and set (σ = 0.3, ρ = 0.15) and M1 = M2 = 1.

Table 10 documents the average of the percent difference between the true and computed value with three

points. Table 11 documents the same quantities for the case with five points, and Table 12 gives the same

for the method of Bonnans et al. (2004). As can be seen, for all grids considered these methods are strictly

increasing in their accuracy (3-point, then 5-point, then Bonnans et al. (2004)).
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PFI VFI k = 10 k = 50 k = 100

(10, 10, 10) 3.685199 3.685199 3.685199 3.685199 3.685199

(20, 20, 20) 1.368553 1.368552 1.368553 1.368553 1.368553

(30, 30, 30) 0.763641 0.763641 0.763641 0.763641 0.763641

(40, 40, 40) 0.507078 0.507076 0.507077 0.507078 0.507078

(50, 50, 50) 0.371107 0.371105 0.371107 0.371107 0.371107

Table 7: Generalized MPFI: Average absolute percentage error

PFI VFI k = 10 k = 50 k = 100

(10, 10, 10) 0.131601 1.070645 0.115576 0.115925 0.099935

(20, 20, 20) 1.876517 9.621349 1.008876 0.269588 0.246597

(30, 30, 30) 27.004308 70.274081 7.364786 2.085560 1.201723

(40, 40, 40) 273.910850 398.572694 33.455023 8.473099 4.741551

(50, 50, 50) 1075.469271 1392.673882 147.142013 33.997009 20.956269

Table 8: Generalized MPFI: Time until convergence

PFI VFI k = 10 k = 50 k = 100

(10, 10, 10) 1.921812 1.921812 1.921812 1.921812 1.921812

(20, 20, 20) 1.117398 1.117398 1.117398 1.117398 1.117398

(30, 30, 30) 0.781886 0.781885 0.781886 0.781886 0.781886

(40, 40, 40) 0.600415 0.600412 0.600415 0.600415 0.600415

(50, 50, 50) 0.487141 0.487137 0.487141 0.487141 0.487141

Table 9: Generalized MPFI: Average absolute percentage error
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m = 2 m = 4 m = 6 m = 8 m = 10

(50, 50) 5.445249 2.374563 2.161374 2.300301 2.575376

(100, 100) 4.681075 1.557819 1.164376 1.100234 1.143563

(150, 150) 4.427166 1.302681 0.880531 0.766900 0.740069

(200, 200) 4.314030 1.174924 0.741952 0.615596 0.569038

Table 10: Accuracy of correlated LQ problem: Three points

m = 2 m = 4 m = 6 m = 8 m = 10

(50, 50) 2.497171 0.542278 0.330712 0.388588 0.500914

(100, 100) 2.438331 0.470257 0.195567 0.152025 0.170488

(150, 150) 2.420292 0.452827 0.168436 0.107166 0.098250

(200, 200) 2.411570 0.445115 0.157898 0.090526 0.072276

Table 11: Accuracy of correlated LQ problem: Five points

m = 2 m = 4 m = 6 m = 8 m = 10

(50, 50) 0.533714 0.150560 0.103320 0.093319 0.091209

(100, 100) 0.487081 0.098067 0.044683 0.030831 0.026664

(150, 150) 0.476943 0.088402 0.034103 0.019453 0.014800

(200, 200) 0.472893 0.084929 0.030438 0.015540 0.010712

Table 12: Accuracy with Bonnans et al. (2004) method
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B Macrofinance notes

B.1 Problems with highly correlated state variables

Proof of Lemma 4.2. We proceed on a case-by-case basis, depending upon the sign of w− 1. The errors are

e11 = E[(∆x1)2]−∆tσ
2
1

e12 = E[(∆x1)(∆x2)]−∆tσ1σ2

e22 = E[(∆x2)2]−∆tσ
2
2 .

(62)

Condition w > 1 is equivalent to σ1/∆1 > σ2/∆2 or σ1/σ2 > ∆1/∆2. In this case m11 = m21 = m1 and

∆t = 2p∆2
1m

2
1/σ

2
1 , so the first term in (62) is e11 = 2p∆2

1m
2
1 − ∆tσ

2
1 = 0. We also have m12 = m2 and

m22 = m
(1)
12 + 2(z ≤ 0)− 1, so the second term in (62) becomes

e12 = 2p∆1∆2m1((1− |z|)m2 + |z|[m2 + 2(z ≤ 0)− 1])−∆tσ1σ2

= 2p∆1∆2m1(|z|[2(z ≤ 0)− 1] + z) = 0.

Finally, the third error term in (62) simplifies to

e22 = 2p∆2
2

(
ηm2

2 + (1− η)[m2 + 2(z ≤ 0)− 1]2
)
−∆tσ

2
2

= 2p∆2
2

[
m2

2 + (1− η)[2(2(z ≤ 0)− 1)m2 + (2(z ≤ 0)− 1)2]− σ2
2(∆2

1/∆
2
2)m2

1/σ
2
1

]
= 2p∆2

2

[
|z|[2(2(z ≤ 0)− 1)m2 + (2(z ≤ 0)− 1)2] +m2

2 −m2
1/w

2
]
.

