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1 Introduction

The extraordinary economic volatility that occurred following the COVID-19 outbreak has raised

pressing questions about the magnitude of uncertainty and its effects. During this period, sources

such as the Federal Open Market Committee of the Federal Reserve emphasized that uncertainty

was perceived to have risen dramatically. For example, the minutes of the Committee’s April 2020

meeting reported: “Participants commented that, in addition to weighing heavily on economic ac-

tivity in the near term, the economic effects of the pandemic created an extraordinary amount of

uncertainty and considerable risks to economic activity in the medium term.” Measures of uncer-

tainty available at high frequency — the VIX and policy uncertainty as measured by Baker, Bloom,

and Davis (2016) — skyrocketed in the spring before easing up some.

Building on the immense research literature on uncertainty that emerged following the semi-

nal work of Bloom (2009), Carriero, Clark, and Marcellino (2018) — henceforth referred to as

CCM — developed an econometric model and method for jointly (1) constructing measures of

macroeconomic and financial uncertainty and (2) conducting inference on uncertainty’s impacts

on the macroeconomy. The CCM uncertainty measures reflect common factors driving time-

varying volatilities in macroeconomic and financial variables, respectively. The model is a large,

heteroskedastic vector autoregression (VAR) in which the error volatilities evolve over time accord-

ing to a factor structure. The volatility of each variable in the system is driven by a common

component and an idiosyncratic component. Changes in the common component of the volatilities

of the VAR’s variables provide contemporaneous identifying information on uncertainty. Macro

and financial uncertainty are allowed to contemporaneously affect the macroeconomy and financial

conditions. In CCM, estimates with monthly US data for the period 1959-2014 provided substan-

tial evidence of commonality in volatilities, with increases in macro uncertainty associated with

economic recessions. Estimated impulse responses indicate that macroeconomic uncertainty has

large, significant effects on real activity, but has a limited impact on financial variables, whereas

financial uncertainty shocks directly impact financial variables and subsequently transmit to the

macroeconomy. Although shocks to uncertainty have significant effects, estimates of historical de-

compositions indicate that they are not a primary driver of fluctuations in macroeconomic and

financial variables. For example, over the period of the Great Recession and subsequent recovery,

shocks to uncertainty made small to modest contributions to the paths of economic and financial

variables, whereas shocks to the VAR’s variables played a much larger role.

This paper uses the basic framework of CCM to measure changes in macroeconomic and financial
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uncertainty in the US since the outbreak of the COVID-19 pandemic and to estimate uncertainty’s

effects. Yet, measuring uncertainty from macroeconomic and financial data in the COVID-19 period

can come with some challenges. The period yielded unprecedented changes in many key variables.

For example, payroll employment plummeted 14.8 percent from March to April, a decline nearly

17 times as large as the previous largest monthly decline, and employment rose 3.5 percent from

May to June, an increase 3 times larger than the previous record growth rate.1 The extremes raise

questions as to whether steps should be taken to reduce the influence that the COVID observations

might have on conventional estimates of time series models. Lenza and Primiceri (2020) suggest

that one should do so and develop an approach to allow for temporary spikes in volatilities of

innovations in an otherwise conventional Bayesian VAR (BVAR).

In this paper, in light of possible questions around how much weight to allow COVID obser-

vations to have, we consider not only the model of CCM but also a version extended to allow

for temporary volatility outliers.2 Stock and Watson (2016) developed a latent state approach to

accommodating outliers in unobserved component models of inflation, and Carriero, et al. (2020)

extended the approach to BVARs and showed the efficacy of the model in macroeconomic forecast-

ing accuracy. In this paper we add outlier states to the CCM model to assess uncertainty and its

effects with a specification that has the potential to reduce the influence of extreme observations

from the COVID period.

The estimates we obtain yield very large increases in macroeconomic and financial uncertainty

over the course of the COVID-19 period. These increases have contributed to the downturn in

economic and financial conditions. Although these contributions are sizable by historical stan-

dards, they are generally dwarfed by the immense and unprecedented magnitudes of changes in

some variables from March through June 2020. That is, with both models, the contributions of

uncertainty are small compared to the overall movements in many macroeconomic and financial

indicators. That implies that the downturn is driven more by other dimensions of the COVID crisis

than shocks to aggregate uncertainty (as measured by our method).3

1These calculations use log growth rates and data from the September 2020 vintage of FRED-MD.
2In unreported results, we have also considered a different, simple approach to treating the COVID observations

as unusual and reducing their influence: We augmented the VAR to include dummy variables for each month of
March through June 2020, with the dummy for month s having a value of 1 in month s of 2020 and 0 in all other
periods. These dummies, of course, capture the variation of the COVID months and reduce their influence on the
model estimates. This dummy-variable approach had mixed effects in our setting. With macro uncertainty, adding
the dummies to the SVF-M model (without the outlier treatment) yields an uncertainty estimate comparable to what
we get with the SVF-M-O model. But the same does not apply with financial uncertainty: The model with dummies
produces an increase in uncertainty in the COVID period almost as large as the baseline SVF-M model without
outlier treatment.

3Ludvigson, Ma, and Ng (2020) instead treat COVID as a disaster shock that causes both economic activity to
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Although our two models yield very similar results in a big-picture sense, their estimates differ

along some clear dimensions. Including the outlier treatment in the model mitigates the measured

rise in macroeconomic and financial uncertainty and modestly reduces the estimated contributions

to recent fluctuations in economic and financial indicators. The rise in uncertainty is still very large,

with macroeconomic uncertainty reaching record highs and financial uncertainty rising very high,

although not quite to the peaks seen in previous recessions. Notably, including the outlier treatment

in the model concentrates the period of increases in uncertainty, so that the increases don’t start

until about the time that the pandemic actually broke out. Excluding the outlier treatment yields

larger increases in measured uncertainty, such that the measures far outstrip previous record highs.

However, it also results in the estimates of uncertainty rising a few or several months before the

pandemic broke out. Although both sets of estimates are plausible in our judgment, we are inclined

to favor the measures from the outliers-robust model over this timing consideration.

The paper is structured as follows. Sections 2, 3, and 4 present the models, data, and results,

respectively. Section 5 concludes.

2 Models

In the interest of brevity, we present the version of the uncertainty model that includes the outlier

volatility states. We denote this model as the BVAR-SVF-M-O specification, short for BVAR with

stochastic volatility factors in the mean and outlier states added. The baseline CCM model —

denoted BVAR-SVF-M — takes the same form, with the outlier states omitted.

Let yt denote the n × 1 vector of variables of interest, split into nm macroeconomic and nf =

n−nm financial variables. Let vt be the corresponding n×1 vector of reduced-form shocks to these

variables, also split into two groups of nm and nf components.

