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1 Introduction

It is well-known that the distributions of income and wealth in the United States are skewed

to the right and have become more unequal in recent decades. What is perhaps less well-

known is that much of this increase is due to the growing importance of business income.

Smith et al. (2019) and Cooper et al. (2016) document that business income now accounts

for a greater share of the top 0.1 percent of income than both non business capital income

and wage income. Further, Smith et al. (2019) also show that business income depends on

the owners’ active participation by documenting that the death of an owner coincides with

an average fall in profits of 54 percent.

The appropriate policy response to these facts naturally depends on their underlying

causes, and in particular, whether business income reflects innate ability, current effort, or

past investments. For instance, if business income were solely the return to savings, then

the results of Chamley (1986) and Judd (1985) imply it ought not to be taxed at all, at least

in the long run. If instead individuals were simply endowed with exogenous productivity

and only choose their hours worked as in Mirrlees (1971), then as Diamond and Saez (2011)

show, the top marginal tax rate may well be over 70 percent. However, both of these

approaches appear to miss something important about the above facts. If business income

were solely the return to savings then the owner ought not to matter, and if productivity

were unaffected by policy and owner actions it is not clear why its distribution should vary

across time. Further, neither provides guidance on whether we ought to levy different taxes

on profits, interest income, or capital gains.

Motivated by these considerations, this paper characterizes efficient allocations and op-

timal linear taxes in an environment in which business income is risky, grows over time,

and depends on the past (unobserved) effort exerted by the owner. In order to isolate the

role of private information in a partial equilibrium setting, I first alter the principal-agent

model of Sannikov (2008) to incorporate persistent effects of effort on output. I assume

that the output of a firm at any moment is publicly observable and independent of current

choices, but that the growth of output over time is stochastic and depends on the owner’s
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effort. To induce the owner to exert high effort, high realizations of output growth must

be followed by either high future consumption or leisure, leading to imperfect risk-sharing

and inequality in all efficient allocations. For standard preferences, it becomes increasingly

expensive to motivate agents with histories of high growth. When the expected return to

effort is fixed over time as in Sannikov (2008), the principal therefore rewards rich agents

with leisure instead of consumption and such agents bear little to no risk. In contrast, the

dependence of growth on effort in this paper implies that the return to effort is increasing

in firm size, which has important implications for both the dynamics of risk-sharing and its

distribution across income levels. Although it is still true that the cost of motivating agents

rises with their consumption, agents typically obtain high consumption precisely because

their productivity rose, and so the benefits of effort rise along with the costs.

After characterizing the optimal contract, I show how the problem of a planner facing

an economy with entrepreneurs and workers decomposes into a series of problems identical

in form to a principal-agent problem. The incorporation of persistent effects of effort has

important effects on the implied stationary distribution and, in particular, the thickness of

the right tails of consumption and workers per entrepreneur (firm size). The tractability

of the model then allows for simple comparative statics connecting changes in aggregate

technology with efficient distributions of income and firm size. Specifically, in response

to any change in resources or technology that increases the marginal productivity of an

entrepreneur (such as an increase in workers per entrepreneur), a benevolent planner will

wish to make incentives for effort more high-powered, which necessitates an increase in

consumption inequality ex-post.

Following this abstract characterization I consider the implications for taxation policy.

Prescriptions for taxes unavoidably depend on assumptions regarding the degree of risk-

sharing present in private markets and the complexity of contracts that agents are assumed

capable of signing. If agents may write contracts of arbitrary complexity with financial inter-

mediaries, then the optimal policy calls only for lump-sum transfers between entrepreneurs

and workers.1 If the government has no advantage over the private sector at overcoming
1An earlier draft erroneously claimed that the optimum could be achieved with linear taxes.
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agency frictions, the latter provides utility at the lowest cost possible, and the lump-sum

taxes serve only to achieve the redistributive goals of the government.

However, this decentralization assumes that financial intermediaries can commit to long-

term contracts and monitor the consumption of agents. Since both assumptions are unreal-

istic, to complement the above I characterize the optimal linear taxes on income and wealth

in an environment in which agents may only save in a risk-free bond and trade shares of their

firms. Within this setting the dependence of productivity growth on unobserved and non-

contractible effort implies a novel effect of taxation policy: taxes on capital income affect

the incentives for retaining ownership of one’s business and hence the degree of risk-sharing

possible in the private sector. Intuitively, the willingness of investors to purchase shares

in a firm will depend on the incentives of the owner to exert continued effort to improve

productivity, and hence on the outside option of the owner, the return on risk-free savings.

Within this linear class, the optimal policy now calls for taxes on profits, capital income,

and wealth. The redistributive role is played by the profits tax, as this effectively taxes the

inelastic quantity of the model, the endowed ability of the firm owner, and only reduces the

ex-ante value of the firm. In contrast, taxes on capital income and wealth alter the private

returns to effort in one’s business and consumption smoothing, respectively, and vanish as

agency frictions become negligible.

Related literature. A vast literature builds upon Mirrlees (1971) to derive optimal

taxes in economies with asymmetric information. Scheuer (2014) explicitly considers en-

trepreneurs and firm formation within a static model and allows for both pecuniary exter-

nalities across occupations and the possibility of occupation-specific taxation. Ales et al.

(2017) adopt a span-of-control technology as in Rosen (1982) and Lucas (1978) and allow

firm size to be endogenous. Scheuer and Werning (2017) explore how optimal taxation pol-

icy must be altered in the presence of “superstar” effects in the form of assortative matching

between individuals and firms, and Ales and Sleet (2016) consider a similar environment

in which the planner has an explicit concern for the welfare of shareholders. Although the

above models incorporate business income in various ways, they are static and so no agent

bears risk or is subject to a moral hazard problem.
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The study of dynamic extensions of Mirrlees (1971) begins with Golosov et al. (2003), and

is often referred to as the New Dynamic Public Finance. Most papers within this literature,

such as Golosov et al. (2016) and Farhi and Werning (2013), focus on the properties of

optimal taxes with exogenously evolving wages. Stantcheva (2017) considers an extension

of this framework in which wages depend on both exogenous ability and the stock of human

capital, but there is no moral hazard and no agent employs workers or trades shares in his

business. Closer to the current paper are Albanesi (2006), Kapička and Neira (2019) and

Best and Kleven (2012), who conduct optimal taxation exercises in two-period economies

with hidden effort, and Makris and Pavan (2021), who conduct a similar analysis in an

environment with learning-by-doing. However, these papers do not derive implications of

their framework for long-run distributions of consumption or income, and because their two-

period nature,2 they cannot address how the risk borne by any agent depends on his history

of productivity shocks.

An older literature within public finance, surveyed in Chari and Kehoe (1999) and of-

ten termed the “Ramsey” approach, characterizes optimal policy when the government is

restricted to choosing linear taxes on consumption and income. Guvenen et al. (2019) work

within this framework to analyze the merits of capital income and wealth taxes in an econ-

omy with heterogeneous entrepreneurs in which financial frictions inhibit the allocation of

physical capital. In this setting capital income and wealth taxes place different burdens on

productive and unproductive entrepreneurs and so affect allocative efficiency. In addition

to the explicit modeling of moral hazard, the approach of the current paper differs from

Guvenen et al. (2019) in allowing the productivity of a firm to depend on the past effort of

the owner, and for agents to trade multiple assets (bonds and shares) in the decentralization.

Jones and Kim (2018) characterize competitive equilibria in an environment in which

entrepreneurs are assumed to be unable to save and the evolution of each agent’s productivity

is identical in form to that adopted in this paper. As Jones and Kim (2018) note, when

combined with stochastic death, this assumption on productivity growth can both generate
2Makris and Pavan (2021) calibrate their model to the average working life span in the US, but the

productivity of agents only changes once and so the dynamics are identical to a two-period model.
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the empirically-observed Pareto distribution for income and allow it to respond to policy.

However, in contrast with Jones and Kim (2018), in the first part of this paper I do not

impose a market structure and instead require only that allocations respect the restrictions

imposed by asymmetric information. Further, by allowing business owners to both save in

a risk-free bond and sell shares in their business in the subsequent decentralization, I can

investigate how the portfolio decisions of owners and the expectations of outside investors

are endogenous to taxation policy.

Ai et al. (2016), Shourideh (2013), and Phelan (2019) all show how a Pareto distribu-

tion of consumption may emerge in the presence of asymmetric information with optimal

contracting in private insurance markets. The difference here is the nature of the agency

problem: instead of allowing entrepreneurs to divert assets to private consumption, in this

paper entrepreneurs exert (unobservable) effort to improve firm productivity. I adopt the

specification of random productivity governed by hidden effort in order to model the im-

portance of individual-specific characteristics for business income. Importantly, unlike all of

the above papers, the competitive equilibria of this paper do not possess the counterfactual

property that the Pareto exponents for income and firm size must coincide. Although the

focus of this paper is normative rather than positive, I emphasize that the optimal taxation

exercise is conducted in an environment that can replicate this fact. To the best of my

knowledge, this distinguishes the current paper from the rest of the optimal taxation liter-

ature. Furthermore, the above papers assume that agents cannot issue equity, and so those

papers do not explore how the degree of private risk-sharing depends on taxation policy.

For clarity, the first section of this paper analyzes a principal-agent problem between

a risk-averse entrepreneur and a risk-neutral principal in partial equilibrium where flow

output depends solely on their own productivity. I characterize and compute the policy

functions of the principal and show numerically that typically the agent will exert more

effort and bear more risk when he or she is more productive. In the subsequent analysis

with a continuum of agents, output depends both on their productivity and an endogenous

shadow price of labor, as the latter determines the societal benefit of an entrepreneur. This

allows me to address how exogenous changes in the number of entrepreneurs, or changes in
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technology that primarily benefit entrepreneurs relative to workers, translate into changes

in inequality both between workers and entrepreneurs and among entrepreneurs in efficient

allocations. I view this as complementary to the standard approach in the optimal taxation

literature, in which the path of wages (or productivity) evolves exogenously, but current

income is endogenous to taxation policy. Since I model a dynamic moral hazard problem

and an active stock market with endogenous beliefs, I simplify the ex-ante heterogeneity for

tractability, and leave the quantitative importance of these two margins for future work.

The outline of the paper is as follows: Section 2 characterizes the optimal contract be-

tween a single agent and a principal. Section 3 extends this to an overlapping generations

economy with a continuum of agents with heterogeneous ability and shows how to compute

stationary distributions of income in a number of example economies. Section 4 character-

izes the optimal linear taxes and Section 5 concludes. Details of the recursive techniques,

numerical implementation and the welfare notions employed are relegated to the appendix.

2 Principal-agent model

For ease of exposition, I will first proceed in partial equilibrium and characterize the optimal

contract between a risk-averse agent operating a risky technology and a risk-neutral principal

who may trade at exogenously given prices. In the following section I show how the problem

of a benevolent planner in an overlapping generations economy may be decomposed into a

series of principal-agent problems of the above form.

2.1 Formal setup

Time is indefinite and continuous. The economy consists of a single risk-averse agent and

a risk-neutral principal, both of whom live forever. At any moment in time the agent may

consume a flow amount c of a single good and take an action l ∈ [l, 1] for some l. The agent
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has preferences over stochastic sequences of consumption and leisure given by

U(c, l) = ρE
[∫ ∞

0
e−ρtu(ct, lt)dt

]
(1)

where the instantaneous flow utility function is

u(c, l) =
(c1−αlα)1−γ

1− γ
(2)

for some γ ≥ 1 and α ∈ (0, 1) and the γ = 1 case is interpreted as logarithmic utility,

u(c, l) = (1 − α) ln c + α ln l. In what follows I will also write γ := 1 − (1 − γ)(1 − α) for

notational convenience. I will refer to l = 1 as retirement and assume that the principal

may observe when retirement occurs, but is unable to distinguish between all other actions.

At any point in time the agent is associated with a variable θ referred to as his productivity.

In this first section an agent of productivity θ inelastically produces a flow of θ units of

output per time independent of his current action, and so productivity will be identified

with output. In the general equilibrium setting of Section 3, output will depend on both the

productivity of the owner and the wage of workers. The consumption and output produced

by the agent are observable, while the productivity of the agent begins at the level θ0 = 1 and

evolves stochastically over time in a manner depending on his effort. Specifically, there exists

a stochastic process Z = (Zt)t≥0 defined on a filtered probability space (Ω,F , (Ft)t≥0, P )

distributed according to standard Brownian motion, such that if the agent chooses leisure

(lt)t≥0 then productivity follows the law of motion,

dθt = µθ(lt)θtdt+ σθ(lt)θtdZt (3)

where σθ(lt) = σ1lt<1 for some σ > 0 and µθ(l) := (µ0−(µ0−µ1)l)1lt<1 for some µ0 > µ1 ≥ 0.

The specification of µθ and σθ indicates that the productivity of the agent stops evolving

upon retirement. Finally, the principal is risk-neutral and discounts at the rate of time

preferences of the agent and so their preferences over output and consumption are

UP (c, l) = E
[∫ ∞

0
e−ρt[θt1l1<1 − ct]dt

]
(4)

which expresses the assumption that output ceases upon retirement. The actions taken by

the agent and principal may be arbitrary functions of the preceding history of output. The

following definition formalizes this mathematically.
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Definition 2.1. An allocation chosen by the principal consists of a pair of F-adapted

processes (c, lP ) = (ct, l
P
t )t≥0, while an agent’s strategy is an F-adapted process l = (lt)t≥0.

For any allocation (ct, l
P
t )t≥0 and strategy (lt)t≥0, the continuation utility of the agent is

Ut := ρE
[∫ ∞

t
e−ρ(s−t)u(cs, ls)ds

∣∣∣∣Ft] (5)

for all t ≥ 0 almost surely.

