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1 Introduction

COVID-19 infections present a key feature that makes them challenging to control. Many pa-
tients take longer to develop symptoms than in other infectious respiratory diseases, and some
are completely asymptomatic. Consequently, it is much harder to isolate infected individuals
before they transmit the virus to others. Hence, outbreaks can happen rather quickly.
Moreover, the impact of the pandemic has varied across income levels. Poor neighborhoods
have seen a significantly larger number of cases and deaths (see Table 1).! There are a few
reasons for this pattern. First, many of the services deemed essential which have continued to
be supplied during the pandemic are done by low wage workers.? Second, individuals in these
poorer communities are usually in occupations that do not allow for remote working (see Dingel
and Neiman (2020) and Mongey et al. (2020)). Third, these communities are likely to have
denser populations. And fourth, residents of the poorer neighborhoods tend to have little in

fallback savings and wealth and can therefore not afford to miss work to shelter from the virus.

Table 1: COVID-19 Cases in NYC
Differences by Neighborhood Poverty Level

Cases Hospitalizations Deaths

Low poverty 1,806.52 351.38 110.14
Medium poverty 2,189.35 540.92 176.14
High poverty 2,334.32 684.04 221.06
Very High poverty 2,709.08 T71.87 525.17

Note: Rate per 100,000 people (age-adjusted)
Source: https://wwwl.nyc.gov/site/doh/covid/covid-19-data.page

Meanwhile, higher income individuals are better able to minimize their exposure to the virus.
Even without stay-at-home orders, unconstrained individuals who have the means to adjust their
behavior may optimally reduce their exposure to infection. For example, in Figure 1 we show the
year-over-year change in the number of seated diners in Texas and the state of Washington using

the online, phone, and walk-in reservations from OpenTable.com.? The vertical lines indicate the

IPoverty is the percent of a ZIP code’s population living below the federal poverty level, in the 2013-2017
American Community Survey. Low poverty: under 10 percent; Medium poverty: 10 percent to 19.9 percent;

High poverty: 20 percent to 29.9 percent; Very high poverty: 30 percent and over.
2For example, supermarket personnel, delivery services, etc.
3We present Texas and Washington to show a comparison between a red and blue state. All states in Open



dates in which the states respectively enacted and lifted their stay-at-home orders. Reservations
fell significantly well before stay-at-home orders were enacted and remained far below their
previous year’s levels long after the restrictions were lifted. Similar patterns are observed in air

travel and hotel occupancy.
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Figure 1: Change in the Number of Dine-in Customers: Open Table.com

In this paper, we propose and calibrate a search model that allows us to introduce some of
these stylized facts in an epidemiological setting. In particular, we consider how the presence of
asymptomatic and pre-symptomatic infected agents as well as the presence of agents who can and
cannot optimally adjust their time allocation (henceforth time-constrained agents) impact the
epidemic. Moreover, we consider how these agents’ heterogeneity interact with the effectiveness
of tests (both viral and antibody) and lockdowns in reining in the spread of the disease and
ameliorating economic outcomes.

Our results show that introducing asymptomatic and pre-symptomatic agents as well as
time-constrained agents is vital to evaluating these policies. If the incidence of asymptomatic
agents is larger, then the numbers of expected infected agents and expected deaths are larger as
well. Since asymptomatic and pre-symptomatic agents spend more time outside infecting healthy
but susceptible agents. In turn, the economy will suffer as unconstrained agents are compelled
to even more drastically reduce their time spent outdoors as it is riskier to engage in outside
activities. The impact of testing is significantly larger for a virus with more asymptomatic cases.
Viral tests allow us to quarantine infected asymptomatic and pre-symptomatic agents, reducing

the infection rate. This not only has the benefit of lowering the expected number of casualties

Table’s database shows quite similar patterns.



caused by the disease, but also allows unconstrained agents to optimally increase their labor
supply, improving economic activity. Meanwhile, antibody tests reveal to unconstrained agents
who had an asymptomatic infection that they might have acquired immunity, allowing them to
optimally adjust their labor supply. As a result, the economic impact of testing is substantial
when the incidence of asymptomatic infections is high. If we consider the case in which 80
percent of the infections are asymptomatic, increasing testing from 0 to 10 percent represents a
cumulative gain of around 6.3 percent of pre-virus GDP after two years.

Similar patterns are observed when the incidence of time-constrained agents is larger. The
numbers of infected and dead are significantly higher, and time-constrained agents are also
particularly affected. Following a calibration that represents an emerging market economy, our
results show that 85 percent of time-constrained agents would be infected at some point and
0.18 percent would die. In contrast, only 21 percent of unconstrained agents would get infected
and less than 0.05 percent would die. Since the likelihood of infection is significantly higher
in an economy with more time-constrained agents, unconstrained agents dramatically reduce
their labor supply, with significantly negative impacts on GDP. In our quantitative exercise, an
increase of 20 percentage points in the share of time-constrained agents increases GDP losses by
3.7 percentage points.

The effect of testing is particularly pronounced in an economy with more time-constrained
agents, because these agents do not adjust their time allocation as the infection rate goes up.
Thus, testing lowers the risk of infection by more in this environment. In quantitative terms, in
an economy with a 50 percent share of time-constrained agents, moving from a 0 percent to a 10
percent incidence of tests predicts a reduction of 90,000 in the number of dead from the disease.
Similarly, compared to an economy with no testing, a 10 percent testing rate increases GDP by
2.8 percentage points.

In terms of the effect of lockdowns, we show that while they are able to slow down the
spread of the virus, they are ultimate ineffective in reducing the economic and human costs
of the epidemic if implemented without further measures. In our benchmark calibration, the
introduction of lockdowns reduces the number of deaths due to COVID-19 by 11,500 in the
first year and fewer than 5,000 in the second year. Given the sharp recession in the first year,
our quantitative results imply a high cost per life saved. Depending on the type of lockdown
— comprehensive and short or mild and long — the cost per life is $26 million and $54 million,
respectively. The main reason our costs are significantly higher than the ones featured in other

papers in the literature, such as Greenstone and Nigam (2020), is that in our benchmark model,



unconstrained agents already optimally adjust their time allocation in response to the possibility
of infection. Consequently, the benchmark case already factors in most of the potential benefits
of the lockdown at least in a developed country with few time-constrained agents.

The comparison between the benchmark case and the case with lockdowns highlights that
lockdowns are probably more useful in stopping the spread of the disease in developing economies,
with high shares of time-constrained agents. In fact, considering the extreme case in which all
agents are time-constrained, a mild and long lockdown would be able to save 325,000 lives at a
cost of $2.5 million per life, well below our benchmark. However, our calibration which is closer
to an average emerging economy, with around 50 percent time-constrained agents, still shows a
cost per life of around $14 million. Moreover, this figure neither factors in the significant costs
of preventing time-constrained agents from going to work nor the transfers needed to be made
to this population in order to make such a lockdown viable.

Our results are relevant from a policy perspective. They highlight the importance of identify-
ing how asymptomatic and pre-symptomatic infected agents spread the virus. While contagion
by pre-symptomatic agents has been well-established (He et al. (2020)), there are still some ques-
tions about the likelihood of asymptomatic agents transmitting the disease (Bai et al. (2020)).
Second, they show that viral testing, on top of being an important tool for controlling the spread
of the disease to all countries, is particularly important for developing economies and poor neigh-
borhoods. Unfortunately, as we can see in Figure 2,* poor countries have lagged significantly

behind rich countries in testing their populations.