Following Stock and Watson (2016) and Carriero, et al. (2020), outliers are accommodated as

temporary spikes in the standard deviations of innovations to the VAR. Outliers are treated as

independent over time and across variables. The outlier scale variable can take one of a grid of

No = 20 values, ranging from 1 to 20. With probability 1 − pj , there is no outlier for variable j

in period t, and the outlier scale variable oj,t takes a value of 1. With probability pj , an outlier

occurs, and each of the possible values of 2 through 20 has the same probability of pj/(No − 1).

That is, outliers occur along a uniform distribution of 2 to 20.

plummet and uncertainty to rise.
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With the outlier extension of CCM’s model, the reduced-form shocks are:

vt = A−1OtΛ
0.5
t εt, εt ∼ i.i.d. N(0, I), (1)

where A is an n × n lower triangular matrix with ones on the main diagonal, Λt is a diagonal

matrix of volatilities, and Ot is a diagonal matrix of the i.i.d. outlier scale states (corresponding to

standard deviations). The logs of the variances on the diagonal of Λt follow a linear factor model:

lnλjt =

{
βm,j lnmt + lnhj,t, j = 1, . . . , nm

βf,j ln ft + lnhj,t, j = nm + 1, . . . , n.
(2)

The variables hj,t — which do not enter the conditional mean of the VAR, specified below —

capture idiosyncratic volatility components associated with the j-th variable in the VAR, and are

assumed to follow (in logs) an autoregressive process:

lnhj,t = γj,0 + γj,1 lnhj,t−1 + ej,t, j = 1, . . . , n, (3)

with νt = (e1,t, ..., en,t)
′ jointly distributed as i.i.d. N(0,Φν) and independent among themselves,

so that Φν = diag(φ1, ..., φn). These shocks are also independent from the conditional errors εt.

With this setup, the reduced-form innovation variance matrix is Σt = A−1OtΛtO
′
tA
−1′. Accord-

ingly, the Choleski residual of each macro variable j consists of a conditionally Gaussian innovation

εj,t that is scaled by

λ̃
0.5
j,t = oj,tλ

0.5
j,t = oj,t

√
m
βm,j

t hj,t.

The same applies for financial variables, just with the financial factor ft replacing the macro factor

mt. As this indicates, the outlier state is idiosyncratic to each variable’s volatility. Uncertainty is

instead defined as the common element in volatilities, distinct from the idiosyncratic components

that may have some persistence and the i.i.d. outlier scale components. This outliers-augmented

version of the model adds to the baseline CCM specification an entirely transitory volatility com-

ponent (the outliers), on top of the idiosyncratic stochastic volatility process that may have some

persistence (and, indeed, is estimated to do so for most of the variables of the VAR).

The variable mt is our measure of (unobservable) aggregate macroeconomic uncertainty, and

the variable ft is our measure of (unobservable) aggregate financial uncertainty. Together, the two

measures of uncertainty (in logs) follow an augmented VAR process:[
lnmt

ln ft

]
= D(L)

[
lnmt−1
ln ft−1

]
+

[
δ′m
δ′f

]
yt−1 +

[
um,t
uf,t

]
, (4)

where D(L) is a lag-matrix polynomial of order d. The shocks to the uncertainty factors um,t and

uf,t are independent from the shocks to the idiosyncratic volatilities ej,t and the conditional errors
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εt, and they are jointly normal with mean 0 and variance var(ut) = var((um,t, uf,t)
′) = Φu =[

φn+1 0
0 φn+2

]
. The specification in (4) implies that the uncertainty factors depend on their own

past values as well as the previous values of the variables in the model, and therefore they respond

to business cycle fluctuations. Importantly, financial uncertainty affects macro uncertainty and

vice-versa.

For identification, we fix the factor innovation variances and impose (using an accept/reject step

in the Gibbs sampler) sign restrictions on the factor loadings so that βm,1 > 0 and βf,nm+1 > 0.4 In

addition, we deliberately include the block restrictions of factor loadings in the volatilities specifica-

tion of (2) in order to allow the comovement between uncertainties captured in the VAR structure.

Conceptually, these block restrictions are consistent with broad definitions of uncertainty: Macro

uncertainty is the common factor in the error variances of macro variables, and financial uncertainty

is the common factor in the error variances of financial variables. However, these uncertainties may

move together due to correlated innovations to the uncertainties, the VAR dynamics of uncertainty

captured in D(L), and responses to past fluctuations in macro and financial variables (yt−1).

The uncertainty variables mt and ft can also affect the levels of the macro and financial variables

contained in yt, contemporaneously and with lags. In particular, yt is assumed to follow:

yt = Π(L)yt−1 + Πm(L) lnmt + Πf (L) ln ft + vt, (5)

where k denotes the number of yt lags in the VAR, Π(L) = Π1 − Π2L− · · · − ΠkL
k−1, with Πi an

n× n matrix, i = 1, ..., k, and Πm(L) and Πf (L) are n× 1 lag-matrix polynomials of order km and

kf . This model allows the business cycle to respond to movements in uncertainty, both through

the conditional variances (contemporaneously, via movements in vt) and through the conditional

means (contemporaneously and with lag, via the coefficients collected in Πm(L) and Πf (L)).

Note that, as a general matter of identification, our modeling strategy separates the total

variance of the residual Avt = OtΛ
0.5
t εt into four orthogonal components: a common component,

an idiosyncratic component that may have some serial correlation, an i.i.d. outlier scale component,

and a component due to the conditionally independent shock εt. When a large residual shock

(represented by OtΛ
0.5
t εt) hits the economy, we let the data distinguish whether this is a large

4We fix the factor innovation variances at φn+1 = 0.015 and φn+2 = 0.075, similar to the original estimates of
CCM. Note that, for identification, CCM instead fixed the factor loadings βm,1 and βf,nm+1 at values of 1 and
estimated the variance-covariance matrix of innovations to the log uncertainty factors. Although the choice between
the identification schemes didn’t make a difference in model estimates obtained with data samples ending before the
COVID period, it does matter with the extreme observations of the COVID period. For the current sample, using
the normalization approach of CCM yields implausibly extreme movements in uncertainty. Using the approach we
have adopted in this paper avoids such extremes while matching up well with the estimates of CCM in the period
through 2014.
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shock in the conditional error εt (so an outlier in a standard normal distribution, with a variance

that is not moving) or rather a relatively ordinary draw for the conditional shock εt that is, however,

scaled up by an increase in variance, which may be transitory or persistent, as well as common or

idiosyncratic, as captured by the various components contained in OtΛ
0.5
t .

In implementation with monthly data, we set the VAR lag order at k = 6, the lag order for

the uncertainty factors in the VAR’s conditional mean (km and kf ) at 2, and the lag order of the

bivariate VAR in the uncertainty factors (d) to 2.