Since the effort exerted by the agent is private information, the principal must restrict

attention to allocations that are incentive compatible. An allocation is incentive compatible

if the agent wishes to adhere to the effort recommendations of the principal after every

history. To formalize this notion, note that the allocation specifies consumption as a function

of every finite history of output, and when choosing a strategy, the agent understands how

his actions change the probability of each history and weights them accordingly. For any

strategy l = (lt)t≥0 I will write El for the expectation operator associated with the output

process implied by l.3 The utility of an agent confronted with an allocation (ct, l
P
t )t≥0 when

adhering to (lt)t≥0 is therefore

U(c, l) := ρEl
[∫ ∞

0
e−ρtu(ct, lt)dt

]
. (6)

The definition of incentive compatibility is then the following.

Definition 2.2. An allocation (ct, l
P
t )t≥0 is incentive compatible if U(c, lP ) ≥ U(c, l) for all

strategies l. The set of incentive-compatible allocations will be denoted AIC .

The principal’s problem is then the following. It is indexed by the agent’s initial pro-

ductivity θ and the minimal level of utility U necessary for his participation.

Definition 2.3. Given utility U and productivity θ the problem of the principal is

V (U, θ) = max
(c,l)∈AIC

E
[∫ ∞

0
e−ρt[θt1lt<1 − ct]dt

]
U = ρE

[∫ ∞
0

e−ρtu(ct, lt)dt

]
dθt = µθ(lt)θtdt+ σθ(lt)θtdZt, θ0 = θ.

3Formal definitions are given in Appendix A.1.
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The independence of the shocks over time implies that the principal’s problem is re-

cursive in U and θ. When the allocation is deterministic, differentiating (5) gives U̇t =

ρ(Ut − u(ct, lt)). Standard arguments, reviewed in Appendix A.1, imply that in general in-

centive compatibility is equivalent to the change in utility equaling this deterministic term

plus a stochastic term that may be sharply characterized as follows.

Proposition 2.1. An allocation (ct, l
P
t )t≥0 is incentive compatible if and only there exists a

process (St)t≥0 such that dUt = ρ(Ut − u(ct, lt))dt+ρσStdZ
l
t, where Z lt is standard Brownian

motion and Stµθ(lPt ) + u(ct, l
P
t ) ≥ Stµθ(l) + u(ct, l) for all l ∈ [l, 1] and t ≥ 0.

Since the principal is risk-neutral and the agent risk-averse, the principal will choose St

to be the smallest value satisfying the inequality in Proposition 2.1 for all l ∈ [l, 1] and t ≥ 0.

By differentiating with respect to effort we see that the volatility of utility is then

ρσSt = 1l<1
ρσα

(µ0 − µ1)l
(c1−αlα)1−γ =: σE(l)(1− α)(c1−αlα)1−γ (7)

where the last equality defines the function E for brevity. Incentive compatibility is therefore

equivalent to the elasticity of utility to output being sufficiently large to outweigh the benefits

of shirking and is sometimes referred to as a "skin-in-the-game" constraint. Expression (7)

shows that utility must be more responsive to output when deviations are hard to detect

or the benefits of deviation are large, and allows us to recast the principal’s problem as an

optimal control problem. Further, the assumptions on productivity growth together with

the homotheticity of preferences allow for the following reduction to a single state variable.

Lemma 2.2. For all U and θ we have V (U, θ) = V (Uθγ−1, 1)θ and the policy functions of

the planner are functions of Uθγ−1.

Proof. Since incentive compatibility is unaffected if we scale consumption in every history

by the same scalar, for any λ > 0, the change-of-variable (θt, ct) 7→ (λθt, λct) implies

V (U, λθ) = λ max
(c,l)∈AIC

E
[∫ ∞

0
e−ρt[θt1lt<1 − ct]dt

]
U = λ1−γE

[∫ ∞
0

e−ρtu(ct, lt)dt

]
dθt = µθ(lt)θtdt+ σθ(lt)θtdZt, θ0 = θ
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which is exactly λV (Uλγ−1, θ).

Unlike in Sannikov (2008), effort here has persistent effects on output and so utility is not

sufficient to act as a state variable. However, Lemma 2.2 shows the principal’s choices

depend only on promised utility per unit of output, and so suggests the following definition.

Definition 2.4. Given U and θ, define normalized utility and the normalized payoff function

by u := [(1− γ)U ]
1

1−γ θ−1 and v(u) := V
(
u1−γ/(1− γ), 1

)
, respectively.

Lemma 2.2 shows that the optimal choices of the planner are functions only of normal-

ized utility, which represents a kind of cost/benefit ratio for motivating the agent. Similar

observations are made in Ai et al. (2016) and He (2009), where the agency problem involves

the hidden diversion of resources rather than hidden effort. The normalized value function

does not appear to possess a closed-form solution and numerical methods are necessary

for its calculation. To gain some intuition for the structure of the optimal contract, it is

instructive to characterize the value and policy functions associated with what I will term

restricted-action allocations, in which the principal must recommend a fixed effort level for

the entirety of an agent’s life but is unconstrained in his choice of consumption. I focus on

these because they may be characterized sharply in closed form, and because the restricted-

action value function for the highest effort level becomes an arbitrarily good approximation

to the true value function as productivity becomes arbitrarily high.

To give a sense of why such allocations admit a simple characterization, note that if we

rewrite consumption c =: c[(1− γ)Ut]
1

1−γ as a fraction of utility in consumption units, then

Proposition 2.1 and (7) together imply

dUt
Ut

= ρ
(
1− (c1−αlα)1−γ)dt+ σE(l)(c1−αlα)1−γ(1− γ)dZt.

For a fixed effort level the mean and volatility of utility growth depend only on c. Further,

for these allocations the perturbation arguments of Golosov et al. (2003) are applicable, and

so the inverse Euler equation holds and we have the following sharp characterization proved

in Appendix A.4.
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Proposition 2.3. For each l ∈ [l, 1] the restricted-action consumption function is cr(u; l) =

cr(l)u := x(l)
1

1−γ l−
α

1−αu and the restricted-action value function is

vr(u; l) =
1l<1

ρ− µθ(l)
− cr(l)u

ρ− µc(l)

where µc(l) denotes average consumption growth and x(l) is the positive solution to the

quadratic 0 = σ2E(l)2(γ − 1)(γ − 1/2)x2 + ρx− ρ. Further, v′r(u; l) is increasing in l.

There are two important points to be taken from Proposition 2.3. First, we obviously

have v(u) ≥ vr(u; l) for all l ∈ [l, 1], and so

lim inf
u→0

v(u) ≥ lim
u→0

vr(u; l) =
1

ρ− µθ(l)
.

Since v(u) ≤ (ρ− µθ(l))−1 everywhere, it follows that the restricted-action function for the

highest effort approximates the true value function near zero. Phrased differently, the loss to

the principal per unit of output from adhering to this restricted-action allocation falls to zero

as productivity rises. Note that this sharp characterization of payoffs near zero depends on

the preferences adopted and differs from Phelan and Townsend (1991) and Sannikov (2008),

in which it is possible for the agent to be retired (and output to cease) at low levels of utility

when utility is bounded below.

The second important consequence of Proposition 2.3 is that v′r(u; l) is increasing in

leisure, which captures the intuitive fact that it is more expensive to provide an agent with

a given level of utility when they exert higher effort. This provides insight into how effort

varies with normalized utility and so allows us to build intuition for the dynamics of risk-

bearing. To this end, consider the problem v∗r (u) := maxl∈[l,1] vr(u; l) of a restricted principal

who must fix effort recommendations throughout the entirety of an agent’s life, and note

that Topkis’ theorem implies that the associated policy function is increasing in normalized

utility. Such a restricted principal therefore recommends high effort to individuals with low

initial normalized utility and vice versa.

The expressions in Proposition 2.3 do not, by themselves, tell us anything about how

normalized utility evolves over time and in response to shocks. However, the closed-form
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expression for consumption in (2.3) allows for a sharp characterization of how risk-sharing

varies over time.

Lemma 2.4. In the restricted-action allocations associated with l ∈ [l, 1) the drift and

diffusion of normalized utility satisfy µu − σ2
u/2 = −γσ2E(l)2x(l)2/2− µθ(l) + σθ(l)

2/2 and

σu = σ(E(l)x(l)− 1), and high productivity shocks reduce normalized utility if and only if

ρ < (1/α− 1)(µ0 − µ1)l +
σ2

2
(2γ − 1)(γ − 1). (8)

Proof. Appendix A.2 applies Ito’s lemma to show that

µu −
σ2
u

2
=

ρ

1− γ
(1− (c1−αlα)1−γ) +

(γ − 1)

2
σ2E(l)2(c1−αlα)2−2γ − µθ(l) +

σ2
θ(l)

2
. (9)

The expressions for the drift and diffusion of normalized utility follow by combining the

expression (9) with the quadratic in Proposition 2.3. High productivity shocks reduce nor-

malized utility when σu < 0, or E(l)x(l) < 1. Since the quadratic in Proposition 2.3 is

increasing for positive x, rearrangement reveals that this is equivalent to (8).

Recall that if a process (Xt)t≥0 satisfies dXt = µXXtdt+σXXtdZt for some constants µX

and σX then it admits the representation ln(Xt/X0) = (µX − σ2
X/2)t+ σXZt almost surely

for all t ≥ 0. Consequently, the large-time pathwise behavior is determined not by µX but

by the quantity µX−σ2
X/2, which may be interpreted as a kind of risk-adjusted growth rate.

Lemma 2.4 therefore shows that the large-time behavior of normalized utility is governed by

the difference between two terms. The first, −γσ2E(l)2x(l)2/2, is negative and represents

a force common in economies with private information, in which the principal wishes to

front-load utility to relax future incentive constraints, while the second, µθ(l)− σθ(l)2/2, is

simply the risk-adjusted growth rate in productivity.

The fact that effort affects growth rather than flow output implies that the dynamics

of risk-sharing here are different from the seminal contributions of Phelan and Townsend

(1991) and Sannikov (2008), in which the mapping from effort to output is fixed over time.

In these models agents are typically retired at high levels of utility because they are too

costly to motivate. Although it remains true here that the cost of motivating the agent

13



increases with utility, there is also a simple but novel offsetting effect: agents in this model

have high utility only because they experienced high productivity growth. After a series

of favorable shocks, the cost of motivating the agent may have grown, but since actions

affect the growth of output, so too has the benefit, and Lemma 2.2 shows that the principal

cares solely about the ratio of these costs to benefits. Indeed, expression (8) in Lemma 2.4

shows that in the restricted-action allocations, the dynamics of risk-sharing may be entirely

reversed, in the sense that high shocks reduce normalized utility, and so lead the principal

to recommend higher effort and more risk in the agent’s utility. Further, expression (8) also

shows that for sufficiently high risk-aversion or uncertainty, or a sufficiently patient agent,

this will be true regardless of the recommended leisure level.

Numerical illustration. Since none of the above restricted-action value functions are

globally optimal, the value function must be calculated numerically. Appendix D outlines

the numerical method I use to solve the principal’s problem. Recall that the complete list

of parameters is α, γ, ρ, σ, µ0, µ1 and l. For preferences I choose (ρ, α, γ) = (0.07, 0.3, 2), all

of which are standard. The choice of the remaining parameters is more difficult, both due

to uncertainty regarding the risk profiles of business incomes and the absence of an obvious

way to discipline l. I follow Jones and Kim (2018) and set σ = 0.15, but since I abstract from

aggregate growth in Section 3, I choose lower values for growth to ensure stationarity. For

simplicity I choose (µ0, µ1, l) = (0.07, 0.0, 0.5), which corresponds to expected productivity

growth of 3.5 percent with high effort and zero growth with no effort.

Figure 1 plots the true value function alongside several restricted-action value functions.

Obviously, the true value function must everywhere lie above each of these restricted-action

value functions. Further, as implied by the above discussion, for low values of normalized

utility the true value function is approximately equal to the restricted-action value function

associated with the lowest leisure level. Figure 2 plots the policy functions for leisure and

consumption together with the analogous optimal restricted-action functions. As expected,

the policy functions for leisure and consumption are both increasing in normalized utility.

This shows that as the amount owed to the agent increases, the principal chooses to reward

the agent with leisure rather than consumption and reduces the risk associated with their
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Figure 1: Efficient and restricted-action value function.

future utility.

Finally, Figure 3 plots the risk-adjusted growth in normalized utility and the diffusion

of normalized utility in both the efficient and optimal restricted-action cases. As implied by

Lemma 2.4, the volatility of normalized utility is everywhere negative in the restricted-action

allocations, and this remains the case (and is even more pronounced) in the true efficient

allocation. When combined with the monotonicity of the leisure function, this implies that

high realizations of shocks lead the principal to recommend higher effort, and hence higher

risk associated with future utility. Note that in all cases the efficient functions inherit the

qualitative features of their restricted-action counterparts, but exhibit greater smoothness.

Before turning to the setting with a continuum of agents, it is instructive to compare

the above optimal contract with those derived in similar environments with hidden actions,

and with the law of motion of income that obtains in economies with exogenously incom-

plete markets. This will also serve as a prelude to why thick right tails of consumption and

firm size emerge in this environment and highlight the novel forces present in this model.

