
1 

 

Supplementary Appendix to 

Real-Time Density Nowcasts of U.S. Inflation: A Model-Combination Approach* 

 

 

Edward S. Knotek II 

Federal Reserve Bank of Cleveland 

 

Saeed Zaman 

Federal Reserve Bank of Cleveland 

University of Strathclyde, UK 

 

October 20, 2020 

 

 

 

A.1.  Description of Mixed-Frequency Models and Simulation Procedures 

A.1.1.  MIDAS Model 

Following Knotek and Zaman (2017, KZ), a general representation of an ADL-MIDAS 

model with leads takes the following form,  

𝜋𝑡+ℎ =  𝛼(ℎ) +  ∑ 𝜒𝑗+1,(ℎ)
𝑃(𝑀)−1
𝐽=0  𝜋𝑡−𝑗 +  ∑ 𝛾𝑗+1,(ℎ)

𝑃(𝑀)−1
𝐽=0  𝑍𝑡−𝑗 +

 𝛽ℎ  ∑ 𝜔𝑃(𝐻𝐹)−𝑗
𝑃(𝐻𝐹)−1
𝐽=0 (𝜃(ℎ)

𝐻𝐹) 𝑋𝑃(𝐻𝐹)−𝑗,𝑡+1
𝐻𝐹 +  𝑒𝑡+ℎ                                (1) 

where Z refers to other monthly variables; P(M) refers to the number of lags of the monthly 

regressors (we set to 1); and P(HF) refers to the number of high-frequency observations, 

𝑋1,𝑡+1
𝐻𝐹 ,….., 𝑋𝑃(𝐻𝐹),𝑡+1

𝐻𝐹  in month t+1 (i.e., the target nowcast month).  The notation (h) indicates 

that the coefficients are independently estimated for each forecast horizon (h).  In nowcasting 

monthly inflation, h will range from 1 to 2, whereas in nowcasting quarterly inflation, h will 

range from 1 to 4.  An assumption of  ∑ 𝜔𝑃(𝐻𝐹)−𝑗
𝑃(𝐻𝐹)−1
𝐽=0 (𝜃(ℎ)

𝐻𝐹) = 1 helps identify 𝛽ℎ. 

 

Density construction: Drawing errors from the normal distribution 

Let T be the total number of observations (i.e., the length of the estimation window). 

1. For h=1,..,4 
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2. Estimate the model specified in equation (1) using nonlinear least squares to obtain the 

parameter estimates �̂�(ℎ), �̂�(ℎ), 𝛾(ℎ), �̂�(ℎ)(𝜃(ℎ)) 

3. Based on the estimates in the previous step, compute the sequence of residuals �̂�𝑡+ℎ 

4. For 𝑑=1,….,𝐷 

a. Sample 𝑒𝑡+ℎ
∗  from the empirical distribution of 𝑒𝑡+ℎ  ∼ 𝑁(0, 𝑣𝑎𝑟(𝑒𝑡+ℎ̈ )), where 𝑒𝑡+ℎ̈ =

 (
𝑇

𝑇−𝑘
)

0.5

�̂�𝑡+ℎ  and 𝑘 is the number of regressors in eq. (1). 

b. Generate a simulated series 𝜋𝑡+ℎ
∗   using 

𝜋𝑡+ℎ
∗ (𝑑)

=  �̂�(ℎ) + ∑ �̂�𝑗+1,(ℎ)
𝑃(𝑀)−1
𝐽=0  𝜋𝑡−𝑗 +  ∑ 𝛾𝑗+1,(ℎ)

𝑃(𝑀)−1
𝐽=0  𝑍𝑡−𝑗 +

 �̂�(ℎ) ∑ 𝜔𝑃(𝐻𝐹)−𝑗
𝑃(𝐻𝐹)−1
𝐽=0 (𝜃(ℎ)

𝐻𝐹) 𝑋𝑃(𝐻𝐹)−𝑗,𝑡+1
𝐻𝐹 +  𝑒𝑡+ℎ

∗     

c. REPEAT 

5. The empirical distribution {𝜋𝑡+ℎ
∗ }𝑑=1

𝐷  constitutes the estimate of the density nowcast 

corresponding to the forecast horizon, ℎ  

 

Note that, in step 4a above, the draws are obtained from a distribution of modified 

residuals because the variance of the modified residuals is a better estimate of the true variance 

of the least squares estimate of the error term 𝑒𝑡+ℎ in equation (1).  To further explain why this is 

the case, recall that the variance of the residuals �̂�𝑡+ℎ is the sum of the squared residuals divided 

by T, whereas the variance of the least squares estimate should be divided by T−k, where k is the 

number of regressors in the regression.  Therefore, the original series of residuals are rescaled to 

correct the variance (see Davidson and MacKinnon, 2006). 

This simple procedure accounts for shock uncertainty only; i.e., it does not account for 

the parameter uncertainty. However, in preliminary exercises, the difference in the density 

accuracy between this procedure and a bootstrapping procedure that also takes into account 

parameter uncertainty was very small. 

 

A.1.2.  DFM Model 

Our implementation of the mixed-frequency DFM follows Modugno (2013) and KZ.  