We estimate the model using an MCMC sampler; see CCM for details. Here we briefly explain

the extension to the version of the model with outlier volatility states. The algorithm includes all

of the same steps given in CCM, with adjustments to reflect the outlier states on top of the λ and

h terms. Including the outliers requires two additional steps. One of these draws the outlier states

from their posterior given the draw of the outlier probabilities; this step proceeds analogously to

the sampling of the mixture states needed with the Kim, Shephard, and Chib (1998) approach to

the idiosyncratic volatility states h. The other draws the outlier probability for each variable from

a (conditional posterior) beta distribution conditional on the draws of the time series of outlier

states. All results in the paper are based on 5,000 retained draws, obtained by sampling a total of

30,000 draws, discarding the first 5,000, and retaining every 5th draw of the post-burn sample.

In unreported results, we also considered an alternative approach to our outlier specification:

adding the fat-tails specification of Jacquier, Polson, and Rossi (2004) to the BVAR-SVF-M model.

In this alternative model, we replace the Gaussian VAR residuals εt with t-distributed shocks. In

this case, the reduced-form innovation to the VAR continues to be expressed as vt = A−1OtΛ
0.5
t εt,

with Ot being a diagonal matrix of i.i.d. latent states. Compared to the BVAR-SVF-M-O specifi-

cation, the version with t-distributed errors differs in that the diagonal elements of Ot, oj,t, have

inverse-gamma distributions.5 As noted in Carriero, et al. (2020), in both the SV-O and SV-t

cases, the density for the outlier state oj,t peaks at (SV-O) or near (SV-t) 1, with a fat right-hand

tail. In the SVO case, there is equal probability on outlier states between 2 and 20, whereas the

SV-t case assigns most probability on values close to 1, albeit with some minimal measure placed

also on values far above 20. Also, while the outlier states in the SVO case cannot take values

below 1, the SV-t case assigns considerable mass also to values below one. While we regard the

SV-O and SV-t approaches as comparable, the SV-O approach for which we present results is more

geared toward generating sizable outliers at a variable j-specific probability of occurrence pj that

5Specifically, let dj/oj,t ∼ χ2
dj

where dj are the degrees of freedom of the resulting t distribution for oj,t ·εj,t ∼ tdj .
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is directly governed by an explicit prior. All that said, our main conclusions below based on the

SV-O approach also apply with estimates from the SV-t specification (unreported, using 5 degrees

of freedom in the t distribution).

3 Data

Following CCM, our results are based on a VAR including 30 macroeconomic and financial vari-

ables, which are listed in Table 1. Reflecting the available samples of the raw data and observations

taken by transformations and model lags, the estimation sample is September 1960 to June 2020.6

Following common practice in the factor model literature as well as studies such as Jurado, Lud-

vigson, and Ng (2015), after transforming each series for stationarity as needed, we standardize the

data (demean and divide by the simple standard deviation) before estimating the model.7

Our variable set includes 18 macroeconomic series, chosen for being major indicators within

broad categories (production, labor market, etc.). With one exception, we take these series and

some financial indicators from the FRED-MD monthly data set detailed in McCracken and Ng

(2016), which is similar to that underlying common factor model analyses, such as Stock and Watson

(2006). The one exception is the new orders index from the Institute of Supply Management, which

FRED-MD is no longer able to include; we instead obtained this series from Haver Analytics.

Our variable set also includes 12 financial series, consisting of the return on the S&P 500, the

spread between the Baa bond rate and the 10-year Treasury yield, and a set of additional variables

made available by Kenneth French on his web page. Specifically, we use the French series on CRSP

excess returns, four risk factors — for SMB (Small Minus Big), HML (High minus Low), R15 R11

(small stock value spread), and momentum — and sector-level returns for a breakdown of five

industries (consumer, manufacturing, high technology, health, other).

As discussed in CCM, this specification reflects some choice as to what constitutes a macroe-

conomic variable rather than a financial variable. Reflecting the typical factor model analysis,

the McCracken-Ng data set includes a number of indicators — of stock prices, interest rates, and

exchange rates — that may be considered financial indicators. In our model specification, the

variables in question are the federal funds rate, the credit spread, and the S&P 500 index. It

seems most appropriate to treat the funds rate, as the instrument of monetary policy, as a macro

variable. For the other two variables, the distinction between macro and finance is admittedly less

6We took the data from the September release of FRED-MD. Although this vintage has data through June for
most series, two of the series in our model only have observations through June (under FRED-MD’s usual timing).

7To reduce the potential impact of COVID extremes, in the standardization, we computed the means and standard
deviations with data through 2019 and omitted 2020 observations.

7



clear. Whereas Jurado, Ludvigson, and Ng (2015) treat these indicators as macro variables that

bear on macroeconomic uncertainty and not directly on financial uncertainty, it seems more natural

to consider these indicators as financial variables, in keeping with such precedents as Koop and

Korobilis (2014) on the measurement of financial conditions. Accordingly, we include the credit

spread and the S&P 500 index in the set of financial variables.

4 Results

This section first provides our estimates of outlier states, time-varying volatilities, and macroeco-

nomic and financial uncertainty. It then presents impulse responses and historical decompositions.

4.1 Volatility and uncertainty estimates

Before taking up the main results of interest, it may be useful to consider the estimation of outlier

states in the BVAR-SVF-M-O model. For most financial variables, the posterior mean probabilities

of an outlier each month are low, at about 0.5 percent. Mean outlier probabilities are higher for

most — although not all — macro variables. For example, the probability estimates are 1.4 percent

for employment and 3.9 percent for real personal income.

Figure 1 provides posterior mean estimates of the outlier states oj,t for variable j, covering a

subset of variables in the interest of readability. For some variables, reflecting the estimated low

probabilities of an outlier, the mean state estimate is flat at 1 for most or much of the sample. At

the other extreme, the estimates identify a number of outliers for personal income. More immediate

to the matter of the COVID period, a number of variables experience outliers in the period of the

COVID disruption to economic activity. For example, the posterior mean of the outlier state (recall

that this scales up standard deviations) for consumer spending is 11 in March and 10 in April; the

corresponding estimate for employment is 16 in April and 8 in June. As we discuss below, these

outlier state movements contribute significantly to the variability of the affected variables of the

model. Although a number of variables are found to experience outliers in recent months, it is not

a majority of the series; for example, only 8 of the 18 macroeconomic variables in the model have

a posterior mean of oj,t of 2 or more in the months of March or April. Accordingly, we proceed

with treating the outliers as being independent across variables rather than common to most or

all, in keeping with treating common changes in forecast error variances as changes in aggregate

uncertainty.8

8If we followed conventions in the factor model literature (e.g., McCracken and Ng (2016)) and simply defined an
outlier as an observation with distance from the median more than 5 or 10 times the width of the interquartile range,
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Turning to overall volatility changes, based on the version of the model including the outlier

states, Figure 2 shows the magnitudes of changes in volatilities in recent months, broken into contri-

butions from the uncertainty factors, the outlier states, and the idiosyncratic volatility components.9