Using z = m2 −m1/w we write (m1/w)2 = (m2 − z)2 = m2
2 − 2m2z + z2 to note

e22 = 2p∆2
2

[
|z|[(4(z ≤ 0)− 2)m2 + 1] + 2m2z − z2

]
= 2p∆2

2(|z| − |z|2)

as claimed. The case with w ≤ 1 is symmetric.

B.2 Evolution of wealth shares

We now determine the law of motion for the wealth share x, by aggregating over the choices of experts and

households. Lemma B.1 shows how the law of motion of the wealth share depends upon the law of motion

of the wealth of the individual agents.

Lemma B.1. Suppose that dait/ait = µitdt+ σitdZt for i ∈ {E,H} and that x := N/(qK), where N is the

aggregate wealth of experts. Then dxt = xtµxdt+ xtσxdZt where µx and σx are given by

xµx = x(1− x)(µE − µH − (σEx+ σH(1− x))(σE − σH))

xσx = x(1− x)(σE − σH).

Proof. Aggregating over experts gives dNt/Nt = µEdt+ σEdZt and hence

d(qtKt) = µENtdt+ σENtdZt + µH(qtKt −Nt)dt+ σH(qtKt −Nt)dZt
d(qtKt)

qtKt
= [µExt + µH(1− xt)]dt+ [σExt + σH(1− xt)]dZt.

(63)
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Note that if dat/at = µadt + σadZt and dbt/bt = µbdt + σbdZt, then using Ito’s lemma ct := at/bt satisfies

dct/ct = (µa − µb − σb(σa − σb))dt+ (σa − σb)dZt. Applying to (63) gives

dxt
xt

= (µE − [µExt + µH(1− xt)]− (σExt + σH(1− xt))(σE − [σExt + σH(1− xt)])dt

+ (σE − [σExt + σH(1− xt)])dZt

which simplifies as claimed.

B.3 Individual problems

Proof of Lemma 4.4. Eliminating the terms independent of capital and dividing by V gives

1

V
(σxxV

F,x + σσV
F,σ)σk +

1

∆y(1− γ)
[e(1−γ)∆y − 1](Π− r)k

+
1

∆2
y(1− γ)

(
e(1−γ)∆y − 1 + (1 + ∆y)[e−(1−γ)∆y − 1]

)
σ2k

2
/2.

The first-order condition is then

0 =
1

V
(σxxV

F,x + σσV
F,σ)σ +

1

∆y(1− γ)
[e(1−γ)∆y − 1](Π− r)

− 1

γ(1− γ)

(
1

∆y
[1− e−(1−γ)∆y ]− 1

∆2
y

[e(1−γ)∆y − 2 + e−(1−γ)∆y ]

)
σ2γk

which may be written 0 = (σxxV
F,x + σσV

F,σ)σ/V + E1(∆y)(Π− r)− E2(∆y)σ2γk, where

E1(∆y) =
1

1− γ
[e(1−γ)∆y − 1]/∆y

E2(∆y) =
1

γ(1− γ)

(
[2− e−(1−γ)∆y − e(1−γ)∆y ]/∆2

y + [1− e−(1−γ)∆y ]/∆y

)
Ec(∆y) =

(
(1− e−(1−γ)∆y )/∆y

)−1/γ

(1− γ)1/γ

from which rearrangement gives the result.

Proof of Lemma 4.6. Using ∆t(p) = p∆t(1) =: p∆t, dividing all terms in the Bellman equation by ∆t gives

0 =
1

∆t
(e−ρ∆t [1− 2p]− 1)

V

1− γ
+
ρc1−γ

1− γ
+ e−ρ∆t

1

∆y
[e−(1−γ)∆y − 1]

cV

1− γ

+
e−ρ∆t

∆2
y

[(
σ2k

2
/2 + ∆y(Π− r)k

)
[e(1−γ)∆y − 1] + (1 + ∆y)[e−(1−γ)∆y − 1]σ2k

2
/2
] V

1− γ

+ e−ρ∆t
(
σxxV

F,x + σσV
F,σ
)
σk + e−ρ∆t

1

∆y
[e(1−γ)∆y − 1]

rV

1− γ

+
e−ρ∆t

1− γ
(
[µxx]+V F,x + [µxx]−[−V B,x] + [θ(σ − σ)]+V F,σ + [θ(σ − σ)]−[−V B,σ]

)
+ e−ρ∆t

(1− |z|)
∆t(1− γ)

(V (x+m12∆x, σ +m13∆σ) + V (x−m12∆x, σ −m13∆σ))

+ e−ρ∆t
|z|

∆t(1− γ)
(V (x+m22∆x, σ +m23∆σ) + V (x−m22∆x, σ −m23∆σ)).

(64)

47



Note that as ∆y → 0 we have

1

∆2
y

[e(1−γ)∆y − 2 + e−(1−γ)∆y ] +
1

∆y
[e−(1−γ)∆y − 1]→ (1− γ)2 − (1− γ) = −γ(1− γ)

which gives the result upon substitution. The global convergence of the algorithm then follows from the

fundamental results of policy function iteration recapitulated in Section 3.1.
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