The dynamic factor model takes the general form: 

, ~ (0, )t t t ty Cf N            (2) 
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where t refers to the trading-day frequency, yt is a vector of observations, C is a block diagonal 

matrix of factor loadings, εt is a vector of idiosyncratic components, and ft is a vector of latent 

common factors following VAR dynamics: 

1( ) , ~ (0, )t t t tBf A L f u u N Q  ,      (3) 

where B and A(L) are matrices governing factor dynamics, some of which may be time-varying, 

and ut is a vector of residuals.   

With monthly, weekly, and daily data, [ , , ]'M W D

t t t ty y y y , we have three corresponding 

factors, [ , , ]'M W D

t t t tf f f f , each of dimension r×1.  The monthly factor(s) M

tf  and the weekly 

factor(s) W

tf  are a function of the daily factor(s) D

tf .  Thus equations (2) and (3) can be written 

as: 

0 0

0 0

0 0

M M M

t M t t

W W W

t W t t

D D D

t D t t

y C f

y C f

y C f







      
      

       
            

       (4) 

and 

1

1

1

1 0 1 0 0 0

0 1 1 0 0 0

0 0 1 0 0

M M M

t t t

W W W

t t t

D D D

t D t t

f f

f f

f A f u







         
        

           
                

     (5) 

The matrices 
MC , 

WC , and DC  are the loadings for the monthly, weekly, and daily variables.  

M

t  and W

t are time-varying coefficients: M

t is equal to zero the day after the release of the 

monthly data and is equal to one elsewhere; similarly, W

t is equal to zero the day after the 

release of the weekly data and is equal to one elsewhere.  

Assuming that the monthly variables and weekly variables in our system at any time t 

represent a stock (i.e., a snapshot), accordingly the monthly first difference (or growth rate) and 

weekly first difference (or growth rate) of those variables can be formed by summing up their 

respective daily first differences (or growth rates).   

To produce forecasts far into the future, the daily factors are forecast via the transition 

equation (5) and are translated to daily nowcasts and aggregated to weekly and monthly 

nowcasts via equation (4).  Following Modugno (2013), we estimate the model with the 

expectation-maximization (EM) algorithm as detailed in Bańbura and Modugno (2014).   
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Density construction: Standard bootstrapping procedure 

Our procedure closely follows the factor model bootstrapping procedure detailed in Aastveit et 

al. (2014). 

Let T be the number of observations (i.e., the length of the estimation window). 

1. Estimate the model specified in equations (2) and (3) to obtain parameter estimates �̂�(0), 

�̂�(0), �̂�(0), �̂�(0) , Σ̂(0), f̂ (0).  Let �̂� = �̂�(0), �̂� = �̂�(0), �̂� = �̂�(0), �̂� = �̂�(0), and Σ̂ = Σ̂(0). 

2. For 𝑑=1,….,𝐷, do the following 

a. Simulate draws 𝑢𝑡
∗ from the empirical distribution of 𝑢𝑡  ∼ 𝑁(0, �̂�) 

b. Generate bootstrap series 𝑓𝑡
∗ using �̂� 𝑓𝑡

∗ = �̂�(𝐿) 𝑓𝑡−1
∗ +  𝑢𝑡

∗   where 𝑢𝑡
∗ is obtained in the 

previous step 

c. Simulate draws 𝜀𝑡
∗ from the empirical distribution of 𝜀𝑡  ∼ 𝑁(0, Σ̂) 

d. Generate bootstrap series 𝑦𝑡
∗ using 𝑦𝑡

∗ = �̂� 𝑓𝑡
∗ +  𝜀𝑡

∗    where 𝜀𝑡
∗ and 𝑓𝑡

∗ are obtained in the 

previous two steps. 

e. Using 𝑦𝑡
∗ re-estimate the model in equations (2) and (3) to obtain an updated set of 

parameter and factor estimates, �̂�(𝑑), �̂�(𝑑), �̂�(𝑑) , Σ̂(𝑑), f̂ (𝑑). Set �̂� = �̂�(𝑑), �̂� = �̂�(𝑑), �̂� =

�̂�(𝑑), �̂� = �̂�(𝑑), and Σ̂ = Σ̂(𝑑) 

f. Based on the parameter and factor estimates obtained in the previous step construct 

forecasts of factors via equation (3), which are then aggregated up to produce nowcasts 

(and forecasts) for monthly inflation, 𝜋𝑡+ℎ
∗ (𝑑)

 via equation (2). 

g. REPEAT 

3. The empirical distribution {𝜋𝑡+ℎ
∗ }𝑑=1

𝐷  constitutes the estimate of the density nowcast 

corresponding to the forecast horizon, ℎ  

 

A.1.3.  DMS Model 

As discussed in the body of the paper, the DMS model is essentially a collection of 

univariate and multivariate regressions applied to disaggregate components and aggregate 

inflation.  To appropriately account for uncertainty, we devise two separate bootstrapping 

algorithms for univariate and multivariate formulations.  The difference between these two 

algorithms is only slight but it helps improve the density accuracy of monthly inflation.   
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We first describe the general-purpose bootstrap algorithm for the multivariate regression 

followed by the description for the univariate regression. 

A general representation for a multivariate regression can be written as follows, 

𝑦𝑡 =   𝛽0 +  𝛼𝑋𝑡 + 𝜀𝑡       𝜀𝑡  ∼ 𝑁(0, 𝜎2)                 (6) 

Assume that �̂�0, �̂�, �̂�2 are the OLS estimates obtained through the estimation of equation (6) over 

the sample 1,…,T.  𝜀�̂� are the least squares residuals with mean 0 and variance �̂�2. 