Whereas it would be difficult to compute contributions to changes in the diagonal elements of Σt,

the variance-covariance matrix of reduced-form innovations in the VAR, it is possible to directly

compute percent changes in λ̃
0.5
j,t =

√
m
βj,m

t o2j,thj,t for macro variables and λ̃
0.5
j,t =

√
f
βj,f

t o2j,thj,t

for financial variables. For each month t from January 2019 through June 2020, we compute

0.5 ln(λ̃j,t/λ̃j,0), where λ̃j,0 refers to the volatility of December 2018, and the contributions to this

percent change in the standard deviation from the uncertainty factors, the outlier states, and the

idiosyncratic volatility components. The charts report posterior means of the contributions, as

stacked bars.

Perhaps the most immediate result in these estimates is the giant increases in the volatilities

of many variables. For example, the log change in 0.5λ̃ for employment is nearly 5, meaning that

volatility (as measured by the standard deviation) has risen by nearly 500 percent. Increases in

most of the financial volatilities were more tempered although still dramatic, for example with the

return volatilities rising about 100 percent.

In the variance decomposition from the BVAR-SVF-M-O model, the relative importance of

uncertainty, outliers, and idiosyncratic volatilities varies across variables. The uncertainty factors

drive considerable increases in volatility for all variables. For financial variables, uncertainty factors

are the dominant driver. For macro variables, uncertainty factors are important to most increases,

but are sometimes dominated by outlier state contributions. As examples, with unemployment

and industrial production, the estimates show outliers driving the volatility increases of April (and

March for industrial production) and the uncertainty factors driving the increase of May. For

some other variables, such as employment, increases in the idiosyncratic volatility components also

contribute. But in general, the contributions of the idiosyncratic volatility components are smaller

than those of the uncertainty factors and outlier states (and in some cases they lower, rather than

raise, volatility).

By comparison, over the period January 2007-December 2009 spanning the Great Recession,

Figure 3 shows that the overall rise in volatility was smaller for many variables — although still

sizable — with a somewhat different composition than that observed for the COVID period. One

it would also be the case that only a few macro variables show an outlier in recent months.
9In the interest of brevity, we omit corresponding results from the BVAR-SVF-M model without outliers. In these

estimates, it is also the case that idiosyncratic contributions are relatively small, and the uncertainty factors almost
entirely drive the estimated increases in volatilities.
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pattern shared by the Great Recession period is that a sizable increase in aggregate uncertainty

helped drive volatility higher. But outliers are estimated to have played a smaller role in 2007-2009

than in 2019-2020, affecting volatilities of only a few variables in the former period but several in

the latter. The overall differences in the magnitudes of the volatility changes and the role of outliers

point to the COVID period being unique. Another notable difference across the periods is that the

idiosyncratic components of the volatility model played a larger role in the earlier recession than

in the current one, in several cases (e.g., employment and hours) declining and pulling volatility

down but in other cases (e.g., manufacturing and trade sales) rising and boosting volatility.

Turning from variance contributions to the estimates of uncertainty, the top two panels of Figure

4 report the macroeconomic and financial uncertainty estimates, measured as the posterior medians

ofm0.5
t and f0.5t , respectively. The top panel compares estimates of macroeconomic uncertainty from

the BVAR-SVF-M and BVAR-SVF-M-O models, and the second panel makes the same comparison

for financial uncertainty. The baseline estimates of the CCM model show dramatic increases in

uncertainty, with macroeconomic uncertainty rising from a historical average level of about 1 to a

peak of 7.6 in April and edging down to 6.2 in May and 4.9 in June, and with financial uncertainty

soaring from an average level of about 1 to a peak of 23.3 in March, before edging down in April

and easing some to a level of about 8 in May and June. Although not evident from the long history

shown in the chart, the smoothed time series estimates show macroeconomic uncertainty rising

significantly starting in the fourth quarter of 2019 and financial uncertainty picking up starting in

the third quarter of last year, well in advance of the COVID outbreak.

Estimates of uncertainty from the version of the model with outlier states also show significant

increases this year, although less dramatic than those of the CCM baseline and confined to be closer

in time to the period of the actual COVID outbreak in the US. More specifically, with the augmented

model, the estimate of macroeconomic uncertainty edges up from a historical average level of about

1 in January to 1.2 in February before rising at a faster pace starting in March, peaking at 5.7 in

May and moderating to 3.1 in June. The estimate of financial uncertainty picks up significantly

over the same months, peaking at 4.1 in March and moderating gradually to 2.8 in June. As a

more general matter, looking at the pre-COVID period from 1960 through 2019, adding the outlier

states to the CCM has little effect on the time series of macroeconomic uncertainty. The outlier

feature has modestly more effect on the historical estimates of financial uncertainty, dampening

a little the estimated rise in financial uncertainty around recessions. As to why the treatment of

outliers matters a little more for financial uncertainty than for macro uncertainty when outliers

10



are somewhat more evident for macro variables than financial (see Figure 1), the pattern appears

to reflect a combination of factors. In general, the uncertainty estimates are informed by not only

conditional variances but also conditional means, and the uncertainty estimates are correlated, so

that controlling for outliers that are more prominent in macro variables could affect the estimate of

financial uncertainty through conditional mean effects or correlations across uncertainty measures.

Moreover, if we modify the model to exclude S&P 500 stock returns and the credit spread, the

two financial variables displaying some historical outliers in our reported estimates, then when we

compare estimates of the models with and without the outlier states modeled, the estimates of

financial uncertainty show less impact of modeling the outliers.

For a given model, there is considerable uncertainty around the estimate of uncertainty in the

COVID period. For example, Figure 5 provides the BVAR-SVF-M-O posterior median estimates

of macroeconomic (m0.5
t ) uncertainty along with 70 percent credible sets, for the periods 1960-

2019 (top) and January-June 2020 (bottom). Historically, from the start of the sample through

December 2019, the width of the credible set averaged 0.2 (compared to an average level of the

uncertainty index of 1), with the range commonly rising with spikes in uncertainty, commonly

around recessions. Over this period, the width of the credible set peaked at 0.85 in October 2008.

As evidenced in the lower panel of Figure 5, the width of the 70 percent credible set has been much

greater over the COVID period, peaking at 4.7 in May 2020 (the BVAR-SVF-M yields a much

wider credible set around its posterior median estimate of macroeconomic uncertainty). Of course,

with additional data as time moves forward and two-sided smoothing, the precision of uncertainty

estimates for the first half of 2020 may improve substantially, but by how much remains to be seen.

