
Corrigendum to: Large Bayesian Vector Autoregressions with

Stochastic Volatility and Non-Conjugate Priors∗

Andrea Carriero† Joshua Chan‡ Todd E. Clark§ Massimiliano Marcellino¶

November 2021

Abstract

The original algorithm contained a mistake that meant the conditional distributions

used for the VAR’s coe�cients were missing a piece of information. We propose a new

algorithm that uses the same factorization but includes the missing term. The new,

correct algorithm has the same computational complexity as the old, incorrect one (i.e.,

O(N
4
)), and therefore it still allows the estimation of large VARs.

J.E.L. classifications: C11, C13, C33, C53

Keywords : Big data, forecasting, structural VAR

1 The problem

Consider an N -variable vector autoregression with stochastic volatility

yt = ⇧
0
xt +A

�1
⇤
0.5
t ✏t, (1)

where t = 1, ..., T , yt is an N -dimensional vector, p denotes the lag order, xt is a k =

Np + 1 vector containing the lags of yt and an intercept, ⇧ = (⇧0,⇧1, ...,⇧p)
0
is a k ⇥ N

matrix of coe�cients, A
�1

is a lower triangular matrix with ones on its main diagonal, ⇤t is

∗The views expressed herein are solely those of the authors and do not necessarily reflect the views of the

Federal Reserve Bank of Cleveland or the Federal Reserve System.
†Queen Mary University of London: School of Economics and Finance, Mile End Road E1 4NS, London,

United Kingdom; a.carriero@qmul.ac.uk
‡Purdue University: Department of Economics, 100 Grant St., West Lafayette, IN 47907, United States;

joshuacc.chan@gmail.com
§(Corresponding author) Federal Reserve Bank of Cleveland: Economic Research Department, P.O. Box

6387, Cleveland, OH 44101, United States; todd.clark@researchfed.org
¶Bocconi University, IGIER, and CEPR: Department of Economics, Via Roentgen 1, 20136, Milano, Italy;

massimiliano.marcellino@unibocconi.it

1

DOI: 10.26509/frbc-wp-201617corrigendum

https://doi.org/10.26509/frbc-wp-201617
https://doi.org/10.26509/frbc-wp-201617

a diagonal matrix with generic j-th element �j,t, and ✏t ⇠ iid N(0, IN). The reduced-form

error covariance matrix is ⌃t = A
�1

⇤tA
�10

. Below we will also make use of the lower-

triangular Cholesky factor of ⌃t, with elements �
⇤
j,i,t. In this note, although we focus on the

model with stochastic volatility, the basic results also apply to a homoskedastic version of

the model with non-conjugate priors.

The algorithm used in Carriero, Clark, and Marcellino (2019) aimed to simulate the

conditional joint posterior distribution of the VAR autoregressive coe�cients ⇧:

vec(⇧)|y,⌃T ⇠ N(µ̄⇧,⌦⇧), (2)

where ⌃T contains the entire history of the error variance matrix ⌃t and y contains the

entire history of the observables yt. The algorithm intended to do so by using the following

factorization of the joint distribution:

p(⇧ | y,⌃T) = p(⇡
(1)

| y,⌃T)

⇥p(⇡
(2)

|⇡
(1)

, y,⌃T)

.

.

.

⇥p(⇡
(N)

|⇡
(N�1)

, . . . ,⇡
(1)

, y,⌃T), (3)

with generic element

p(⇡
(j)

|⇡
(j�1)

, . . . ,⇡
(1)

, y,⌃T), (4)

where ⇡
(j)

denotes the vector of coe�cients for equation j, appearing in the j-th column of

the matrix

⇧=

h
⇡
(1) .

.

. ⇡
(j�1)

⇡
(j)

⇡
(j+1) .

.

. ⇡
(N)

i
.

This triangular factorization breaks down the joint distribution into a sequence of dis-

tributions of the generic coe�cients ⇡
(j)

, i.e., the coe�cients appearing in the j-th equation

of the VAR. Therefore, an algorithm drawing in sequence from the distribution at the top

of expression (3) and proceeding step by step toward the last distribution at the bottom

will obtain the desired joint distribution.

In the paper, this strategy was pursued by drawing ⇡
(j)

from a Gaussian distribution

with mean µ̄⇧{j} = ⌦⇧{j}

n
⌦
�1
⇧{j}µ⇧{j} +

PT
t=1 xt�

⇤�2
j,j,ty

⇤
j,t

o
and variance ⌦

�1
⇧{j} = ⌦

�1
⇧{j} +

PT
t=1 xt�

⇤�2
j,j,tx

0
t, where µ

⇧{j} and ⌦
�1
⇧{j} denote, respectively, the prior mean and prior vari-

ance of ⇡
(j)

, and y
⇤
j,t = yj,t � (�

⇤
j,1,t✏1,t + · · · + �

⇤
j,j�1,t✏j�1,t).

1
However, this distribution

1In the published version of the paper, the inverse error variance �⇤�2
j,j,t was erroneously written as �⇤�1

j,j,t.

The code and application results did not reflect this typo.

2

does not have p.d.f. (4), a fact pointed out in Bognanni (2021). Instead, the distribution

used has p.d.f.

p(⇡
(j)

|⇡
(j�1)

, . . . ,⇡
(1)

, y
(1)

, ..., y
(j�1)

, x,⌃T), (5)

where y
(j)

denotes the time series of the j-th variable and x contains the entire history of

the variables xt that appear on the right-hand side of each equation of the VAR. Therefore,

the distribution generated by the algorithm described in the paper is:

p(⇡
(1)

| y
(1)

, x,⌃T)

⇥p(⇡
(2)

|⇡
(1)

, y
(1)

, y
(2)

, x,⌃T)

.

.

.

⇥p(⇡
(N)

|⇡
(N�1)

, . . . ,⇡
(1)

, y
(1)

, y
(2)

, ..., y
(N)

, x,⌃T), (6)

and not (3).

The di↵erence between (3) and (6) lies in the conditioning sets for the j-th equation

coe�cients ⇡
(j)

, which in (3) includes all the dependent variables (y
(1)

, y
(2)

..., y
(N)

), but in

(6) includes the dependent variables only up to equation j (y
(1)

, y
(2)

..., y
(j)

). This di↵erence

implies that a term goes missing, involving the information about ⇡
(j)

contained in the most

recent observations of the dependent variables of equations j + 1, ..., N . To see this more

clearly, consider the simplest case N = 2 with the following triangular system:

y1,t = x
0
t⇡

(1)
+ �

⇤
1,1,t✏1,t

y2,t = x
0
t⇡

(2)
+ �

⇤
2,1,t✏1,t + �

⇤
2,2,t✏2,t.