 

Density construction, algorithm 1: Wild block bootstrap for density forecasts 

For 𝑑=1,….,𝐷 do the following. 

1. Construct a transformed series of residuals {𝜀�̈�}𝑡=1
𝑇  from the OLS residuals {𝜀�̂�}𝑡=1

𝑇 , where 

𝜀�̈� = ℎ(𝜀�̂�)𝑢𝑡 and 𝑢𝑡 ∼ 𝑁(0,1).  ℎ is a transformation function that modifies the original least 

squares residuals to correct them for possible heteroscedasticity.  Various choices for ℎ have 

been suggested in the literature.  Following Chernick and LaBudde (2011, Ch. 6, Section 

6.6), we set  

  ℎ(𝜀�̂�) =  
�̂�𝑡

1−𝐻
    where 𝐻 = 𝑋(𝑋′𝑋)−1𝑋′ 

We also tried ℎ(𝜀�̂�) =  
�̂�𝑡

(1−𝐻)1/2, another widely used transformation.  

2. Sampling from 𝜀̈: 

a. To correct for possible serial correlation (following Aastveit et al., 2014), we draw blocks 

of consecutive errors from 𝜀̈.  We define the block size, 𝑏𝑠𝑖𝑧𝑒 = 4; it is common to set it 

greater than or equal to the forecast horizon; T is the number of  

observations; and 𝑏𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑐𝑒𝑖𝑙(
𝑇

𝑏𝑠𝑖𝑧𝑒
), is an integer that denotes the number of non-

overlapping blocks of consecutive errors. 

b. For 𝑙=1,…,𝑏𝑠𝑖𝑧𝑒 and j=1,…,𝑏𝑛𝑢𝑚𝑏𝑒𝑟 construct the bootstrap sample for 𝑦∗ 

𝑦(𝑗−1)𝑏𝑠𝑖𝑧𝑒+𝑙
∗ =   �̂�0 +  �̂�𝑋(𝑗−1)𝑏𝑠𝑖𝑧𝑒+𝑙 +  𝜀(𝑗−1)𝑏𝑠𝑖𝑧𝑒+𝑙

∗  

where 𝜀(𝑗−1)𝑏𝑠𝑖𝑧𝑒+𝑙
∗ =  𝜀(̈𝑗−1)𝑏𝑠𝑖𝑧𝑒+𝑙  ⋅  𝛿𝑗, and 𝛿𝑗 is set as a Rademacher variable, following 

Davidson and Flachaire (2008) and Aastveit et al (2014): 

𝛿𝑗 = {
+1, 𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  0.5
−1, 𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  0.5
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We also experimented with 𝛿𝑗  ~ 𝑁(0,1), but doing so slightly worsened the accuracy of 

the density forecasts. 

3. Based on the bootstrap sample 𝑦∗ (constructed in the previous step), re-estimate the model in 

equation (6) to obtain updated estimates �̂�0
(𝑑)

, �̂�(𝑑), �̂�2(𝑑)
. 

4. Use �̂�0
(𝑑)

 and �̂�(𝑑) in equation (6) to generate iterative forecasts, �̂�𝑡+ℎ
(𝑑)

 up to h periods ahead. 

(We also experimented with a modified step 4: when generating iterative forecasts �̂�𝑡+ℎ
(𝑑)

 we 

drew from 𝜀∗~ 𝑁(0, 𝑣𝑎𝑟(𝜀∗)) for each h.  This alternative made no difference to the overall 

results.) 

5. REPEAT 

6. The empirical distribution of {�̂�𝑡+ℎ}𝑑=1
𝐷  constitutes our estimate of the h-step-ahead density. 

 

Next, we describe the algorithm that we apply to the univariate AR regressions.  A 

general representation for a univariate AR regression is: 

 𝑦𝑡 =   𝛽0 +  ∑ 𝛼𝑗
𝑃
𝑗=1 𝑦𝑡−𝑗 +  𝜀𝑡       𝜀𝑡  ∼ 𝑁(0, 𝜎2)                (7) 

Assume that �̂�0, [�̂�𝑗]
𝑗=1

𝑃
, �̂�2 are the OLS estimates obtained through the estimation of equation 

(7) over the sample consisting of 1,…,T observations.  𝜀�̂� are the least squares residuals with 

mean 0 and variance �̂�2. 

 

Density construction, algorithm 2: Parametric bootstrap for density forecasts 

For 𝑑=1,….,𝐷 do the following. 

1. Construct a transformed series of residuals {𝜀�̈�}𝑡=1
𝑇  from the residuals {𝜀�̂�}𝑡=1

𝑇 , where 𝜀�̈� =

 (
𝑇

𝑇−𝑘
)

0.5

𝜀�̂� and 𝑘 is the number of regressors, in this case 𝑘 = 𝑃 + 1; P is the number of lags 

of the dependent variable.  We also experimented with 𝜀�̈� = ℎ(𝜀�̂�)𝑢𝑡 and 𝑢𝑡  ∼ 𝑁(0,1) but 

this produced inferior nowcasts. 