Shourideh (2013) and Phelan (2019) consider economies with idiosyncratic capital risk and
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Figure 3: Efficient and restricted-action law of motion for utility.

hidden consumption. To preserve incentives for investment, the risk borne by entrepreneurs

must scale with the benefits of diverting capital to private consumption. As a result, rich

agents with low marginal utility of consumption also control high amounts of capital, and

so the net effect on incentives to deviate is, in general, ambiguous. With homothetic pref-

erences, these forces cancel out so that the elasticity of consumption with respect to output

is common across agents, which leads Shourideh (2013) and Phelan (2019) to generate thick

right (Pareto) tails. However, although they generate heterogeneous capital income and a

thick tail of the wealth distribution, the mechanism adopted in these two papers cannot

speak to the importance of owner characteristics mentioned in the introduction.
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It is also worth contrasting the lessons drawn from this optimal contracting environ-

ment with the exogenously incomplete-markets allocation in Jones and Kim (2018). In their

model entrepreneurs are unable to save, and so consumption, income, and firm profits co-

incide. This differs sharply from the allocations in the current paper, in which risk-sharing

is restricted only by the need to provide incentives for effort. In particular, productivity

growth affects consumption growth only insofar as it affects the returns to effort and the

tightness of the incentive constraints. Consequently, although the stationary distributions

of both consumption and firm size in the ensuing perpetual youth environment are both

approximately Pareto, the right tail for firm size is typically much thicker than that for

consumption.

Proposition 3.6 below formalizes this discussion by showing that the distributions as-

sociated with the restricted-action allocations may be characterized in closed form. While

the tail of the firm size distribution depends only on the technology governing productivity

growth and may be arbitrarily thick (for sufficiently high productivity growth), the desire

to smooth consumption over time sharply restricts the efficient level of consumption growth

and places tight bounds on the tail of the ensuing distribution. Before proceeding to the

general equilibrium context, note that if output is scaled by κ ≥ 0, then the principal be-

haves as if confronted with an agent of productivity κθ. This has the following simple (but

important) consequence.

Lemma 2.5. For any parameter κ > 0, denote the normalized value function associated

with this level of productivity by v(u;κ). Then for all κ, u ≥ 0, we have v(u;κ) = κv(u/κ; 1).

Lemma 2.5 will prove useful in the general equilibrium setting when the productivity of

entrepreneurs depends on an endogenous shadow price of labor. In what follows I will write

v(·) ≡ v(·; 1) for the normalized payoff function associated with unitary productivity.
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3 Efficient stationary allocations

The preceding section analyzed the optimal contract between a single risk-averse agent and

a risk-neutral principal. This section shows how the problem of a planner in an overlapping-

generations economy may be decomposed into a series of one-on-one principal-agent prob-

lems identical in form to those considered above. This allows me to derive the effects of

private information on the long run distributions of consumption and firm size. General

equilibrium forces affect both the level of utility that may be given to a generation and the

productivity of entrepreneurs, because the latter depends on the number of agents working

for their business.

3.1 Environment

Time is again continuous and indefinite. At any instant there is a continuum of agents alive

in the economy with subjective discount factor ρS who die at rate ρD. A flow of ρD agents

are born every unit of time so that the total population is fixed at unity. The preferences of

agents continue to be of the form given in (1) and (2) with discount rate now ρ := ρS + ρD.

Every agent alive at the initial date is indexed by a single variable v ∈ R identified with

promised utility. To each v-agent there is an associated process Zv = (Zvt )t≥0 distributed

according to standard Brownian motion and referred to as the noise process for agent v.

These processes are independent of one another, and so by a law of large numbers for a

continuum of agents,4 the ex-post distribution of shocks across agents will coincide with the

ex-ante distribution faced by a single agent. The noise processes of agents of subsequent

generations will be indexed by agents’ dates of birth rather than promised utility and so

agents are only distinguished by date of birth and possibly type.

Agents may be one of two types, entrepreneurs and workers, which are permanent and

unobservable. A fraction ηE ∈ [0, 1] are entrepreneurs and the remaining 1 − ηE are work-

ers. Entrepreneurs are distinguished from workers by their ability to run businesses and to
4Subject to the usual measurability caveats.

18



improve his productivity through effort, and have a common productivity θ0 = 1 at birth

that evolves as in Section 2, dθvt = µθ(lt)θ
v
t dt + σθ(lt)θ

v
t dZ

v
t . In Section 2 the flow output

of an agent coincided with his productivity. In contrast, in this section the output of an

entrepreneur is a function of both their productivity and the total effective labor assigned

to him. To ensure that output is finite in the stationary distribution I will also suppose that

ρD > µθ(l) for all leisure levels. All agents inelastically supply L units of effective labor per

unit of time, irrespective of any effort employed to improve their productivity, and so I omit

labor supply from the definition of an allocation.

If an entrepreneur of productivity θ is assigned L units of effective labor, then for a fixed

Z > 0 and β ∈ (0, 1) flow output is F (θ, L) = Zθ1−βLβ per unit of time. An allocation must

specify the consumption, effort exerted, and labor assigned to every member of the initial

generation as a function of initial promised utility, type, and history of output, together

with analogous quantities for all subsequent generations as functions of birth date and type.

In the following Lv,θ,it and LT,it refer to the effective labor assigned to a given type (which

vanishes if i = W ), and for agents not alive at the initial date, the superscript refers to birth

date and the subscript to calendar time.

Definition 3.1. Given a distribution Φ over utility, productivity, and types, an allocation

consists of sequences (cv,θ,it , lv,θ,it , Lv,θ,it )t≥0, (v, θ, i) ∈ supp(Φ) for the initial generation and

(cT,it , lT,it , LT,it )t≥T≥0, i = E,W , for subsequent generations.

I will denote the set of all allocations by A, and for any T ≥ 0 write AT for the subset

of allocations associated with agents born at time T . I will denote aggregate consumption,

labor assignments, output, and (flow) utility by Ct, Lt, Yt and Ut, respectively.5

Definition 3.2. An allocation is resource feasible if it satisfies Ct ≤ Yt and Lt ≤ L for all

t ≥ 0. The set of such allocations will be denoted ARF .

Definition 3.3. Given an initial distribution Φ over utility, productivity, and types, an

allocation A satisfies promise-keeping if U(cv,θ,i, lv,θ,i) = v for all (v, θ, i) ∈ supp(Φ).
5Formal definitions are contained in Appendix B.1.
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Incentive-compatibility requirements are of two kinds: an entrepreneur must be induced

to reveal her type at birth and then to follow the effort recommendations of the planner.

Incentive compatibility must, in principle, account for the possibility of double deviations,

in which an agent misreports her type and then deviates from the recommended action.

However, such double deviations are irrelevant here, since an entrepreneur who claims to be

a worker is subject to no further private information.

Definition 3.4. The consumption and leisure allocations for a particular generation are

incentive compatible if for all leisure strategies l′, UE(cE , l) ≥ max
{
UE(cE , l′), UW (cW , 1)

}
.

The set of incentive-compatible allocations will be denoted AIC and the set of allocations

that are incentive compatible and resource feasible is denoted AIF := ARF
⋂
AIC .

Agents have preferences solely over their own consumption and effort and there is no

altruism across generations. For simplicity I will suppose that the planner only cares about

workers’ utility and places a weight of α(T ) = e−ρST on an agent born at time T . This implies

that the planner values the utility of an agent at any given date the same regardless of the

agent’s date of birth and is equivalent to the social welfare function UP (A) =
∫∞

0 e−ρStUtdt

where Ut is the total flow utility of workers at t ≥ 0.6 I now relate the planner’s problem to

the principal-agent problems of Section 2.

Definition 3.5. Given an initial distribution Φ over promised utility and types, the plan-

ner’s problem is defined to be V (Φ) = maxA∈AIF U
P (A).

As in Farhi and Werning (2007) I focus on solutions in which the distributions of produc-

tivity and utility are constant over time, and first consider the simpler problem of a planner

who may trade goods and labor intertemporally at the subjective rate of time preference.
6To aid the reader, elaboration of the social welfare function is given in Appendix B.1.
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Definition 3.6. Given an initial distribution Φ, the relaxed problem of the planner is

V R(Φ) = max
A∈AIC

∫ ∞
0

e−ρStUtdt∫ ∞
0

e−ρSt(Ct − Yt)dt ≤ 0∫ ∞
0

e−ρSt(Lt − L)dt ≤ 0.

Notice that if we solve the relaxed problem and all implied distributions are constant over

time, then we have solved the planner’s problem beginning at that distribution. The relaxed

problem still takes a distribution as an argument, but there are now only two constraints

and so the interdependence across agents is captured by just two Lagrange multipliers. For

each choice of multipliers, solving the above amounts to maximizing the components of the

integral relevant to each generation in isolation. I will refer to this latter problem as a

generational planner’s problem.7 The only differences between the generational planner’s

problem and the principal-agent problem analyzed in Section 2 are the presence of an ad-

ditional constraint requiring the utility of an entrepreneur be sufficiently high to ensure

truthful revelation, and the additional (static) task of assigning workers to entrepreneurs.

A generational planner facing a population of newborns must internalize the effect that

the effort levels recommended to entrepreneurs have on the shadow price of labor. At any

moment the assignment of workers to an entrepreneur depends solely on the shadow price of

labor and productivity and solves the static problem maxL≥0 Zθ1−βLβ − λLL, the solution

of which requires only elementary algebra and is summarized as follows.

Lemma 3.1. Given the multiplier λL, labor assigned to an entrepreneur of productivity θ

is L(θ) = [Zβ/λL]
1

1−β θ. Flow output and output net of labor costs are (1− β)−1Z(λL)θ and

Z(λL)θ, respectively, where Z(λL) := (1− β)Z
1

1−β (β/λL)
β

1−β .

For any multiplier there will be a stationary density of normalized utility that depends

only on the policy functions associated with unitary productivity.
7These are similar to the component planning problems in Farhi and Werning (2007) and Atkeson and

Lucas (1992).
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Definition 3.7. For a given pair λ := (λR, λL) of multipliers, denote the associated sta-

tionary distribution over Ω′ := R × Θ × {E,W} by Φλ. The stationary form of the goods

and labor resource constraints then reduce to the following pair of equations

0 =

∫
Ω′

E[cv,θ,i − F (θv,θ,i, Lv,θ,i)]Φλ(dω′)

0 = L−
∫

Ω′
E[Lv,θ,i]Φλ(dω′).

(10)

The first equation in (10) imposes the requirement that aggregate consumption equal ag-

gregate output, while the second imposes the requirement that the total stock of effective

labor coincide with the aggregate amount assigned to entrepreneurs.

Consequently, if λ satisfies (10) then the solution to the relaxed planner’s problem with

initial distribution Φλ amounts to adhering to the solutions to the generational planner’s

problem. I will now combine the above with the optimal contract characterized earlier in

partial equilibrium to infer properties of the long run distributions of consumption and

productivity. This amounts to solving the generational planner’s problem and then varying

the shadow prices of goods and labor until the resource constraints hold in the associated

stationary distribution. To this end, note that just as the homotheticity of preferences and

exponential growth in productivity allowed for a simplification of the principal’s problem,

so too do the linear policy functions imply that when calculating aggregate quantities we

need only restrict attention to a one-dimensional distribution.

Definition 3.8. Given a distribution Φ over the productivity and normalized utility, the

summary measure is defined by m(B) =
∫
B

∫∞
0 θΦ(θ, u)dθdu for any B ⊆ [0,∞).

The homogeneity of the policy functions ensures that aggregate quantities may be ex-

pressed in terms of this summary measure. For instance, the average productivity of (non

retired) entrepreneurs is
∫∞

0 m(u)1l(u)<1du, while the average consumption of entrepreneurs

(retired and non retired) is
∫∞

0 c(u)m(u)du. The following shows that this summary mea-

sure solves a version of the Kolmogorov forward equation for a single variable. For a proof

of the following, see Appendix B.3.

22



Lemma 3.2. If (ut, θt)t≥0 evolves according to (dut, dθt) = (µuutdt + σuutdZt, µθθtdt +

σθθtdZt) for some µu, σu, µθ and σθ, then m solves the ODE

0 = −(ρD − µθ(u))m(u)− [(µu(u) + σθ(u)σu(u))um(u)]′ +
1

2
[σ2
u(u)u2m(u)]′′. (11)

One implication of Lemma 3.1 is that changes in the shadow price of labor cause changes

in the productivity of every entrepreneur, with payoffs remaining proportional to θ. When

combined with Lemma 2.5, this implies that from the point of view of a planner, changes in

resource constraints simply affect normalized utility, with the subsequent policy functions

identical to those found in the setting of Section 2. For any initial u denote the implied

stationary density by mu, and note that the average productivity and consumption of en-

trepreneurs per unit of aggregate productivity in the stationary distribution may be written

M(u) :=

∫ ∞
0

mu(u)1l(u)<1du C(u) :=

∫ ∞
0

c(u)mu(u)du. (12)

Since workers have constant consumption throughout their lifetime, the associated aggregate

consumption of workers is simply (1− ηE)Z(λL)u. It remains to determine aggregate labor

demand and consumption as functions of the multipliers and find conditions under which

resources balance. Given an initial u the labor resource constraint reduces to

L = (ave. θ)× (no. entrepreneurs)× (labor per θ)

= M(u)× ηE × (Zβ/λL)
1

1−β .
(13)

Characterizing efficient allocations then reduces to solving a single nonlinear equation.

Proposition 3.3. The stationary level of normalized utility is the solution to

ηE
1− β

M(u) = (ηEC(u)/u+ 1− ηE)u (14)

with the associated level of utility in consumption units (1− β)Z(ηEM(u))−βL
β
u.

Proof. From Lemma 3.1 the output of each firm is (1 − β)−1Z(λL)θ. Using (13) and inte-

grating over all firms, aggregate output and consumption in the stationary distribution are

ηE(1−β)−1Z(λL)M(u) and Z(λL)(ηEC(u) + (1− ηE)u), respectively. Dividing output and

consumption by Z(λL) gives (14) and rearranging (13) gives utility.
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Proposition 3.3 shows that to determine the constrained-efficient stationary distribution,

the value function need only be calculated once even though there is a continuum of agents

and two resource constraints. This allows for simple comparative statics.