4We created the rich and poor countries classification by using the 2019-2020 World Bank’s income group
classification (https://blogs.worldbank.org/opendata/new-country-classifications-income-level-2019-2020).
In particular, we combined high-income and upper-middle-income countries in the rich countries group and
the low-income and lower-middle-income countries in the poor countries group. We obtained information on
the countries’ population from the World Bank’s World Development Indicators (https://data.worldbank.o
rg/indicator/SP.POP.TOTL). Finally, we obtained information on tests per 1,000 from our world in data
(https://ourworldindata.org/coronavirus-testing). In order to create this figure, we calculated the total number
of tests in each group and divided by the group’s total population. However, results are qualitatively the same

if we just do a simple average across the groups tests per 1,000 inhabitants.
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Figure 2: Viral Testing: Rich vs. Poor Countries

The paper is divided into 6 sections. Section 2 discusses the literature on COVID-19. Section
3 presents our theoretical model. Section 4 describes the functional forms used in our quantitative
results and the calibration of the parameters. Section 5 shows our main quantitative results,

while Section 6 concludes the paper.

2 Related Literature

The literature incorporating epidemiology dynamics into economic models is growing rapidly
amid developments from the COVID-19 epidemic. Garibaldi et al. (2020) is one of the first
papers to incorporate optimizing behavior and search and matching modeling techniques in an
SIR model. They discuss the shape of matching functions in epidemics and make the case for a
matching technology with increasing returns to scale. Differently from our paper, they do not
discuss agents’ heterogeneity and the role of testing in this environment.

In the context of known health outcomes and a social planner’s optimal policy, Piguillem
and Shi (2020), Alvarez et al. (2020) and Holtemoller (2020) study optimal lockdown, testing,
and quarantine policies in a variant of the SIR model. These papers differ from ours because
we study a competitive equilibrium with heterogeneous agents. We also allow for an interaction
between people’s economic decisions, testing, and the dynamics of the epidemic.

A few papers consider models in which health status is not fully known by economic agents
when making decisions. Piguillem and Shi (2020) solve an optimal control problem to find the

best testing policy. In their paper, only the central planner’s problem is studied and behavioral



reactions to the epidemic are absent. Farboodi et al. (2020) analyze a case where health status is
never known; that is, they do not allow for the possibility of testing. Eichenbaum et al. (2020b)
incorporate economic choices into a time-varying SIR model. In their model, as in ours, people
do not know their health status and testing allows a better trade-off between declines in economic
activity and health outcomes. In their paper, however, asymptomatic people are not discussed
and the role of testing is limited to informing agents about their health status, and only forced
quarantine can lower transmission. In our paper, however, testing affects economic outcomes
through two sources: First, it prevents infected persons from contacting susceptible individuals.
Second, the antibody test boosts the economy by providing the knowledge of acquired immunity
to people who recovered without developing symptoms.

Similar to our paper, Brotherhood et al. (2020) investigate the role of testing in an amplified
SIR epidemiological model with heterogeneous agents. In their paper, there are only symp-
tomatic people and testing exclusively serves to shorten the time of uncertainty. Unlike in our
paper, their heterogeneity is based on age. Younger people, who are less likely to die, impose
externalities on the old. In our case, those externalities come from the time-constrained con-
sumers. They also do not analyze the case of asymptomatic people and the positive impact of
that information on health status has on the economy. In terms of agents’ heterogeneity, Glover
et al. (2020) have different age groups in their model and they solve for the optimal containment
policy in this scenario. Similarly, Acemoglu et al. (2020) also feature age heterogeneity in a
multi-group SIR model where optimal containment measures are calculated in a control prob-
lem. Kaplan et al. (2020) introduce agents’ heterogeneity with respect to their occupation. They
document that people with lower labor income work in vulnerable occupations. Krueger et al.
(2020) extend the framework in Eichenbaum et al. (2020a) to consider sectoral heterogeneity
when assessing the epidemic’s dynamics. They consider how the substitution of consumption
across sectors can help to lower the spread of the virus even without government restrictions
on economic activity. Different from our work, they employ a SIR matching function, focus
on sectoral effects, and do not discuss the role of asymptomatic agents and testing. Favero
et al. (2020) allow for age and sector heterogeneity and analyze the effect of stylized policies to
end the lockdown in Italy. They do not consider the feedback loop of individual behavior and
transmission.

Finally, in contrast to all of the papers cited above, we consider heterogeneous agents based

on time allocation constraints.



3 Model

3.1 Environment

Time is discrete. There is a measure n of agents who discount the future at rate g > 0.
We consider two types of agents, distinguished by their ability to optimally adjust their time
allocation. Unconstrained agents can optimally allocate their weekly time endowment L across
work (L¥), leisure (L), and time at home (L"). Time-constrained agents,® on the other hand,
have very limited control over their time allocation. We assume that they either allocate their
time as if there were no pandemic or spend all their time at home if they are sick or forced
into quarantine by a positive viral test. We assume that the fraction of time-constrained agents
is given by 9. Both types of agents can be in the following states: healthy but susceptible
(h), infected (i), sick (s), recovered(r), or dead (d). However, transitions across states are not
necessarily observed by agents. In particular, infection and recovery, as we describe in detail
below.

Healthy but susceptible agents become infected if they are exposed to the virus. They are
exposed if they meet infected agents while working or participating in leisure activities. We
assume that the arrival rate of infection \;(L¥, L!) in time ¢ is:

TH?, TI")
THY

m!(THP, TIv)
TH!

w(Lp. o =" Ly + L} (1)

TH and TH! are the aggregate times in period ¢ where agents who are healthy but suscep-
tible are at work and in leisure activities respectively. TI* and TI' are the aggregated times
where infected agents are at work and in leisure activities in period t, respectively. Note that
these aggregated numbers are the weighted sums of the total hours of time-constrained and
unconstrained agents. Moreover, m*(THY, TI*) and m!(TH!, T1!) are the infection matching
functions for labor markets and leisure activities, respectively. They present the total number of
infectious meetings between healthy but susceptible agents and infected agents. Consequently,
we have that \;(L¥, L) is strictly increasing in both arguments. This is the channel that links

time-constrained and unconstrained agents. That is, these two groups can meet at work or at

5The motivation for these agents comes from the fact that some agents work in services deemed essential which
have continued to be supplied during the pandemic. Another fact is that some individuals are in occupations
that do not allow for remote working and have very little savings and wealth to rely on. These agents are similar

to hand-to-mouth agents, except that we assume that they can be quarantined and not work for some periods.



leisure time. The more time-constrained agents there are, the riskier it is for an unconstrained
agent to spend another hour outside.

Infected agents can either become sick or recover without ever developing symptoms. Infected
agents who eventually recover without developing symptoms are classified as asymptomatic.
Infected agents who eventually develop symptoms are classified as symptomatic, even though
they may be pre-symptomatic at the moment. For simplicity, we assume that at the time of
infection the agent receives an unobserved shock that made him asymptomatic. The arrival rate
of the asymptomatic shock is v > 0. We assume that until infected agents are either tested or
develop symptoms, they do not know that they have been infected (although they may have a
belief about it based on their time of exposure). Similarly, agents shown by test to be infected
will not know if they are symptomatic until they either develop symptoms or recover. We
assume that tested agents are followed by health professionals, so they observe their transition
to recovered.