2. Sample a sequence of {𝜀∗}𝑡=1
𝑇   from 𝜀̈ ~ 𝑁(0, 𝑣𝑎𝑟(𝜀̈)) and then construct a bootstrap sample 

of {𝑦∗}𝑡=1
𝑇  using 

𝑦𝑡
∗ =   �̂�0 +  ∑ �̂�𝑗

𝑃

𝑗=1

𝑦𝑡−𝑗
∗ + 𝜀𝑡

∗ 
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3. Based on the bootstrap sample 𝑦∗ re-estimate the model in equation (7) to obtain updated 

estimates �̂�0
(𝑑)

, [�̂�𝑗
(𝑑)]

𝑗=1

𝑃
  

4. Use �̂�0
(𝑑)

, [�̂�𝑗
(𝑑)]

𝑗=1

𝑃
 in equation (7) to iteratively generate forecasts, �̂�𝑡+ℎ

(𝑑)
 up to h periods 

ahead.  (We also experimented with a modified step 4: when generating iterative forecasts 

�̂�𝑡+ℎ
(𝑑)

 we draw from 𝜀̈ ~ 𝑁(0, 𝑣𝑎𝑟(𝜀̈))  for each h.  This alternative made no difference to the 

overall results.) 

5. REPEAT 

6. The empirical distribution of {�̂�𝑡+ℎ}𝑑=1
𝐷  constitutes our estimate of the h-step-ahead density. 

             

Using the same notation as in KZ, the general representation of the DMS model for 

monthly headline (or core) inflation is 

𝐴𝑠(𝑡) 𝒁𝒕 =  𝐵𝑠(𝑡) +  𝐶𝑠(𝑡)𝑿𝒕 + ∑ 𝐷𝑗,𝑠(𝑡)𝒁𝒕−𝒋
𝐽
𝑗=1 +  𝜀𝑠(𝑡)                              (8) 

where Zt is an 1n  vector of aggregates, Xt is an 1m  vector of disaggregates that are 

informative over Zt, and ( ) ~ ( , )s t Nε 0 Σ .  The coefficient matrices A, B, C, and Dj are n n , 

1,n  n m , and n n , respectively, and are allowed to vary over time depending on the 

available information set, denoted s(t); in particular, C and Dj measure the weights put on the 

disaggregates and lagged aggregates, respectively.   

 

Nowcasting core inflation 

 Let 
Core CPI Core PCE[ , ]'t t t Z   and t X 0  in equation (8).  We specify two possible 

regression specifications for core inflation.  The first one is a univariate AR, and the second is a 

bridge equation (i.e., multivariate regression), which regresses core CPI on core PCE and a 

constant.  Conditional on the available information, equation (8) reduces to either a univariate 

AR or a combination of a univariate AR and bridge equation. 

Univariate AR: 𝜋𝑡
𝐶𝑜𝑟𝑒 =   𝛽0 +  ∑ 𝛼𝑗

𝑃
𝑗=1 𝜋𝑡−𝑗

𝐶𝑜𝑟𝑒 +  𝜀𝑡.   

Bridge equation: 𝜋𝑡
𝐶𝑜𝑟𝑒𝑃𝐶𝐸 =   𝛾0 +  𝜃 𝜋𝑡

𝐶𝑜𝑟𝑒𝐶𝑃𝐼 +  𝑢𝑡 . 

In cases where we have an additional monthly release of core CPI compared with core 

PCE, and only core PCE remains to be nowcasted: (1) The forecasts of core CPI are produced 



8 

 

using a univariate AR, and algorithm 2 is used to produce density forecasts.  (2) The nowcast of 

core PCE is produced using a bridge regression.  The forecasts up to h steps ahead are produced 

using a univariate regression that treats the nowcast from a bridge regression as an initial value.  

To produce density estimates (nowcasts and forecasts), algorithm 2 is used.  In all other cases, 

both core CPI and core PCE are nowcasted (and forecasted) using a univariate AR model.  The 

density estimates are computed based on algorithm 2. 

 

Nowcasting food inflation 

Nowcasts for food inflation are produced and used to nowcast headline inflation in all 

cases except: (1) when we are unable to produce a nowcast for gasoline inflation, and (2) when 

we have an additional reading for PCE inflation (𝜋𝑃𝐶𝐸) compared to CPI inflation (𝜋𝐶𝑃𝐼).  

Similar to core PCE, we adopt a parsimonious approach to produce nowcasts of food inflation by 

simply estimating a univariate AR, 

𝜋𝑡
𝑓𝑜𝑜𝑑

=   𝛽0 +  ∑ 𝛼𝑗

𝑃

𝑗=1

𝜋𝑡−𝑗
𝑓𝑜𝑜𝑑

+ 𝜀𝑡 

Density nowcasts (and forecasts) are produced using algorithm 2. 

 

Nowcasting gasoline inflation 

Following KZ, we generate nowcasts (and forecasts) for gasoline inflation based on the 

availability of weekly gasoline prices and daily oil prices.  If weekly gasoline prices are available 

in the current month, these form the basis for that month’s gasoline inflation nowcast.  We use a 

daily random walk in oil prices to extend (i.e., forecast) the oil price series by one additional 

month.  If oil price data or a forecast for oil prices is available for a month but gasoline prices are 

not available from within that month, then we produce nowcasts or forecasts for gasoline 

inflation (�̂�𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒) via a two-stage regression procedure (see KZ for details).  In the first stage, 

a longer-run relationship between monthly gasoline prices and monthly oil prices is assumed via 

the following regression: 

Gasoline (NSA) Oil

1 1 1, 1t t tP P e             (9) 
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Denote �̃�𝑡−1
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒(𝑁𝑆𝐴)

 as the fitted monthly gasoline prices obtained by estimating equation (9).  