Corollary 3.4. The stationary level of normalized utility is increasing in ηE and β and

independent of Z.

Proof. Define H(y) := M(y)(1− β)−1 − C(y)− y(1− ηE)/ηE and note that the stationary

level of normalized utility is a root of H. The first two claims follow from Topkis’ theorem

and the fact that H is increasing in ηE and β, and the last claim follows from the fact that

Z does not appear in (14).

The third claim in Corollary 3.4 may be viewed as a neutrality result, as it shows that

changes in total factor productivity have no effect on the stationary value of normalized

utility. Such changes therefore have no effect on inequality in the associated stationary

distributions of consumption and firm size, as these are simply scaled for all agents after

every history by the same amount.

Proposition 2.3 shows that the restricted value and policy functions associated with the

highest action are good approximations to the true value and policy functions for low levels of

normalized promised utility. Since agents with low normalized utility have high productivity

and so typically high consumption, one expects the right tail of the consumption distribution

to look similar to that associated with the restricted-action allocation for the highest effort

level, and this is what is observed in all simulations. To formalize the discussion following

Lemma 2.4 and in particular highlight how the efficient allocations of this paper differ from

the exogenously incomplete markets model of Jones and Kim (2018), I now consider the

stationary distributions associated with the optimal restricted-action policy functions. This

will also serve as a prelude to the decentralization results of Section 4, where it is shown

that these distributions are precisely those that may be implemented with linear taxes.

The formulation of the stationary resource constraints is simpler and more transparent

in this case. Recall from the discussion following Proposition 2.3 that v∗r and l∗r denote the
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value and policy functions of a principal who must recommend the same leisure level for

the entirety of an agent’s life. In this case consumption growth is characterized by constant

mean and volatility, and so for any leisure level l the stationary resource constraint becomes

Z

(
ρDηE

ρD − µθ(l)

)1−β
L
β

=

(
ρDηEcr(l)

ρD − µc(l)
+ 1− ηE

)
[(1− γ)U ]

1
1−γ

where U denotes (unnormalized) lifetime utility. Imposing the labor resource constraint

once more and simplifying gives the following analogue of Proposition 3.3 and Corollary 3.4.

Proposition 3.5. The optimal restricted-action leisure level is l∗r (ur), where ur solves

ρDηE
ρD − µθ(l∗r (ur))

(1− β)−1 =

(
ρDηEcr(l

∗
r (ur))

ρD − µc(l∗r (ur))
+ 1− ηE

)
ur.

The associated utility is Zur where

Z = (1− β)Z

(
ρDηE

ρD − µθ(l∗r (ur))

)−β
L
β

and l∗r (ur) is increasing in both ηE and β.

It is well-known that the stationary distribution of a geometric Brownian motion X =

(Xt)t≥0 that is killed at a constant rate and reinjected at some point X has a stationary dis-

tribution of the double-Pareto form f(x) = Axα
+
X−11x≤X +Bxα

−
X−11x>X for some constants

A,B > 0 and tail parameters α±X . The expressions for consumption in the restricted-action

allocations in Proposition 2.3 then lead to the following characterization.

Proposition 3.6. For each l ∈ [l, 1] the stationary distributions of consumption and firm

size associated with the restricted-action allocation with leisure l are both double-Pareto. The

tail parameters for consumption are

α±c (l) = −γ
2
± γ

2

√
1 +

4ρD(1− 1/γ)(2− 1/γ)

ρ(1− x(l))

and the tail parameters for firm size (in output or employment) are

α±θ (l) = µθ(l)/σ
2 − 1/2±

√
(µθ(l)/σ2 − 1/2)2 + 2ρD/σ2.

The proof of Proposition 3.6 is contained in Appendix B.4. Proposition 3.6 illustrates

that the forces governing the distributions of firm size and consumption are very different
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from one another. For a given level of effort, the tail of the firm size distribution is me-

chanically determined by technological parameters.8 In contrast, the mean and volatility of

consumption growth are determined by the nature of the agency problem, and depend on

the technological parameters only insofar as the latter affect the tightness of the incentive

constraints. Indeed, Proposition 3.6 shows that we have the uniform bound α±(l) ≤ −γ

for the tail parameter for consumption, independent of the nature of the agency problem.

This contrasts sharply with other models with similar multiplicative growth dynamics such

as Jones and Kim (2018), in which the assumed market structure forces the above two

quantities to coincide.

I now illustrate these points by plotting the upper tail parameters for consumption and

firm size with ρD = 0.05 and the same parameters adopted in Figure 1. Following Jones

and Kim (2018), one need not view ρD literally as the probability of death, but rather the

probability with which one ceases to be an entrepreneur, so that this choice of ρD amounts to

assuming that agents run their business for an average of 20 years and have the subjective

rate of discount ρS = 0.02. On the left-hand side of Figure 4 all parameters except for

leisure coincide with Figure 1, while on the right-hand side leisure is set at the average level

l = (l+ 1)/2 and σ varies. As suggested by the above discussion, for all parameters plotted

the tail of firm size is far thicker than that of consumption. To illustrate the importance

of allowing separate determinants for consumption growth and firm size growth, Figure 5

repeats the above exercise with γ = 1 (logarithmic utility). As can be seen, the tail parameter

for firm size is essentially unchanged, but the tails for consumption are substantially thicker.

4 Implementation

The foregoing analysis has focused on the forces that shape the long run efficient levels of

inequality in an economy with repeated moral hazard, with all quantities implicitly specified

by a social planner administering the direct mechanism. In this final section I discuss some

implications for taxes. Prescriptions for taxes depend crucially on assumptions regarding
8A finite mean is assured if α−θ (l) < −1, which is implied by the assumption ρD > µθ(l).
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Figure 4: Tail parameters for firm size and consumption with γ = 2.
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Figure 5: Tail parameters for firm size and consumption with γ = 1.

the contracts agents are capable of writing (and enforcing). Indeed, at one extreme, by

extending the results of Atkeson and Lucas (1992), one may show that when agents may

write contracts of arbitrary complexity with intermediaries, the optimal policy consists only

of lump-sum transfers between agents. Despite the large degree of ex-post heterogeneity, if

the government is no more capable of overcoming agency frictions than the private sector,

then its role is reduced to addressing the ex-ante differences between agents. However, the

assumption of a sector of intermediaries able to commit to contracts for the entirety of

an agent’s life is unreasonably strong. Not only are these contracts history-dependent and

executed over long periods of time, but they also require the intermediary to be capable of

observing the asset positions of the agent at all times.
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For this reason in this final section I consider a simpler, more realistic market structure

and characterize the optimal policy of the government within a parametric class. I assume

that agents may save in a risk-free bond and sell shares of their firm with risk-neutral

investors (mutual funds), and that the government may levy linear taxes on income and

wealth together with lump-sum transfers to workers. This market structure allows one

to distinguish between firm profits, capital gains, and interest income, instead of absorbing

them all into the category of “capital income”, as would be the case if agents could only save in

a risk-free bond. The primary result of this section is that for this market structure, taxes on

profits, (personal) capital income, and wealth play conceptually distinct and complementary

roles. The tax on profits achieves redistributive aims, the tax on capital income affects the

incentives of owners to retain equity in their firm and hence the degree of risk-sharing in

share markets, and the tax on wealth affects the degree of consumption smoothing over time.

The state variable for the agent will consist of firm productivity θt as well as financial

wealth at. The latter is the sum of risk-free savings bt and firm equity ptxt, where xt is the

fraction of the firm owned by the agent and pt the (endogenous) price of the firm,

at := bt + ptxt. (15)

All agents may save in a risk-free government bond with before-tax return rt. I also assume

the existence of a competitive sector of intermediaries who trade actuarially fair annuity

contracts with agents, promising a return ρD on the risk-free savings of agents in exchange

for taking possession of these savings at death. Since the mutual fund sector is assumed to

be competitive, the price per share will equal the expected discounted value of firm profits,

given the funds’ expectations regarding the effort of the entrepreneur. The equilibrium

notion outlined below will impose the consistency requirement that these beliefs are correct,

so that the mutual funds break even in expectation. When the mutual fund believes that

the effort exerted is (l̂t)t≥0, they value the firm at

pt = El̂
[∫ ∞

t
e−(r+ρD)(s−t)(1− τds)Z(ws)θsds

]
,

where θs is productivity at date s conditional on survival, so that the mutual funds effectively
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discount at rate r + ρD. If l̂, w and τd are constant, the price of the firm is simply

pt = (1− τd)
Z(w)θt

r + ρD − µθ(l̂)
(16)

for all t ≥ 0 almost surely. Note that since I assume that the share market is competitive,

investors will make zero expected profits from every trade with entrepreneurs. The following

allocation and prescriptions for taxes are therefore unchanged if we instead assume that the

share purchases are executed by the government rather than private agents. Under this latter

interpretation, government policy serves to partially alleviate frictions in capital markets,

just as the taxation of labor income allows government policy to partially substitute for the

absence of insurance in the labor market.

When effort expectations l̂ and taxes (τd, τs, τcg, τa) on dividends, savings, capital gains,

and wealth are constant, the entrepreneur’s wealth satisfies

dat = [(1− τs)(r + ρD)− τa − ct]atdt+ ιtatdRt(lt; l̂) (17)

where ct and ιt denote the fraction of wealth consumed and invested, respectively, and

dRt(lt; l̂) = (τs(r + ρD) + (1− τcg)µθ(lt)− µθ(l̂))dt+ σ(1− τcg)dZt. (18)

To understand the law of motion of wealth, note that the expected after-tax excess return

on investing in the agent’s business is (1 − τd)Zθt/pt + (1 − τcg)µθ(lt) − (1 − τs)(r + ρD),

which when combined with (16) gives (18).9 It is important to note the distinction in (17)

between l̂ and l: the former refers to the level of effort expected by mutual funds, while the

latter refers to the true effort exerted by the agent. The two must coincide in equilibrium

but only the latter is chosen by the agent. Note also that the tax on firm profits and the

wage appear nowhere in the law of motion (17), since these only affect the value of the firm

and hence the initial wealth of the agent, and not its evolution over time.

Definition 4.1. Given an interest rate r, linear taxes τ = (τd, τs, τcg, τa), and expectations
9To aid the reader in the interpretation of the market structure and timing, a discrete-time formulation

of the law of motion is contained in Appendix C.1.
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of effort exerted (l̂t)t≥0, the problem of an entrepreneur with firm size θ and wealth a is

V (a, θ) = max
c,l,ι

El
[∫ ∞

0
ρe−ρtu(ctat, lt)dt

]
dat = [(1− τs)(r + ρD)− τa − ct]atdt+ ιtatdRt(lt; l̂t)

dθt = µθ(lt)θtdt+ σθ(lt)θtdZt

(a0, θ0) = (a, θ).

Notice that the homotheticity of preferences ensures that the sole effect of a constant

linear profits tax is to scale the wealth of the agent state-by-state, leaving the portfolio and

effort decisions unaffected. The notion of equilibrium adopted here is of a standard rational

expectations type: agents optimize, markets clear, and expectations are consistent with

individual incentives. For simplicity I will suppose that the government borrows and lends

to the agents at rate r = ρS and runs a primary surplus or deficit to balance its budget.

Definition 4.2. Given constant linear taxes τ , a competitive stock market equilibrium

consists of wages w, effort expectations l̂, and policy functions (c, l, ι) = (ct, lt, ιt)t≥0 for

consumption, leisure, and investment, such that the following hold:

• The policy functions (c, l, ι) solve the consumer problem in Definition 4.1 given the

expectations for leisure l̂ and taxes τ .

• The mutual funds break even in expectation, or lt = l̂ for all t ≥ 0 almost surely.

• The markets for goods and labor clear every instant.

• The government budget constraint is satisfied.

A stationary competitive stock market equilibrium is one in which the cross-sectional dis-

tributions of wealth and firm size are constant over time.

The transfers to workers and the level of government debt will simply be set so that the

goods market clearing condition is satisfied. By Walras’ law, the government’s budget con-

straint is automatically satisfied and so details of the level of debt and transfers are relegated
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to Appendix C.4. The first observation relevant for the characterization of equilibrium is that

if effort expectations are independent of firm productivity, then the latter variable drops out

of the individual agent’s problem. Conditional on the choice of effort, it becomes a standard

portfolio problem of Merton-Samuelson type and so admits a homogeneous solution.

Lemma 4.1. With linear taxes and constant effort expectations, the choice of leisure is

constant, and the policy functions for consumption and investment are of the form c(a) = ca

and ι(a) = ιa for some constants c and ι, where (c, l) solve

c

ρ
=

(1− τcg)µθ(l)− µθ(l̂) + τsρ

E(l)γσ2(1− τcg)
ρ− γc
1− γ

= (1− τs)ρ− τa +
((1− τcg)µθ(l)− µθ(l̂) + τsρ)2

2γσ2(1− τcg)2

(19)

and investment is given by

ι =
(1− τcg)µθ(l)− µθ(l̂) + τsρ

γσ2(1− τcg)2
.