The likelihood is p(y |⇡, x,⌃T) / p(✏2| ✏1)p(✏1) / p(y
(1)

|⇡
(1)

, x,⌃T)p(y
(2)

| y
(1)

,⇡
(1)

,⇡
(2)

, x,⌃T),

where ✏j denotes the entire time series of the j-th disturbance. Assuming an independent

prior p(⇡
(1)

,⇡
(2)

) = p(⇡
(1)

)p(⇡
(2)

), the joint posterior distribution of (⇡
(1)

,⇡
(2)

) is:

p(⇡
(1)

,⇡
(2)

|y,x,⌃T)

/ p(y
(1)

|⇡
(1)

, x,⌃T)p(⇡
(1)

)⇥ p(y
(2)

| y
(1)

,⇡
(1)

,⇡
(2)

, x,⌃T)p(⇡
(2)

)

= p(⇡
(1)

| y
(1)

, x,⌃T)p(y
(1)

|x,⌃T)⇥ p(⇡
(2)

| y
(1)

, y
(2)

,⇡
(1)

, x,⌃T)p(y
(2)

| y
(1)

,⇡
(1)

, x,⌃T)

/ p(⇡
(1)

| y
(1)

, x,⌃T)p(y
(2)

| y
(1)

,⇡
(1)

, x,⌃T)⇥ p(⇡
(2)

| y
(1)

, y
(2)

,⇡
(1)

, x,⌃T) (7)

= p(⇡
(1)

|y
(1)

, y
(2)

, x,⌃T)p(y
(2)

|y
(1)

, x,⌃T)⇥ p(⇡
(2)

| y
(1)

, y
(2)

,⇡
(1)

, x,⌃T)

/ p(⇡
(1)

|y
(1)

, y
(2)

, x,⌃T)⇥ p(⇡
(2)

| y
(1)

, y
(2)

,⇡
(1)

, x,⌃T). (8)

Note that (8) coincides with expression (3), whereas (7) consists of expression (6) times the

underlined term p(y
(2)

| y
(1)

,⇡
(1)

, x,⌃T), which is therefore missed by the algorithm used in

3

the paper. The missing term contains information about ⇡
(1)

embedded in y
(2)

. Since all the

lagged values of all of the variables of the VAR (denoted x) are already in the conditioning

set, the extra information that gets lost is that contained in the contemporaneous values

y
(2)
t . This information must be included in order to obtain the target distribution via the

correct factorization (3).

2 The solution

The above derivations show one way forward to correct the paper’s original algorithm: We

could simply add back the missing terms. This is in principle doable, but for general N this

approach might get messy and has computational complexity O(N
5
). Instead, there is an

alternative approach that is cleaner and keeps the complexity at O(N
4
).

Consider again the factorization in (3), but this time rather than using it to produce

a single Monte Carlo draw from the joint posterior of ⇡, we use it to build a sequence of

Gibbs sampler draws from the conditional posteriors of ⇡
(j)

, for j = 1, ...N . Specifically,

one can sample from the joint distribution ⇧|y,⌃T by cycling through the full conditional

distributions

⇡
(j)

| y,⌃T ,⇡
(�j)

(9)

for j = 1, . . . , N , where ⇡
(j)

is the j-th column of the k ⇥ N matrix ⇧, i.e., the vector

of coe�cients appearing in equation j, and ⇡
(�j)

= (⇡
(1)0

, . . . ,⇡
(j�1)0

,⇡
(j+1)0

, . . . ,⇡
(N)0

)
0

collects all the coe�cients in the remaining equations.

Notice that — by virtue of the triangular factorization — at each iteration j, for updating

the value of the sampled ⇡
(j)

, we only need to use information associated with equations j

and higher. Indeed, the kernel of the p.d.f. of (9) can be built by multiplying the N � j +

1 densities appearing in the rows j, ..., N of the factorization in (3):

p(⇡
(j)

| y,⌃T ,⇡
(�j)

) / p(⇡
(j)

|⇡
(1)

, ...,⇡
(j�1)

, y,⌃T)

.

.

.

⇥p(⇡
(N)

|⇡
(N�1)

, . . . ,⇡
(1)

, y,⌃T). (10)

Cycling through (10) for j = 1, ..., N will deliver draws from the desired joint distribution.

This new algorithm is based on the same triangularization (3) for which the incorrect

one was conceived. But there are some key di↵erences: i) Rather than using a sequence of N

equations, it uses a sequence of N systems of N� j+1 equations; and ii) rather than jointly

drawing the VAR’s coe�cients ⇧ in a single Gibbs step, it blocks the VAR’s coe�cients

equation-by-equation, using N Gibbs steps. These features imply that the algorithm makes

4

a few more computations than the incorrect one, and that it produces more correlated draws,

which might slow down mixing. However, this new algorithm preserves the main feature

that made the original (but incorrect) algorithm so appealing: It has the computational

complexity of O(N
4
), which allows estimating and forecasting with very large VARs.

3 Practical implementation

To make this approach operational, consider the triangular representation of the system:

ỹt = Ayt = A⇧
0
xt + ⇤

0.5
t ✏t = A(x

0
t⇧)

0
+ ⇤

0.5
t ✏t, (11)

which can be expressed as the following system of equations:

ỹ1,t = x
0
t⇡

(1)
+ �

0.5
1,t ✏1,t

ỹ2,t = a2,1x
0
t⇡

(1)
+ x

0
t⇡

(2)
+ �

0.5
2,t ✏2,t

ỹ3,t = a3,1x
0
t⇡

(1)
+ a3,2x

0
t⇡

(2)
+ x

0
t⇡

(3)
+ �

0.5
3,t ✏3,t

.

.

.

ỹN,t = aN,1x
0
t⇡

(1)
+ · · ·+ aN,N�1x

0
t⇡

(N�1)
+ x

0
t⇡

(N)
+ �

0.5
N,t✏N,t, (12)

where ỹt = Ayt is a vector with generic j-th element ỹj,t = yj,t + aj,1y1,t + · · ·+ aj,j�1yj�1,t.