In the second stage, we estimate an error correction model that uses the lagged gap between 

gasoline prices and their predicted (longer-run) values obtained in the first stage via the 

following regression: 

 Gasoline (NSA) Oil Gasoline (NSA) Gasoline (NSA)

1 1 2 2 2, 1t t t t tP b P c P P e                   (10) 

Using the estimated coefficients in equations (9) and (10) and iterating forward equations (9) and 

(10) we generate �̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒(𝑁𝑆𝐴)

 and Δ�̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒(𝑁𝑆𝐴)

 and in turn estimates of �̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒(𝑁𝑆𝐴)

.  The 

estimates are seasonally adjusted to produce �̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒.  The density forecasts are produced by 

applying algorithm 1 sequentially to equations (9) and (10).  For each simulation d, 

�̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒(𝑁𝑆𝐴),𝑑

 is seasonally adjusted to obtain the corresponding �̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒,𝑑

. 

 

Nowcasting headline inflation 

 Let 
CPI PCE[ , ]'t t t Z  and Core CPI Core PCE Food Gasoline, , , 't t t t t      X .  In cases where we 

have an additional release of 𝜋𝑡
𝐶𝑃𝐼 , equation (8) reduces to a bridge equation for 𝜋𝑡

𝑃𝐶𝐸  and a 

univariate AR for 𝜋𝑡
𝐶𝑃𝐼. 

Univariate AR: 𝜋𝑡
𝐶𝑃𝐼 =   𝛽0 +  ∑ 𝛼𝑗

𝑃
𝑗=1 𝜋𝑡−𝑗

𝐶𝑃𝐼 + 𝜀𝑡.   

Bridge equation: 𝜋𝑡
𝑃𝐶𝐸 =   𝛾0 +  𝜃 𝜋𝑡

𝐶𝑃𝐼 +  𝑢𝑡. 

 Density estimates are constructed using algorithm 2.  In cases where we have nowcasts of 

�̂�𝑡
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒, equation (8) reduces to a multivariate regression, 

𝜋𝑡
𝐶𝑃𝐼 =  𝑏1 + 𝑐11𝜋𝑡

𝐶𝑜𝑟𝑒𝐶𝑃𝐼 + 𝑐13𝜋𝑡
𝐹𝑜𝑜𝑑 +  𝑐14𝜋𝑡

𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 +    𝑒𝑡
𝐶𝑃𝐼        (11) 

𝜋𝑡
𝑃𝐶𝐸 =  𝑏2 + 𝑐22𝜋𝑡

𝐶𝑜𝑟𝑒𝑃𝐶𝐸 +  𝑐23𝜋𝑡
𝐹𝑜𝑜𝑑 +  𝑐24𝜋𝑡

𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 +  𝑒𝑡
𝑃𝐶𝐸          (12) 

The density nowcasts (and forecasts) for CPI and PCE inflation are produced by separately 

applying algorithm 1 to equations (11) and (12).  In very few cases, where we lack estimates of 

�̂�𝑡
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 and do not have an additional reading for 𝜋𝑡

𝐶𝑃𝐼, equation (8) reduces to univariate AR, 

𝜋𝑡
𝐶𝑃𝐼 =   𝛽1 +  ∑ 𝛼𝑗

𝐶𝑃𝐼𝑃
𝑗=1 𝜋𝑡−𝑗

𝐶𝑃𝐼 +  𝜀𝑡
𝐶𝑃𝐼          (13) 

𝜋𝑡
𝑃𝐶𝐸 =   𝛽2 +  ∑ 𝛼𝑗

𝑃𝐶𝐸𝑃
𝑗=1 𝜋𝑡−𝑗

𝑃𝐶𝐸 +  𝜀𝑡
𝑃𝐶𝐸       (14) 

The density nowcasts (and forecasts) are generated by separately applying algorithm 2 on 

equations (13) and (14).  
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In all of our simulation procedures, D=500.  Early experimentation suggested that we 

would normally obtain similar results if we instead set D=1000. 

 

A.2.  Mechanics of Density Combination and Graphical illustration 

Assume at time t, we have 𝑖 = 1, … , 𝑀 (potentially different) empirical distributions 

𝑓𝑖,𝑡(𝑦𝑡) for a variable 𝑦𝑡.  We wish to combine them using a given set of 𝑀 weights, 𝑤𝑖,𝑡 .  

Step 1: Looking across all the 𝑀 empirical distributions, 𝑓𝑖,𝑡(𝑦𝑡), determine the (global) 

minimum value and (global) maximum value of 𝑦𝑡.  Denote 𝑥𝑡
𝑚𝑖𝑛 as the minimum value and 

𝑥𝑡
𝑚𝑎𝑥 as the maximum value. 

Step 2: Define a grid 𝑥𝑡  ∈  {𝑥𝑡
𝑚𝑖𝑛, … , 𝑥𝑡

𝑚𝑎𝑥} of S equally spaced intervals such that 

𝑥𝑘−1 <  𝑥𝑘.  

Step 3: Transform each of the 𝑖 = 1, … , 𝑀 empirical distributions 𝑓𝑖,𝑡(𝑦𝑡) to a probability 

density function (pdf), 𝑝𝑖,𝑡(𝑦𝑡) using the grid 𝑥𝑡 as the domain.  The Gaussian kernel function 

(Matlab: ksdensity function) is applied to construct a smoothed 𝑝𝑖,𝑡(𝑦𝑡).  Using the same grid 𝑥𝑡 

to construct each of the 𝑀 pdfs will guarantee that all the pdfs that are to be combined together at 

time t have the same domain; that is, they are all positioned over the same grid. 