The proof of Lemma 4.1 is contained in Appendix C.2. If we impose l = l, then Lemma

4.1 completely determines the law of motion of the agent’s wealth and consumption, given

the taxes on income and wealth. Prior to characterizing the optimal linear taxes, we first

seek an intuitive understanding of the forces determining consumption and investment in

stock market equilibria. Since the agent faces a portfolio problem of Merton-Samuelson

type, the fraction of wealth invested is the expected excess return on one’s business divided

by the volatility times the degree of risk aversion, or

ι =
τsρ− τcgµθ(l)
γσ2(1− τcg)2

. (20)

The expression (20) illustrates some important properties of the agent’s problem in the pres-

ence of asset-specific taxes. First, the excess return on the agent’s business is the difference

between the taxes paid per unit of savings and the mean return on capital gains. In the

absence of such taxes, the expected return on the investment would equal that on the bond,

since in this case both the outside investor and the entrepreneur value the firm according to

the present discounted value of its after-tax dividends. This illustrates an important point:

taxes on various forms of capital income alter the incentives of the entrepreneur to issue
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shares in her business, by changing both the risk and return on associated capital gains and

the return on the alternative investment, the risk-free bond. Albanesi (2006) makes a similar

observation in a two-period model with no workers and (physical) capital distributed equally

across entrepreneurs, emphasizing that the need to provide incentives for effort provides a

justification for the double taxation of capital income.

Note that since the allocations with linear taxes imply constant effort by the agent,

given the planner’s objective they are necessarily weakly dominated by the restricted-action

allocations characterized in Proposition 2.3. Since the policy functions for consumption

and investment are linear in wealth, the associated allocations share the property of the

restricted-action allocations that they exhibit constant mean and volatility of consumption

growth. It follows that if we can find linear taxes such that the mean and volatility of

consumption growth in the competitive equilibria coincide with their counterparts in the

restricted-action allocations, then we will have found the optimal linear taxes. The fact

that the growth in consumption in the restricted-action allocations is characterized by two

constants (mean and volatility) implies that in general we have one degree of freedom in our

choice of the three tax rates. For simplicity, in the following I will assume common taxes

on capital income. Although this is not the only choice possible, it illustrates the distinct

roles played by taxes on the flow of income versus the stock of wealth, and simplifies the

following expressions.

Proposition 4.2. The optimal allocation with linear taxes may be implemented with com-

mon taxes on capital income τk := τs = τcg and wealth τa, where

τk =
γσ2E(l∗r )x(l∗r )

ρ− µθ(l∗r ) + γσ2E(l∗r )x(l∗r )

τa = γ2σ2E(l∗r )2x(l∗r )2 − ρτk,

together with linear taxes on firm profits, lump-sum transfers to workers and government

debt issuance that are chosen so that all agents obtain the utility given in Proposition 3.5.

Proof sketch. The mean and volatility of consumption growth in the optimal restricted-

action allocation are (1 − γ)σ2E(l∗r )2x(l∗r )2/2 and σE(l∗r )x(l∗r ), respectively. Lemma 4.1
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implies that the equilibrium volatility of consumption is

σa =
τk(ρ− µθ(l∗r ))

(1− τk)σγ

and equating this expression with the efficient analogue gives the tax on capital income. For

this tax the policy function in Lemma 4.1 becomes

c =
ρτk(ρ− µθ(l∗r ))

σ2γ(1− τk)E(l∗r )
=

ρσa
σE(l∗r )

= ρx(l∗r ).

By Lemma 4.1, for this capital tax the drift in wealth (and hence consumption) in the

competitive equilibrium allocation is given by

µa = (1− τk)ρ− τa − c+ ιτk(ρ− µθ(l∗r )) = (1− τk)ρ− τa − ρx(l∗r ) + γσ2
a.

Equating this with the drift in consumption in the optimal restricted-action allocation and

using the defining equality for x(l∗r ) once more gives

τa = −ρx(l∗r )− (1− γ)σ2E(l∗r )2x(l∗r )2/2 + (1− τk)ρ+ γσ2E(l∗r )2x(l∗r )2

= ((γ − 1)(γ − 1/2)− (1− γ)/2 + γ)σ2E(l∗r )2x(l∗r )2 − τkρ

which simplifies to the claimed wealth tax.

The main insight of Proposition 4.2 is that the optimal linear taxation policy calls for

separate taxes on wealth and capital income. The debt policy of the government, the

level of transfers, and the dividends tax are of secondary importance and so the formal

expressions are relegated to Appendix C.4. The redistributive tool of the planner is the

tax on firm profits. In contrast, the taxes on capital income and wealth serve instead to

ensure that effort and consumption smoothing are at their constrained-efficient levels and

are only necessary due to the presence of agency frictions. To see this, note that if agency

frictions are absent, either because effort is inelastically supplied α = 0 or there is no risk in

productivity growth, then σE(l) ≡ 0 and the taxes in Proposition 4.2 vanish, as expected.

Further, whether or not the taxes on capital income and wealth actually raise any revenue

turns out to depend crucially on the nature of preferences, as the following shows.
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Corollary 4.3. The revenue raised from the taxes on interest, wealth and capital gains per

unit of wealth is γ(γ − 1)σ2E(l∗r )2x(l∗r )2. Further, if γ > 1 this quantity is increasing in the

number of workers per entrepreneur.

Proof. Using Lemma 4.1 and Proposition 4.2, the taxes raised on interest, wealth, and

capital gains are τa + ρτk + τk(µθ(l
∗
r ) − ρ)ι = γ2σ2E(l∗r )2x(l∗r )2 − γσ2E(l∗r )2x(l∗r )2, which

simplifies to the desired expression. The second claim then follows from Proposition 3.5,

together with the fact that (γ−1)σ2E(l)2x(l)2 = ρ(1−x(l))/(γ−1/2) decreases with l.

Corollary 4.3 shows that the personal taxes (i.e., excluding the profit taxes) raise revenue

in the aggregate precisely when the expected consumption growth is negative. In particular,

in the case of logarithmic utility, the revenue raised from the capital income and wealth

taxes nets to zero in the aggregate, which shows that although the tax on capital income is

unambiguously positive, the tax on wealth may assume either sign.
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Figure 6: Optimal linear taxes (in percent) with γ = 2.

Numerical illustration. I now compute the optimal linear taxes and revenue raised

associated with the parameters adopted in Figure 4. Figure 6 plots the optimal linear taxes

in this environment and Figure 7 plots the revenue raised from these taxes, per unit of

wealth. Figure 8 repeats this exercise with logarithmic utility.10 The primary focus of

this paper is the theoretical determinants of optimal risk-sharing and taxes when business
10The analogue of Figure 7 is omitted since revenue vanishes in this case by Corollary 4.3.
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Figure 7: Revenue from optimal linear taxes (as percentage of wealth).

income depends on the history of owner effort, and so the above numerical results do not

translate immediately into policy prescriptions. However, it is worth emphasizing that

standard parameters over preferences and the volatility of output generate large values for

the optimal taxes and the implied revenue raised, independently of the level of leisure (which

will be sensitive to parameters that are difficult to discipline, such as l). This suggests that

the forces modeled here have a first-order impact on the determination of optimal taxes.
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5 Conclusion

This paper characterizes a class of constrained efficient allocations in an economy with moral

hazard and stochastic growth in business income. There were two principal findings. First,

allowing effort to affect output growth rather than levels has important implications for the

efficient bearing of risk and hence the degree of inequality in the implied stationary distri-

bution. In dynamic agency models with fixed productivity and standard preferences, agents

with high realizations of shocks become too expensive to motivate and so are eventually re-

tired. In contrast, in the model of this paper agents become richer because they experience

high productivity growth, and so the benefits of further effort rise along with the costs. In

Lemma 2.4 I provide sufficient conditions for this second force to overwhelm the first within

a restricted class of contracts and provide numerical evidence that this typically holds in

the unrestricted optimal contract. In Proposition 3.6 I then illustrate the importance of

this force by characterizing the associated upper tails of the stationary distributions of con-

sumption and firm size (in terms of output or employment), showing that they do in general

differ and that the latter will typically be thicker than the former.

Second, I derived the optimal linear taxes on capital income and wealth when agents may

trade shares in their firms in competitive markets or save in a risk-free bond. In this case

Proposition 4.2 uncovers a novel role for taxes when productivity depends on unobserved

effort: a tax on (personal) capital income alters the incentives of owners to retain ownership

of their firm, and hence to exert continued effort to improve productivity. The optimal linear

taxation policy in this environment therefore calls for taxes on profits, risk-free savings, and

wealth, serving three distinct purposes. The tax on profits plays a redistributive role, the

tax on risk-free savings provides incentives for retaining equity and continued effort, and the

wealth tax serves to implement the efficient level of consumption smoothing.
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A Recursive analysis

In this section I outline the arguments leading to the Hamilton-Jacobi-Bellman equation. For clarity,

define the underlying filtered probability space to be (Ω, (Ft)t≥0, P ), where Ω = C([0,∞)), P is

the Wiener measure and F is the σ-algebra generated by the evaluation maps. In this case the

assumption that l = (lt)t≥0 on (Ω,F , P ) is progressively measurable is equivalent to the existence

of functions (l̃t)t≥0 such that l̃t : C([0, t])→ R for each t ≥ 0 and lt = l̃t((ω(s))0≤s≤t) almost surely,

for all t ≥ 0. These definitions amount to assuming that the choices of the principal and agent at

any date are functions of the history of quantities observed up until that date.

A.1 Incentive compatibility

For each l define Zlt(ω) := ω(t) − σ−1
∫ t

0
µθ(l̃s((ω(s′))0≤s′≤s))ds for ω ∈ Ω, and note that for any l

and l′ we have dZl
′

t = dZlt − σ−1[µθ(l
′
t)− µθ(lt)]. We define P l to be the measure under which Zl is

a Brownian motion on (Ω,F , P l) (see e.g. page 106 of Cvitanić et al. (2009)). Given the underlying

Brownian motion Z := (Zt)t≥0, we define θ to be a (strong) solution to dθt = σθtdZt and note that

dθt = σθtdZt = σθt

(
σ−1µθ(l̃(θ·))dt+ dZt − σ−1µθ(l̃(θ·))dt

)
= µθ(l̃(θ·))θtdt+ σθtdZ

l
t

and so (θ, Zl, P l) is a (weak) solution to dXt = µθ(l̃(X·))Xtdt + σXtdWt. Finally, we write El for

the associated expectation operator on the space of output paths.

Proof of Proposition 2.1. For any allocation (c, lP ) and agent strategy l, define V c,l := (V c,lt )t≥0 by

V c,lt := ρEl
[∫ ∞

0

e−ρsu(cs, ls)ds

∣∣∣∣Ft]. (21)
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The law of iterated expectations ensures that V c,lt is a martingale on (Ω,F , P l). The augmented

form of the martingale representation theorem given in Lemma 3.1 of Cvitanić et al. (2009) then

implies the existence of S such that V c,lt = ρσ
∫ t

0
SsdZ

l
s for all t ≥ 0 almost surely, which gives the

first claim. Now consider the case in which the agent adheres to an arbitrary l up until a fixed date

t and adheres to lP thereafter. In this case (21) becomes V c,lt := ρ
∫ t

0
e−ρsu(cs, ls)ds+ e−ρtUt, where

Ut is utility if the agent adheres to lP after t. Using dZl
P

t = dZlt − σ−1[µθ(l
P
t )− µθ(lt)] we have

dV lt = ρe−ρtu(ct, lt)dt+ d
(
e−ρtUt

)
= ρe−ρt(u(ct, lt)dt− Ut)dt+ e−ρt

[
ρ(Ut − u(ct, l

P
t ))dt+ ρσStdZ

lP

t

]
= ρe−ρt

(
u(ct, lt)− u(ct, l

P
t ) + St[µθ(lt)− µθ(lPt )]dt

)
+ ρσe−ρtStdZ

l
t.

Since El
[∫ t

0
e−ρsSsdZ

l
s

]
= 0 for all t ≥ 0, we have

El[V lt ] = V̂ l0 + ρEl
[∫ t

0

e−ρs
(
Ssµθ(ls) + u(cs, ls)− [Ssµθ(l

P
s ) + u(cs, l

P
s )]
)
ds

]
. (22)

Since the expected utility of the agent is El[limt→∞ V lt ], a recommendation l is incentive compatible

if and only if it maximizes the integrand in (22) almost surely for all t ≥ 0, which gives the result.

Remark A.1. The strengthening of the martingale representation appearing in Cvitanić et al.

(2009) and invoked above appears necessary because F is the filtration generated by the evaluation

maps and is not necessarily equal to the natural filtration associated with Zl.

A.2 Laws of motion

We first assume γ > 1. In this case utility in consumption units and normalized utility are

zt : = [(1− γ)Ut]
1

1−γ ut : = [(1− γ)Ut]
1

1−γ θ−1
t . (23)

Recall γ := 1− (1− γ)(1− α) and E(l) := ρα1l<1/[(1− α)(µ0 − µ1)l] for any l ∈ [l, 1], and

u(c, l) =

(
c1−αlα

)1−γ
1− γ

u2(c, l) = αl−1
(
c1−αlα

)1−γ
µθ(l) = µ0 − (µ0 − µ1)l µ′θ(l) = −(µ0 − µ1)

if l < 1, and µθ(1) = 0. Proposition 2.1 shows that we may suppose

dUt = ρ(Ut − u(ct, lt))dt+ σ(1− α)E(lt)
(
c1−αt lαt

)1−γ
dZt. (24)
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We write ct = ct[(1− γ)Ut]
1

1−γ , for ct interpreted as consumption per utility in consumption units,

and note that (c1−αt lαt )1−γ = (c1−αt lαt )1−γ(1 − γ)Ut. The law of motion (24) becomes dUt/Ut =

µUdt+ σUdZt where

µU = ρ
(
1− (c1−αt lαt )1−γ) σU = σE(lt)(c

1−α
t lαt )1−γ(1− γ). (25)

We now wish to derive the laws of motion of zt and ut in (23). If f(Ut) := [(1− γ)Ut]
1

1−γ then

f ′(Ut) : =
1

(1− α)
[(1− γ)Ut]

γ
1−γ f ′′(Ut) : =

γ

(1− α)2
[(1− γ)Ut]

γ
1−γ−1

and so Ito’s lemma and (25) imply dzt = µzztdt+ σzztdZt, where

µz =
µU

1− γ
+
σ2
U

2

γ

(1− γ)2
σz =

σU
1− γ

. (26)

Substituting (25) into (26) gives

µz = ρ

(
1− (c1−αt lαt )1−γ

1− γ

)
+
γσ2

2
E(lt)

2(c1−αt lαt )2−2γ

σz = σE(lt)(c
1−α
t lαt )1−γ .