The recursive system (12) is a re-parameterization of the recursive system appearing

on page 142 of the paper, and it is observationally equivalent to it. It makes clear the

problematic feature that was hidden in the terms �
⇤
j,1,t✏1,t, · · · ,�

⇤
j,j�1,t✏j�1,t appearing in

the representation used in the paper: The coe�cients ⇡
(j)

of equation j influence not only

equation j, but also the following equations j + 1, ..., N , which is yet another way of seeing

that these equations have some extra information about ⇡
(j)

that the old algorithm missed.

Importantly though, it remains true that, when conditioning on ⌃T , equations 1, ..., j�1

have no information about the coe�cients of equation j. Indeed the kernel of the joint

posterior of ⇧ is:

p(⇧ | y, x,⌃T) / exp

0

BBBBB@
�
1

2

TX

t=1

8
>>>>><

>>>>>:

1
�1,t

(ỹ1,t � x
0
t⇡

(1)
)
2

+
1
�2t

(ỹ2,t � a2,1x
0
t⇡

(1)
� x

0
t⇡

(2)
)
2

.

.

.

+
1

�N,t
(ỹN,t � aN,1x

0
t⇡

(1)
� ...� aN,N�1x

0
t⇡

(N�1)
� x

0
t⇡

(N)
)
2

9
>>>>>=

>>>>>;

1

CCCCCA
p(⇧).

With coe�cient priors ⇡
(j)

⇠ N(µ
⇡(j) ,⌦⇡(j)), j = 1, ...N that are independent across equa-

tions,
2
the first j�1 elements in the quadratic term above do not contain ⇡

(j)
. It follows that

2The assumption of independence across equations covers most of the practical implementations of VARs.

5

the conditional posterior density p(⇡
(j)

| y,⌃T ,⇡
(�j)

) can be obtained as in (10), using the

subsystem composed of the last N � j+1 equations of (12). This density has a multivariate

normal distribution

(⇡
(j)

| y,⌃T ,⇡
(�j)

) ⇠ N (µ⇡(j) ,⌦⇡(j)), (13)

with

⌦
�1
⇡(j) = ⌦

�1
⇡(j) +

PN
i=j a

2
i,j

PT
t=1

1

�i,t
xtx

0
t (14)

µ⇡(j) = ⌦⇡(j)

✓
⌦
�1
⇡(j)µ⇡(j) +

PN
i=j ai,j

PT
t=1

1

�i,t
xtzi,t

◆
, (15)

where zj+l,t = ỹj+l,t �
Pj+l

i 6=j,i=1 aj+l,ix
0
t⇡

(i)
, for l = 0, ..., N � j, and ai,i = 1. The posterior

moments as expressed in equations (14) and (15) make clear that, in estimating equation j,

information is used from not only that equation but also equations j+1 through N . In some

software packages, computations may be fastest using sums of moments as in equations (14)

and (15).

In what follows we provide an alternative expression for the moments (14) and (15) that

works more e�ciently in the commonly used Matlab software package. Define

⇧
[j=0]

=

h
⇡
(1) .

.

. ⇡
(j�1)

0k⇥1 ⇡
(j+1) .

.

. ⇡
(N)

i

as the k⇥N matrix of coe�cients ⇧ , where in column j the coe�cient vector ⇡
(j)

has been

replaced by a 0k⇥1 vector. The equations of (12) involving ⇡
(j)

are:

A
(j:N,1:N)

(N�j+1)⇥N

✓
yt

N⇥1
�⇧

[j=0]0
xt

N⇥1

◆
= A

(j:N,j)

(N�j+1)⇥1
⇡
(j)0

1⇥k
xt
k⇥1

+ "
(j:N)
t

(N�j+1)⇥1

,

where "
(j:N)
t denotes the sub-vector of ⇤

0.5
t "t corresponding to variables j through N (here,

for simplicity, we subsume the volatilities into the innovation vector). Transposing and

stacking all of the equations for t = 1, ..., T yields:

(y �X⇧
[j=0]

)A
j:N,1:N) 0

= X⇡
(j)

A
(j:N,j) 0

+ "
(j:N)

,

where the matrices y, X, and "
(j:N)

have dimensions T ⇥ N , T ⇥ k, and T ⇥ (N � j + 1),

respectively. Vectorizing the system yields:

vec((y �X⇧
[j=0]

)A
(j:N,1:N)0

) = (A
(j:N,j)

⌦X)⇡
(j)

+ vec

⇣
"
(j:N)

⌘
.

If necessary, it could be relaxed while maintaining the same triangular structure. This would entail using the

properties of the multivariate normal to derive a triangular factorization for the prior in which ⇡(j) appears

only in equation j, ..., N . While this requires the inversion of large matrices, such inversions need to be

performed only once, outside the main MCMC algorithm, and therefore with not much computational cost.

6

Finally, we need to divide by the standard deviation of the errors. Since vec
�
"
(j:N)

�
⇠

N(0, IN�j+1 ⌦ ⇤1:T,j:N), we obtain:

Y
(j)

= X
(j)

⇡
(j)

+ u
(j)

, (16)

with

Y
(j)

T (N�j+1)⇥1
= vec((y �X⇧

[j=0]
)A

(j:N,1:N)0
)./vec(⇤

0.5
(1:T,j:N)) (17)

X
(j)

T (N�j+1)⇥k
= (A

(j:N,j)
⌦X)./vec(⇤

0.5
(1:T,j:N)), (18)

where u
(j)

⇠ N(0, IT (N�j+1)) and ./ is the Matlab element-by-element division opera-

tor. The model in (16) is a Gaussian linear regression model, and the likelihood moments

X
(j)0

X
(j)

and X
(j)0

Y
(j)

can be combined with the prior to obtain an equivalent expression

for the posterior moments appearing in (14) and (15):

⌦
�1
⇡(j) = (⌦

�1
⇡(j) +X

(j)0
X

(j)
) (19)

µ⇡(j) = ⌦⇡(j)(⌦
�1
⇡(j)µ⇡(j) +X

(j)0
Y

(j)
). (20)

4 Application results

In the interest of brevity, in this section we limit the presentation of results to those on

computational gains and mixing, computed using the monthly macroeconomic data set

used in Carriero, et al. (2019). (The data set consists of time series from the FRED-MD

data set, for the period January 1960 to December 2014, with 13 lags in each VAR.) A

supplemental online appendix provides a full set of updates of the results of the paper based

on the correct triangular algorithm, along with some additional results. These updated

results are not much di↵erent with respect to the ones presented in the paper.