For comparison to other measures of uncertainty, the bottom panel of Figure 4 provides the VIX

measure of uncertainty (through June 2020) and current estimates of macroeconomic and financial

uncertainty based on the Jurado, Ludvigson, and Ng (2015) model (through June 2020, posted by

Professor Ludvigson). The JLN estimates show a significant rise, with macroeconomic uncertainty

increasing 39 percent from December 2019 to a peak in March 2020 and financial uncertainty

increasing 32 percent over the same period. These increases are of course much more modest than

those evident from our models. However, that is in keeping with historical patterns, in which our

uncertainty estimates rise more than those of JLN around recessions (of course, this need not mean

that our uncertainty measures yield larger impacts on the economy, since the greater sensitivity of

the uncertainty measure to the cycle will get reflected in smaller response coefficients). The greater

variability of our measures could stem from the various differences in our modeling approach as

11



compared to JLN, including the fact that, in our one-step approach to estimating uncertainty and

its effects on the economy, uncertainty responds directly to fluctuations in the economy, through

the inclusion of yt−1 in the time series process of the factors.10 The VIX measure of uncertainty

displays a sharper rise, with the VIX more than tripling from January to March before drifting

down over the following few months. As of July, this measure remains at an elevated level but

not outside of the norms of previous recessions. Caggiano, Castelnuovo, and Kima (2020) use

estimates of a small VAR through April 2019 and scale up the size of a shock to the VIX to gauge

(via impulse responses) the effects of the rise in uncertainty on world output during the pandemic,

concluding that the effects are sizable. Altig, et al. (2020) review and compare movements of a

range of measures of uncertainty before and during the pandemic.

4.2 Impulse responses

To provide a basic assessment of the effects of macroeconomic and financial uncertainty, for both

the baseline CCM model and our outliers-robust extension, we compute impulse response functions

for each of the 5000 retained draws of the VAR’s parameters and latent states and report the

posterior medians and 70 percent credible sets of these functions. To save space, for a given shock

of the size of one standard deviation, we report response estimates for both models, using (i) black

lines and gray shaded regions for posterior medians and 70 percent credible sets from the BVAR-

SVF-M-O specification and (ii) red and blue lines for posterior medians and 70 percent credible

sets from the BVAR-SVF-M specification. For similar reasons, the charts below provide results

for a subset of selected variables. Note that, although the models are estimated with standardized

data, for comparability to previous studies the impulse responses are scaled and transformed back

to the units typical in the literature. We do so by using the model estimates to: (1) obtain impulse

responses in standardized, sometimes (i.e., for some variables) differenced data; (2) multiply the

impulse responses for each variable by the standard deviations used in standardizing the data before

model estimation; and (3) accumulate the impulse responses of step (2) as appropriate to get back

impulse responses in levels or log levels. Accordingly, the units of the reported impulse responses

are percentage point changes (based on 100 times the log levels for variables in logs or rates for

variables not in log terms).

In broad terms, the impulse response estimates from the two models reported in Figures 6

(macroeconomic uncertainty) and 7 (financial uncertainty) are comparable and qualitatively the

10In contrast, the JLN measures of uncertainty are obtained as simple averages of conventional stochastic volatility
estimates obtained from simple autoregressive models (augmented to include factor indexes of the economy) of each
series, without direct feedback of economic conditions to volatility.
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same as those discussed in detail in CCM.11 As shown in the penultimate panel of Figure 6, the shock

to log macro uncertainty produces a rise in uncertainty that gradually dies out. Economic activity

and the labor market decline in response, with indicators such as consumer spending, housing

starts and permits, manufacturing and trade sales, the ISM index of new orders, employment, and

hours worked falling. Despite the significant decline of economic activity in response to the macro

uncertainty shock, there doesn’t appear to be evidence of a broad decline in prices. The PPI for

finished goods declines steadily, but the response is estimated imprecisely. Consumer prices as

captured by the PCE price index instead rise but also fail to display a significant change. Overall,

as noted in CCM, this picture of price responses is in line with New Keynesian models, which

predict a small effect of uncertainty on inflation due to sticky prices (and possibly wages). In the

face of this sizable deterioration in the real economy and in the absence of much movement in

prices, the federal funds rate gradually falls.12 The responses of financial indicators to the shock to

macro uncertainty are — collectively speaking — muted and imprecisely estimated. One exception

is the spread between the Baa and 10-year Treasury yields, which displays a modest, but persistent

and significant, rise, with a hump-shaped pattern. Aggregate stock prices and returns, as captured

by the S&P 500 price index and the CRSP excess returns, decline but fail to display significant

changes.

Similarly, the estimates of responses to a financial uncertainty shock in Figure 7 are broadly

similar across models and similar to the estimates of CCM. As reported in the last panel, the shock

to log financial uncertainty produces a rise in uncertainty that gradually dies out. The financial

uncertainty shock affects economic activity much as does a shock to macroeconomic uncertainty.

In particular, the financial uncertainty shock depresses economic activity and leads to reductions

in the federal funds rate and a rise (and eventual decline) in the credit spread. The most notable

difference with respect to results for a macro uncertainty shock is that a financial uncertainty

shock leads to a sizable falloff in aggregate stock prices and returns. The response of the S&P500

price level is negative and significant. The CRSP excess returns display a negative jump and then

gradually recover. However, the responses of the risk factors included in the model are insignificant.

Focusing on a comparison of the BVAR-SVF-M and BVAR-SVF-M-O estimates, the most

11One difference in these results as compared to those in CCM is that, in these estimates, a shock to macro
uncertainty does not yield a significant rise in financial uncertainty, whereas a shock to financial uncertainty produces
a significant rise in macro uncertainty; the pattern was reversed in the CCM estimates. This appears to reflect the
information in the data since the end of the CCM sample in mid-2014. In general, macro and financial uncertainty
are significantly correlated, and causal responses of one to the other can be difficult to disentangle.

12Estimates of uncertainty and impulse responses obtained with the shadow rate of Wu and Xia (2016) replacing
the funds rate are very similar.
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noticeable difference is that, particularly in the case of a macro uncertainty shock, credible sets are

typically wider for the BVAR-SVF-M estimates than for the BVAR-SVF-M-O estimates (although

not shown, the BVAR-SVF-M sets are also typically wider than the original impulse response

estimates of CCM). For example, in the case of the employment response to a macro uncertainty

shock, at the 24-month horizon, the 70 percent credible set has a width of 0.36 percentage point with

the BVAR-SVF-M model and 0.24 percentage point with the BVAR-SVF-M-O model. These wider

bands for economic variables reflect a wider band around the response of macro uncertainty to its

shock in the BVAR-SVF-M estimates as compared to the outliers-robust estimates. In any event,

posterior medians are similar across the models, although estimated magnitudes of responses to

the macro shock seem to be a little smaller with the BVAR-SVF-M-O model than with the BVAR-

SVF-M model (which looks to be due to the fact that the uncertainty shock dissipates a little faster

with the former than with the latter).

