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1 Introduction

What is the optimal inflation rate? This long-standing question in monetary economics has

gained renewed attention from academics and central bank practitioners since short-term

nominal interest rates encountered the zero lower bound (henceforth ZLB) during and after

the Great Recession.1 A large literature has so far established the view that the optimal rate

of (trend or long-run) inflation is zero when price rigidity is the main source of monetary

non-neutrality, particularly in the absence of the ZLB on nominal interest rates, downward

rigidity of nominal wages, or biases in measured inflation that are rationales for the positive

inflation targets set by central banks around the world.2 In examining this view, much of

the existing literature has employed a constant elasticity of substitution (henceforth CES)

aggregator of individual differentiated goods in staggered price models.

However, previous studies have pointed to several drawbacks of staggered price models

with CES aggregators. Ascari (2004) and Levin and Yun (2007), for instance, indicate that

such models lead higher trend inflation to generate a larger loss in steady-state output

(even relative to its natural rate), that is, a larger long-run trade-off between output and

inflation. This is because higher trend inflation increases average markup and relative price

distortion in their models. They also point out that, in the models, higher trend inflation

gives rise to a larger short-run trade-off between output and inflation, that is, a flatter slope

of Phillips curves derived from the models. This inverse relationship between trend inflation

and the slope of Phillips curves is at odds with the empirical evidence. Benati (2007), Ball

and Mazumder (2011), the International Monetary Fund (2013), and Matheson and Stavrev

(2013), for example, empirically show that US Phillips curves flattened after the Volcker

disinflation. Indeed, in Figure 1 the thin (blue) circles illustrate the positive relationship

between the annual average inflation rate and the annual average estimated slope in the

1Blanchard et al. (2010) observed that “it is clear that the zero nominal interest rate bound has proven
costly. Higher average inflation—and thus higher nominal interest rates to start with—would have made
it possible to cut interest rates more, thereby reducing the drop in output and the deterioration of fiscal
positions” (p. 205).

2For a review of the literature, see, e.g., Schmitt-Grohé and Uribe (2010). Even in the absence of the three
sources of positive inflation targets, a few recent studies have demonstrated a positive rate of optimal trend
inflation. See, e.g., Adam and Weber (2019), who introduce heterogeneous firms and firm-level productivity
trends as a new source, Bilbiie et al. (2014), who incorporate firm entry and product variety, and Carlsson
and Westermark (2016), who study the interaction of nominal wage rigidity and labor market search frictions.
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Phillips curve model of Ball and Mazumder (2011) for the period from 1961 to 2019.

Figure 1: Relationship between average or trend inflation and Phillips curve slope.
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Notes: The thin (blue) circles plot annual averages of the estimated slope coefficients in the Phillips curve
model of Ball and Mazumder (2011) (their eq. 3) against the annual average inflation rate of the personal
consumption expenditures (PCE) price index. The time-varying slope coefficients are estimated with the
Kalman smoother, using the quarterly inflation rate of the core PCE price index (i.e., the one excluding food
and energy) and the Congressional Budget Office’s output-gap measure from 1959:Q2 to 2019:Q4. The thick
(red) circles and the filled (orange) circles show predictions of our model with the Kimball-type non-CES
aggregator, respectively, for two values of the parameter θ that governs the elasticity of substitution between
goods. Other model parameters used here are reported later in Table 1.

To mitigate these problems, Shirota (2015) and Kurozumi and Van Zandweghe (2016)

suggest introducing, in staggered price models, a not necessarily CES aggregator of the sort

proposed by Kimball (1995) and developed by Dotsey and King (2005) and Levin et al.

(2008), which includes the CES aggregator as a special case.3 The non-CES aggregator

provides a parsimonious way of incorporating variable (price) elasticity of demand, and

has been widely used as a source of strategic complementarity in firms’ price-setting in the

macroeconomic literature.4 As a consequence, lower trend inflation gives the models’ Phillips

3Moreover, staggered price models with CES aggregators lead higher trend inflation to induce a higher
likelihood of indeterminacy of equilibrium, as argued by Ascari and Ropele (2009) and Coibion and Gorod-
nichenko (2011). Kurozumi and Van Zandweghe (2016) show that the equilibrium indeterminacy induced
by higher trend inflation is largely prevented in the presence of the Kimball-type non-CES aggregator.

4See, e.g., Eichenbaum and Fisher (2007) and Smets and Wouters (2007).
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curves a flatter slope, in line with the empirical evidence.5 Moreover, lower trend inflation

decreases steady-state output by increasing the average markup, which is consistent with

the empirical evidence. De Loecker et al. (2020) show that markups in the United States

have increased substantially since 1980, a period during which inflation has trended down.6

The thin (blue) circles in Figure 2 display the negative relationship between their estimate

of the average markup and the annual average inflation rate during the period 1955–2016.

Figure 2: Relationship between average or trend inflation and the average markup.
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Notes: The thin (blue) circles plot the average markup estimated by De Loecker et al. (2020) (in their
Figure 1) against the annual average inflation rate of the PCE price index from 1955 to 2016. The thick
(red) circles and the filled (orange) circles show predictions of our model with the Kimball-type non-CES
aggregator, respectively for two values of the parameter θ that governs the elasticity of substitution between
goods. Other model parameters used here are reported later in Table 1.

The thick (red) circles and the filled (orange) circles in Figures 1 and 2 are predictions

of our model with the Kimball-type non-CES aggregator using two common values of the

parameter θ that governs the elasticity of substitution between goods. While the value of

θ affects the size of the Phillips curve’s slope and of the average markup under high trend

5To address the “missing deflation” during the Great Recession and the “missing reflation” during the
subsequent expansion, recent research examines the possibility of a flattening of Phillips curves. See, e.g.,
Lindé and Trabandt (2019), who employ a Kimball-type aggregator to that end.

6Likewise, Hall (2018) shows that markups in the US have increased from 1988 to 2015.
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inflation, the direction of their relationships with trend inflation aligns closely with the

empirical evidence. The figures therefore indicate that the non-CES aggregator generates

empirically plausible short- and long-run trade-offs between output and inflation.

Given the positive implications of the non-CES aggregator illustrated in Figures 1 and

2, our paper examines its welfare implications in a staggered price model. To this end, the

paper follows Woodford (2003) and Alves (2014) to derive the welfare function as a second-

order approximation to the representative household’s utility function in the model. The

model-based welfare function captures three welfare costs: the steady-state cost, the cost

induced by inflation-related variability, and that induced by output(-gap) variability. The

magnitude of these three welfare costs then depends on the rate of trend inflation.

The paper shows that the Kimball-type non-CES aggregator substantially alters how

higher trend inflation affects the first two of the welfare costs. The non-CES aggregator

causes higher trend inflation to decrease the average markup as noted above, which reduces

the steady-state welfare cost of higher trend inflation. It also causes higher trend inflation

to decrease the weight on inflation-related variability in the welfare function, thus lowering

the welfare cost of the variability stemming from higher trend inflation. The decrease in the

inflation-related welfare weight arises because in the model there is an inverse relationship

between that weight and the slope of the Phillips curve that is similar to those in Woodford

(2003) and Alves (2014), who consider the special case of the CES aggregator, and because

the slope of the Phillips curve becomes steeper for higher trend inflation as noted above.