Step 4: With all pdfs positioned over the same domain (grid), the combination can be 

achieved by simply adding up the 𝑀 different densities using the corresponding weights 𝑤𝑖,𝑡 (for 

linear combination) or raised to a power of 𝑤𝑖,𝑡 for a log pool combination.  The combined 

density 𝑔𝑡(𝑦𝑡) will also be positioned over the same grid (domain) 𝑥𝑡 as the 𝑀 individual 

densities.  

We set S=500.  Early experimentation suggested that the results were very similar if we 

set S=1000. 

Note that our procedure dynamically adjusts the grid 𝑥𝑡 at each time t.  Alternatively, we 

could just set it to a predefined interval but then the interval has to be wide enough to encompass 

all the individual empirical distributions for all t=1,…,T (i.e., over the evaluation sample).  Given 

the breadth of our analysis, including the number of variables considered and both monthly and 

quarterly rates, having a grid that adjusts dynamically was more efficient for our application. 
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In implementing our algorithm, we have benefitted from and are grateful for the 

PROFOR Matlab toolbox (developed by researchers at the Norges Bank, Bank of England, and 

Warwick Business School).  We have modified some of the functions of the toolbox to fit our 

needs.  

 

A.3.  Comparing Properties of Grand Combinations across Weighting Schemes 

Figure 8 in the body of the paper shows the weights and higher-order moments from 

using the log score weighting scheme to generate the stage 1 and stage 2 combinations.  Figures 

A15, A16, and A17 show the weights and higher-order moments from the CMG, Ganics, and 

CRPS weighting schemes, respectively.  We summarize six key results from this comparison.  

First, for CPI inflation and PCE inflation, the DMS combination gets the highest weight 

in all weighting schemes with the exception of Ganics.  Furthermore, the DMS maintains its 

ranking with incoming information over the course of the month.  

Second, the CMG and Ganics grand combinations for CPI inflation and PCE inflation 

provide stronger evidence of both kurtosis and skewness than the combination based on log score 

weights.  This finding is associated with the grand combination being composed of more diverse 

components in these cases; that is, the DMS combination, the DFM combination, and the 

MIDAS combination are all assigned nonzero weights in the grand combination.  Different 

weighting schemes can lead to combinations with very different compositions, as is evident by 

very different profiles of the weights assigned to the three model classes over time.  In general, 

the greater the diversity in the composition of the grand combination, the greater is the evidence 

of skewness and kurtosis.1  But greater flexibility in terms of accommodating skewness and 

kurtosis does not necessarily translate into improved accuracy.  We say this because for CPI 

inflation the grand combination based on the log-score weighting scheme is more accurate than 

grand combinations based on other schemes, yet it displays less evidence of skewness and 

kurtosis on average compared with other grand combinations.  This improved accuracy is mainly 

                                                           
1 We highlight a result in regard to grand combinations for CPI inflation (case 4) produced using the log score 

weighting scheme  (see Figure 8) and the CMG weighting scheme (Figure A15).  Both schemes assign a weight of 

100% to DMS at least in the last few years of the evaluation sample, yet the profiles of the kurtosis property of the 

grand combinations across the two schemes are very different for this period.  This finding arises in part because the 

underlying composition of the two respective stage 1 DMS combinations is quite different; see Figure A18. 
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coming from the significantly more accurate mean of the density nowcast constructed from the 

log-score scheme, which puts high weight on the stage 1 DMS combination, compared with 

grand combinations based on other weighting schemes.   

Third, in the case of core inflation, the patterns observed in the properties of the grand 

combination are generally comparable across the various weighting schemes, even though the 

weights assigned to the densities of the three modeling classes differ.  This result stems from the 

fact that the estimates of density nowcasts for core inflation are generally similar across the 

different modeling classes; so irrespective of the approach used to combine the component 

density nowcasts, the resulting estimates of the combined density nowcasts are similar.  This 

latter pattern also explains the comparable accuracy results for core inflation shown in Figures 4 

and 5 (especially in the case of core CPI).  Relatedly, the weight profiles across different 

weighting schemes (for core inflation) indicate a high incidence of fast switching across the three 

combinations.  The evidence of time-varying switching across density combinations highlights 

the importance of combining density estimates from a range of models to circumvent the 

instability issues of using a single model.  

Fourth, the CRPS weighting scheme assigns positive weights to the three combinations 

across all inflation measures and at all representative dates (shown for cases 1 and 4), reflecting 

the generous assessment of the CRPS metric. In the case of core inflation, the weights are pretty 

evenly distributed across the DMS, DFM, and MIDAS combinations.  