(27)

Using Ito’s lemma for quotients11 and (27) we have dut/ut = µudt+ σudZt where

µu = ρ

(
1− (c1−αt lαt )1−γ

1− γ

)
+
γσ2

2
E(lt)

2(c1−αt lαt )2−2γ − µθ(lt)

+ σθ(lt)
2 − σσθ(lt)E(lt)(c

1−α
t lαt )1−γ

σu = σE(lt)(c
1−α
t lαt )1−γ − σθ(lt).

Factorization and simplification implies that

µu = ρ

(
1− (c1−αt lαt )1−γ

1− γ

)
+ (γ − 1)

σ2

2
E(lt)

2(c1−αt lαt )2−2γ

+
σ2
θ(lt)

2
(E(lt)(c

1−α
t lαt )1−γ − 1)2 − µθ(lt) +

σ2
θ(lt)

2

(28)

which in turn implies (9). The above expressions fail to be well-defined when γ = 1, and so we

treat this case separately. We define flow utility to be u(c, l) = α ln c + (1 − α) ln l, and so the

analogue of (23) is zt = exp(U/(1 − α)) and ut = exp(U/(1 − α))θ−1. Writing ct = ctzt, we have

Ut − (1− α) ln ct = −(1− α) ln ct, and so (24) becomes

dUt = ρ(−(1− α) ln ct − α ln lt)dt+ σ(1− α)E(lt)dZt =: µUdt+ σUdZt.

11If dXt/Xt = µXdt + σXdZt and dYt/Yt = µY dt + σY dZt then d(Xt/Yt)/(Xt/Yt) = (µX − µY + σ2
Y −

σXσY )dt+ (σX − σY )dZt. In the above we use this with σX = σE(lt)(c
1−α
t lαt )

1−γ and σY = σ1l<1.
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If f(Ut) := exp(U/(1−α)), then f ′(Ut) = (1−α)−1f(Ut) and f ′′(Ut) = (1−α)−2f(Ut), and so from

Ito’s lemma, we have dzt/zt = µzdt+ σzdZt, where

µz =
µU

1− α
+

σ2
U

2(1− α)2
= −ρ

(
ln ct +

α

1− α
ln lt

)
+
σ2

2
E(lt)

2

σz =
σU

1− α
= σE(lt).

(29)

Using Ito’s lemma for quotients gives dut/ut = µudt+ σudZt, where σu = σ(E(lt)− 1lt<1) and

µu = −ρ ln ct −
ρα

1− α
ln lt +

σ2

2
E(lt)

2 − µθ(lt) + σθ(lt)
2 − σ2E(lt)

= −ρ ln ct −
ρα

1− α
ln lt − µθ(lt) +

σθ(lt)
2

2
(E(lt)− 1)2 +

σθ(lt)
2

2
.

(30)

A.3 Hamilton-Jacobi-Bellman equation

Using the original choice variable (c, l) and (24), the Hamilton-Jacobi-Bellman equation is given by

ρV (U, θ) = max
c≥0
l∈[l,1]

θ1l<1 − c+ ρ(U − u(c, l))
∂V

∂U
+
σ2

2

(
(1− α)E(l)

(
c1−αlα

)1−γ)2 ∂2V

∂U2

+ µθ(l)θ
∂V

∂θ
+
σθ(l)

2θ2

2

∂2V

∂θ2
+ σ(1− α)E(l)

(
c1−αlα

)1−γ
σθ(l)θ

∂2V

∂U∂θ
.

(31)

If γ > 1, then in terms of the variables (c, l), where c = c[(1− γ)Ut]
1

1−γ , (31) becomes

ρV (U, θ) = max
c≥0
l∈[l,1]

θ1l<1 − c[(1− γ)U ]
1

1−γ + ρ
(

1−
(
c1−αlα

)1−γ)
U
∂V

∂U

+
σ2

2

(
(1− γ)E(l)

(
c1−αlα

)1−γ)2

U2 ∂
2V

∂U2
+ µθ(l)θ

∂V

∂θ

+
σθ(l)

2θ2

2

∂2V

∂θ2
+ σ(1− γ)E(l)

(
c1−αlα

)1−γ
Uσθ(l)θ

∂2V

∂U∂θ

(32)

where we used (c1−αlα)1−γ = (c1−αlα)1−γ(1 − γ)U . In the case of logarithmic utility, (γ = 1), in

terms of the variables (c, l), where c = c exp(U/(1− α)), (32) becomes

ρV (U, θ) = max
c≥0
l∈[l,1]

θ1l<1 − c exp(U/(1− α)) + ρ(−(1− α) ln c− α ln l)
∂V

∂U

+
σ2

2
(1− α)2E(l)2 ∂

2V

∂U2
+ µθ(l)θ

∂V

∂θ
+
σθ(l)

2θ2

2

∂2V

∂θ2
+ σ(1− α)E(l)σθ(l)θ

∂2V

∂U∂θ
.

(33)

Proposition A.1. When γ > 1 the solution to the Hamilton-Jacobi-Bellman equation (32) is of the

form V (U, θ) = v(u)θ for some function v solving

ρv(u) = max
c≥0
l∈[l,1]

1l<1 − cu+ ρ

(
1− (c1−αlα)1−γ

1− γ

)
uv′(u) +

γσ2

2
E(l)2

(
c1−αlα

)2−2γ
uv′(u)

+ µθ(l)(v(u)− uv′(u)) +
1

2

(
σE(l)

(
c1−αlα

)1−γ − σθ(l))2

u2v′′(u).
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Proof. Under the change-of-variables u = u(U, θ) := [(1− γ)U ]
1

1−γ θ−1, the relevant algebra is

u = [(1− γ)U ]
1

1−γ θ−1 U =
(uθ)1−γ

1− γ
∂u

∂U
=

1

1− α
[(1− γ)U ]

γ
1−γ θ−1 =

uγθγ−1

1− α
∂u

∂θ
= −u

θ
.

Writing v(u(U, θ))θ = V (U, θ) gives

∂V

∂U
=
∂u

∂U
v′(u)θ =

θγuγ

1− α
v′(u)

∂V

∂θ
= v(u) +

∂u

∂θ
v′(u)θ = v(u)− uv′(u)

and

∂2V

∂θ2
=

∂

∂θ
[v(u)− v′(u)u] =

∂u

∂θ
[v′(u)− v′(u)− v′′(u)u] = v′′(u)

u2

θ
∂2V

∂U2
=

θγ

1− α
∂

∂U
[uγv′(u)] =

θγ

1− α
∂u

∂U
[γuγ−1v′(u) + uγv′′(u)] =

(uθ)2γ−2

(1− α)2
[γuv′(u) + u2v′′(u)]θ

∂2V

∂U∂θ
=

∂

∂U
(v(u)− uv′(u)) =

∂u

∂U
[−uv′′(u)] = −u

1+γv′′(u)

1− α
θγ−1.

Substitution into (32) gives

ρv(u)θ = max
c≥0
l∈[l,1]

(1l<1 − cu)θ + ρ
(

1−
(
c1−αlα

)1−γ)
U
θγuγ

1− α
v′(u)

+
σ2

2
E(l)2(1− γ)2

(
c1−αlα

)2−2γ
U2 (uθ)2γ−2

(1− α)2
[γuv′(u) + u2v′′(u)]θ

+ µθ(l)θ(v(u)− uv′(u)) +
σθ(l)

2θ

2
v′′(u)u2 − σσθ(l)E(l)

(
c1−αlα

)1−γ
v′′(u)u1+γ(1− γ)Uθγ .

Dividing by θ and using u1−γ = (1− γ)Uθγ−1 and (7) then gives

ρv(u) = max
c≥0
l∈[l,1]

1l<1 − cu+ ρ

(
1−

(
c1−αlα

)1−γ
1− γ

)
uv′(u) +

σ2

2
E(l)2

(
c1−αlα

)2−2γ
[γuv′(u) + u2v′′(u)]

+ µθ(l)(v(u)− uv′(u)) +
σθ(l)

2

2
u2v′′(u)− σσθ(l)E(l)

(
c1−αlα

)1−γ
u2v′′(u)

which simplifies as claimed upon factorization.

We have the following analogue in the case of logarithmic utility. The proof is almost identical

to that of Proposition A.1 and so omitted.

Proposition A.2. When utility is logarithmic, the solution to the Hamilton-Jacobi-Bellman equa-

tion (33) is of the form V (U, θ) = v(u)θ for some function v solving

ρv(u) = max
c≥0
l∈[l,1]

1l<1 − cu+ ρ

(
− ln c− α ln l

1− α

)
uv′(u) +

σ2

2
E(l)2uv′(u)

+ µθ(l)(v(u)− uv′(u)) +
σ2

2
(E(l)− 1l<1)

2
u2v′′(u).
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A.4 Restricted value and policy functions

Proof of Proposition 2.3. Using Proposition A.1, substituting the form v ≡ vr(l)u+vr(l) and equat-

ing the linear and constant parts gives vr(l) = 1l<1/(ρ− µθ(l)) and vr(l) solves

ρvr(l) = max
c≥0

−c+ ρ

(
1− (c1−αlα)1−γ

1− γ

)
vr(l) +

γσ2

2
E(l)2

(
c1−αlα

)2−2γ
vr(l).

Combining this with the associated first-order condition gives the pair of equations

ρvr(l) = −c+ ρ

(
1− (c1−αlα)1−γ

1− γ

)
vr(l) +

γσ2

2
E(l)2

(
c1−αlα

)2−2γ
vr(l)

0 = −c− ρ(c1−αlα)1−γvr(l) + (2− 2γ)
γσ2

2
E(l)2

(
c1−αlα

)2−2γ
vr(l).

Equating the two expressions for c and dividing by vr(l) gives a quadratic in x := (c1−αlα)1−γ

ρ(1− x) + (2− 2γ)
γσ2

2
E(l)2x2 =

ρ(1− x)

1− γ
+
γσ2

2
E(l)2x2

which simplifies to the claimed quadratic. Using the fact that ct = cutθt = czt for zt is defined in

Appendix A.2, the expression (27) and the defining quadratic for x then give

ρvr(l) = −c+ ρ

(
1− x
1− γ

)
vr(l) +

γσ2

2
E(l)2x2vr(l) = −c+ µc(l)vr(l)

which rearranges to give vr(l). Finally, note that vr(l) solves ρv = T (v), where

T (v) = max
c≥0

−c+ ρ

(
(c1−αlα)1−γ − 1

γ − 1

)
v +

γσ2

2
E(l)2

(
c1−αlα

)2−2γ
v.

Since γ, γ > 1, T is increasing in l whenever v is negative since it is the pointwise maxima of

increasing functions. The fixed-point will then be increasing in l provided the right-hand side is

convex in v, which is true as it is the pointwise maxima of affine functions.

The case of logarithmic utility corresponds to γ = 1 and so the expressions in Propostion 2.3 are

not well-defined. In this case we define V (U, θ) = v(u)θ as before but now set u = exp(U/(1−α))θ−1.

Lemma A.3. In the case of logarithmic utility the restricted-action value and policy functions are

vr(u; l) =
1l<1

ρ− µθ(l)
− 1

ρ
exp

(
σ2E(l)2/[2ρ]

)
l−

α
1−αu

cr(u; l) = exp
(
σ2E(l)2/[2ρ]

)
l−

α
1−αu.

(34)

Proof. Using Proposition A.2, substituting the form vr ≡ vr(l)u+ vr(l) and equating the linear and

constant parts gives vr(l) = 1/(ρ− µθ(l)) and vr(l) solves

ρvr(l) = max
c≥0

−c+ ρ

(
− ln c− α ln l

1− α

)
vr(l) +

σ2

2
E(l)2vr(l).
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The first-order condition gives c = ρ[−vr(l)], and the above becomes ln(−ρvr(l)) = −α(1−α)−1 ln l+

σ2E(l)2/[2ρ], which rearranges as claimed.

B Stationary distribution proofs

B.1 Planner preferences

Defining Ω′ := R × Θ × {E,W}, aggregate consumption, output and aggregate labor assigned to

entrepreneurs at any date t ≥ 0 are then,

Ct := e−ρDtCt + ρD

∫ t

0

e−ρD(t−T )CTt dT

Ct :=

∫
Ω′

E[cv,θ,it ]Φ(dω), CTt :=
∑

i=E,W

ηiE[cT,it ]

Yt := e−ρDtY t + ρD

∫ t

0

e−ρD(t−T )Y Tt dT

Y t :=

∫
Ω′

E[F (θv,θ,it , Lv,θ,it )]Φ(dω), Y Tt := ηEE[F (θT,Et , LT,Et )]

Lt := e−ρDtLt + ρD

∫ t

0

e−ρD(t−T )LTt dT

Lt :=

∫
Ω

E[Lv,θ,Et ]Φ(dω), LTt = ηEE[LT,Et ].

Since the planner only weights workers, the flow utility at date t is

Ut := e−ρDtU t + ρD

∫ t

0

e−ρD(t−T )UTt dT

U t :=

∫
Ω′

E[u(cv,θ,it , lv,θ,it )]Φ(dω), UTt := (1− ηE)E[u(cT,Wt , lT,Wt )]

Lemma B.1. The preferences of the planner are represented by the function
∫∞

0
e−ρStUtdt.