With the two features of the welfare function generated by the non-CES aggregator, the

optimal rate of trend inflation is moderately positive under a monetary policy rule of the

sort proposed by Taylor (1993), even without considering the ZLB on nominal interest rates.

Under a baseline calibration of the model’s parameters, the optimal trend inflation rate is 2.4

percent (annually) without considering the ZLB. Once taking it into account, the optimal rate

rises mildly to 3.3 percent. These results contrast sharply with those in the case of the CES

aggregator. In this case, higher trend inflation significantly raises the steady-state welfare

cost by increasing both average markup and relative price distortion. Moreover, higher trend

inflation increases the weight on inflation variability in the model-based welfare function,

because of the aforementioned inverse relationship between the weight and the model-implied

Phillips curve’s slope, the latter of which becomes flatter for higher trend inflation as noted
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above. Consequently, the optimal trend inflation rate with the CES aggregator is zero in

the absence of the ZLB and increases more substantially to 1.5 percent in the presence of it.

The latter results are in line with those of Coibion et al. (2012), whose study of the optimal

inflation rate in New Keynesian models with the CES aggregator is a natural benchmark for

our analysis.

In recent years, some practical proposals, such as those by Blanchard et al. (2010), Ball

(2013), and Krugman (2014), have called for raising the Federal Reserve’s inflation target

from the current 2 percent to 4 percent or even higher. We examine such proposals by

following Ascari et al. (2018) to calculate the difference of welfare under 2 percent and 4

percent trend inflation in our model. We find that the welfare difference is much smaller

than in the case of the CES aggregator. This implies no crucial welfare difference between

setting 2 percent and 4 percent inflation targets in our model. One caveat is that the welfare

difference takes no account of transition costs, including the cost of making the 4 percent

inflation target credible, so the welfare difference may underestimate the full cost of raising

the inflation target from 2 percent to 4 percent.

The remainder of the paper proceeds as follows. Section 2 presents a staggered price

model with a Kimball-type non-CES aggregator. Section 3 derives a welfare function from

the model. Section 4 investigates optimal trend inflation and its determinants in the model.

Section 5 concludes.

2 Model with Kimball-type Aggregator

This section presents a staggered price model with a Kimball (1995)-type, not necessarily

CES, aggregator. The model consists of households, composite-good producers, firms, and a

monetary authority. A key feature of the model is that, each period, a fraction of individual

goods’ prices remains unchanged in line with the micro evidence, while the other prices are

set given demand curves with variable elasticity arising from the non-CES aggregator.7 In

7For a microeconomic foundation of variable elasticity of demand, see Benabou (1988), Heidhues and
Koszegi (2008), and Gourio and Rudanko (2014), among others. Benabou develops a model of customer
search, where a search cost gives rise to a reservation price above which a customer continues to search for
a seller. Heidhues and Koszegi consider customers’ loss aversion, which increases the price responsiveness
of demand at higher relative to lower market prices. Gourio and Rudanko construct a model of customer
capital, where firms have a long-term relationship with customers whose demand is unresponsive to a low
price.
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what follows, each economic agent’s behavior is described in turn.

2.1 Households

There is a representative household that consumes a composite good Ct, supplies labor

services {lt(f)} specific to firms f ∈ [0, 1], and purchases one-period bonds Bt so as to

maximize the utility function

E0

∞∑
t=0

βt

(
log (Ct)−

∫ 1

0

(lt(f))1+1/η

1 + 1/η
df

)
(1)

subject to the budget constraint

PtCt +Bt =

∫ 1

0

PtWt(f) lt(f) df +Bt−1 rt−1 exp (zb,t) + Tt,

where Et denotes the expectation operator conditional on information available in period

t, β ∈ (0, 1) is the subjective discount factor, η > 0 is the elasticity of labor supply, Pt is

the price of the composite good, Wt(f) is the real wage rate of labor service lt(f), rt is the

monetary policy rate, zb,t is a risk premium shock, and Tt consists of lump-sum taxes and

transfers and firm profits received.

The first-order conditions for utility maximization with respect to consumption, labor

supply, and bond holdings are given by

Λt =
1

Ct
, (2)

Wt(f) =
(lt(f))1/η

Λt

, ∀f ∈ [0, 1], (3)

1 = Et

(
β Λt+1

Λt

rt
πt+1

exp (zb,t)

)
, (4)

where Λt denotes the marginal utility of consumption and πt ≡ Pt/Pt−1 is the gross inflation

rate of the composite good’s price.

2.2 Composite-good producers

There are a representative composite-good producer and a continuum of firms f ∈ [0, 1],

each of which produces an individual differentiated good Yt(f) and is subject to staggered

price-setting that is detailed in the next subsection. As in Kimball (1995), the composite
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good Yt is produced by aggregating individual differentiated goods {Yt(f)} with∫ 1

0

F

(
Yt(f)

Yt

)
df = 1. (5)

Following Dotsey and King (2005) and Levin et al. (2008), the function F (·) is assumed to

be of the form

F

(
Yt(f)

Yt

)
=

γ

(1 + ε)(γ − 1)

(
(1 + ε)

Yt(f)

Yt
− ε
)γ−1

γ

+ 1− γ

(1 + ε)(γ − 1)
,

where γ ≡ θ(1 + ε) is a composite parameter.8 The parameter ε governs the curvature (−εθ)

of the demand curve for each individual good. In the special case of ε = 0, the aggregator

(5) is reduced to the CES one Yt = [
∫ 1

0
(Yt(f))(θ−1)/θdf ]θ/(θ−1), where θ > 1 represents the

elasticity of substitution between individual differentiated goods. The case of ε < 0 is of

particular interest in this paper because it gives rise to strategic complementarity in firms’

price-setting.

The composite-good producer maximizes profit Pt Yt −
∫ 1

0
Pt(f)Yt(f) df subject to the

aggregator (5), given individual goods’ prices {Pt(f)}. Combining the first-order conditions

for profit maximization and the aggregator (5) leads to

Yt(f)

Yt
=

1

1 + ε

[(
Pt(f)

Pt dt

)−γ
+ ε

]
, (6)

dt =

[∫ 1

0

(
Pt(f)

Pt

)1−γ
df

] 1
1−γ

, (7)

1 =
1

1 + ε
dt +

ε

1 + ε
et, (8)

where dt is the Lagrange multiplier on the aggregator (5) and

et ≡
∫ 1

0

Pt(f)

Pt
df. (9)

The Lagrange multiplier dt represents the real marginal cost of producing the composite good

(or aggregating individual differentiated goods), and consists of the aggregate of relative

prices of individual goods that corresponds to the aggregator (5), as shown in (7). In the

special case of ε = 0, where the aggregator (5) becomes the CES one as noted above, eqs. (6)–

8See also Shirota (2015) and Kurozumi and Van Zandweghe (2016, 2019).
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(8) can be reduced to Yt(f)/Yt = (Pt(f)/Pt)
−θ, Pt =

[∫ 1

0
(Pt(f))1−θ df

]1/(1−θ)
, and dt = 1,

respectively. The last equation indicates that the real marginal cost is constant in the case

of the CES aggregator. Moreover, if all firms share the same production technology (as

assumed later) and all individual goods’ prices are flexible, the prices are all identical and

thus eqs. (7) and (8) imply that dt = 1 even in the case of the non-CES aggregator, i.e.,

ε < 0.