Fifth, in our application, the two optimal combination weighting schemes (CMG and 

Ganics) yield weight profiles that are remarkably different, especially in the case of CPI inflation 

and PCE inflation. However, the different profiles are not unexpected, given the earlier results 

that showed MIDAS and DFM combinations producing well-calibrated densities compared with 

DMS, which tends to do quite well in relative accuracy scoring.  The weights produced from the 

Ganics approach display quite a bit of variability early in the sample.  This variability is also 

present to a degree in the results reported in Ganics (2017) using industrial production data.  
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Figure A1: Illustration of Combining Densities with Linear and Log Opinion Pools  

 
Notes: A simple example (motivated by Kascha and Ravazzolo, 2010) on combining two densities with very 

different mean and variances via two different functional forms. 
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Figure A2: Example Stage 1 DMS Combination 
Month-over-month inflation (%) 

 
Notes: Single specification density nowcasts (thin lines) underlying the stage 1 DMS combination, linear pool 

nowcasts (thick red lines), and log pool nowcasts (thick green lines) for case 1 for the month of September 2000.    
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Figure A3: Comparisons between Single Specifications vs. Stage 1 Combinations 

 
Notes: Average log scores at different nowcast origins for single specifications and stage 1 combinations within 

model classes.  The evaluation sample is September 2000 through June 2015.  We exclude September 2001 and 

October 2001 from the average log score calculations for PCE inflation and core PCE inflation. 
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 Figure A4: Real-Time Density Nowcasts 

(a) CPI inflation 

 
(b) Core CPI inflation 
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Figure A4: Real-Time Density Nowcasts (continued) 
(c) PCE inflation 

 
(d) Core PCE inflation 

 
Notes: The figure shows the out-of-sample nowcasts generated using real-time data from the grand combination 

with the log score weighting scheme and the flexible aggregation strategy at two different points in each month 

(case 1 and case 4) for the 12-month trailing inflation rate.  The shaded areas represent 70% and 90% prediction 

intervals.  The sample period spans September 2000 through June 2015.    
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Figure A5: Weights Underlying Grand Combination based on Ganics Weighting Scheme 

 
Notes: The figure plots the evolution of the weights applied to each of the stage 1 density combinations from the 

DMS, MIDAS, and DFM model classes to form the stage 2 combination, based on nowcasts generated for monthly 

(year-over-year) inflation at case 5 for nowcasting CPI inflation. The sample period spans September 2000 through 

June 2015.    
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Figure A6: Density Performance of Grand Combination vs. Its Components: Month-Over-Month 

Inflation 
(a) Relative accuracy based on log score 

 
(b) Relative accuracy based on CRPS 

 
Notes: The top panel plots the average log score and the bottom panel plots the average CRPS for the grand 

combination based on the log score weighting scheme and combinations based on the DMS model class, MIDAS 

model class, and DFM model class, where each individual model class uses the log score weighting scheme. The 

evaluation sample runs from September 2000 through June 2015; we omit September 2001 and October 2001 for 

PCE inflation and core PCE inflation calculations.  
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Figure A7: Point Nowcasting Performance, Grand Combination vs. DMS: Month-Over-Month 

Inflation 

 
Notes: The figure plots the RMSE for the grand combination based on log score and using the flexible aggregation 

strategy; the stage 1 combination from the DMS model class; and a single specification from the DMS model class 

based on Knotek and Zaman (2017).  The cases reflect the point in time when each nowcast was made relative to the 

target nowcast month; see Table 2.  The evaluation sample runs from September 2000 through June 2015; we omit 

September 2001 and October 2001 for PCE inflation and core PCE inflation calculations.  
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Figure A8: Density Performance of Grand Combination vs. Its Components: Quarterly Inflation  

 
Notes: Average log score for the grand combination based on the log score weighting scheme and combinations 

based on the DMS model class, MIDAS model class, and DFM model class, where each individual model class uses 

the log score weighting scheme. The evaluation sample runs from 2000Q4 through 2015Q2; we omit 2001Q3 and 

2001Q4 for PCE inflation and core PCE inflation calculations. 
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Figure A9: Point Nowcasting Performance, Grand Combination vs. Other Combinations and 

Single DMS Specification: Quarterly Inflation 

 
Notes: The figure plots the RMSE for the grand combination based on log score and using the flexible aggregation 

strategy; the stage 1 combinations from the DMS model class, DFM model class, and MIDAS model class; and a 

single specification from the DMS model class based on Knotek and Zaman (2017).  The cases reflect the point in 

time when each nowcast was made relative to the target nowcast quarter; see Table 2.  The evaluation sample runs 

from 2000Q4 through 2015Q2; we omit 2001Q3 and 2001Q4 for PCE inflation and core PCE inflation calculations. 
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Figure A10: Weights for Stage 1 DMS Combinations, Log Score Weighting Scheme 

 

 
Notes: The figure plots the evolution of the weights for underlying individual candidate densities for the stage 1 

DMS combination at case 4.  Each color shade represents a particular individual candidate density.  There are 108 

candidate densities.  The sample period spans September 2000 through June 2015.    
 

 

  



25 

 

Figure A11: Weights for Stage 1 DFM Combinations, Log Score Weighting Scheme 

 

 
Notes: The figure plots the evolution of the weights for of underlying individual candidate densities for the stage 1 

DFM combination at case 4.  Each color shade represents a particular individual candidate density.  There are 12 

candidate densities.  The sample period spans September 2000 through June 2015.    
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Figure A12: Weights for Stage 1 MIDAS Combinations, Log Score Weighting Scheme  

 

 
Notes: The figure plots the evolution of the weights for underlying individual candidate densities for the stage 1 

MIDAS combination at case 4.  Each color shade represents a particular individual candidate density.  There are 12 

candidate densities.  The sample period spans September 2000 through June 2015. 
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Figure A13: Time-Varying Uncertainty Estimates for Density Nowcasts of Quarterly Inflation 