4.3 Historical decompositions

To assess the specific role of fluctuations in uncertainty shocks in the economy and financial markets

in the period of the COVID-19 pandemic, we estimate historical decompositions. In a standard

linear model, a historical decomposition of the total s-steps-ahead prediction error variance of

yt+s can be easily obtained by constructing a baseline path (forecast) without shocks, and then

constructing the contribution of shocks. With linearity, the sums of the shock contributions and

the baseline path equal the data. In our case, the usual decomposition cannot be directly applied

because of interactions between Λt+s and εt+s: Shocks to log uncertainty affect the forecast errors

through Λt+sεt+s, and, over time, shocks εt+s affect Λt+s through the response of uncertainty to

lagged y. CCM used a decomposition of the total contribution of the shocks into three parts: (i) the

direct contributions of the uncertainty shocks ut+s to the evolution of y; (ii) the direct contributions

of the VAR “structural” shocks εt+s to the path of y taking account of movements in Σt+s that arise

as uncertainty responds to y but abstracting from movements in Σt+s due to uncertainty shocks;

and (iii) the interaction between shocks to uncertainty and the structural shocks εt+s.

To be more specific, consider a simple one-factor model with lag orders of 1, abstracting from

outlier states: {
yt = Πyt−1 + Γ1mt + Γ2mt−1 + vt

mt = δyt−1 + γmt−1 + ut
, (6)

where vt and ut are independent, with variances Σt and Φu, respectively. So we can replace vt

above with Σ0.5
t εt, where Σ0.5

t is a shortcut notation for the Cholesky decomposition of Σt and εt

is N(0, In). The one-step-ahead forecast errors are yt+1 − Etyt+1 = Σ0.5
t+1εt+1 + Γ1ut+1. Now let
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Σ̂t+s|t denote the future error variance matrix that would prevail in the absence of future shocks

to uncertainty. This would be constructed from forecasts of future uncertainty accounting for

movements in y driven by ε shocks and the path of idiosyncratic volatility terms (incorporating

shocks to these terms). The following decomposition can be obtained by adding and subtracting

Σ̂t+1|t terms in the forecast error:

yt+1 − Etyt+1 = Γ1ut+1 + Σ̂0.5
t+1|tεt+1 + (Σ0.5

t+1 − Σ̂0.5
t+1|t)εt+1. (7)

In this decomposition, the first term gives the direct contribution of the uncertainty shock, the

second term gives the direct contribution of the structural shocks to the VAR, and the third term

gives the interaction component. The third term can be simply measured as a residual contribution,

as the data less the direct contributions from the uncertainty shock and the structural shocks to

the VAR.

One complication with this approach is that, in the interaction components, there is not a

good way to separate the roles of aggregate uncertainty and idiosyncratic volatility, because Σt

is the product of such terms containing innovations to aggregate uncertainty and innovations to

idiosyncratic components. Since the terms are multiplicative and not additive, there isn’t a clear

way to isolate the role of aggregate uncertainty from the role of idiosyncratic components. In light

of these complications, and because the interaction effects are empirically much less pronounced

than the direct effects, CCM did not attempt to separate the roles of aggregate uncertainty and

idiosyncratic volatility in the interaction component. CCM’s reported results focused on the more

important contributions from the first two pieces of the decomposition, shocks to uncertainty and

VAR shocks.

In the recent extreme variation in the data, the interaction term of the simple decomposition

drives much of the variation in some variables. Such a pattern of course means that the variation

is difficult to decompose in a meaningfully complete way. However, in this paper, we are primarily

interested in the magnitudes of the contributions of uncertainty shocks. As a result, we simplify

the historical decomposition analysis and focus on just contributions from uncertainty shocks. In

the simple one-step-ahead example, the direct contribution from uncertainty shocks is measured by

just Γ1ut+1; this contribution and contributions at later periods are easily computed.

Figures 8 and 9 provide the estimated contributions from uncertainty shocks (stacked bars),

along with the actual data (black lines), for January 2019 through June 2020. The charts show

the data series (demeaned for simplicity) and the direct contributions of shocks to (separately)

macroeconomic and financial uncertainty. Note that these charts use two scales, with the left for
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the data and the right for the contributions of the uncertainty shocks. The reported estimates are

posterior medians of decompositions computed for each draw from the posterior. In light of space

constraints, the charts provide results for a subset of selected variables.

In the BVAR-SVF-M model’s historical decomposition for 2019-2020, uncertainty shocks ac-

count for some of the sharp data changes that have occurred in recent months. By historical

standards, the contributions are sizable; in fact, for many of the variables, the contributions of un-

certainty shocks are larger in 2020 than during the Great Recession (using results for a 2003-2014

decomposition not reported in the interest of brevity). But in the COVID period, the contributions

of uncertainty shocks are dwarfed by the dramatic size of the total changes. For example, aver-

aged in the months of March and April (the worst months of the pandemic), combined shocks to

macroeconomic and financial uncertainty pulled down employment and consumption by about 15

basis points and industrial production by 60 basis points. Annualized (multiplied by 12), these are

large contributions. But averaged over March and April, the actual growth rates of employment,

consumption, and industrial production (with historical mean growth rates removed) fell by un-

precedented magnitudes of 8, 10, and 9 percent, respectively. Consistent with the impulse response

estimates, shocks to macroeconomic uncertainty are more important to macro variables than are

shocks to financial uncertainty, and the reverse applies for financial variables.

Estimates of the historical decomposition from the BVAR-SVF-M-O model are qualitatively

very similar to those from the BVAR-SVF-M specification of CCM. The main change is that,

with outliers modeled, the estimated contributions of uncertainty shocks are slightly or modestly

reduced compared to the BVAR-SVF-M estimates. For example, averaged in the months of March

and April, combined shocks to macroeconomic and financial uncertainty pulled down employment

by about 10 basis points, consumption by 15 basis points, and industrial production by 50 basis

points. In general, the smaller rise in uncertainty that occurs with the outliers-robust version of

the model would be expected to reduce contributions of uncertainty to this year’s fluctuations in

economic and financial indicators, and the historical decomposition bears that out, with slight to

modest effects.