Eq. (6) is the demand curve for each individual good Yt(f) and features a variable (price)

elasticity of demand for the good given by θt(f) = θ
[
1 + ε− ε (Yt(f)/Yt)

−1]. When ε < 0,

the elasticity θt(f) varies inversely with relative demand Yt(f)/Yt. That is, relative demand

for each individual good becomes more price-elastic for an increase in the relative price of the

good, whereas the relative demand becomes less price-elastic for a decrease in the relative

price. As is well understood, this feature induces strategic complementarity in firms’ price-

setting, because firms that face the increasing elasticity keep their goods’ relative prices near

those of other firms (when they can adjust prices).9 In the special case of ε = 0, the demand

curve is reduced to Yt(f)/Yt = (Pt(f)/Pt)
−θ and the elasticity of demand becomes constant:

θt(f) = θ.

Figure 3 illustrates the log of the inverse demand curve

Pt(f)

Pt
=

[
(1 + ε)Yt(f)

Yt
− ε
]− 1

γ

dt

implied by (6), keeping the real marginal cost of aggregating goods dt at its steady-state

value under firms’ staggered price-setting. For each good Y (f), the left-hand side of the

inverse demand curve is its relative price and the right-hand side consists of its marginal

product (i.e., [(Yt(f)/Yt)(1 + ε) − ε]−1/γ) and the real marginal cost. The figure uses two

values of the curvature parameter, ε = 0 (the dashed-dotted line) and ε = −6. For the latter,

the inverse demand curve is shown under a trend inflation rate of zero (the dashed line) and

3 percent annually (the solid line).

Under zero trend inflation, the steady-state real marginal cost is unity, and thus the

9Models incorporating strategic complementarity are sometimes criticized for inducing unrealistically
small absolute price changes. See Klenow and Willis (2016) for the criticism applied to the Kimball (1995)-
type aggregator and Nakamura and Steinsson (2010) for an in-depth discussion. Although the Kimball-type
aggregator dampens firms’ price changes in our model, nonzero trend inflation amplifies them by eroding
firms’ relative prices between price changes.
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Figure 3: Demand curves.
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Notes: The figure illustrates demand curves in steady state. The case of the Kimball-type non-CES aggrega-
tor with ε = −6 is shown by the dashed and the solid lines, which respectively assume a trend inflation rate
of zero and 3 percent annually. The case of the CES aggregator (i.e., ε = 0) is displayed by the dashed-dotted
line. The values of other model parameters used here are reported later in Table 1.

dashed line of Figure 3 shows that the relative price is equal to the marginal product. When

the trend inflation rate rises to 3 percent annually, the real marginal cost becomes higher

than unity, so that the solid line of the figure shows that the inverse demand curve moves up,

that is, the relative price becomes greater than the marginal product. The higher marginal

cost is associated with an increase in price dispersion under the higher trend inflation rate

and firms’ staggered price-setting. Indeed, higher trend inflation induces higher dispersion in

relative prices, as price-adjusting firms set a higher price and nonadjusting firms have their

relative prices eroded by inflation. The higher price dispersion induces a shift in demand

from goods with higher relative prices toward goods with lower ones. However, the shift is

asymmetric because the non-CES aggregator implies variable elasticity of demand, so that a

small increase in demand for goods with lower relative prices is more than offset by a sharp

decline in demand for goods with higher ones. Hence, to meet the demand for aggregate

output, the composite-good producer must increase its demand for individual goods, which

stimulates the increase in demand for goods with lower relative prices and mitigates the
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decline in demand for goods with higher ones. The increase in demand for individual goods

raises their relative prices above marginal products and thus raises the real marginal cost of

aggregating the goods.10

The output of the composite good is equal to the household’s consumption:

Yt = Ct. (10)

2.3 Firms

Each firm f produces one kind of differentiated good Yt(f) using the production technology

Yt(f) = At lt(f), (11)

where At represents the level of technology and is assumed to be identical among firms and

governed by the stochastic process

log

(
At
At−1

)
= log (at) = log (a) + za,t, (12)

where at (≡ At/At−1) is the gross rate of technological change and za,t is a (non-stationary)

technology shock.

The firm minimizes cost PtWt(f) lt(f) subject to the production technology (11), given

the wage rate PtWt(f). The first-order condition for cost minimization yields firm f ’s real

marginal cost of producing its differentiated good

mct(f) =
Wt(f)

At
. (13)

In the face of the demand curve (6) and the marginal cost (13), firms set their products’

prices on a staggered basis as in Calvo (1983). In each period, a fraction α ∈ (0, 1) of firms

keeps prices unchanged, while the remaining fraction 1 − α sets the price Pt(f) so as to

maximize the relevant profit

Et

∞∑
j=0

αj Qt,t+j

(
Pt(f)

Pt+j
−mct+j(f)

)
Yt+j
1 + ε

[(
Pt(f)

Pt+j dt+j

)−γ
+ ε

]
,

10Likewise, an increase in the degree of price rigidity would increase price dispersion and the real marginal
cost of aggregating goods. Conversely, if all individual goods’ prices are flexible and all firms share the same
production technology (as assumed later), the real marginal cost is unity even in the case of the non-CES
aggregator as noted above, thus resulting in no shift in the inverse demand curve.
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where Qt,t+j is the (real) stochastic discount factor between period t and period t+ j, which

meets the equilibrium condition Qt,t+j = βjΛt+j/Λt. Using (2) and (10), the first-order

condition for profit maximization can be rewritten as

Et

∞∑
j=0

(αβ)j

( p∗t
dt+j

j∏
k=1

1

πt+k

)−γ(
p∗t

j∏
k=1

1

πt+k
− γ

γ − 1
mc∗t+j

)
− ε

γ − 1
p∗t

j∏
k=1

1

πt+k

= 0, (14)

where p∗t is the relative price set by firms that can change prices in period t, and mc∗t+j is

the firms’ real marginal cost in period t + j. From (2), (3), (6), (11), and (13), it follows

that the marginal cost is given by

mc∗t+j =
1

At+jΛt+1

 Yt+j
(1 + ε)At+j

( p∗t
dt+j

j∏
k=1

1

πt+k

)−γ
+ ε


1/η

. (15)

Furthermore, under staggered price-setting, eqs. (7) and (9) can be reduced to, respectively,

d1−γt = απγ−1t d1−γt−1 + (1− α)(p∗t )
1−γ , (16)

et = απ−1t et−1 + (1− α) p∗t . (17)

By considering flexible prices, that is, setting α = 0 in (14), (16), and (17) and combining

the resulting equations, (8), and (15), the natural rate of output can be written as

Y n
t =

(
θ − 1

θ

) 1
1+1/η

At, (18)

regardless of whether the aggregator is CES or non-CES.