Infected agents who are not asymptomatic become sick with probability iz > 0. Sick agents
face a flow disutility of ¢ < 0 and, in the benchmark model, die at rate ¢;. Death is seen as
a one-time negative shock equal to ¢; < 0. For simplification, we assume that agents develop
immunity once they recover and cannot be infected again.

Asymptomatic infected agents initially do not know that they have been infected. Infected
agents are tested with probability 7/ > 0, which depends on the country’s testing capabilities
and varies over time. Asymptomatic infected agents recover at rate 04 > 0. Asymptomatic
agents who recover without getting tested do not know that they have acquired immunity. An
antibody test, which happens with probability 7/ > 0, inform them about developed immunity.
The antibody test arrival rate also depends on the country’s testing capabilities and varies over
time. A graphical representation of the model is presented in Figure 3.

Notice that virus and antibody tests are important because they affect the time allocation
decisions of agents. In particular, we assume that both infected agents who tested positive in a
viral test and sick agents are forced to stay home, reducing the infection rate.

An agent’s flow utility is given by U(c, L', L") = u(c) + h(L') +un x L", where c is the amount
consumed of the numeraire good, L' is the time spent in leisure activities, and L" is the time
spent at home. We assume that u(-) and h(-) are both continuous, twice differentiable strictly
increasing concave functions. uy > 0 is a positive parameter that indicates the flow benefit of
staying home.

Agents have no savings and no wealth endowments. Labor markets are perfectly competi-



tive. In particular, we follow Eichenbaum et al. (2020b), assuming a continuum of competitive
representative firms of unit measure that produce consumption goods using a linear production
function with hours worked as the sole input. As a result, ¢ = wL", where w is the equilibrium
wage rate and LY the amount of time allocated to work. Similarly, we assume that agents have

a total time endowment of L hours per period.

3.2 Unconstrained agent’s problem

We start by considering agents who can optimally adjust their time allocation in order to maxi-

mize their utility while taking into account their infection risk.

3.2.1 Known recovered unconstrained agent’s problem

We start by evaluating the optimal time allocation of recovered agents who know they have
developed immunity. Notice that this knowledge can be acquired in different ways: a.) agents
can recover from sickness; b.) agents can recover after testing positive in a viral test while
asymptomatic or; c.) agents can test positive in an antibody test. Regardless of the way in
which the knowledge about immunity is acquired, the agent is now free to optimally adjust her
time allocation without fear of infection. Since the only time-varying features of the model are

related to the pandemic’s progress, a known recovered agent’s value function is stationary:

RE _ u(w x LYK) + h(L) +u, x (L — LYK — LIx)
- 3

(2)

3.2.2 Potentially susceptible unconstrained agent’s problem

Since infection is not observable, an agent cannot distinguish whether she is healthy but suscep-
tible, infected with no positive viral test, or recovered with unknown immunity. Consequently,
in all of these states, an unconstrained agent’s time allocation must be the same. This time al-
location problem involves Bellman equations for each state. The Bellman equation for a healthy

but susceptible agent at time ¢ is:
A
Ae(L3, LY A (L Lzle+1= L?H)
tr -t S
H(L =N (L L, L) (3)
+H[1 = M(LF, L) Hyg1 (L, L, Ly

Hy(Ly, Li, Ly) = u(wLy’) +h(L{) +un x Ly +53

where the flow utility is the same as the one described in Section 3.2.1, 3 is the discount rate,

\e(L, LY) is the arrival rate of infection, ~ is the probability of an asymptomatic infection,

9



and ]{iUl and Iffl are the Bellman equations for the infected asymptomatic and eventually
symptomatic agents, respectively. Since at this point the agent has neither received a viral test
nor developed symptoms, the infection is not yet known, which is represented by the subscript
U. Notice that all of the Bellman equations in equation (3) are non-stationary because transition
rates change as the pandemic evolves.

We make a simplifying assumption that susceptible agents are not being tested for viral
genetic material or antibodies. Without this assumption, testing and the belief system could
interact in ways that would complicate the problem significantly. Moreover, studies point toward
a significant rate of false negative results for both antibody and viral material tests.

The Bellman equation for an infected asymptomatic agent without a viral test at time ¢ is:

IIAK + éAURU Lw ,Ll ,Lh
L L L) = L)+ WE) b x g TP R L I
+[1 =7 — OIS (L, Ly L)

where the flow utility is the same as the one described in Section 3.2.1, 3 is the discount rate, 7/

is the arrival rate of viral tests, Ifﬁ the Bellman equation for an asymptomatic infected agent
with a positive viral test, 64v is the arrival rate of recovery, and Rﬂrl is the Bellman function
for a recovered agent with unknown immunity. Notice that ]ﬁ_’{ is not a function of the time
allocation, since agents with a positive viral test are required to stay home. So the Bellman

equation for an asymptomatic infected agent with a positive viral test at time ¢ is given by:
I = wy x Tt B{BM RN (L%, L%, 1) 4 (1= 64 15 | (5)

where R¥ is the Bellman equation for a recovered agent with known immunity presented in
equation (2) and 0% is the arrival rate of recovery. Notice that this Bellman equation is
stationary. Therefore I{q K = JAx for every t.
The Bellman equation for an eventually symptomatic agent without a viral test at time  is:
I 15K

T, + Tirr S,
ISV (LY, L, L) = w(wL) + h(LY) +uy x L) + [T b (6)
+[1 - Ty — M][tfl (L?}Ha Lt+17 Lt+1)

where the flow utility is the same as the one described in Section 3.2.1, 3 is the discount rate,

71 is the arrival rate of viral tests, Igfl is the Bellman equation for an eventually symptomatic

infected agent with a positive viral test, fi;; is the arrival rate of symptoms, and S;;; is the

Shttps://www.npr.org/sections/health-shots/2020/04/21/838794281 /study-raises-questions-about-false-nega
tives-from-quick-covid-19-test and https://www.scientificamerican.com/article/what-covid-19-antibody-tests-

can-and-cannot-tell-us/

10



Bellman function. Similarly to Iﬁﬁ{, ]Sfl and S;4; are not functions of time allocation, since
agents with either a positive viral test or symptoms are required to stay at home.

The Bellman equation for an eventually symptomatic agent with a positive viral test at time
t is:

I« Zuhxz—Fﬁ{ﬁKStﬂ‘i‘(l_ﬁK)IirKl} ")

where i, is the arrival rate of symptoms. Differently from ]gA K ]ts X is non-stationary, since as
we see below, S;y1 depends on time. In particular, one’s outcome as a sick patient depends on
how overcrowded the health system is.

The Bellman equation for a sick agent in period t is given by:
Sy =un X L—c+ B{6(—cp) + 67 R (LY, L', L) + [1 — 6 — 6] Spya } (8)

where c is the flow cost of sickness, d; is the death arrival rate, c¢p is the one-time cost of death
before exiting the environment, 67 is the arrival rate of recovery, and R¥ is the Bellman equation
for a recovered agent with known immunity presented in equation (2).