Figure 1 illustrates the computational gains arising from the use of the triangular algo-

rithm. The top panel shows the computational time (on a 3.5 GHz Intel Core i7) needed to

perform 10 draws as a function of the size of the cross-section using the (correct) triangular

algorithm and the system-wide algorithm. The bottom panel compares the gain in theoret-

ical computational complexity (dashed line — which is equal to N
2
) with the actual gain in

computational time. Since the computational gains become so large that they create scaling

problems, results in this figure are displayed using a logarithmic vertical axis.

Compared to the same Figure 1 of the paper, two things have changed. First, the

performance of the system-wide algorithm (SWA) is much improved: It now takes 33 seconds

to make 10 draws from a model with N = 20, while before it took 255 seconds. This

7

improvement is due to our use of the Matlab function ./ (element-by-element division of

a matrix object) in computing the analogues of (17) and (18) used for the full system of

equations of the SWA, while before we were using a Kronecker product to perform the

same operation.
3
Second, the correct triangular algorithm (CTA) is slower than the earlier

incorrect triangular algorithm (TA). For example, for a system of N = 20 variables, the

correct algorithm takes about 3.25 times as long as the original triangular algorithm. This

increased computational cost to the CTA over the original TA comes from the fact that, at

each iteration j of the loop across equations, the CTA uses T ⇥ (N � j + 1) observations,

while the TA only used T .

However, the main pattern emerging from Figure 1 is still the same as in the paper: The

CTA is significantly faster than the SWA, with computational gains growing quadratically,

which of course reflects the fact that the SWA and CTA have computational complexity

O(N
6
) and O(N

4
), respectively. For the system of N = 20 variables used in the empirical

application of the paper (updated in the online appendix to this paper), the CTA is about

13 times faster than the SWA. For N = 40, it is about 43 times faster. Finally, note that

— in practice, although not documented in Figure 1 — as systems get larger, the CTA

becomes the only available option, because the SWA requires matrices of such a size that

the storage memory requirements quickly exceed the RAM of the typical desktop computer.

As we mentioned above, because the CTA uses conditional posteriors that block the

VAR’s coe�cients equation-by-equation, whereas the TA did not use such blocking and

instead treated the full set of coe�cients, the draws generated by the new algorithm are

more autocorrelated, which might slow down convergence and reduce mixing. Accordingly,

we have run some checks of convergence and mixing. Figure 2 compares the mixing of

the CTA algorithm with that of the SWA. The results in these figures are obtained by (1)

running the SWA for a total of 22,000 draws, discarding the first 2000 and retaining the

remaining 20,000 draws; and (2) running the CTA for the same amount of clock time as the

SWA, discarding the first 2000 draws, and then adjusting the skip-sampling of the CTA to

reduce the sample to 20,000 retained draws. Note that the scales on the horizontal axes of

the SWA (left) and CTA (right) columns di↵er substantially. These results show that the

ine�ciency factors obtained by running the two alternative algorithms for the same amount

of time are much lower for draws produced by the CTA than those produced by the SWA.

3To the best of our knowledge at the time, the Matlab function ./ required the combined use of the

function “repmat” for computing the element-by-element ratios in (17) and (18), which ended up being

slower than using a Kronecker division. Instead, in the current version of Matlab, the function ./ will fill out

columns of a matrix with the single element of a vector, allowing the element-by-element division of every

row of a matrix by a vector.

8

0 5 10 15 20 25 30 35 40

Size of the cross-section (N)

10-1

100

101

102

103

104

S
e
co

n
d

s

Time for producing 10 draws as a function of N

System-wide algorithm

Correct triangular algorithm

0 5 10 15 20 25 30 35 40

Size of the cross-section (N)

10-2

10-1

100

101

102

103

104

C
o

m
p

u
ta

tio
n

a
l t

im
e

,
N

u
m

b
e

r
o

f
e

le
m

e
n

ta
ry

 o
p

e
ra

tio
n

s

Gains in actual computational time and theoretical computational complexity

Actual difference

Theoretical difference

X 40

Y 27.3167

X 40

Y 1181.7396

X 20

Y 33.0975

X 20

Y 2.542

Figure 1: Actual computational time and theoretical computational complexity of the

system-wide and correct triangular algorithms. Note that due to the exponential nature

of the gains the y-axes are in logarithmic scale. Computational times are computed as the

average time (over 10 independent chains) required to make 10 draws on a 3.5 GHz Intel

Core i7.

9

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Conditional mean parameters, system-wide algorithm

-1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Conditional mean parameters, correct triangular algorithm

-10 0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Covariances, system-wide algorithm

-1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
Covariances, correct triangular algorithm

0 5 10 15 20 25 30
0

0.05

0.1

0.15
Volatility factors (averaged across time), system-wide algorithm

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

2.5
Volatility factors (averaged across time), correct triangular algorithm

-50 0 50 100 150 200 250 300 350
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
Volatility innovation variance, system-wide algorithm

-5 0 5 10 15 20 25 30 35

Algorithm 3 is Based on 280000 draws with skip of 14 effective sample of 20000

0

0.05

0.1

0.15

0.2
Volatility innovation variance, correct triangular algorithm

Figure 2: Comparison of ine�ciency factors (IF) between the system-wide and correct tri-

angular algorithm. Kernel estimates. Solid, dashed, and dotted lines refer to 4, 8, and

15 percent tapering, respectively. The densities in each sub-plot are computed across the

parameters within a given set (from top to bottom: conditional mean coe�cients, covari-

ances, states, and covariances of the states). The graphs on the left refer to the system-wide

algorithm, while the graphs on the right refer to the correct triangular algorithm.
10

The CTA with appropriate skip-sampling can produce in the same amount of time draws

many times closer to i.i.d. sampling. Instead, the SWA is slower to mix (in a unit of time).

5 Conclusions

We presented a new, correct algorithm that actually draws from the joint posterior distri-

bution that was intended. The new algorithm is based on the same triangularization (3)

for which the incorrect one was conceived, but rather than using a sequence of N equations

to obtain a joint draw of the VAR’s coe�cients in a single Gibbs step, it uses a sequence

of N Gibbs steps, each based on sub-systems of N � j + 1 equations. While in principle

these di↵erences can slow down the speed and reduce the mixing, the new algorithm is still

faster and mixes better (for a given amount of computation time) than the system-wide

alternative. More importantly, the new algorithm preserves the main feature that made

the original (but incorrect) algorithm so appealing: It has the computational complexity of

O(N
4
), which allows handling very large VARs. The empirical results presented in the paper

did not change appreciably after re-estimating the model using the correct algorithm. That

being said, in other applications, the algorithm correction could yield more of a di↵erence

in estimates.