As sizable as our estimates of the contributions of uncertainty to the COVID downturn are by

historical standards, some research has obtained even larger estimates. Pellegrino, Castelnuovo,

and Caggiano (2020) and Pellegrino, Ravenna, and Zullig (2020) obtain larger effects of an un-

certainty shock using a nonlinear VAR in which uncertainty shocks can have more adverse effects

during recessions than during normal times. In addition, Barrero and Bloom (2020) suggest that
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uncertainty will reduce US GDP growth in 2020 by 2 to 3 percent (on a four-quarter basis); with

data for the first half of the year in hand, private-sector forecasters surveyed by the Wall Street

Journal in mid-September put GDP growth for the year at about -4 percent. These estimated

effects of uncertainty are based on the cross-country methodology of Baker, Bloom, and Terry

(2020), who relate GDP growth to uncertainty as measured by stock market volatility and who

address possible endogeneity by instrumenting with episodes of natural disasters, terrorist attacks,

and political shocks. The difference in magnitudes in their results as compared to ours likely is

at least in part due to methodology and probably less due to the measure of uncertainty. We

say this based on a simple comparison to BVAR estimates (methodology like ours) that measure

uncertainty with stock market volatility (underlying uncertainty measure relied on by Barrero and

Bloom). In unreported results, if we use stock market volatility as the measure of uncertainty and

add it to a conventional BVAR with uncertainty ordered first, the peak effect of the contributions

to shocks to uncertainty is about -2 percentage points for employment, consumption, and industrial

production — sizable but still well short of the peak 15 percent decline seen in the actual data. We

conjecture that their cross-country instrumental variables approach based on historical disasters

boosts the estimated effects.13 Ludvigson, Ma, and Ng (2020) use structural VARs and historical

data on natural disasters to estimate COVID’s effects on the economy and uncertainty. In their es-

timates, treating COVID as a disaster-type shock (and calibrating its immense size) yields declines

in activity indicators like those observed in the data, as well as a rise in economic and financial

uncertainty due to the disaster shock.

In the broader context of uncertainty and its effects, particularly in a period as unusual as that of

the pandemic, we should emphasize that our estimates obtained by Bayesian methods are explicitly

conditional on the model and the data available to date. Over time, as more data become available,

the model’s estimates of uncertainty and contributions to the economic fluctuations of the COVID

period could change. Moreover, there are some respects in which uncertainty could matter in ways

outside the scope of our aggregate model. In particular, uncertainty at a micro level could have

important effects, particularly in the COVID downturn. Some of the uncertainty literature (pre-

COVID) has emphasized the important role of volatility shifts at the micro level (see, e.g., Bloom,

et al. (2018)). Such micro changes need not be captured as aggregate uncertainty in models such as

ours. The subjective uncertainty indicators considered in Altig, et al. (2020) display a sizable rise

in firm-level uncertainty following the COVID outbreak. In addition, Knightian uncertainty may

13Consistent with this, Baker, Bloom, and Terry (2020) obtain smaller estimated effects with a different VAR-based
identification applied to just US data.
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have been particularly important in the months immediately following the pandemic’s outbreak, as

some kinds of economic activity shut down in unprecedented ways.

5 Conclusions

In this paper we measure the effects of the COVID-19 outbreak on macroeconomic and financial

uncertainty, and the consequences of the latter for key economic variables.

We use a large, heteroskedastic vector autoregression (VAR) in which the error volatilities

share two common factors, interpreted as macro and financial uncertainty, in addition to idiosyn-

cratic components. Macro and financial uncertainty are allowed to contemporaneously affect the

macroeconomy and financial conditions, with changes in the common component of the volatilities

providing contemporaneous identifying information on uncertainty.

We also consider an extended version of the model, based on a latent state approach to accom-

modating outliers in volatility, to reduce the influence of extreme observations from the COVID

period.

The estimates we obtain yield very large increases in macroeconomic and financial uncertainty

over the course of the COVID-19 period. These increases have contributed to the downturn in

economic and financial conditions, but with both models, the contributions of uncertainty are

small compared to the overall movements in many macroeconomic and financial indicators. That

implies that the downturn is driven more by COVID-related supply and demand shocks that, at

least with our methodology, are not measured as shocks to aggregate uncertainty. Although our two

models yield qualitatively very similar results, their estimates differ along some clear dimensions.

Including the outlier treatment in the model mitigates the measured rise in macroeconomic and

financial uncertainty and modestly reduces the estimated contributions to recent fluctuations in

economic and financial indicators. Although both sets of estimates are plausible in our judgment,

we are inclined to favor the measures from the outliers-robust model for yielding estimates that

better capture the timing of the pandemic’s outbreak.

18



References

[1] Altig, Dave, Scott Brent Baker, Jose Maria Barrero, Nick Bloom, Phil Bunn, Scarlet Chen,

Steven J. Davis, Brent Meyer, Emil Mihaylov, Paul Mizen, Nick Parker, Thomas Renault,

Pawel Smietanka, and Greg Thwaites (2020), “Economic Uncertainty before and during the

COVID-19 Pandemic,” Federal Reserve Bank of Atlanta Working Paper 2020-9. https://

doi.org/10.29338/wp2020-09.

[2] Baker, Scott R., Nicholas Bloom, and Steven J. Davis (2016), “Measuring Economic Policy

Uncertainty,” Quarterly Journal of Economics 131, 1593-1636. https://doi.org/10.1093/

qje/qjw024.

[3] Baker, Scott R., Nicholas Bloom, and Steven J. Terry (2020), “Using Disasters to Estimate

the Impact of Uncertainty,” manuscript.

[4] Barrero, Jose, and Nick Bloom (2020), “Economic Uncertainty and the Recovery,” manuscript

prepared for the Federal Reserve Bank of Kansas City’s Jackson Hole Symposium.

[5] Bloom, Nicholas (2009), “The Impact of Uncertainty Shocks,” Econometrica 77, 623-685.

https://doi.org/10.3982/ECTA6248.

[6] Bloom, Nicholas, Max Floetotto, Nir Jaimovich, Itay Saporta-Eksten, and Stephen J. Terry

(2018), “Really Uncertain Business Cycles,” Econometrica 86, 1031-1065. https://doi.org/

10.3982/ECTA10927.

[7] Caggiano, Giovanni, Efrem Castelnuovo, and Richard Kima (2020), “The Global Effects Of

Covid-19-Induced Uncertainty,” Economics Letters, forthcoming. https://doi.org/10.1016/

j.econlet.2020.109392.

[8] Carriero, Andrea, Todd E. Clark, and Massimiliano Marcellino (2018), “Measuring Uncertainty

and Its Impact on the Economy,” Review of Economics and Statistics 100, 799-815. https:

//doi.org/10.1162/REST_a_00693.

[9] Carriero, Andrea, Todd E. Clark, Massimiliano Marcellino, and Elmar Mertens (2020), “Ad-

dressing COVID-19 Outliers in BVARs with Stochastic Volatility,” manuscript.