Finally, let us consider the Bellman function for recovered agents with unknown immunity.

In this case, we have:

TRRK LwK,LlK,LhK
Rf(Li”,Li,Li‘)ZU(wLi”)+h(Li)+uth§+5{ i ) | } ©

+ [1 - TtR} RgA(L%UHa Lzlt+1a L?+1

where the flow utility is the same as the one described in Section 3.2.1, 3 is the discount rate,
7/t is the arrival rate of antibody tests, and R¥ is the Bellman equation for a recovered agent
with known immunity presented in equation (2).

Finally, we need to consider the optimal time allocation for potentially susceptible uncon-
strained agents. Notice that agents in the states healthy but susceptible, infected unknown (both
asymptomatic and eventually symptomatic), and recovered unknown do not know in which state
they actually are. Consequently, we have that agents in the states Hy, ItA v ItS v and RV solve
the same time allocation problem:

L;ﬁi? ol Hy, + w120 4 7l 150 4 7 FRY (10)
subject to:
LY+ LL+ L =1 (11)

A S . . . .
where /1, ", 7", and 7lt are the beliefs that a given agent is in one of these states. We assume

that, based on rational expectations and the focus on homogeneous solutions, these beliefs come

11



from an aggregate measure of workers in each one of these states. Thus, agents’ time allocation
decisions take beliefs as given. The solution of (10) and (11) pins down optimal time allocation
LY LY and L. To simplify notation, define A, = A\, (L¥", L!"), i.e., )\, is the rate of infection,
taking into account a possibly susceptible agent’s optimal time allocation.

Finally, we describe the laws of motion for unconstrained agents across the different states.
Define h; as the measure of unconstrained agents who are healthy but susceptible in period ¢.
Then, the change in the measure of healthy and susceptible agents between periods ¢ and t + 1
is given by:

hiy1 —hy = =\l (LM)
Since all recovered agents obtain immunity, the share of healthy but susceptible agents only
declines at infection rate ;. Define ifU as the measure of unconstrained agents who are asymp-

tomatic infected without a positive viral test. This measure has the following law of motion:
i i = Ayhy — (éAU v Tg) i (LM,)
where ), is the infection rate, ~ is the share of infections that will stay asymptomatic, 64V is the
rate at which untested asymptomatic agents recover, and 7/ is the viral testing rate in period
t. Define ifK as the measure of unconstrained agents who are asymptomatic infected with a

positive viral test, which evolves according to:
2.;54-1-[(1 - i?K = TtIi?U - éAUifU (LMs3)
where 7/ is the viral testing rate in period ¢ and 64x is the rate at which asymptomatic tested
agents recover. Define if“ as the measure of eventually symptomatic infected unconstrained
agents, that is the pre-symptomatic, without a positive viral test. This measure evolves according
to:
Ztsf1 — iy = N(1 =)y — (i + Ttl) iyv (LMy)
where )\; is the infection rate, 1 — v is the share of infections that will eventually become symp-
tomatic, 7/ is the viral testing rate in period ¢, and fi;; is the rate at which untested eventually

symptomatic agents become sick. Define zts % as the measure of infected pre-symptomatic uncon-

strained agents with a positive viral test, which evolves according to:

.S .S IS — .8

I — i =T — gt (LMs)
where i, is the rate at which tested eventually symptomatic agents become sick. s; is the

measure of sick unconstrained agents in period ¢, which has the following law of motion:

Sert — S = fiydyY + figiy < — (6, +67) s (LMg)

12



where iy and fi;; are the rates at which tested and untested infected eventually symptomatic
unconstrained agents become sick, &; is the rate at which sick agents die, and 7 is the rate at
which sick patients recover.

Define r¥ as the measure of recovered unconstrained agents. It evolves according to:
U U _ jAu A R,.U
Tig — 1y =07V — 1y (LM7)

where 04V is the rate at which asymptomatic untested agents recover and 7/ is the antibody
testing rate in period t. Define d; as the measure of dead unconstrained agents in period t. This

measure has the following law of motion:
dt+1 - dt = 5t3t (LMg)

Finally, define 7€ as the measure of unconstrained recovered agents with known immunity, which
evolves according to:

K K _ nS R,U
Ty — 1 =008+ 1ty (LMy)

where 67 is the rate at which sick patients recover and 7% is the antibody testing rate in period

t.

3.3 Time-constrained agents

We now consider the case of agents who cannot optimally adjust their time allocation. We
assume that these agents cannot miss work, either because they perform essential services or
because of financial constraints. We call these agents time-constrained and identify them by a
subscript ¢. Their time allocation ignores the epidemic and follows the pre-epidemic optimal
choices 3.2.1. Notice that, differently from the case of known recovered agents, we keep these
measures of time allocation time-dependent. The reason for that is that susceptible and infected
time-constrained agents can still become sick or test positive in a viral test, thereby being forced
to quarantine. In these cases, L, = L.

We define \¢ as the time-constrained agents’ infection rate in period ¢. Its functional form
is similar to that of the unconstrained agents, but it is either zero, when the time-constrained
agents are sick or quarantined at home, or:

mY(THY, T1®) .,  mi(TH®,TI")

>\tC (THtw7 T[tw) = THw Cit + TH'[ Llc,t (12)
t t
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where THY, TI*, TH!, and TI! are the aggregated total amount of time healthy but suscep-
tible and infected agents spend working and in leisure activities outside in period ¢, respectively.
Notice that Y > ), since time-constrained agents’ time allocation does not take into account
the risk of infection.

The appendix shows the Bellman equations and the laws of motion for time-constrained
agents, which follow a pattern very similar to that of the unconstrained agents. It also shows

the equilibrium definition in this economy.

4 Quantitative Analysis

4.1 Taking the model to the data

The utility function in the calibrated model takes the following functional form:

Ule, L', L") = aln(1 +¢) + (1 — a)In(1 + L") + uy, x L" (13)

while the restrictions on time allocation are the same as the ones presented in Section 3 (¢ = wL",
LY+ L'+ " =1L, and L' > 0 for all i in {I,w,h}).

Moreover, borrowing from the labor economics literature (see Petrongolo and Pissarides
(2001)), we consider Cobb-Douglas matching functions. Therefore, the number of infections due

to workplace interactions is given by:
m*(TH? TIV) = A, (THY)* (T17)' ™ (14)

where THy" = hciL¢é, + by Ly is the total number of hours spent at work by healthy but
susceptible agents. Notice that this measure depends on the measure of time-constrained and
unconstrained susceptible agents — h¢, and hy, respectively — and the number of hours spent at
work by each group (L¢, and Ly). Similarly, TI% = (i 4PV LY + (zé’i —i—ngt) .1 1s the total
number of hours spent at work by infected agents who have neither been tested nor developed
symptoms. A, and ( are parameters to be calibrated.
Similarly, the number of infections due to leisure activities is given by:
1=x

m!(TH!, TI") = A, (TH')" <TItUl> (15)

where TH] = heyLi,, + by L} is the total number of hours spent at leisure activities by healthy

but susceptible agents. Notice that this measure depends on the measure of time-constrained
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and unconstrained susceptible agents — h¢; and hy, respectively — and the number of hours at
leisure activities by each group (L{,, and L}). Similarly, TI? = (i 4 77 L + (Zé[i + ZgUt)LlCt
is the total number of hours spent at leisure by infected agents who have neither been tested
nor developed symptoms. A; and y are parameters to be calibrated. They are allowed to be

different for different agents.