2.4 Monetary authority

The monetary authority conducts policy according to a Taylor (1993)-type rule. This rule

adjusts the target interest rate r?t in response to inflation, the output gap, and output growth

and allows for policy inertia:

log(r?t ) = φr1 log(r?t−1) + φr2 log(r?t−2) + (1− φr1 − φr2) log(r)

+ (1− φr1 − φr2)
[
φπ (log(πt)− log(π)) + φy log

(
Yt
Y n
t

)
+ φgy

(
log

(
Yt
Yt−1

)
− log(a)

)]
+ zr,t,

(19)
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where φr1, φr2, φπ, φy, φgy ≥ 0 represent the degrees of first and second policy-rate smoothing

and policy responses to inflation, the output gap, and output growth, and zr,t is a monetary

policy shock. The actual interest rate is subject to the ZLB, so that it is given by

log(rt) = max (log(r?t ), 0) . (20)

An interest rate rule such as (19) is widely regarded as a reasonable description of the Federal

Reserve’s stabilization policy in recent decades, so with it we separate the question about

the optimal trend inflation rate from the distinct question of how stabilization policy should

be conducted.

2.5 Equilibrium conditions and steady state

The equilibrium conditions consist of (2), (4), (8), (10), (12), (14)–(20), as well as univariate

stationary first-order autoregressive processes for the shocks zj,t, j ∈ {a, b, r}:

zj,t = ρj zj,t−1 + εj,t,

where ρj ∈ [0, 1) is the persistence parameter and εj,t ∼ i.i.d.N(0, σ2
j ) is a disturbance.

To derive the steady state of the model explicitly from the equilibrium conditions, it is

assumed hereafter that the elasticity of labor supply is unity, i.e., η = 1, which is a widely

used value in the macroeconomic literature. Moreover, for the steady state to be well defined,

the following condition is assumed to be satisfied:

αmax(π2γ, πγ, πγ−1, π−1) < 1. (21)

This condition is rewritten as αmax(πθ, πθ−1) < 1 in the special case of the CES aggregator

(i.e., ε = 0), while the condition is always met in the special case of zero trend inflation (i.e.,

π = 1).

Using the equilibrium conditions rewritten in terms of detrended variables (e.g., yt ≡

Yt/At, ynt ≡ Y n
t /At), detrended output y and its natural rate yn in the steady state with

trend inflation π can be written as

y = yn

 1−αβπ2γ

1−αβπγ−1

(
1−α

1−απγ−1

) γ
γ−1 (γ−1−ε2)(1+ε)

(γ−1−ε)(1+ε3)

1
1+ε

(
1−απγ−1

1−α

) 1
γ−1 + ε

1+ε
1−α

1−απ−1

1
2

, yn =

(
θ − 1

θ

)1
2

,
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where ε1 ≡ ε[(1 − α)/(1 − απγ−1)]γ/(γ−1), ε2 ≡ ε1(1 − αβπγ−1)/(1 − αβπ−1), and ε3 ≡

ε1(1 − αβπ2γ)/(1 − αβπγ). Note that the rate of trend inflation and the CES or non-CES

aggregator are irrelevant to the natural rate of steady-state output yn.

Steady-state output loss induced by higher trend inflation can be prevented in the pres-

ence of the Kimball-type non-CES aggregator, as shown by Kurozumi and Van Zandweghe

(2016). To see this, values of parameters in the quarterly model are chosen. The parameter

values are set at the baseline values of Coibion et al. (2012) to facilitate the comparison

with their results.11 The elasticity of labor supply has already been fixed at η = 1. The

subjective discount factor is set at β = 0.998; the parameter governing the elasticity of

substitution between individual differentiated goods is chosen at θ = 7, implying a static

markup equal to 17 percent; and the probability of no price change is set at α = 0.55. As

for the parameter governing the curvature of demand curves, we choose a value of ε = −6

that implies, given our assumption for θ, curvature of −εθ = 42. This degree of curvature

is intermediate between those implied by the two estimates of Guerrieri et al. (2010).12 To

meet the assumption (21) under the parameter values presented above, the trend inflation

rate needs to be greater than −3.4 percent annually. Table 1 summarizes the calibration of

parameters. The parameters in the bottom panel of the table are explained in Section 4.

Figure 4 illustrates how steady-state (detrended) output y changes with the annualized

rate of trend inflation π in the cases of the Kimball-type non-CES aggregator with ε =

−6 (the solid line) and the CES aggregator (the dashed line), using the values of model

parameters presented in Table 1. In the case of the CES aggregator (i.e., ε = 0), higher

trend inflation—more generally, a larger deviation from zero trend inflation—induces a larger

loss in steady-state output (even relative to its natural rate yn, which is displayed by the

dashed-dotted line), as pointed out by Ascari (2004) and Levin and Yun (2007). By contrast,

the non-CES aggregator causes steady-state output to increase with higher trend inflation.

As Kurozumi and Van Zandweghe (2016) indicate, the non-CES aggregator alters the effect

11Aside from the non-CES aggregator, our model differs from that of Coibion et al. (2012) by abstracting
from consumption habits and government spending. This difference, however, leads to little change in the
results on optimal trend inflation.

12These authors use international trade data and the New Keynesian Phillips curve of an open-economy
model to estimate the degree of curvature and obtain two estimates, based on different assumptions for the
static markup implied by θ. Their baseline and alternative estimates assume θ = 6 and θ = 11 and imply
curvature of 16.7 and 65.9, respectively.
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Table 1: Calibration of parameters in the quarterly model.

Parameter Description Value
η Elasticity of labor supply 1
β Subjective discount factor 0.998
θ Parameter governing the elasticity of substitution between goods 7
α Probability of no price change 0.55
ε Parameter governing the curvature of demand curves −6
φπ Policy response to inflation 2.5
φy Policy response to output gap 0.43/4
φgy Policy response to output growth 1.5
φr1 First policy-rate smoothing coefficient 1.05
φr2 Second policy-rate smoothing coefficient −0.13
a Steady-state rate of technological change 1.0151/4

ρa Persistence of technology shock 0
ρb Persistence of risk premium shock 0.947
ρr Persistence of monetary policy shock 0
σa Standard deviation of technology shock disturbance 0.009
σb Standard deviation of risk premium shock disturbance 0.0024
σr Standard deviation of monetary policy shock disturbance 0.0024

of trend inflation on the steady-state average markup. Higher trend inflation causes price-

adjusting firms to choose a higher markup and erodes non-adjusting firms’ markups more

severely. The steady-state average markup decreases in the case of the non-CES aggregator

because the effect of non-adjusting firms’ more severely eroding markups dominates that of

price-adjusting firms’ higher markups, whereas the opposite holds in the case of the CES

aggregator.13 Recall that the inverse relationship between trend inflation and the average

markup generated by the non-CES aggregator is in line with the empirical evidence reported

by De Loecker et al. (2020), as illustrated in Figure 2.