Acknowledgments
We would like to thank editors Serena Ng and Elie Tamer for their guidance, Mark Bog-

nanni for identifying and bringing to our attention the problem with the original algorithm,

Elmar Mertens and Tommaso Tornese for many helpful discussions, and Marta Banbura,

a referee, and the associate editor for helpful suggestions. Matlab code for the correct tri-

angular algorithm (including data for an application) is available at https://didattica.

unibocconi.it/mypage/dwload.php?nomefile=Triangular_Example_new20210715105214.

zip.

References

[1] Bognanni, M. 2021. Comment on “Large Bayesian Vector Autoregressions with Stochas-

tic Volatility and Non-Conjugate Priors.” Journal of Econometrics, forthcoming. https:

//doi.org/10.1016/j.jeconom.2021.10.008

[2] Carriero A., Clark, T. and Marcellino, M. 2019. Large Bayesian Vector Autoregressions

with Stochastic Volatility and Non-Conjugate Priors. Journal of Econometrics 212(1),

137-154. https://doi.org/10.1016/j.jeconom.2019.04.024

11

https://didattica.unibocconi.it/mypage/dwload.php?nomefile=Triangular_Example_new20210715105214.zip
https://didattica.unibocconi.it/mypage/dwload.php?nomefile=Triangular_Example_new20210715105214.zip
https://didattica.unibocconi.it/mypage/dwload.php?nomefile=Triangular_Example_new20210715105214.zip
https://doi.org/10.1016/j.jeconom.2021.10.008
https://doi.org/10.1016/j.jeconom.2021.10.008
https://doi.org/10.1016/j.jeconom.2019.04.024

Appendix to “Corrigendum to: Large Bayesian Vector

Autoregressions with Stochastic Volatility and Non-Conjugate

Priors”

Andrea Carriero∗ Joshua Chan† Todd E. Clark‡ Massimiliano Marcellino§

November 2021

Abstract

This appendix provides additional application results, including figures from the

published paper updated to use the correct triangular algorithm and other results men-

tioned in the corrigendum. It also provides a correct algorithm that can be used for

triangular estimation of homoskedastic VARs.

1 Updates of results in the paper

The application results provided in this appendix are the same as in the original paper. They

are based on monthly data taken from the FRED-MD data set, for the period January 1960

to December 2014. The model includes the 20 variables indicated in Table 1 and 13 lags.

Figures 1 through 5 provide updates of the results in the paper, using the correct algo-

rithm. As these figures indicate, correcting the algorithm for estimating the VAR’s coef-

ficients does not change the conclusions indicated in the paper, also provided below. The

results in Figure 1 and Figure 2 are obtained by (1) running the SWA for a total of 22,000

draws, discarding the first 2000 and retaining the remaining 20,000 draws; and (2) running

the CTA for the same amount of clock time as the SWA, discarding the first 2000 draws,

and then adjusting the skip-sampling of the CTA to reduce the sample to 20,000 retained

draws. The results in Figure 3, Figure 4, and Figure 5 are based on a recursive pseudo-

out-of-sample forecasting exercise. In each estimation sample of the exercise, the results

∗Queen Mary University of London, a.carriero@qmul.ac.uk
†Purdue University, joshuacc.chan@gmail.com
‡Federal Reserve Bank of Cleveland, todd.clark@clev.frb.org
§Bocconi University, IGIER and CEPR, massimiliano.marcellino@unibocconi.it

1

are obtained by running the CTA for a total of 5500 draws, discarding the first 500 and

retaining 1 in 5 of the remaining 5000 draws, providing a final sample of 1000 draws.

Updating the paper’s Figure 2, Figure 1 illustrates the recursive means for some selected

coe�cients and shows that the correct triangular algorithm with split-sampling reaches con-

vergence much faster than the system-wide algorithm. This pattern is particularly marked

for the volatility component of the model. Figure 2 illustrates the entire posterior distribu-

tion of some coe�cients, specifically those on the main diagonal of the matrix ⇧1. As these

estimates indicate, the correct triangular algorithm yields posterior densities that match

those obtained with the system-wide algorithm.

Table 1: Variables in the 20-variable forecasting models

Variable Mnemonic

Real personal income RPI (� ln)

Real PCE DPCERA3M086SBEA (� ln)

Real manufacturing and trade sales CMRMTSPLx (� ln)

Industrial production INDPRO (� ln)

Capacity utilization in manufacturing CUMFNS

Civilian unemployment rate UNRATE

Total nonfarm employment PAYEMS (� ln)

Hours worked: goods-producing CES0600000007 (ln)

Average hourly earnings: goods-producing CES0600000008 (� ln)

PPI for finished goods PPIFGS (� ln)

PPI for commodities PPICMM (� ln)

PCE price index PCEPI (� ln)

Federal funds rate FEDFUNDS

Total housing starts HOUST (ln)

S&P 500 price index S&P 500 (� ln)

U.S.-U.K. exchange rate EXUSUKx (� ln)

1 yr. Treasury - FEDFUNDS spread T1YFFM

10 yr. Treasury - FEDFUNDS spread T10YFFM

BAA - FEDFUNDS spread BAAFFM

ISM: new orders index NAPMNOI

Updating the paper’s Figure 3, the left panels of Figure 3 display the root mean squared

forecast error (RMSFE) relative (ratio) to the benchmark (the 20-variable homoskedastic

VAR), so that a value below 1 denotes a model outperforming the benchmark. The large

2

homoskedastic model outperforms the small homoskedastic model for all variables at all

horizons, suggesting that the inclusion of more data does improve the specification of the

conditional means and therefore the point forecasts. The inclusion of time variation in

volatilities consistently improves the performance of the small model, and for FEDFUNDS

it also outperforms the benchmark at long horizons. However, the small heteroskedastic

model is still largely dominated by the benchmark at short forecast horizons. The model

with both time-varying volatilities and a large cross-section instead provides systematically

better point forecasts than the benchmark (and than the other models).

The right-hand panels of Figure 3 present results for density forecasts, based on the

average log scores. The figure displays the average log scores relative (di↵erence) to the

benchmark (the 20-variable homoskedastic VAR), so that a value above 0 denotes a model

outperforming the benchmark. Both homoskedastic specifications perform quite poorly in

density forecasting, while the heteroskedastic ones can achieve very high gains. Moreover,

the large heteroskedastic system consistently outperforms the small heteroskedastic system.