4.2 Parameter values

Our choice of parameters broadly follows the recent literature modeling the transmission of the
COVID-19 virus. There is large uncertainty on the true value of these parameters, but the
analysis showed in the quantitative results section is qualitatively similar for a range of different
parameter choices.

The model is calibrated so that a time period is one week. We assume that it takes an
average 14 days to either recover or die from the infection ~that is 6° +¢& = 7/14. The parameter
1 is calculated so that the incubation period is around 10 days. The death rate comes from a
version of Ferndndez-Villaverde and Jones (2020) and matches early serology tests in Heinsberg,
Germany and Iceland. Since recent evidence suggests that the mortality rate might be higher,
we report robustness results using death rates of 1 percent in the Appendix. We also consider the
case in which death rates may depend on the ICU occupancy rate in Section 5.6. The fraction
of asymptomatic agents, 50 percent, also comes from Iceland in a study of voluntary screening.”
The value of death, ¢4, was calculated as the present value of the loss of future income discounted
by /3 as chosen in Eichenbaum et al. (2020b). We set both 7; and 7 to 0.1, such that 10 percent
of infected persons and the same percentage of persons who recovered without ever knowing
they were infected are tested per week. The 10 percent figure was picked based on evidence from
serology tests which show that only 1 in 10 cases of COVID-19 is confirmed by testing in many
countries (Pollan et al. (2020)). Keep in mind that, unless stated differently, we keep the testing
rate constant at its benchmark levels. The number of people who are initially infected, e, is set
to 0.001.

The initial population is normalized to one. The fraction of time-constrained agents, 30
percent, is initially calibrated as in Kumhof et al. (2010),® but different values are also used to
mimic developing economies. We set the parameters in the utility function, u, and «, so that the

steady-state time spent at home, at work and in outside leisure activities matches the data in

"https://nordiclifescience.org/ COVID-19-first-results-of-the-voluntary-screening-in-iceland /
8Note that Kumhof et al. (2010) call this the OLG households.
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the American Time Use Survey.? Finally, the parameters in the matching function are calibrated

so that the number of infected agents approaches zero after two years.

5 Quantitative Results

5.1 Testing and its effects on the epidemic and the economy

Our model predicts large health and economic benefits from increasing testing. The model
simulation results for an economy without testing; and with testing are depicted in Figure 4.
The solid line is for the economy without testing, the dashed line represents the benchmark
economy where 10 percent of infected persons and 5 percent of persons who recovered without
ever knowing they were infected are tested per week (so we adjust both 7; and 7). The economic
results with and without testing are qualitatively similar. However, using this level of testing, the
US would be able to reduce the number of deaths by more than 60,000 compared to a situation
where no tests were conducted by the end of the second year (Figure 4d). Additionally, the
cumulative output gain with this level of testing would be around 3.4 percent of pre-virus GDP
(Figure 4a).

There are two channels through which these proposed tests affect the economy. The first
operates by changing the epidemic’s dynamics. Early testing removes infected agents from
contact with susceptible people. The more infected people are removed from contact, the less
infections occur (see Figure 4b), reducing the number of sick and dead people as shown in Figures
4c and 4d, respectively.

This channel affects the economy through two mechanisms. First, infected people are required
to quarantine after receiving a positive test, even if they are asymptomatic. This has a negative
effect on the labor supply. On the other hand, unconstrained agents who are unaware of their
health status choose a higher labor supply when tests are available, because there is less risk of
getting infected once more infected people are removed from the labor force. The second effect is
larger than the first, so tests are net positive to GDP. This channel is also found in Eichenbaum
et al. (2020b) and Brotherhood et al. (2020).

The second channel, which we call the information channel, operates purely by providing

better information to agents. Some agents do not behave optimally due to a lack of information

9Which is compiled by the Census Bureau. American Community Survey (ACS) data obtained from Ruggles
et al. (2020).
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about their health status. For example, agents who recovered without ever knowing they were
infected behave as if they were still possibly susceptible.

Consequently, their labor supply choices are identical to those of healthy but susceptible
agents, as well as untested asymptomatic and pre-symptomatic infected agents. Testing for
antibodies in unknowingly recovered agents boosts economic outcomes without affecting the
epidemic’s dynamics, a result that allows us to separate this channel from the previously studied
ones.

Figure 5 compares the model in the absence of testing with a model in which antibody tests
are substantially scaled-up (the 75 is increased from 0 percent to about 5 percent). This is the
policy being floated for the post-lockdown period in many countries. As mentioned, this policy
has minimal effects on the virus dynamics (see Figures 5b, 5c, and 5d), but it has a positive
impact on GDP through the higher labor supply from the agents who recovered without ever
knowing they were infected (Figure 5a). The cumulative output gain from this policy after
two years is worth 0.1 percent of pre-virus GDP. Note, however, that this policy does not fully
capture the information channel in our model, as the viral test also reveals the virus to infected

people, allowing them to behave optimally after they have recovered.

5.2 What if the proportion of asymptomatic cases was different?

Our benchmark calibration for the share of asymptomatic cases is based on mass testing results
conducted in Iceland. However, there is large uncertainty about the number of asymptomatic
cases and the role of the asymptomatic in transmitting the virus.

In this section, we move between extremes in incidences of asymptomatic cases, from 80
percent to just 20 percent of all cases. The exercise is conducted so that the expected death
from the virus for a susceptible agent is the same. That is, we adjust the mortality rate, the
0 in the model, upward (downward) for the case of more (fewer) asymptomatic cases. If we
do not make this adjustment, the mortality rate would be lower for the instance with more
asymptomatic cases. In the Appendix, we discuss the role of different mortality levels.!”

There are multiple channels through which asymptomatic cases can change an epidemic.
Having more asymptomatic cases means that sickness is less likely, which increases the utility of

infected agents. Thus, agents would be less afraid of contracting the virus and could spend more

10Tt has been discussed that the mortality rate from COVID-19 could be lower with more asymptomatic cases
not captured by tests. This is a different point from this exercise. We set the mortality rate by calibration, which

can be chosen independently from the level of asymptomatic cases, which is another calibration choice.
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time outside. This channel is therefore positive for the economy but it could lead to more deaths.
On the other hand, asymptomatic individuals remain in contact with susceptible ones for longer,
since symptomatic cases are assumed to stay home while sick, and it takes less time to get sick
than it takes to recover from the virus. This further exposure increases the speed and reach of
the epidemic. As the virus reaches a higher fraction of the population, unconstrained agents cut
their time spent outside, which is bad for the economy but could reduce overall deaths. Finally,
more individuals recover without ever knowing they were infected, and behave as if they were
still susceptible. This latter effect would increase and prolong the economic costs of the virus.

These multiple channels act in opposite directions, but our results (Figure 6) indicate that
the virus becomes more widespread and more people die when the number of asymptomatic
cases is larger. The peak and the total number of infections are higher when asymptomatic cases
are more common (Figure 6b). The death count also ends up being higher because a lot more
people get infected (Figure 6d).