2.6 New Keynesian Phillips curve

By log-linearizing the equilibrium conditions rewritten in terms of detrended variables around

the steady state with trend inflation π and rearranging the resulting conditions, we can derive

13To be precise, in the case of the CES aggregator, steady-state output increases with trend inflation for
very low rates of trend inflation. In Figure 4, steady-state output is maximized at a slightly positive trend
inflation rate of 0.06 percent annually, consistent with King and Wolman (1999).
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Figure 4: Steady-state output and its natural rate.
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Notes: The solid and the dashed lines illustrate steady-state (detrended) output respectively in the cases of
the Kimball-type non-CES aggregator with ε = −6 and the CES aggregator (i.e., ε = 0), while the dashed-
dotted line displays the natural rate of steady-state output. The values of other model parameters used here
are reported in Table 1.

the New Keynesian Phillips curve (henceforth NKPC)

π̂t = βπ1+γEtπ̂t+1 + κyŷt + κdd̂t + d̂t−1 + βπ1+γEtd̂t+1 + ϕt + ζt + ψt, (22)

where hatted variables denote log-deviations from steady-state values; and ϕt, ζt, and ψt are

auxiliary variables that are additional drivers of inflation under nonzero trend inflation and

evolve according to the forward-looking equations

ϕt = αβπγ−1Etϕt+1 + κϕ

(
(γ − 1)Etπ̂t+1 + γ(1− αβπγ−1)Etd̂t+1

)
, (23)

ζt = αβπγEtζt+1 + κεζ

[
γEtπ̂t+1 + (1− αβπγ)

(
2Etŷt+1 + γEtd̂t+1

)]
, (24)

ψt = αβπ−1Etψt+1 + κεψEtπ̂t+1. (25)

The law of motion of the real marginal cost of aggregating goods is given by

d̂t = ρdd̂t−1 + κεd π̂t. (26)
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The coefficients in these five equations (22)–(26) are presented in Appendix A.14

The other log-linearized equilibrium conditions consist of the spending Euler equation

ŷt = Etŷt+1 − (r̂t − Etπ̂t+1) + Etza,t+1 − zb,t, (27)

and the Taylor-type rule15

r̂?t = φr1r̂
?
t−1 + φr2r̂

?
t−2 + (1− φr1 − φr2)[φππ̂t + φyŷt + φgy(ŷt − ŷt−1 + za,t)] + zr,t (28)

with the ZLB

r̂t = max (r̂?t ,− log(r)) = max

(
r̂?t ,− log

(
aπ

β

))
. (29)

In the special case of the CES aggregator (i.e., ε = 0), we have d̂t = ζt = ψt = 0. Then

the NKPC (22) and the auxiliary variable ϕt’s equation (23) are reduced, respectively, to

π̂t = βπ1+θEtπ̂t+1 + κy0 ŷt + ϕt, (30)

ϕt = αβπθ−1Etϕt+1 + κϕ0(θ − 1)Etπ̂t+1, (31)

where κy0 and κϕ0 take the values of κy and κϕ at ε = 0, while the spending Euler equation

(27) and the Taylor-type rule (28) with the ZLB (29) remain unchanged.

A substantial difference between the NKPC (22) in the case of the non-CES aggregator

and the one (30) in the case of the CES aggregator is the slope of the NKPC, that is, κy in

(22) and κy0 in (30):

κy ≡
2(1 + ε1)(1− απγ−1)(1− αβπ2γ)

απγ−1{(1 + ε3)[1− ε2γ/(γ − 1− ε2)] + γ}
, κy0 ≡

2(1− απθ−1)(1− αβπ2θ)

απθ−1(1 + θ)
.

Figure 5 illustrates how these slope coefficients change with the annualized rate of trend

inflation. When trend inflation declines, the slope κy flattens in the case of the Kimball-

type non-CES aggregator with ε = −6, whereas the slope κy0 steepens in the case of the

CES aggregator (i.e., ε = 0), as indicated by Shirota (2015). Therefore, the non-CES

14Using the law of motion (26) to substitute for the current, past, and expected future real marginal costs of
aggregating goods—dt, dt−1, Etdt+1—in (22) introduces lags of inflation in the NKPC. Therefore, the model
provides a theoretical justification for intrinsic inertia in inflation without relying on ad hoc backward-looking
price-setting behavior (e.g., price indexation), as pointed out by Kurozumi and Van Zandweghe (2019).

15Note that the natural rate of output is given by ŷnt = 0.
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aggregator leads lower trend inflation to give rise to a flatter slope of the NKPC. This

positive relationship between trend inflation and the slope of the Phillips curve is consistent

with the empirical evidence reported by, for example, Benati (2007), Ball and Mazumder

(2011), the International Monetary Fund (2013), and Matheson and Stavrev (2013) (see

Figure 1).

Figure 5: Slope of the New Keynesian Phillips curve (NKPC).
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Notes: The solid and the dashed lines display the NKPCs’ slopes κy and κy0 respectively in the cases of the
Kimball-type non-CES aggregator with ε = −6 and the CES aggregator (i.e., ε = 0). The values of other
model parameters used here are reported in Table 1.

3 Welfare Function

This section derives a welfare function from the model presented in the preceding section.

The welfare function is a second-order approximation to the household’s utility function (1)

around the steady state with trend inflation π (in the case of unit elasticity of labor supply,

i.e., η = 1). It extends the welfare function derived by Alves (2014), who considers the case

of the CES aggregator, to the general case of the Kimball-type aggregator.
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3.1 Second-order approximation to households’ utility function

Using (10) and (11), the utility function (1) with η = 1 can be rewritten as

E0

∞∑
t=0

βt

(
log (Ct)−

∫ 1

0

(lt(f))2

2
df

)
= E0

∞∑
t=0

βt
(

log (ytAt)−
y2t∆t

2

)
,

where ∆t represents relative price distortion and meets

∆t ≡
∫ 1

0

(
Yt(f)

Yt

)2

df. (32)

Thus, the relative price distortion captures the dispersion of relative demand. Values of the

relative price distortion greater than one reflect inefficiency in producing the composite good

from individual differentiated goods due to the dispersion of relative prices of the latter; the

distortion is minimized at one if prices are all flexible. Using (6), the relative price distortion

can be rewritten as

∆t =

∫ 1

0

{
1

1 + ε

[(
Pt(f)

Ptdt

)−γ
+ ε

]}2

df =
st + 2εsε,t + ε2

(1 + ε)2
,

where

st ≡ d2γt

∫ 1

0

(
Pt(f)

Pt

)−2γ
df, sε,t ≡ dγt

∫ 1

0

(
Pt(f)

Pt

)−γ
df.