Proof. Proceeding from first principles, the objective of the planner is

UP =

∫
Ω′

E
[∫ ∞

0

e−ρtu(cv,θ,it , lv,θ,it )dt

]
Φ(dω)

+ ρD

∫ ∞
0

e−ρST (1− ηE)E
[∫ ∞

T

e−ρ(t−T )u(cT,Wt , lT,Wt )dt

]
dT

=

∫ ∞
0

e−ρSt
∫

Ω′
e−ρDtE[u(cv,θ,it , lv,θ,it )]dtΦ(dω)dt

+ ρD(1− ηE)

∫ ∞
0

e−ρSt
∫ t

0

e−ρD(t−T )E[u(cT,Wt , lT,Wt )]dTdt

where I used e−ρST e−ρ(t−T ) = e−ρSte−ρD(t−T ), which gives the result upon simplification.
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B.2 Reduction to principal-agent problem

The Lagrangian associated with the relaxed planner’s problem is

L =

∫ ∞
0

e−ρSt
(
Ut + λR

[
Yt − Ct + λL(L− Lt)

])
dt.

Using the above expressions we may then expand this as

L = λRλLL+

∫ ∞
0

e−ρt(U t + λR[Y t − λLLt − Ct])dt

+ ρD

∫ ∞
0

e−ρST
∫ ∞
T

e−ρ(t−T )
(
UTt + λR

[
Y Tt − λLLTt − CTt

])
dtdT

where I again used e−ρST e−ρ(t−T ) = e−ρSte−ρD(t−T ) and interchanged the order of integration. For

a given multiplier the task of the planner choosing quantities for agents born at date T is

max
AICT

∫ ∞
0

e−ρt(UTt + λR[Y Tt − λLLTt − CTt ])dt.

Since the planner weights only workers, he is forced to provide all agents with a common utility level.

For entrepreneurs the problem becomes maxU U + λRV (U,Z(λL)), where V is the value function

of the principal in Section 2. The problem of the planner facing a given generation is therefore

V Gλ = max
UE ,UW<0
UE≥UW

ηE
(
UE + λRZ(λL)V (UEZ(λL)γ−1, 1)

)
+ (1− ηE)

(
UW − λR[(1− γ)UW ]

1
1−γ

)
= max

y≥0
Z(λL)1−γ y

1−γ

1− γ
+ λRZ(λL)[ηEv(y)− (1− ηE)y].

The task of the planner is to therefore pick a value of y := [(1− γ)U ]
1

1−γ /Z(λL) and to then follow

the recommendations of the principal with normalized utility given by y.

B.3 Kolmogorov forward equation for joint law

The Kolmogorov forward equation gives the evolution of the joint density of utility and productivity.

The homogeneity of the policy functions and the exponential growth of productivity ensure that we

need only solve for the density of a single variable, referred to as the summary measure.12

Proof of Lemma 3.2. The process (θt, ut)t≥0 is a diffusion process driven by the same Brownian

12I owe the following observation to a discussion with Hengjie Ai.
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motion and so away from (θ0, u0) the joint density satisfies the Kolmogorov forward equation

∂

∂t
[Φ(θ, u, t)] = −ρDΦ(θ, u, t)− µθ(u)

∂

∂θ
[θΦ(θ, u, t)]− ∂

∂u
[µu(u)Φ(θ, u, t)]

+
σθ(u)2

2

∂2

∂θ2
[θ2Φ(θ, u, t)] +

∂2

∂θ∂u
[θσθ(u)σu(u)Φ(θ, u, t)] +

1

2

∂2

∂u2
[σ2
u(u)Φ(θ, u, t)].

First note that the stationary distribution Φ satisfies limθ→∞ θΦ(θ, u) = 0 for all u, since we have

assumed that ρD > µθ(l) for all l ∈ [l, 1]. For any smooth f vanishing at zero and satisfying

limθ→∞ θf(θ) = 0, integration by parts gives
∫∞

0
θf ′(θ)dθ = [θf(θ)]∞θ=0−

∫∞
0
f(θ)dθ = −

∫∞
0
f(θ)dθ

and
∫∞

0
θf ′′(θ)dθ = −

∫∞
0
f ′(θ)dθ = 0. Recalling the definition m(u, t) :=

∫∞
0
θΦ(θ, u, t)dθ and

interchanging orders of integration, it follows that for all (u, t) we have the following simplifications

µθ(u)

∫ ∞
0

θ
∂

∂θ
[θΦ(θ, u, t)]dθ = −µθ(u)m(u, t)

−
∫ ∞

0

θ
∂

∂u
[µu(u)Φ(θ, u, t)]dθ = − ∂

∂u
[µu(u)m(u, t)]

σ2
θ(u)

2

∫ ∞
0

θ
∂2

∂θ2
[θ2Φ(θ, u, t)]dθ = 0∫ ∞

0

θ
∂2

∂θ∂u
[θσu(u)Φ(θ, u, t)]dθ = − ∂

∂u
[σu(u)m(u, t)]∫ ∞

0

θ
∂2

∂u2
[σ2
u(u)Φ(θ, u, t)]dθ =

∂2

∂u2
[σ2
u(u)m(u, t)].

Interchanging the order of integration, the multi-dimensional forward equation implies

∂

∂t

∫ ∞
0

θΦ(θ, u, t)dθ = −ρD
∫ ∞

0

θΦ(θ, u, t)dθ − µθ(u)

∫ ∞
0

θ
∂

∂θ
[θΦ(θ, u, t)]dθ

− ∂

∂u

∫ ∞
0

θµu(u)Φ(θ, u, t)dθ +
σθ(u)2

2

∫ ∞
0

θ
∂2

∂θ2
[θ2Φ(θ, u, t)]dθ

+ σθ(u)

∫ ∞
0

θ
∂2

∂θ∂u
[θσu(u)Φ(θ, u, t)]dθ +

1

2

∫ ∞
0

θ
∂2

∂u2
[σu(u)2Φ(θ, u, t)]dθ

which is equivalent to

∂m

∂t
= −(ρD − µθ(u))m(u, t)− ∂

∂u
[(µu(u) + σθ(u)σu(u))m(u, t)] +

1

2

∂2

∂u2
[σ2
u(u)m(u, t)].

Setting the partial derivative with respect to time to zero then gives (11).

B.4 Restricted-action distributions

For convenience the following recalls a well-known fact regarding killed diffusion processes.

Lemma B.2. The stationary distribution of a stochastic process that dies at rate δX , is injected at

some X > 0, and otherwise evolves according to dXt = µXXtdt+ σXXtdZt, is given by

f(x) = Ax
α+
X−1
X 1x≤X +Bxα

−
X−11x>X
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where α±X = µX/σ
2
X ±

√
(µX/σX)2 + 2δX/σ2

X , the constants A and B are chosen such that the

density is continuous and integrates to unity, and µX = µX − σ2
X/2 for brevity.

Proof of Proposition 3.6. The proof proceeds by combining Lemma B.2 with the policy functions

for consumption given in Proposition 2.3. From (27) we have dct = µcctdt+ σcctdZt, where

µc =
ρ(1− x)

1− γ
+
γσ2

2
E(l)2x2 σc = σE(l)x

where (γ − 1)(γ − 1/2)σ2E(l)2x2 = ρ(1− x). Using the defining equation for x(l) we then have

µc =
ρ(1− x)

1− γ
+
γσ2

2
E(l)2x2 = (1− γ)

σ2

2
E(l)2x2.

Consequently, µc − σ2
c/2 = −γσ2E(l)2x2/2. Using Lemma B.2 the tails are then

α±c = µX/σ
2
X ±

√
(µX/σ

2
X)

2
+ 2δX/σ2

X = −γ
2
±

√
γ2

4
+

2ρD
σ2E(l)2x2

which simplifies as claimed using the defining quadratic for x.

C Implementation

C.1 Discrete-time analogue

The continuous-time agent problem is the limit of discrete-time environments of the following form:

• At t the agent has wealth at. She places bt in a risk-free bond earning after-tax return

(1− τs)(r + ρD) and uses the remaining ιt := at − bt to purchase shares at price pt.

• At t+∆ shareholders receive after-tax dividends ∆(1−τd)Zθt from the firm’s output produced

over [t, t+ ∆]. By t+ ∆ productivity has grown to Zθt+∆ and the price is pt+∆.

• Wealth at t+ ∆ is holdings of bonds and stocks, plus flow dividends minus consumption,

at+∆ = savings + interest− consumption + dividends + stocks + capital gains

= bt + (1− τs)(r + ρD)∆bt −∆ct + ∆(1− τd)Zθtxt + ptxt + (1− τcg)(pt+∆ − pt)xt

= at + ∆
[
(1− τs)(r + ρD)at − ct + [(1− τd)Zθt/pt − (1− τs)(r + ρD)]ιt

]
+ (pt+∆/pt − 1)(1− τcg)ιt.

(35)
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The approximate law of motion for the price is pt+∆/pt − 1 = µθ(l)∆ + σ
√

∆dX where dX is mean

zero i.i.d. across time and assumes values ±1. Substituting into (35) and taking limits as ∆→ 0

dat =
[
(1− τs)(r + ρD)at − ct +

(
(1− τd)Zθt/pt + (1− τcg)µθ(lt)− (1− τs)(r + ρD)

)
ιt
]
dt

+ σ(1− τcg)ιtdZt.

If l̂(u) ≡ l̂ then pt = (1− τd)Zθt/[r + ρD − µθ(l̂)], and so

dat =
[
(1− τs)(r + ρD)at − ct +

(
τs(r + ρD) + (1− τcg)µθ(lt)− µθ(l̂)

)
ιt

]
dt+ σ(1− τcg)ιtdZt

which is exactly the expression implied by (17) and (18).

C.2 Agent problems

Proof of Lemma 4.1. When the agent faces constant taxes and expectations of constant effort l̂,

their value function solves the Hamilton-Jacobi-Bellman equation

ρV (a) = max
c,l,ι

ρ
((ca)1−αlα)1−γ

1− γ
+ [−τa − c+ (1− τs)(r + ρD)]aV ′(a)

+
[
(1− τcg)µθ(l)− µθ(l̂) + τs(r + ρD)

]
ιaV ′(a) +

σ2a2

2
ι2(1− τcg)2V ′′(a).

(36)

We now assume a solution to this equation of the form V (a) = V (l̂)a1−γ/(1− γ) for some V (l̂), so

that aV ′(a) = (1− α)V (l̂)a1−γ and a2V ′′(a) = −γ(1− α)V (l̂)a1−γ . Substitution gives

ρV (l̂)

1− γ
= max

c,l,ι

ρ(c1−αlα)1−γ

1− γ
+ [−τa − c+ (1− τs)(r + ρD)](1− α)V (l̂)

+

([
(1− τcg)µθ(l)− µθ(l̂) + τs(r + ρD)

]
ι− γσ2

2
(1− τcg)2ι2

)
(1− α)V (l̂).

First-order conditions for consumption, leisure and investment are then

(c1−αlα)1−γ =
c

ρ
V (l̂)

(c1−αlα)1−γ =
l

ρα
(µ0 − µ1)(1− α)(1− τcg)ιV (l̂) =

1

E(l)
(1− τcg)ιV (l̂)

ι =
(1− τcg)µθ(l)− µθ(l̂) + τs(r + ρD)

γσ2(1− τcg)2
.

Substituting the third into the second gives

c

ρ
=

(c1−αlα)1−γ

V (l̂)
=

(1− τcg)µθ(l)− µθ(l̂) + τs(r + ρD)

E(l)γσ2(1− τcg)
. (37)
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Substituting into the Hamilton-Jacobi-Bellman equation and dividing by V (l̂)/(1− γ) gives

ρ =
ρ(c1−αlα)1−γ

V (l̂)
+

(
(1− τs)(r + ρD)− τa − c+

((1− τcg)µθ(l)− µθ(l̂) + τs(r + ρD))2

2γσ2(1− τcg)2

)
(1− γ).

We then have V (l̂) = ρ(c1−αlα)1−γ/c, where c and l solve (37) and

ρ = γc+

(
(1− τs)(r + ρD)− τa +

((1− τcg)µθ(l)− µθ(l̂) + τs(r + ρD))2

2γσ2(1− τcg)2

)
(1− γ)

as desired.

C.3 Efficient policy functions and utility

In this section we determine the policy functions and value functions when taxes on capital income

and wealth are given by Proposition 4.2.

Lemma C.1. The utility in consumption units in the restricted-action case with optimally chosen

linear taxes is V
1

1−γ a = ρx(l)−
γ

1−γ l
α

1−α a, the policy function for consumption is c(a) = ρx(l)a, and

the policy function for investment is ι =
(
1 + γσ2E(l)x(l)/(ρ− µθ(l))

)
E(l)x(l).

Proof. If l = l̂ and τs = τcg = τk is given in Proposition 4.2 then (19) becomes

c

ρ
=

τk(ρ− µθ(l∗r ))

E(l∗r )γσ2(1− τk)
=

σa
E(l∗r )σ

= x(l∗r ) (38)

which gives the consumption function, and the expression for utility then follows from this and

V = (c1−αlα)1−γ [ρ/c]. Finally, using Proposition 4.2 once more implies

1

1− τk
=
ρ− µθ(l) + γσ2E(l∗r )x(l)

ρ− µθ(l)
.

Substituting into (20) then gives

ι =
τk(ρ− µθ(l))
(1− τk)2σ2γ

=
(ρ− µθ(l) + γσ2E(l)x(l))

(ρ− µθ(l))
(ρ− µθ(l))

σ2γ

γσ2E(l)x(l)

(ρ− µθ(l))

which simplifies as claimed.