With respect to the economic effects, the fraction of asymptomatic cases is very important
to the current discussion about the depth and shape of the recovery (see Figure 6a). The
economic effects are somewhat similar for both calibrations at first, but after 10 weeks the
recession is substantially deeper when there are more asymptomatic cases and the virus is more
widespread. Unconstrained agents restrict their labor supply by a lot more in response to the
swift transmission of the virus. That is, even though there are fewer people getting sick, becoming
infected is so much more likely that these agents choose to stay home more hours. This large
response of households to riskier environments also appears in Garibaldi et al. (2020), where the
response peaks concomitantly with the number of infected agents.!!

After reaching the bottom, the economy starts to rebound and form more of a V-shaped
recovery when the number of asymptomatic cases is higher. That is, the recession is milder but
also more prolonged if the epidemic features fewer asymptomatic cases. The prolonged recession
is a byproduct of the slower transmission of the virus per period.

Given the difference in importance of information in the two calibrations, we also measure
how much more valuable testing is for these different situations. Figure 7 compares an economy
with no testing to one in which 10 percent of infected patients get tested, but with these two
different calibrations for the asymptomatic. After two years, the cumulative output gain is of

1.8 and 6.3 percent of pre-virus GDP when there are a fewer and more asymptomatic cases,

HNote that this result depends on the assumption that the virus is equally infectious for symptomatic and

asymptomatic individuals and on the assumption that sick people stay at home.
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respectively.

5.3 Effects of the epidemic for different agents

So far, we have analyzed the epidemic using only the aggregated numbers, but the heterogeneity
between the two groups of households is striking and helps to explain the overall dynamic.

It is expected that the virus would impact time-constrained agents more than unconstrained
agents. Time-constrained agents cannot afford to miss work and therefore are not able to reduce
their time spent outside the house to lower their exposure to the virus. This is what is seen in
Figure 8, which presents the same set of variables as shown before for the benchmark calibration,
but it breaks down the dynamics for the different groups of households.

However, the difference in the incidence of infection by the end of the epidemic is remarkable.
While less than 13 percent of the time unconstrained agents ever get infected by the virus, almost
60 percent of the time-constrained agents get infected at some point in the two years (Figure 8a).
This is also reflected in the number of deaths, where only 0.03 percent of the unconstrained agents
die compared to 0.12 percent of the time-constrained agents (Figure 8b). These numbers suggest
that the greatest burden of the epidemic will be borne by the time-constrained agents. The
unconstrained agents, knowing that the time-constrained agents will not change their behavior,

choose to lower their outside exposure even more and minimize their health losses.

5.4 An economy with a larger fraction of time-constrained agents

A natural extension is to ask what would happen in an economy where the fraction of time-
constrained agents is larger, which can better reflect many emerging and poor economies. Figure
9 shows the same variables but when 50 percent of the agents are time-constrained (in contrast
to 30 percent in the benchmark calibration), a calibration chosen in Kumbhof et al. (2010) for
emerging markets.

The effects of the epidemic in this context are dire (Figure 9) as could be expected from the
previous discussion. The peak of the epidemic is reached sooner and the epidemic quickly passes:
almost all infections take place in the first year. The total infected peak is at 2.9 percent of the
total population, compared to less than 1 percent in the benchmark (Figure 9b). Around 85
percent of time-constrained agents get infected at some point and 0.18 percent die (Figures 10a
and 10b). Meanwhile, only a little over 21 percent of the unconstrained agents ever get infected

and less than 0.05 percent of them die.
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Even if health systems were as good in emerging markets as they are in advanced economies,
poorer economies would still be more severely affected by the epidemic according to our model
predictions. This follows from the existence of a larger share of agents who cannot afford to take
precautions.

The economic effects in a poorer economy are also massive. Although there are more indi-
viduals behaving as they would in normal times during the epidemic, the virus is so much more
widespread, the risk of staying outside is substantially larger for the unconstrained agents. In
turn, these agents reduce their time spent outside and their labor supply to an even larger degree,
which more than offsets the higher labor supply from time-constrained workers. Consequently,
GDP effects are significantly larger in economies with a higher share of time-constrained workers
(see Figure 9a).

While the level of GDP bottoms out at about -8.7 percentage points in the benchmark
calibration, it reaches over -19 percentage points in this alternative calibration. While the
economic effects are much more severe, the recovery is also much faster and V-shaped. After
one year, the level of GDP in the economy with a larger share of time-constrained workers is
higher than in the benchmark calibration, which experiences a shallower but prolonged recession.
Finally, even with the faster recovery, the cumulative losses are about 3.7 percent of pre-covid
GDP for the economy with more time-constrained agents. Not only is the health situation dire,
but also the economic losses are larger (Figure 9a).

Given the larger cost for economies with a higher fraction of time-constrained agents, we
also study how the testing policy affects epidemiologic and economic outcomes compared to the
benchmark model (Figure 11).

Testing is more effective in slowing down the spread of the disease when there are more time-
constrained agents. In terms of infections, they peak about the same time, but testing reduces
the peak value by more when there are more time-constrained agents (Figure 11b). When more
testing is available, fewer people are infected at the beginning of the epidemic. In terms of
deaths, testing saves substantially more lives in the first year of the epidemic — around 30,000,
in the higher time-constrained calibration. But by the end of the epidemic, testing saves around
14,000 more lives in the benchmark calibration (Figure 11d). In sum, testing affects the speed,
hence the lower death count in the first year, but not the overall final health outcomes when the
fraction of time-constrained agents is larger. By the second year, most of the time-constrained
workers are already immune in the alternative calibration, which lowers testing effectiveness in

influencing the epidemic’s dynamics.
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By slowing the speed of the epidemic, testing is also effective in lowering the economic costs
in the economy with more time-constrained agents. While the economy bottoms out with a drop
in output of about 19 percentage points below the steady state without testing, it falls by 13
percentage points with testing (Figure 11a). The reason for this is similar to what we discussed
before. Testing reduces the speed and in turn the number of interactions between infected and
susceptible persons. With less risk of infection, unconstrained people are willing to spend more
time outside. By the end of the first year, testing improves GDP by 2.8 percentage points in the
calibration with a higher fraction of time-constrained agents compared with an improvement of
1.9 percentage points in the benchmark calibration. This shows that testing pays off even more

in the context of poorer economies at the onset of the epidemic.

5.5 Government-enforced lockdown

This sub-section analyzes the impact of two different lockdown strategies, varying in intensity
and duration. Our lockdown A is a short and overarching lockdown in which all agents are
forced to shelter at home for no less than an extra 25 percent of their time for one month. Our
lockdown B is milder but longer, with all agents mandated to shelter at home for no less than
an extra 10 percent of their time, but for 26 weeks.!?

Lockdowns slow the epidemic in the first year but have almost no effect by the end of the
second year. This dynamic can be seen in Figure 12b, where the peak in infections is delayed by
a few weeks with the lockdowns. In the first year 11,400 and 9,500 lives are saved by lockdowns
A and B, respectively. By the end of the second year, the difference is less than 5,000 (Figure
12d). The number of lives saved might sound small, but it is important to highlight that the
counterfactual is our benchmark calibration model, in which agents independently reduce their
time spent outside to avoid infection.