The relative price distortion is influenced by the real marginal cost of aggregating individual

goods dt because the latter influences how dispersion in the relative prices of the goods

affects dispersion in the relative demand for them, as can be seen from the shift in the

inverse demand curve illustrated in Figure 3. Under staggered price-setting, the last two

equations can be reduced, respectively, to

d−2γt st = απ2γ
t d−2γt−1 st−1 + (1− α)(p∗t )

−2γ , (33)

d−γt sε,t = απγt d
−γ
t−1 sε,t−1 + (1− α)(p∗t )

−γ . (34)

Moreover, the three variables ∆t, st, and sε,t in the steady state with trend inflation π are

given by

∆ =
s+ 2εsε + ε2

(1 + ε)2
, s =

1− α
1− απ2γ

(
1− απγ−1

1− α

) 2γ
γ−1

, sε =
1− α

1− απγ

(
1− απγ−1

1− α

) γ
γ−1

.
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As shown in Appendix B, the utility function can then be approximated up to the second

order as

E0

∞∑
t=0

βt

(
log (Ct)−

∫ 1

0

(lt(f))2

2
df

)

≈ Γss + Γdev
1− β

− 1

2
E0

∞∑
t=0

βt

[
Γπ

(
π̂t + d̂t − d̂t−1 − Φπ

)2
+ 2

(
ŷt −

Φy

2

)2 ]
+ tip, (35)

where tip stands for terms independent of policy and the coefficients and constants are

presented in Appendix B. This shows that the real marginal cost of aggregating goods d̂t

influences the welfare of the representative household in the model, as it affects the relative

price distortion. Based on the function (35), the welfare W is measured as

W ≡ (1− β)E

[
E0

∞∑
t=0

βt

(
log (Ct)−

∫ 1

0

(lt(f))2

2
df

)]

≈ Γss + Γdr + tip = Γss −
[

Γπ
2
V ar

(
π̂t + d̂t − d̂t−1

)
+ V ar(ŷt)

]
+ tip. (36)

In the special case of the CES aggregator (i.e., ε = 0), the second-order approximated

utility function (35) can be reduced to

E0

∞∑
t=0

βt

(
log (Ct)−

∫ 1

0

(lt(f))2

2
df

)

≈ Γss0 + Γdev0
1− β

− 1

2
E0

∞∑
t=0

βt

[
Γπ0(π̂t − Φπ0)

2 + 2

(
ŷt −

Φy0

2

)2 ]
+ tip, (37)

where the coefficients and constants are presented in Appendix B.16 Thus the welfare measure

(36) can also be reduced to

W ≈ Γss0 + Γdr0 + tip = Γss0 −
[

Γπ0
2
V ar(π̂t) + V ar(ŷt)

]
+ tip. (38)

The distinct welfare functions (35) and (37) indicate that the non-CES aggregator alters the

welfare function substantially. We investigate the differences between the welfare functions

more closely by focusing on the steady-state welfare level Γss and the inflation-related welfare

weight Γπ.

16The case of the CES aggregator is considered by Alves (2014) and the welfare function (37) is consistent
with his when the elasticities of intertemporal substitution and labor supply are both unity and the shock
to consumption preferences is absent.
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3.2 Steady-state welfare and inflation-related welfare weight

We begin by investigating optimal trend inflation that maximizes steady-state welfare. Fig-

ure 6 illustrates how steady-state welfare changes with the annualized rate of trend inflation,

using the values of model parameters presented in Table 1. The solid line shows that the

optimal rate of trend inflation that maximizes steady-state welfare Γss (≡ log(y) − y2∆/2)

is 0.11 percent annually in the case of the Kimball-type non-CES aggregator (with ε = −6).

Moreover, welfare Γss is insensitive to higher trend inflation. In the special case of the CES

aggregator, displayed by the dashed line, the optimal trend inflation rate that maximizes

steady-state welfare Γss0 is almost zero—0.01 percent annually—and welfare Γss0 decreases

rapidly as trend inflation becomes higher. Therefore, the non-CES aggregator reduces the

steady-state welfare cost of higher trend inflation.

Figure 6: Steady-state welfare.
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Notes: The solid and the dashed lines illustrate the steady-state welfare levels Γss and Γss0 respectively in
the cases of the Kimball-type non-CES aggregator with ε = −6 and the CES aggregator (i.e., ε = 0). The
values of other model parameters used here are reported in Table 1.

To understand the effect of trend inflation on steady-state welfare, let us consider the

model’s two steady-state distortions, average markup and relative price distortion, in steady

state. For higher trend inflation, the steady-state average markup decreases in line with
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the empirical evidence provided by De Loecker et al. (2020) in the case of the non-CES

aggregator, whereas with the CES one the markup increases (except for very low rates of

trend inflation). This is why higher trend inflation has different effects on steady-state

output between the two cases illustrated in Figure 4. As for the steady-state relative price

distortion, while it always increases with trend inflation, the non-CES aggregator dampens

its increase, as illustrated in Figure 7. Intuitively, higher trend inflation increases steady-

state price dispersion. Then, in the presence of the non-CES aggregator, the steady-state

real marginal cost of aggregating goods rises, which subdues the increase in steady-state

demand dispersion—that is, the steady-state relative price distortion—associated with the

increase in steady-state price dispersion. Therefore, the increase in steady-state output

and the subdued increase in the steady-state relative price distortion make steady-state

welfare relatively insensitive to higher trend inflation in the case of the non-CES aggregator.

Consequently, higher trend inflation has the positive effect on steady-state welfare through

higher steady-state output in the case of the non-CES aggregator, but not in the case of the

CES one (except for very low rates of trend inflation).

Next, we examine the implications of the non-CES aggregator for the welfare weight on

inflation-related variability:

Γπ ≡
1

∆(1 + ε)2
γαπγ−1

(1− απγ−1)2

(
s(1− απ2γ)(1 + γ)

1− αβπ2γ
+
εsε(1− απγ)

1− αβπγ

)
.

Figure 8 displays how the inflation-related weight Γπ in the second-order approximated utility

function (35) changes with the annualized rate of trend inflation, using the values of model

parameters presented in Table 1. The solid line shows that the weight decreases as trend

inflation rises (in the case of the non-CES aggregator with ε = −6). This feature of the

inflation-related weight contrasts sharply with that in the special case of the CES aggregator

(i.e., ε = 0). In the latter case, the inflation weight Γπ0 in the second-order approximated

utility function (37) increases with trend inflation, as illustrated by the dashed line.

The stark contrast between the two cases is attributable primarily to the different way in

which the NKPC’s slope (i.e., its coefficient on output ŷt) changes with trend inflation—for

higher trend inflation, the slope increases in the case of the non-CES aggregator, whereas

it decreases in the special case of the CES aggregator (i.e., ε = 0). As demonstrated by
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Figure 7: Steady-state relative price distortion.
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Notes: The solid and the dashed lines illustrate the steady-state relative price distortion ∆ in the cases of
the Kimball-type non-CES aggregator with ε = −6 and the CES aggregator (i.e., ε = 0). The values of other
model parameters used here are reported in Table 1.