 
Notes: Uncertainty is measured as the width of the 70% prediction intervals.  Estimates are for the grand 

combination based on the flexible aggregation strategy and log score weighting scheme for case 1 (last day of the 

preceding quarter), case 3 (last day of the first month of the quarter), and case 5 (last day of the second month of the 

quarter); see Table A1.  The sample period spans 2000Q4 through 2015Q2.    
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Figure A14: Stage 2 Grand Combination of DMS, DFM, and MIDAS Combinations 

    

 
Notes: The figure illustrates a grand combination for 12-month inflation rates as of case 1 (the last day of the 

previous month) for nowcasting the target month of January 2001 and the three stage 1 combinations from the DMS, 

MIDAS, and DFM model classes that are used to construct the grand combination.  
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Figure A15: Weights and Higher-Order Moments, CMG Weighting Scheme 
(a) CPI inflation 

 
(b) Core CPI inflation 
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Figure A15: Weights and Higher-Order Moments, CMG Weighting Scheme (continued)  
(c) PCE inflation 

 
(d) Core PCE inflation 

 
Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand 

combination, based on the flexible aggregation strategy and CMG weighting scheme.  (Each model class is a 

combination of multiple model specifications.)  The second row plots estimates of dynamic uncertainty, defined as 

the width of the 70% prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. 

The sample period spans September 2000 through June 2015.  
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Figure A16: Weights and Higher-Order Moments, Ganics Weighting Scheme 
(a) CPI inflation 

 
(b) Core CPI inflation 
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Figure A16: Weights and Higher-Order Moments, Ganics Weighting Scheme (continued) 
(c) PCE inflation 

 
(d) Core PCE inflation 

 
Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand 

combination, based on the flexible aggregation strategy and the Ganics weighting scheme.  (Each model class is a 

combination of multiple model specifications.)  The second row plots estimates of dynamic uncertainty, defined as 

the width of the 70% prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. 

The sample period spans September 2000 through June 2015.     
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Figure A17: Weights and Higher-Order Moments, CRPS Weighting Scheme  
(a) CPI inflation 

 
(b) Core CPI inflation 
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Figure A17: Weights and Higher-Order Moments, CRPS Weighting Scheme (continued) 
(c) PCE inflation 

 
(d) Core PCE inflation 

 
Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand 

combination, based on the flexible aggregation strategy and the CRPS weighting scheme.  (Each model class is a 

combination of multiple model specifications.)  The second row plots estimates of dynamic uncertainty, defined as 

the width of the 70% prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. 

The sample period spans September 2000 through June 2015.   
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Figure A18: Comparison of Weights within the DMS Model Class, Log Score Weighting 

Scheme vs. CMG Weighting Scheme 

 
Notes: The figure plots the evolution of weights of the underlying individual candidate densities.  Each color shade 

represents a particular individual candidate density.  There are 108 candidate densities.  The richness in the color 

variation indicates that no single candidate density dominates others.  The left panel displays the weights for the 

stage 1 DMS combination constructed using the log score weighting scheme, and the right panel displays weights 

for the stage 1 DMS combination constructed using the CMG weighting scheme.  The flexible aggregation method 

is used in both cases. The sample period spans September 2000 through June 2015.     
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Table A1 Representative Dates for Quarterly Nowcasting Performance  
 

Case 

 

Date 

Information Set 

(Example: Nowcasting target quarter is Q1) 

 

Months to Forecast 

1 Last day of the 

previous quarter 

December 31: Have CPI and PCE through November; 

high-frequency information through December 31 

CPI: h=4 (Dec., Jan., Feb., Mar.) 

PCE: h=4 (Dec., Jan., Feb., Mar.) 

2 Day 15 of month 

1 of the target 

quarter  

January 15: Receive CPI for December and have PCE 

through November; high-frequency information through 

end of second week of January, which includes two 

weekly retail gasoline readings from January 

CPI: h=3 (Jan., Feb., Mar.) 

PCE: h=4 (Dec., Jan., Feb., Mar.) 

3 Last day of 

month 1 of the 

target quarter 

January 31: Have CPI for December and receive PCE for 

December; high-frequency information for all of January, 

which includes all four weekly retail gasoline readings 

from January 

CPI: h=3 (Jan., Feb., Mar.) 

PCE: h=3 (Jan., Feb., Mar.) 

4 Day 15 of month 

2 of the target 

quarter  

February 15: Receive CPI for January and have PCE 

through December; high-frequency information through 

end of second week of February, which includes two 

weekly retail gasoline readings from February 

CPI: h=2 (Feb., Mar.) 

PCE: h=3 (Jan., Feb., Mar.) 

5 Last day of 

month 2 of the 

target quarter 

February 28: Have CPI for January and receive PCE for 

January; high-frequency information for all of February, 

which includes all four weekly retail gasoline readings 

from February 

CPI: h=2 (Feb., Mar.) 

PCE: h=2 (Feb., Mar.) 

6 Day 15 of month 

3 of the target 

quarter  

March 15: Receive CPI for February and have PCE 

through January; high-frequency information through end 

of second week of March, which includes two weekly 

retail gasoline readings from March 

CPI: h=1 (Mar.) 

PCE: h=2 (Feb., Mar.) 

7 Last day of 

month 3 of the 

target quarter 

March 31: Have CPI for February and receive PCE for 

February; high-frequency information for all of March, 

which includes all four weekly retail gasoline readings 

from March 

CPI: h=1 (Mar.) 

PCE: h=1 (Mar.) 

 