Without further measures, the extra recession generated by the lockdowns also disappears in
the second year (Figure 12a). From the moment that the lockdown is lifted until the beginning of
the second year, unconstrained agents always choose to spend more time outside than they would
have in a situation in which no lockdown was ever imposed, and this dampens the negative effects
on the economy (Figure 15). The time spent outside during the lockdown becomes irrelevant
for levels of GDP by the end of the second year, but accumulated losses are never recovered.

The cost per life is around $26 million and $54 million in lockdowns A and B, respectively.

12This stylized lockdown were inspired by Brotherhood et al. (2020). We assume that the lockdown starts in
the 11th week of the epidemic.
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The counterfactual used to calculate the cost per life is critical. For example, if we use as a
counterfactual a model in which all agents ignore the epidemic and do not take any precautions,
then lockdown B would be responsible for saving 325,000 lives at a cost of $2.5 million per life.

A scenario in which people are less careful can be approximated by an economy with a larger
share of time-constrained agents. Our model predicts that the cost per life is more favorable
for this type of economy. The explanation for this result has to do with the counterfactual we
are comparing it to. When a lockdown is imposed in this economy, the environment becomes
relatively safer for the unconstrained agents, who respond with a significantly less negative labor
supply after the lockdown is lifted (Figure 15).

In the economy with a larger share of time-constrained agents, lockdown B becomes irrelevant
for unconstrained agents after week 24, as they voluntarily choose to stay home for longer hours
than mandated by the government (Figure 15). By becoming ineffective in changing the choices
of part of the population, this lockdown is also less damaging to the economy. Moreover, it saves
more lives, as the number of lives saved at the beginning of the epidemic with the lockdown more
than offsets the higher deaths after it is lifted. Almost 17,000 lives are saved in lockdown B after
the first year. More lives are saved at a lower cost (Figure 14), and the cost per life in lockdown
B is around $14 million, which is less than half of the cost of the same lockdown imposed in an

economy with more unconstrained agents.

5.6 Effectiveness of lockdowns when health systems may collapse

One argument used in the defense of lockdowns is that the health systems would collapse absent

strong government-enforced lockdowns. The virus is so contagious that the health systems cannot

handle all of the hospitalizations and more people would die due to inadequate medical care.
We model the benefits of "flattening the curve” by assuming that the death rate is a time-

varying Poisson arrival rate that is increasing in the ratio of sick agents per ICU unit. In

Hoy )2i
ICU: K>

physical constraint is considered, Ho,; is the number of hospitalizations, IC'U, is the number of

particular, we assume that &, = & + ( where § is the mortality rate in the case where no
ICU beds, and K is a constant used for calibration. For ¢, we use our benchmark calibration. For
the number of hospitalizations, we assume that 20 percent of sick people need to be hospitalized
and 5 percent of them would require ICU treatment. For the number of ICU beds, we follow
McCarthy (2020) and assume 34.7 beds per 100,000 inhabitants.!® Finally, we calibrate K so

3Source is  National  Center for  Biology  Information, Intensive ~ Care  Medicine,
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that the probability of dying is four times larger than in the benchmark at the peak of the
epidemic.!4

Strains on the health system improve the cost-per-life of lockdowns, but also affect the
counterfactual of no policy action. When accounting for the higher mortality, lockdowns A and
B would be able to reduce first-year deaths by 15,000 and 16,000, respectively (Figure 16d). This
number is not substantially higher than in the previous section because the additional strains
on the health system also affect the behavior of unconstrained agents. If agents know that the
probability of dying depends on the level of ICU hospitalizations, then they would be more
careful when engaging in outside activities even without a lockdown, especially at the peak of
the epidemic (Figure 17). The additional deaths from hospital constraints and this endogenous
more careful response almost offset each other, and the number of lives saved by the lockdowns
is not substantially larger than if those physical constraints were not considered.

This more prudent behavior also leads to greater economic costs both in the economies with
and without lockdowns (Figure 16a). The cost per life is lower in this case, totaling $13.4 million

and $27.7 million in lockdowns A and B, respectively.

6 Conclusion

The invisible threats that all epidemics pose are amplified when people do not know their health
status. Information is always valuable, but even more so in a context where a large fraction
of infections are asymptomatic. Moreover, not everyone has the choice of foregoing income to
avoid a viral infection in which the probability of survival is high. This heterogeneity of choices
generates different epidemic dynamics and produces differences in the incidence of contagion.
In this paper, we proposed a framework to study these issues that have been largely ignored
by the literature. We enriched an epidemiology model with optimal and heterogeneous economic
choices and calibrated it to investigate stylized policy interventions. We also discussed how these
policies perform when the economic context or the characteristics of the disease are different.
While the magnitude of our results relies on modelling choices, qualitative results and new
intuition and channels would remain valid for a wider range of models. We have shown that
the levels of time-constrained and asymptomatic agents all have important implications for the

quantitative results. We showed the importance of testing as a vehicle to change the epidemic’s

https://www.statista.com/chart /21105 /number-of-critical-care-beds-per-100000-inhabitants/
Hgee Odone et al. (2020) for our calibration’s motivation
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dynamics and to improve the economy by providing information. We showed that this second
channel is even more important in the context of an epidemic with a large number of asymp-
tomatic cases. We showed that the economy could suffer more when the fraction of asymptomatic
cases is larger. However, we postulated a speedier recovery that would not offset all accumulated
losses. We showed that an economy with more time-constrained agents would have a worse eco-
nomic recession, even though a larger fraction of the population would not change their behavior
in response to the epidemic. Our direct model prediction is that the pandemic will eventu-
ally have a larger impact on poorer countries’ health outcomes, even without considering lower
physical and technical hospital capacity.

We showed that the assessment of containment measures has to be done against a realistic
counterfactual. That is, we should expect agents to take precautions against the virus even if
they are not mandated by the government to do so. Ignoring this fact would overestimate the
number of saved lives directly linked to a lockdown. In this context, our model suggests that
the cost per life of a lockdown could be smaller when more time-constrained agents are present.

Finally, we showed that the virus is more likely to affect time-constrained agents, but that
most of the economic recession would come because unconstrained agents decide to cut back their
time spent outside home. While the poor bear most of the health cost, the rich are responsible

for the economic slowdown, as they take precautions and stay at home.
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Figure 3: Movements across state spaces — Calibrated Model
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Figure 5: Pandemic’s pattern: Only Antibody Testing
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Appendix

In this appendix, we present supplementary information about our model as well as some
additional quantitative analysis. In particular, section A presents all the bellman equations and
laws of motion for the time-constrained agent’s problem, as mentioned in section 3.3. Section
B presents our equilibrium definition and a brief description of our solution algorithm. Finally,
section C.1 presents an additional quantitative analysis. In particular, we show how our results

change as COVID-19 mortality rate changes.

A Time-constrained agents

Since time-constrained agents make no decisions, we are now able to present their Bellman

equations. The Bellman equation for healthy but susceptible time-constrained agents is:

X [VIEY + (1= NI
Hey = u(w x L&) -I—h(Llc,t) b X Llé’,t+6{ " [7 C,t+1 + ( 20) C,t—H] } (A1)

+ (1= XY) Hopa

where the flow utility is the same as the one described in Section 3.2.1, § is the discount rate,
A is the arrival rate of infection, 7 is the probability of an asymptomatic infection, and Igftf 1
and Igl; 41 are the Bellman equations for the untested infected asymptomatic and eventually
symptomatic time-constrained agents, respectively.