In combination with the findings for point forecasts, this result suggests that while both

heteroskedastic models provide a better assessment of the overall uncertainty around the

forecasts, the model based on the large cross-section centers such uncertainty around a more

reliable mean, thereby obtaining further gains in predictive accuracy.

Updating the paper’s Figures 4 and 5, Figures 4 and 5 compare forecasts for all the

variables included in the cross-section of the models with 20 variables, with point forecasts

in Figure 4 and density forecasts in Figure 5. In all of the subplots in Figure 4, the x axes

measure the RMSFE obtained by the large VAR when we allow for stochastic volatility,

while the y axes measure the same loss function (RMSFE) obtained by the homoskedastic

specification. Each point corresponds to a di↵erent forecast horizon, and when a point is

above the 45-degree line, this shows that the RMSFE of the heteroskedastic specification is

smaller, indicating that the inclusion of variation in the volatility improved point forecast-

ing performance. As is clear in the graph, in several instances the models produce point

forecasts of similar accuracy. However, as the forecast horizon increases (which can be indi-

rectly inferred from the graph as in general higher RMSFEs correspond to longer forecast

horizons), the specification with variation in the volatilities tends to outperform the ho-

moskedastic version of the model. The mechanism at play is as follows: The heteroskedastic

model provides more e�cient estimates and therefore a better characterization of the pre-

dictive densities, while the homoskedastic model is misspecified and therefore provides an

inferior characterization of the predictive densities. At short forecast horizons, this does

not have much e↵ect on point forecasts, but as the forecast horizon increases, the predic-

3

tive densities cumulate nonlinearly and therefore the misspecification of the homoskedastic

model increasingly reduces the relative accuracy.

In Figure 5, the x axes measure the (log) density score obtained by the large VAR

when we allow for stochastic volatility, while the y axes measure the same gain function

(score) obtained by the homoskedastic specification. Each point corresponds to a di↵erent

forecast horizon, and when a point is below the 45-degree line, this shows that the score

of the heteroskedastic specification is larger, indicating that the inclusion of variation in

the volatility improved density forecasting performance. The improvement coming from

the introduction of time variation in the volatilities is striking, and it is common to nearly

all variables. Clearly, stochastic volatility improves the overall assessment of uncertainty

with respect to the homoskedastic model, and it does so both directly, by simply using a

better variance around the point estimates, and indirectly, by centering the densities toward

improved point forecasts (as documented in Figure 4).

2 Additional empirical results: Algorithm comparison

Finally, to further compare results across algorithms, Figure 6 shows the impulse response

functions for a federal funds rate shock (recursively identified) delivered by the various

algorithms. This figure extends and updates results in the online appendix to the original

paper. In these new results, response estimates from the system-wide algorithm (SWA)

and correct triangular algorithm (CTA) coincide perfectly, while the original triangular

algorithm (TA) does show some occasional deviations.

4

Figure 1: Update of Figure 2 of the paper. Recursive means of selected coe�cients. Com-

parison between the system-wide and correct triangular algorithm. Chains are initialized at

the same value (set equal to the priors).

5

-0.2 -0.1 0 0.1 0.2
0

1

2

3

4

5

6

7

8
1
(1,1)

-0.6 -0.4 -0.2 0
0

2

4

6

8

10
1
(2,2)

-0.8 -0.6 -0.4 -0.2
0

1

2

3

4

5

6

7

8
1
(3,3)

-0.4 -0.2 0 0.2 0.4
0

1

2

3

4

5

6
1
(4,4)

-0.6 -0.4 -0.2 0 0.2
0

1

2

3

4

5
1
(5,5)

-0.4 -0.3 -0.2 -0.1 0
0

2

4

6

8

10
1
(6,6)

-0.2 0 0.2 0.4
0

1

2

3

4

5

6

7
1
(7,7)

0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10
1
(8,8)

-1 -0.9 -0.8 -0.7 -0.6
0

2

4

6

8

10
1
(9,9)

-0.8 -0.7 -0.6 -0.5 -0.4
0

2

4

6

8

10
1
(10,10)

-0.6 -0.5 -0.4 -0.3 -0.2
0

2

4

6

8

10
1
(11,11)

-0.8 -0.6 -0.4 -0.2
0

1

2

3

4

5

6

7
1
(12,12)

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8
1
(13,13)

0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10
1
(14,14)

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10
1
(15,15)

0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10
1
(16,16)

0.8 0.9 1 1.1 1.2
0

1

2

3

4

5

6

7

8
1
(17,17)

0.8 1 1.2 1.4
0

1

2

3

4

5

6

7
1
(18,18)

0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7
1
(19,19)

0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10
1
(20,20)

System-wide Correct triangular

Figure 2: Posterior distribution of the coe�cients on the main diagonal of the matrix ⇧1,

under the SWA and CTA.

6

2 4 6 8 10 12

step-ahead

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Avg. log-score (deviation from benchmark)

INDPRO

2 4 6 8 10 12

step-ahead

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Avg. log-score (deviation from benchmark)

PCEPI

2 4 6 8 10 12

step-ahead

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Avg. log-score (deviation from benchmark)

FEDFUNDS

2 4 6 8 10 12

step-ahead

0.98

1

1.02

1.04

1.06

1.08

1.1

RMSE (ratio to benchmark)

INDPRO

2 4 6 8 10 12

step-ahead

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

RMSE (ratio to benchmark)

PCEPI

2 4 6 8 10 12

step-ahead

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

RMSE (ratio to benchmark)

FEDFUNDS

Figure 3: Update of Figure 3 of the paper. Panels on the left-hand side contain results for the

point forecasts (relative RMSE of di↵erent models vs benchmark). The panels on the right-hand

side contain results for the density forecasts (log-score gains of di↵erent models vs benchmark). In all

the panels, crosses represent the homoskedastic VAR with 20 variables (the benchmark model), the

squares represent the homoskedastic VAR with 3 variables, the circles represent the heteroskedastic

VAR with 3 variables, and the diamonds represent the heteroskedastic VAR with 20 variables.