[10] Jacquier, Eric, Nicholas G. Polson, and Peter E. Rossi (2004), “Bayesian Analysis of Stochastic

Volatility Models with Fat-Tails and Correlated Errors, Journal of Econometrics 122,185-212.

https://doi.org/10.1016/j.jeconom.2003.09.001.

19



[11] Jurado, Kyle, Sydney C. Ludvigson, and Serena Ng (2015),“Measuring Uncertainty,” American

Economic Review 105, 1177-1216. https://doi.org/10.1257/aer.20131193.

[12] Kim, Sangjoon, Neil Shephard, and Siddhartha Chib (1998), “Stochastic Volatility: Likelihood

Inference and Comparison with ARCH Models,” Review of Economic Studies 65, 361-393.

https://doi.org/10.1111/1467-937X.00050.

[13] Koop, Gary, and Dimitris Korobilis (2014), “A New Index of Financial Conditions,” European

Economic Review 71, 101-116. https://doi.org/10.1016/j.euroecorev.2014.07.002.

[14] Lenza, Michele and Primiceri, Giorgio E. (2020), “How to Estimate a VAR after March 2020,”

NBER Working Paper No. 27771. https://doi.org/10.3386/w27771.

[15] Ludvigson, Sydney C., Sai Ma, and Serena Ng (2020), “Covid-19 and the Costs of Deadly

Disasters,” manuscript.

[16] McCracken, Michael W., and Serena Ng (2016), “FRED-MD: A Monthly Database for

Macroeconomic Research,” Journal of Business and Economic Statistics 34, 574-589. https:

//doi.org/10.1080/07350015.2015.1086655.

[17] Pellegrino, Giovanni, Efrem Castelnuovo, and Giovanni Caggiano (2020), “Uncertainty and

Monetary Policy during Extreme Events,” Aarhus University Economics Working Paper 2020-

11.

[18] Pellegrino, Giovanni, Federico Ravenna, and Gabriel Zullig (2020), “The Impact of Pessimistic

Expectations on the Effects of Covid-19-Induced Uncertainty in the Euro Area,” Center for

Economic Policy Research Covid Economics 18, 15 May 2020, 196-221.

[19] Stock, James H., and Mark W. Watson (2016), “Core Inflation and Trend Inflation,” Review

of Economics and Statistics 98, 770-784. https://doi.org/10.1162/REST_a_00608.

[20] Stock, James H., and Mark W. Watson (2006), “Forecasting with Many Predictors” (pp.

515-554), in Graham Elliott, Clive W.J. Granger, and Allan Timmermann, eds., Handbook

of Economic Forecasting, Vol. 1 (Amsterdam: North Holland). https://doi.org/10.1016/

S1574-0706(05)01010-4.

[21] Wu, Jing Cynthia, and Fan Dora Xia (2016), “Measuring the Macroeconomic Impact of Mon-

etary Policy at the Zero Lower Bound,” Journal of Money, Credit, and Banking 48, 253-291.

https://doi.org/10.1111/jmcb.12300.

20



Table 1: Variables in the baseline model

Macroeconomic variables Financial variables
All employees: total nonfarm (∆ ln) S&P 500 (∆ ln)
Industrial production index (∆ ln) Spread, Baa-10y Treasury
Capacity utilization: manufacturing (∆) Excess return
Help wanted to unemployed ratio (∆) SMB FF factor
Unemployment rate (∆) HML FF factor
Real personal income (∆ ln) Momentum factor
Weekly hours: goods-producing R15 R11
Housing starts (ln) Industry 1 return
Housing permits (ln) Industry 2 return
Real consumer spending (∆ ln) Industry 3 return
Real manuf. and trade sales (∆ ln) Industry 4 return
ISM: new orders index Industry 5 return
Orders for durable goods (∆ ln)
Avg. hourly earnings, goods-producing (∆2 ln)
PPI, finished goods (∆2 ln)
PPI, commodities (primary metals, ∆2 ln)
PCE price index (∆2 ln)
Federal funds rate (∆)

Note: For those variables transformed for use in the model, the table indicates the trans-
formation in parentheses following the variable description.
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Figure 1: Posterior means of outlier states, BVAR-SVF-M-O
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Figure 2: Posterior means of contributions to percent changes in volatilities, measured as ∆ ln λ̃
0.5
i,t ,

BVAR-SVF-M-O
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Figure 2: Continued, means of contributions to percent changes in volatilities, measured as ∆ ln λ̃
0.5
i,t ,

BVAR-SVF-M-O
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Figure 3: Posterior means of contributions to percent changes in volatilities in the Great Recession,

measured as ∆ ln λ̃
0.5
i,t , BVAR-SVF-M-O
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Figure 3: Continued, means of contributions to percent changes in volatilities in the Great Reces-

sion, measured as ∆ ln λ̃
0.5
i,t , BVAR-SVF-M-O
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Macroeconomic uncertainty
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Figure 4: The top two panels report posterior median estimates of the macroeconomic (m0.5
t ,

top) and financial uncertainty (f0.5t , middle) factors from the BVAR-SVF-M and BVAR-SVF-M-O
models. The bottom panel provides the uncertainty estimates of Jurado, Ludvigson, and Ng (2015)
and the VIX measure of uncertainty. Shaded regions denote periods between NBER business cycle
peaks and troughs.
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Macroeconomic uncertainty, BVAR-SVF-M-O spec., with credible set

median 15%-ile 85%-ile
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Figure 5: The panels report BVAR-SVF-M-O posterior median estimates of macroeconomic (m0.5
t )

uncertainty along with 70 percent credible sets, for the periods 1960-2019 (top) and January-June
2020 (bottom). Shaded regions denote periods between NBER business cycle peaks and troughs.
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Figure 6: Impulse response estimates for shock to macroeconomic uncertainty. The black line and
gray shaded region provide posterior medians and 70 percent credible sets from the BVAR-SVF-
M-O specification. The red and blue lines provide posterior medians and 70 percent credible sets
from the BVAR-SVF-M specification.
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Figure 7: Impulse response estimates for shock to financial uncertainty. The black line and gray
shaded region provide posterior medians and 70 percent credible sets from the BVAR-SVF-M-O
specification. The red and blue lines provide posterior medians and 70 percent credible sets from
the BVAR-SVF-M specification.
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Figure 8: Historical decomposition (posterior medians) with contributions from just uncertainty
shocks, January 2019-May 2020, BVAR-SVF-M. Chart is two-scale, with scale for actual data on
the left side and scale for estimation contributions on the right.31
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Figure 9: Historical decomposition (posterior medians) with contributions from just uncertainty
shocks, January 2019-May 2020, BVAR-SVF-M-O. Chart is two-scale, with scale for actual data
on the left side and scale for estimation contributions on the right.32
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