The Bellman equation for an infected asymptomatic time-constrained agent without a viral

test at time ¢ is:
]g,lt] = u(w x Lg,t) + h(Llc,t> +up X L]é’,t +0 {Ttlléfﬂ + éAURg,tH + 1 - TtI - éAU]]gU} (A.2)

where the flow utility is the same as the one described in Section 3.2.1, 3 is the discount rate,
7! is the arrival rate of viral tests, I é‘f ', is the Bellman equation for an asymptomatic infected
time-constrained agent with a positive viral test, 64v is the arrival rate of recovery, and RY, is
the Bellman function for a recovered time-constrained agent with unknown immunity. Notice
that RY is not time dependent, since recovered agents will never become infected again and
time-constrained agents do not adjust their time allocation based on the knowledge of immunity.

Consequently, RY, = RE = R¥. Similarly, notice that 3% is not a function of the time allocation
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as well, since agents with a positive viral test are required to stay home. So the Bellman equation
for an asymptomatic infected time-constrained agent with a positive viral test at time ¢ is given
by:

185 = u(®) +wy x T+ B{F* RS + (1 - )14} (A.3)

where R is the Bellman equation for a recovered agent with known immunity presented in
equation (2) and 64x is the arrival rate of recovery. Notice that this Bellman equation is
stationary.

The Bellman equation for an eventually symptomatic time-constrained agent without a viral

test at time ¢ is:
Ig[i = u(w x Llcv,t) + h(LlC’,t) +up X Lg,t + 0 {Ttllgfg—f—l + Iy Scr + [1— TtI - ﬁU]]g%—H} (A.4)

where the flow utility is the same as the one described in Section 3.2.1, 3 is the discount rate,
7l is the arrival rate of viral tests, [ gﬂf 41 is the Bellman equation for an eventually symptomatic
infected time-constrained agent with a positive viral test, f;; is the arrival rate of symptoms,
and Scy4q is the Bellman function of a sick time-constrained agent. Similarly to I‘C4K , Ig’i 1
and Sc 41 are not functions of the time allocation, since agents with either a positive viral test
or symptoms are required to stay at home. Let us present these Bellman equations next. The
Bellman equation for an eventually symptomatic time-constrained agent with a positive viral
test at time ¢ is:

125 = u(b) +uy X L+ B {igScusr + (1 — g5, } (A.5)

where 11, is the arrival rate of symptoms. Differently from IélK , [f X is non-stationary, since as
we see below, Sc;41 depends on time. In particular, one’s outcome as a sick patient depends on
how overcrowded the health system is.

The Bellman equation for a sick agent in period ¢ is given by:
SC7t = U(b) + uy X z — Cg + ﬁ {5t(—CD> + Qngt + []. — 6t — 95]807t+1} (AG)

where c is the flow cost of sickness, d; is the death arrival rate, c¢p is the one-time cost of death
before exiting the environment, 6 is the arrival rate of recovery, and R¥ is the Bellman equation
for a recovered agent with known immunity presented in equation (2). Because ¢; and 67 vary
over time due to over-utilization of health services, S; is non-stationary.

As mentioned before, once time-constrained agents do not adjust their hours based on the

risk of infection, we have that RY, = R, = Rf = R, where R¥ is presented in equation (2),

A-2



ie.:
u(w x LE,) + h(LlC,t) +up X L}cl‘,t

1-p

Finally, the laws of motion for time-constrained agents follow a pattern very similar to that of

R¢, = RE, = Rt = RY = (A7)

the unconstrained agents, but replacing the infection rate \; with \¥. Consequently, equations

(LM,y) — (LMjy) can be rewritten for the case of time-constrained agents as:
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B Definition of the equilibrium for the economy

Definition 1 A rational-expectations equilibrium in this economy with an initial measure of
agents n consists of a sequence of infection rates for unconstrained agents {\:}i>o such that at

every period.:

1. Potentially susceptible unconstrained agents optimally solve their time allocation problem

presented in equations (10) and (11);

2. Known recovered unconstrained agents optimally solve their time allocation problem pre-

sented in equation (2)

3. Resulting laws of motion (LM;) — (LMy) and (LME) — (LME) give rise to the sequence

of infection rates {\}i>o0-

Given rational expectations, the beliefs of time-constrained agents and the objective proba-



bilities of different health states coincide:
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We use a time-stacking algorithm using the sparsity of the Jacobian blocks in a gradient-based

method to solve for the equilibrium paths of all endogenous variables for ¢t = 0, ..., 500.

C Additional Quantitative Results

C.1 What if mortality is higher?

There is a large uncertainty about the case mortality rate of COVID-19. Different countries
will also eventually have different mortality rates because of variation in demographic structures
and hospitals’ technical and physical capacities. All these reasons motivate the discussion of the
sensitivity of our model results to this parameter.

Case mortality rate was initially thought to be as high as 3.4 percent. Some serology tests
suggested that it could be as low as 0.3 percent and Fernandez-Villaverde and Jones (2020) think
that it could be between 0.8 percent and 1.2 percent. Figure 18 presents the results when the
case mortality rate is 1 percent and compares it with the benchmark ¢ calibration.

The epidemiologic dynamic is qualitatively similar, but the peak of infections is lower when
mortality is higher (Figure 18a). The case mortality rate per se should not impact the number of
infections, since in our model it does not affect the time during which one is infectious. However,
when the case mortality rate is higher, unconstrained agents would be even more careful in their
activities outside the home, which lowers the possibility of a match between susceptible and
infected agents. While high mortality rate, by definition, implies that more infected people
would die, more careful agents would lower the number of infections. In our calibration, the
first effect is larger, and about 300,000 more people would die in the US after two years (Figure
18d). It is interesting to note that the initial phase of the epidemic is identical regardless of

the assumed mortality, a result also discussed in Fernandez-Villaverde and Jones (2020). The
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epidemic’s paths only start to diverge around week 37 and peak at exactly the same time at
week 42. However, the peak is lower when the mortality rate is higher. At the end of the second
year, slightly fewer people get ever infected when mortality is higher, as expected.

The economic impact of higher mortality is dramatic and the maximum difference in output
coincides with the peak of the epidemic. Similar to the case when the fraction of time-constrained
agents is larger, a higher mortality rate implies that it is riskier to engage in outside activities. For
the first 20 weeks of the epidemic, labor supply by unconstrained agents is about the same. As the
number of infected workers increases, engaging in outside activities is riskier, and unconstrained
agents cut their labor supply by more when mortality is higher. At the trough, labor supply
drops by more than 35 percent, compared to less than 15 percent in the benchmark calibration.
Overall, the economic difference is massive (Figure 18a). In the first year, GDP per capita falls
by 12.5 percentage points when mortality is higher compared to 4.8 percentage points in the
benchmark calibration. Similar to the case with more time-constrained agents, testing is more
effective in smoothing the GDP contraction when mortality is higher. The reason is similar to
before: testing reduces the speed of the epidemic and encourages unconstrained people to work

more.
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