7

5.7 5.75 5.8

heteroskedastic 10-3

5.7

5.75

5.8

h
o
m

o
sk

e
d
a
st

ic

10-3 RPI

5 5.05 5.1 5.15

heteroskedastic 10-3

5

5.05

5.1

5.15

h
o
m

o
sk

e
d
a
st

ic

10-3DPCERA3M086SBEA

9.4 9.6 9.8

heteroskedastic 10-3

9.3

9.4

9.5

9.6

9.7

9.8

h
o
m

o
sk

e
d
a
st

ic

10-3 CMRMTSPLx

6.6 6.8 7 7.2

heteroskedastic 10-3

6.6

6.8

7

7.2

h
o
m

o
sk

e
d
a
st

ic

10-3 INDPRO

1 1.5 2 2.5

heteroskedastic

1

1.5

2

2.5

h
o
m

o
sk

e
d
a
st

ic

CUMFNS

0.2 0.4 0.6 0.8

heteroskedastic

0.2

0.4

0.6

0.8

h
o
m

o
sk

e
d
a
st

ic

UNRATE

1.6 1.7 1.8 1.9

heteroskedastic 10-3

1.6

1.7

1.8

1.9

h
o
m

o
sk

e
d
a
st

ic

10-3 PAYEMS

0.3 0.4 0.5

heteroskedastic

0.3

0.35

0.4

0.45

0.5

0.55

h
o
m

o
sk

e
d
a
st

ic

CES0600000007

2.7 2.8 2.9

heteroskedastic 10-3

2.7

2.8

2.9

h
o
m

o
sk

e
d
a
st

ic

10-3CES0600000008

5.8 6 6.2

heteroskedastic 10-3

5.8

6

6.2

h
o
m

o
sk

e
d
a
st

ic

10-3 PPIFGS

0.03 0.031 0.032

heteroskedastic

0.03

0.0305

0.031

0.0315

0.032

0.0325

h
o
m

o
sk

e
d
a
st

ic

PPICMM

2 2.2 2.4

heteroskedastic 10-3

2

2.2

2.4

h
o
m

o
sk

e
d
a
st

ic

10-3 PCEPI

0.01 0.015 0.02

heteroskedastic

0.01

0.015

0.02

h
o
m

o
sk

e
d
a
st

ic

FEDFUNDS

0.1 0.15 0.2 0.25

heteroskedastic

0.1

0.15

0.2

0.25

h
o
m

o
sk

e
d
a
st

ic

HOUST

0.037 0.0374

heteroskedastic

0.0368

0.037

0.0372

0.0374

0.0376

h
o
m

o
sk

e
d
a
st

ic

S&P 500

0.023 0.0235 0.024

heteroskedastic

0.023

0.0235

0.024

h
o
m

o
sk

e
d
a
st

ic

EXUSUKx

0.6 0.8 1

heteroskedastic

0.5

0.6

0.7

0.8

0.9

1

h
o
m

o
sk

e
d
a
st

ic

T1YFFM

0.6 0.8 1 1.2 1.4 1.6

heteroskedastic

0.6

0.8

1

1.2

1.4

1.6

h
o
m

o
sk

e
d
a
st

ic

T10YFFM

0.6 0.8 1 1.2 1.4 1.6 1.8

heteroskedastic

0.6

0.8

1

1.2

1.4

1.6

1.8

h
o
m

o
sk

e
d
a
st

ic

BAAFFM

4 5 6 7

heteroskedastic

4

5

6

7

h
o
m

o
sk

e
d
a
st

ic

NAPMNOI

Figure 4: Update of Figure 4 of the paper. Comparison of point forecast accuracy. Each panel de-

scribes a di↵erent variable. The x axis reports the RMSFE obtained using the BVAR with stochastic

volatility (heteroskedastic); the y axis reports the RMSFE obtained using the homoskedastic BVAR.

Each point corresponds to a di↵erent forecast horizon from 1 to 12 steps ahead (in most cases, a

higher RMSFE corresponds to a longer forecast horizon).

8

2 2.5 3 3.5

heteroskedastic

2

2.5

3

3.5

h
o

m
o

sk
e

d
a

st
ic

RPI

3.7 3.8 3.9

heteroskedastic

3.7

3.8

3.9

h
o

m
o

sk
e

d
a

st
ic

DPCERA3M086SBEA

3 3.1 3.2

heteroskedastic

3

3.1

3.2

h
o

m
o

sk
e

d
a

st
ic

CMRMTSPLx

3.3 3.4 3.5

heteroskedastic

3.3

3.4

3.5

h
o

m
o

sk
e

d
a

st
ic

INDPRO

-2.5 -2 -1.5 -1

heteroskedastic

-2.5

-2

-1.5

-1

h
o

m
o

sk
e

d
a

st
ic

CUMFNS

-1 -0.5 0

heteroskedastic

-1

-0.5

0

h
o

m
o

sk
e

d
a

st
ic

UNRATE

4.7 4.8 4.9 5

heteroskedastic

4.7

4.8

4.9

5

h
o

m
o

sk
e

d
a

st
ic

PAYEMS

-0.8 -0.6 -0.4

heteroskedastic

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

h
o

m
o

sk
e

d
a

st
ic

CES0600000007

4.2 4.3 4.4 4.5

heteroskedastic

4.2

4.3

4.4

4.5

h
o

m
o

sk
e

d
a

st
ic

CES0600000008

3.4 3.5 3.6 3.7 3.8

heteroskedastic

3.4

3.5

3.6

3.7

3.8

h
o

m
o

sk
e

d
a

st
ic

PPIFGS

2 2.05 2.1

heteroskedastic

2

2.02

2.04

2.06

2.08

2.1

h
o

m
o

sk
e

d
a

st
ic

PPICMM

4.5 4.6 4.7 4.8

heteroskedastic

4.5

4.6

4.7

4.8

h
o

m
o

sk
e

d
a

st
ic

PCEPI

2.5 3 3.5 4 4.5

heteroskedastic

2.5

3

3.5

4

4.5

h
o

m
o

sk
e

d
a

st
ic

FEDFUNDS

0 0.5 1

heteroskedastic

0

0.5

1

h
o

m
o

sk
e

d
a

st
ic

HOUST

1.75 1.8 1.85 1.9

heteroskedastic

1.75

1.8

1.85

1.9

h
o

m
o

sk
e

d
a

st
ic

S&P 500

2.25 2.3 2.35 2.4

heteroskedastic

2.25

2.3

2.35

2.4

h
o

m
o

sk
e

d
a

st
ic

EXUSUKx

-1.5 -1 -0.5

heteroskedastic

-1.5

-1

-0.5

h
o

m
o

sk
e

d
a

st
ic

T1YFFM

-2 -1.5 -1 -0.5

heteroskedastic

-2

-1.5

-1

-0.5

h
o

m
o

sk
e

d
a

st
ic

T10YFFM

-2 -1.5 -1 -0.5

heteroskedastic

-2

-1.5

-1

-0.5

h
o

m
o

sk
e

d
a

st
ic

BAAFFM

-3.6 -3.4 -3.2 -3 -2.8

heteroskedastic

-3.6

-3.4

-3.2

-3

-2.8

h
o

m
o

sk
e

d
a

st
ic

NAPMNOI

Figure 5: Update of Figure 5 of the paper. Comparison of density forecast accuracy. Each panel

describes a di↵erent variable. The x axis reports the (log) density score obtained using the BVAR

with stochastic volatility (heteroskedastic); the y axis reports the (log) density score obtained using

the homoskedastic BVAR. Each point corresponds to a di↵erent forecast horizon from 1 to 12 steps

ahead.