Woodford (2003) and Alves (2014), who consider the CES aggregator case, there is an inverse

relationship between the inflation-related weight Γπ and the NKPC’s slope κy (in (22)):

Γπ =
2γ

κy

1− απ2γ

1− απγ−1
s

∆(1 + ε)2
(1 + ε1)(1 + ε3 + γ)

(1 + ε3)[1− ε2γ/(γ − 1− ε2)] + γ
,

which can be reduced to

Γπ0 =
2θ

κy0

1− απ2θ

1− απθ−1

in the case of the CES aggregator, where κy0 denotes the slope of the NKPC (30). The

above inverse relationship then shows that the difference in how the slope changes with the

trend inflation rate leads to the difference in how the inflation-related weight changes with

the rate.

4 Welfare Implications of Kimball-type Aggregator

Having derived the welfare function from the model, we use it in this section to examine the

optimal trend inflation rate that maximizes (total) welfare, and its determinants. We then
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Figure 8: Inflation weight in the second-order approximated utility function.
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Notes: The solid and the dashed lines illustrate the welfare functions’ inflation weights Γπ and Γπ0 respec-
tively in the cases of the Kimball-type non-CES aggregator with ε = −6 and the CES aggregator (i.e., ε = 0).
The values of other model parameters used here are reported in Table 1.

analyze the welfare difference between the cases of 2 percent and 4 percent trend inflation.

4.1 Optimal rate of trend inflation

For the analysis of optimal trend inflation that maximizes welfare (36), we continue to use

the calibration of model parameters presented in Table 1. We calibrate the coefficients in

the monetary policy rule, the shocks, and the steady-state rate of technological change using

the values set by Coibion et al. (2012). That is, the policy responses to inflation, the output

gap, and output growth are φπ = 2.5, φy = 0.11, and φgy = 1.5, respectively, and the

policy-rate smoothing coefficients are φr1 = 1.05 and φr2 = −0.13. The parameters of the

technology shock are ρa = 0 and σa = 0.009, those of the risk premium shock are ρb = 0.947

and σb = 0.0024, and those of the monetary policy shock are ρr = 0 and σr = 0.0024.

The steady-state rate of technological change, which determines the steady-state rate of real

interest, is 1.5 percent annually. To solve the model in the presence of the ZLB constraint,

we use the piecewise linear perturbation method described in Guerrieri and Iacoviello (2015),
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which is the same as that employed in Coibion et al. (2012).

The calibrated model accounts for key business cycle moments. The top panel of Table 2

presents standard deviations, autocorrelations, and cross-correlations of inflation, the nom-

inal interest rate, and HP-filtered output based on data for the US economy from 1954:Q3

to 2019:Q3. To evaluate the model against the US data, we set the trend inflation rate at

its annualized historical average rate of π̄ = 3.1 percent. The middle panel of the table

shows that the model’s business cycle statistics are reasonably close to their empirical coun-

terparts. However, the nominal interest rate in the model is at the ZLB only 4.7 percent of

the time, which is arguably less than the US experience, where the federal funds rate was at

its effective lower bound 11.1 percent of the time in the sample. Because the ZLB episode

(2008:Q4 to 2015:Q4) occurred later in the sample period, when the trend inflation rate was

likely below its sample average, the bottom panel of the table shows the model’s business

cycle statistics obtained with the annualized trend inflation rate of π̄ = 2 percent. The lower

trend inflation rate does not change the statistics much, but leads the nominal interest rate

to be at the ZLB 9.2 percent of the time, closer to the US experience.

Table 2: Model fit at the baseline calibration.
x Inflation Interest rate Output
US data
Std(x) 0.0063 0.0089 0.0155
Corr(x, x−1) 0.8229 0.9710 0.8547
Corr(x, y) 0.1083 0.1566 1.0000
Model (π̄ = 3.1)
Std(x) 0.0056 0.0076 0.0202
Corr(x, x−1) 0.8522 0.9667 0.6478
Corr(x, y) 0.6332 0.1442 1.0000
Model (π̄ = 2)
Std(x) 0.0060 0.0074 0.0215
Corr(x, x−1) 0.8408 0.9660 0.6484
Corr(x, y) 0.6586 0.1382 1.0000

Notes: The table shows, for each variable x, its standard deviation Std(x), autocorrelation Corr(x, x−1),
and cross-correlation with output Corr(x, y). The US data for x are the PCE inflation rate, the federal
funds rate, and the HP-filtered nominal GDP per capita deflated by the PCE price index, from 1954:Q3 to
2019:Q3, and its statistics are shown in the top panel. The other panels show the results of model simulations
using the values of model parameters reported in Table 1.

The optimal trend inflation rate, which maximizes welfare (36), is 3.32 percent annually
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under the baseline calibration of parameters summarized in Table 1. This level exceeds most

central banks’ inflation targets in advanced economies and is close to the historical average of

inflation in the United States. The non-CES aggregator increases the optimal trend inflation

rate substantially. In the case of the CES aggregator, the optimal rate is only 1.48 percent,

consistent with the level reported by Coibion et al. (2012). The solid line in Figure 9 plots

Γss+Γdr in the welfare function (36) (generated with the non-CES aggregator). To highlight

the effects of the aggregator on steady-state welfare Γss and on the inflation-related welfare

weight Γπ, the figure also shows two “hybrid” welfare functions obtained by successively

replacing Γss and Γπ with their counterparts in the case of the CES aggregator. The dashed

line shows that replacing Γss with Γss0 reduces the optimal trend inflation rate substantially

(to 1.40 percent), while the dashed-dotted line shows that replacing Γπ with Γπ0 reduces

the optimal rate less (to 2.36 percent). This indicates that the primary effect of the non-

CES aggregator is to reduce the steady-state welfare cost of higher trend inflation and its

additional effect is to reduce the dynamic welfare cost of inflation-related variability.

4.2 Effects of the zero lower bound on nominal interest rates

Next, we examine the importance of the ZLB on nominal interest rates for optimal trend

inflation. In the presence of the non-CES aggregator, the ZLB is not the only factor calling

for a positive rate of optimal trend inflation: even without considering the ZLB, the optimal

trend inflation rate is 2.44 percent annually. This level reflects two important factors: that

the non-CES aggregator reduces the steady-state welfare cost of higher trend inflation, and

that higher trend inflation decreases the weight on inflation-related variability in the welfare

function, which lowers the welfare cost of this variability. Incidentally, the optimal rate

of trend inflation is near the inflation targets adopted by many central banks in advanced

economies in the past three decades. The ZLB then calls for a higher trend inflation rate of

3.32 percent annually. Because the optimal trend inflation rate with the non-CES aggregator

is already positive without considering the ZLB, this constraint binds less frequently and thus

calls for a smaller increase in the optimal rate—0.88 (= 3.32−2.44) percentage point—than in

the case of the CES aggregator, where the optimal trend inflation rate is zero in the absence

of the ZLB, so that its presence increases the optimal rate by 1.48 percentage points. Table 3

highlights that optimal trend inflation is only mildly affected by the ZLB, by showing optimal
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Figure 9: Welfare function and effects of steady-state welfare Γss and inflation-related weight
Γπ.
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Notes: The solid line illustrates the welfare function in the case of the Kimball-type non-CES aggregator
with ε = −6. The dashed line shows the hybrid welfare function obtained by replacing the steady-state
welfare Γss with Γss0 in the case of the CES aggregator. The dashed-dotted line shows the hybrid welfare
function obtained by replacing the inflation-related weight Γπ with Γπ0 in the case of the CES aggregator.
The values of other model parameters used here are reported in Table 1.

trend inflation rates obtained with and without the lower bound for a range of values of the

curvature parameter ε. Recall that a smaller value of ε implies a larger curvature of demand

curves. As the curvature increases, optimal trend inflation rises in increasing increments,

reaching 4.44 percent annually for ε = −8 even without considering the ZLB. At the same

time, the ZLB has a decreasing effect on optimal trend inflation—except for low degrees of

curvature, for instance, from ε = 0 to ε = −2 in the table.