C.4 Equilibrium characterization

To complete the characterization described in Proposition 4.2, in this section I specify the transfers

to workers, tax on dividends and level of outstanding government debt necessary to implement the
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optimal restricted-action allocation. Lemma C.1 shows that for the taxes given in Proposition 4.2

utility is V
1

1−γ a = ρx(l)−
γ

1−γ l
α

1−α a. For the market-clearing wage we have

Z = (1− β)Z

(
ρDηE

ρD − µθ(l)

)−β
L
β

=
(ρD − µθ(l))

ηEρD
(1− β)Y. (39)

The utility that agents obtain is then a solution to

Y = Z

(
ρDηE

ρD − µθ(l)

)1−β

L
β

=

(
ρDηEcr(l)

ρD − µc(l)
+ 1− ηE

)
[(1− γ)U ]

1
1−γ =: κ(l)[(1− γ)U ]

1
1−γ .

The right-hand side of the above is the sum of worker consumption and entrepreneur consumption

when the latter begins at cr(l)[(1−γ)U ]
1

1−γ and grows at µc. Steady-state utility is [(1−γ)U ]
1

1−γ =

Y/κ(l) and so by Lemma C.1 the initial wealth of entrepreneurs must be

aE =
u

ρ
x(l)

γ
1−γ l−

α
1−α =

Y x(l)
γ

1−γ l−
α

1−α

ρκ(l)
.

Further, we have by definition cr(l) = x(l)
1

1−γ l−
α

1−α . Consequently, we can write

κ(l) =
ρDηEx(l)

1
1−γ l−

α
1−α

ρD − (1− γ)σ2E(l)2x(l)2/2
+ 1− ηE . (40)

To obtain utility Y/κ(l) workers require (Y/ρ)κ(l)−1 units of wealth. They obtain βY/ρ from their la-

bor income, and so the value of transfers must be T = (Y/ρ)(1/κ(l)−β). Since the entrepreneurs also

earn wage income the after-tax value of their firm at birth must equal (Y/ρ)
(
x(l)

γ
1−γ l−

α
1−α /κ(l)− β

)
.

The value of the firm is (1− τd)Z/(ρ− µθ(l)), and so using (39) the tax on dividends is

(1− τd)(ρD − µθ(l))
(ρ− µθ(l))ηEρD

(1− β)Y =
Y

ρ

(
x(l)

γ
1−γ l−

α
1−α

κ(l)
− β

)

τd = 1− ρD(ρ− µθ(l))
ρ(ρD − µθ(l))

(
x(l)

γ
1−γ l−

α
1−α − κ(l)

κ(l)(1− β)
+ 1

)
ηE .

The revenue from the dividends tax minus the flow transfers as a fraction of GDP is then

τd(1− β)− ρD(1− ηE)
T

Y
= 1− β − ρD(ρ− µθ(l))

ρ(ρD − µθ(l))

(
x(l)

γ
1−γ l−

α
1−α

κ(l)
− β

)
ηE

− ρD
ρ

(1− ηE)

(
1

κ(l)
− β

)
.

The interest payments paid by the government as a fraction of profits (1− β)Y must then be

1− ρD
ρ

[
(ρ− µθ(l))

(ρD − µθ(l))

(
x(l)

γ
1−γ l−

α
1−α − κ(l)

κ(l)(1− β)
+ 1

)
ηE + (1− ηE)

(
1/κ(l)− β

1− β

)]
. (41)

It is instructive to examine the above when there are no agency frictions or disutility of labor. All

workers are given Y (1− β)/ρ, the discounted value of profits, and the tax on dividends is

τd = 1− ρD(ρ− µθ(l))
ρ(ρD − µθ(l))

ηE = 1− ηE − (ρ− ρD)
µθ(l))

ρ(ρD − µθ(l))
ηE .
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The debt held by the government (i.e. the negative of the amount issued) as a fraction of profits is

1

ρ− ρD

(
1− ρD

ρ

[
(ρ− µθ(l))

(ρD − µθ(l))
ηE + 1− ηE

])
= −1

ρ

(
1− ρDηE

ρD − µθ(l)

)
In this case the value of each firm at birth is ηEZ/ρ = (1−β)Y/ρ, which coincides with the transfers

to workers, and ensures that all agents have the same wealth. To understand who holds the debt

in this economy, note that the agents and the government hold (1− β)(Y/ρ)ρDηE/(ρD − µθ(l)) and

so the mutual funds must hold the negative of this quantity. Since the mutual funds own all of the

firms in the economy, they earn all (after-tax) profits, and so after purchasing new firms with a flow

of ρDηE(1− β)Y/ρ government bonds their net revenues every instant are

(1− β)(1− τd)Y −
ρD
ρ
ηE(1− β)Y − Y

ρ

ρDηE
(ρD − µθ(l))

(1− β)(ρ− ρD)

= (1− β)
Y

ρ

[
ρ− ρD + (ρ− ρD)

µθ(l)

(ρD − µθ(l))
− ρD

(ρD − µθ(l))
(ρ− ρD)

]
ηE = 0

as expected. It is also instructive to determine the value of the dividend tax in the situation in

which β = 0 and there are no workers, to understand the role played by the dividends tax in the

decentralization. In this case we have

τd = 1− ρD(ρ− µθ(l))
ρ(ρD − µθ(l))

(
x(l)

γ
1−γ l−

α
1−α − κ(l)

κ(l)
+ 1

)
= 1− ρD(ρ− µθ(l))

ρ(ρD − µθ(l))

(
ρD − µc
ρD

)
.

In particular, in the absence of any discounting across generations we have ρD = ρ, and hence

τd = µc/ρ, and so by Corollary 4.3 the dividends tax takes the opposing sign of the taxes raised on

capital and wealth, and vanishes as agency frictions vanish.

D Numerical method

I will solve the Hamilton-Jacobi-Bellman equation in Proposition A.1 using the method of Kushner

and Dupuis (2001). The idea is to approximate the solution of the continuous-time continuous-state

control problem with a simpler discrete-time problem in which the state assumes only finitely-many

values. I refer the reader to Kushner and Dupuis (2001) for the theory justifying the approach and

only outline here the choice of approximating chains. Recall from (28) that ut := [(1− γ)Ut]
1

1−γ θ−1
t

evolves according to dut = µuutdt+ σuutdZt, where

µu = ρ

(
1− (c1−αlα)1−γ

1− γ

)
+ (γ − 1)

σ2

2
E(l)2(c1−αlα)2−2γ

+
1

2
(σE(l)(c1−αlα)1−γ − σθ(l))2 − µθ(l) +

σ2
θ(l)

2

σu = σE(l)(c1−αlα)1−γ − σθ(l)

(42)
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and c = cutθt. I will first exploit the homogeneity of the problem in order to simplify the numerical

analysis. Denote the value function of the principal in terms of normalized utility and output by

V (u, θ), and note that it solves the Hamilton-Jacobi-Bellman equation

ρV = max
c≥0
l∈[l,1]

θ1l<1 − cuθ + µuuV 1 +
σ2
uu

2

2
V 11 + µθθV 2 +

σ2
θθ

2

2
V 22 + σuuσθθV 12. (43)

Since V (u, θ) = v(u)θ for some v, we know that θV 12 = v′(u)θ = V 1, and so V also solves

ρV = max
c≥0
l∈[l,1]

θ1l<1 − cuθ + (µu + σuσθ)uV 1 +
σ2
uu

2

2
V 11 + µθθV 2 +

σ2
θθ

2

2
V 22. (44)

Solving (44) is more convenient than solving (43) because there are no cross partial derivatives that

complicate the construction of approximating chains. The solution to (44) is the value function

associated with a control problem with state variables (u, θ), payoff θ1l<1− cuθ, and law of motion

(dut, dθt) =
(

(µu + σuσθ)utdt+ σuutdZ
(1)
t , µθθtdt+ σθθtdZ

(2)
t

)
(45)

where Z(1)
t and Z

(2)
t are independent Brownian motions. We choose a grid Su = {u,∆u, . . . , u −

∆u, u} for ∆u := (u − u)/Nu for some Nu ≥ 1 and u sufficiently large that l = 1 is recommended

at u = u. Given (u, θ) ∈ Su × R+, we suppose that the subsequent values of the Markov chain lie

within the set {(u, θ), (u±∆u, θ), (u, (1±∆θ)θ)} for some ∆θ. If we write µu + σuσθ = µ̂1 − µ̂2

where µ̂1, µ̂2 ≥ 0, then the transition probabilities

p(u+ ∆u, θ) =
∆t

∆2
u

(
σ2
uu

2

2
+ ∆uµ̂1u

)
p(u−∆u, θ) =

∆t

∆2
u

(
σ2
uu

2

2
+ ∆uµ̂2u

)
p(u, (1±∆θ)θ) =

∆t

∆2
θ

(
σ2
θ

2
+ ∆θµ

±
θ

) (46)

define a locally consistent Markov chain if ∆t is sufficiently small. Writing x(c, l) = (c1−αlα)1−γ for

brevity, the expressions in (42) imply

µu + σuσθ = ρ

(
1− x(c, l)

1− γ

)
+ (γ − 1)

σ2

2
E(l)2x(c, l)2 +

1

2
(σE(l)x(c, l)− σθ(l))2

− µθ(l) +
σθ(l)

2

2
+ σ2E(l)x(c, l)− σθ(l)2

=
ρ

γ − 1
(x(c, l)− 1)− µθ(l) + γ

σ2

2
E(l)2x(c, l)2.

Since γ > 1, we can take

µ̂1 =
ρ

γ − 1
x(c, l) +

γσ2

2
E(l)2x(c, l)2 µ̂2 =

ρ

γ − 1
+ µθ(l).

54



The discrete-time, discrete-state Bellman equation is then

v(u) = max
c≥0,l∈[l,1]

∆t(1l<1 − cu) + e−ρ∆tv(u)

+ e−ρ∆tp(u, (1 + ∆θ)θ)[(1 + ∆θ)v(u)− v(u)]

+ e−ρ∆tp(u, (1−∆θ)θ)[(1−∆θ)v(u)− v(u)]

+ e−ρ∆t(p(u+ ∆u, θ)(v(u+ ∆u)− v(u)) + p(u−∆u, θ)(v(u−∆u)− v(u))).

Substituting the above expressions, dividing by ∆t and simplifying gives

0 = − 1

∆t
(1− e−ρ∆t)v(u) + max

c≥0,l∈[l,1]
1l<1 − cu+ e−ρ∆tµθv(u)

+ e−ρ∆t
(
µ̂1uv

F − µ̂2uv
B + σ2

uu
2vC2/2

) (47)

where I wrote vC2 = (v(u − ∆u) − 2v(u) + v(u + ∆u))/∆2
u, vF = (v(u + ∆u) − v(u))/∆u and

vB = (v(u) − v(u − ∆u))/∆u, for second central, forward and backward differences, respectively.

Taking the limit ∆t → 0 we write (47) as 0 = maxc≥0,l∈[l,1] 1l<1 − cu+ Tv, where T is an Nu ×Nu
matrix with coefficients of the main diagonals given by

v(u+ ∆u) :
µ̂1u

∆u
+
σ2
uu

2

2∆2
u

v(u) : −ρ+ µθ −
1

∆u
(µ̂1 + µ̂2)u− σ2

uu
2

∆2
u

v(u−∆u) :
µ̂2u

∆u
+
σ2
uu

2

2∆2
u

(48)

and the maximand becomes M = 1l<1 − cu+ µθv + µ̂1uv
F − µ̂2uv

B + σ2
uu

2vC2/2.

We must treat the case of logarithmic utility separately. Recall that in this we define normalized

utility to be ut = exp(U/(1− α))θ−1. Appendix A.2 shows that dut/ut = µudt+ σudZt, where

µu = −ρ ln ct −
ρα

1− α
ln lt − µθ(lt) +

σ2

2
(E(lt)− 1lt<1)2 +

σ2

2
1lt<1

σu = σ(E(lt)− 1lt<1)

(49)

and c = cutθt. The above homogeneity observation continues to hold and it suffices to solve a control

problem with state variables (u, θ), flow payoff θ1l<1 − cuθ, and law of motion

(dut, dθt) =
(

(µu + σuσθ)utdt+ σuutdZ
(1)
t , µθθtdt+ σθθtdZ

(2)
t

)
(50)

where Z(1)
t and Z

(2)
t are independent Brownian motions, and we again choose a rectangular grid

for (u, θ) and probabilities according to (46), for some µ̂1, µ̂2 ≥ 0 with µu + σuσθ = µ̂1 − µ̂2. The

expressions in (42) imply

µu + σuσθ = −ρ ln ct −
ρα

1− α
ln lt − µθ(lt) +

σ2

2
E(lt)

2.

55



It will be convenient to write ct = c∗t ν for some ν ≤ 1 chosen such that c∗t > 1 everywhere, so that

µ̂1 = −ρ ln ν − ρα

1− α
ln lt +

σ2

2
E(lt)

2 µ̂2 = ρ ln(ct/ν) + µθ(lt).

are non-negative. In practice I fix ν and check ex-post that µ̂1, µ̂2 ≥ 0. Simplifying the discrete-time,

discrete-state Bellman equation and taking the limit ∆t → 0 once again gives 0 = maxc≥0,l∈[l,1] 1l<1−

cu + Tv, where T is an Nu × Nu matrix with coefficients of the main diagonals given by (48) and

the maximand becomes M = 1l<1 − cu+ µθv + µ̂1uv
F − µ̂2uv

B + σ2
uu

2vC2/2. The maximization is

then equivalent to

1l<1 − cu+ µθ(l)[v − uvB ] +

(
− ρα

1− α
ln l +

σ2

2
E(l)2

)
uvF − ρ ln cuvB +

σ2

2
(E(l)− 1l<1)2u2vC2.
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