9

12 24 36 48 60

-12

-10

-8

-6

-4

-2

0

10-3 RPI

12 24 36 48 60

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0
DPCERA3M086SBEA

12 24 36 48 60
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

CMRMTSPLx

12 24 36 48 60

-0.025

-0.02

-0.015

-0.01

-0.005

0

INDPRO

12 24 36 48 60

-2

-1.5

-1

-0.5

0

CUMFNS

12 24 36 48 60

0

0.2

0.4

0.6

UNRATE

12 24 36 48 60

-10

-5

0
10-3 PAYEMS

12 24 36 48 60

-0.15

-0.1

-0.05

0

0.05

CES0600000007

12 24 36 48 60

-10

-5

0

5
10-4 CES0600000008

12 24 36 48 60

-3

-2

-1

0

10-3 PPIFGS

12 24 36 48 60

-10

-5

0

10-3 PPICMM

12 24 36 48 60

-10

-5

0

10-4 PCEPI

12 24 36 48 60

0

0.5

1

FEDFUNDS

12 24 36 48 60

-0.1

-0.08

-0.06

-0.04

-0.02

0

HOUST

12 24 36 48 60

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

S&P 500

12 24 36 48 60

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

EXUSUKx

12 24 36 48 60
-0.5

-0.4

-0.3

-0.2

-0.1

0

T1YFFM

12 24 36 48 60
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

T10YFFM

12 24 36 48 60

-1

-0.5

0

BAAFFM

12 24 36 48 60

-3

-2

-1

0

NAPMNOI

System-wide algorithm, 16% bound
System-wide algorithm, median
System-wide algorithm, 84% bound

Incorrect triangular algorithm, 16% bound
Incorrect triangualr algorithm
Incorrect triangular algorithm, 84% bound

Correct triangular algorithm, 16% bound
Correct triangular algorithm
Correct triangular algorithm, 84% bound

Figure 6: Comparison of impulse responses computed using the alternative algorithms.

Model with monthly data, N=20 and p=13.

10

3 The correct triangular algorithm for homoskedastic VARs

This section outlines the implementation of the correct triangular algorithm to the following

homoskedastic VAR:

yt = ⇧0xt + ✏t,

where ✏t ⇠ iid N(0,⌃), t = 1, . . . , T . The coe�cient priors are Gaussian ⇡(j) ⇠ N(µ
⇡(j) ,⌦⇡(j)),

j = 1, . . . , N, and they are independent across equations. We first use an LDL decompo-

sition (sometimes referred to as a square-root-free Cholesky decomposition) to factor the

reduced-form error covariance matrix as ⌃ = A�1⇤A�10 , where A�1 is a lower triangular

matrix with ones on its main diagonal and ⇤ is a diagonal matrix with generic j-th element

�j .1 Then, the full posterior density of ⇡(j) has a multivariate normal distribution

(⇡(j) | y,⌃,⇡(�j)) ⇠ N (µ⇡(j) ,⌦⇡(j)),

with

⌦
�1
⇡(j) = ⌦�1

⇡(j) +
PN

i=j

a2i,j
�i

PT
t=1 xtx

0
t (1)

µ⇡(j) = ⌦⇡(j)

✓
⌦�1
⇡(j)µ⇡(j) +

PN
i=j

ai,j
�i

PT
t=1 xtzi,t

◆
, (2)

where zj+l,t = ỹj+l,t �
Pj+l

i 6=j,i=1 aj+l,ix0t⇡
(i), for l = 0, . . . , N � j, and ai,i = 1.

Next, we provide an alternative expression for the moments (1) and (2) that works more

e�ciently in the commonly used Matlab software package. Let L0.5 = 1T ⌦ (�0.5
j , . . . ,�0.5

N),

where 1T is a T ⇥ 1 column of ones. Moreover, define

Y (j)

T (N�j+1)⇥1
= vec((y �X⇧[j=0])A(j:N,1:N)0)./vec(L0.5)

X(j)

T (N�j+1)⇥k
= (A(j:N,j) ⌦X)./vec(L0.5),

where ./ is the Matlab element-by-element division operator. Then, we obtain an equivalent

expression for the posterior moments appearing in (1) and (2):

⌦
�1
⇡(j) = (⌦�1

⇡(j) +X(j)0X(j))

µ⇡(j) = ⌦⇡(j)(⌦�1
⇡(j)µ⇡(j) +X(j)0Y (j)).

It is also possible to draw from the multivariate normal distribution posterior density

of ⇡(j) given by (⇡(j) | y,⌃,⇡(�j)) ⇠ N (µ⇡(j) ,⌦⇡(j)) with a Cholesky decomposition of ⌃. In

1This decomposition can be computed either with a function such as the LDL function in Matlab or from

a normalization of the Cholesky decomposition.

11

this case, let A† denote the Cholesky decomposition of ⌃, so that ⌃ = A†A†0, and define

Ã = A†�1, with elements ãi,j in row i, column j. In this case, ỹt is defined as ỹt = Ãyt, and

zj+l,t = ỹj+l,t �
Pj+l

i 6=j,i=1 ãj+l,ix0t⇡
(i), for l = 0, . . . , N � j. Then the posterior moments of

the conditional normal distribution take the form:

⌦
�1
⇡(j) = ⌦�1

⇡(j) +
PN

i=j ã
2
i,j

PT
t=1 xtx

0
t (3)

µ⇡(j) = ⌦⇡(j)

⇣
⌦�1
⇡(j)µ⇡(j) +

PN
i=j ãi,j

PT
t=1 xtzi,t

⌘
. (4)

12