Figure 10 further illustrates the disparate effects of the ZLB on the welfare function in

the cases of the non-CES aggregator with ε = −6 and the CES aggregator (i.e., ε = 0). The

left three panels display the welfare function (36) or (38) in the top panel, the contribu-

tion of inflation-related variability (i.e., −(Γπ/2)V ar(πt + dt− dt−1) or −(Γπ0/2)V ar(πt)) in

the middle panel, and the contribution of output variability (i.e., −V ar(yt)) in the bottom
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Table 3: Optimal trend inflation rate and ZLB frequency (%).

ε π̄∗ (No ZLB) π̄∗ (ZLB) ZLB freq.
0 0.00 1.48 12.97
−2 0.32 1.88 10.14
−4 1.04 2.44 7.07
−6 2.44 3.32 3.99
−8 4.44 4.68 1.53

Note: The table shows the annualized optimal trend inflation rate π̄∗ using the values of model parameters
reported in Table 1, except for ε, when abstracting from the ZLB (the second column) and when accounting
for the ZLB (the third column), along with the time spent at the ZLB in percent (the fourth column).

panel, when abstracting from the ZLB. The contribution of steady-state welfare Γss or Γss0

has already been shown in Figure 6. In the case of the CES aggregator (the dashed lines),

the middle left panel illustrates that the welfare contribution of inflation variability declines

monotonically for higher trend inflation, reflecting that the variance of inflation and its wel-

fare weight Γπ0 increase with higher trend inflation. Combining this with the monotonically

declining steady-state welfare displayed in Figure 6 and a small contribution of output vari-

ability shown in the bottom left panel leads the optimal rate of trend inflation to be zero.

By contrast, in the case of the non-CES aggregator (the solid lines), the middle right panel

illustrates that the contribution of inflation-related variability increases with higher trend in-

flation. Although higher trend inflation increases the inflation-related variance, the declining

welfare weight Γπ displayed in Figure 8 reduces the welfare cost of inflation variability arising

from higher trend inflation. Then, because the non-CES aggregator makes the contribution

of steady-state welfare relatively insensitive to higher trend inflation as shown in Figure 6,

and because the welfare contribution of output variability is relatively small as in the bottom

right panel, the welfare function is relatively flat for higher trend inflation as seen in the top

left panel.

The right three panels of Figure 10 show the effect of the ZLB on the welfare function,

by replicating the left three panels after introducing the lower bound. In the case of the

CES aggregator, the middle right panel shows that the contribution of inflation variability is

maximized at a positive rate of trend inflation. This is because for higher trend inflation, the

ZLB causes the variance of inflation to decline, while the welfare cost of the variance increases

with the higher welfare weight Γπ0. By contrast, in the case of the non-CES aggregator, the
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Figure 10: Welfare function and contributions of variability related to inflation and output.
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Notes: The solid and the dashed lines illustrate the welfare levels (the top panels) and the contributions of
the variability related to inflation (the middle panels) and output (the bottom panels) respectively in the
cases of the Kimball-type non-CES aggregator with ε = −6 and the CES aggregator (i.e., ε = 0). The values
of other model parameters used here are reported in Table 1.
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ZLB causes the welfare cost of inflation-related variance to decline more rapidly when trend

inflation rises, as both the variance and its welfare weight decrease. The ZLB also makes

the variance of output decline for higher trend inflation, although, as before, this variance is

relatively small. Therefore, the ZLB generates a positive rate of optimal trend inflation in

the case of the CES aggregator and increases the optimal rate in the case of the non-CES

aggregator.

Since we have so far focused on the role of ε, we now analyze the robustness of the

optimal trend inflation rate with respect to other structural parameters.17 Table 4 reports

the optimal rate of trend inflation and the frequency of time at the ZLB for alternative

parameter values, in the cases of the CES aggregator (the second and third columns) and

the non-CES aggregator (the fourth and fifth columns). The optimal trend inflation rate

obtained with the non-CES aggregator is consistently above the one with the CES aggregator

for each parameter value, yet qualitatively we can distinguish three sets of parameters. First,

the degree of price rigidity α has similar effects on optimal trend inflation in the CES and

non-CES cases, as it affects welfare primarily via the relative price distortion. Second, the

subjective discount factor β and the steady-state rate of technological change a have relatively

large effects on optimal trend inflation in the case of the CES aggregator. These parameters

determine the steady-state real interest rate and thus the frequency of hitting the ZLB.

Likewise, the alternative values of the policy-rule coefficients (i.e., HKV policy rule), taken

from the estimates of Hirose et al. (2020), raise optimal trend inflation more noticeably in the

case of the CES aggregator, because the lower degree of policy inertia increases interest-rate

volatility and thus the frequency of hitting the ZLB (at a given trend inflation rate).18 Third,

the parameter governing the elasticity of substitution θ has an outsized effect on optimal

trend inflation in the case of the non-CES aggregator. Reducing θ from 7 to 4 increases the

static markup, which in this case raises the trend inflation rate that maximizes steady-state

welfare Γss from 0.11 to 6.00 percent.19 The optimal trend inflation rate is also 6.00 percent,

17Coibion et al. (2012) consider alternative structural parameter values and versions of their staggered
price model. They conclude that the optimal inflation rate is “remarkably robust to changes in parameter
values as long as these do not dramatically increase the implied frequency of being at the ZLB” (p. 1373).
Given their extensive analysis, ours is more limited.

18Billi (2011) emphasizes that higher policy-rate smoothing in a Taylor-type rule reduces the optimal
inflation rate.

19Note that the value of θ = 4 causes the relationships of trend inflation with the steady-state markup
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indicating that Γπ and the ZLB become practically irrelevant. The steady-state effect of θ

on optimal trend inflation is absent in the case of the CES aggregator. Overall, the findings

that individual parameters affect the optimal trend inflation rate and the frequency of time

at the ZLB indicate the importance of considering a combination of parameter values that

reproduces the historical frequency for the US economy.

Table 4: Robustness with respect to structural parameters.

CES aggregator non-CES aggregator
Parameters π̄∗ ZLB freq. π̄∗ ZLB freq.
Baseline 1.48 12.97 3.32 3.99
α = 0.50 1.64 12.21 3.64 3.42
α = 0.75 0.68 17.02 1.88 7.75
β = 0.995 0.80 4.57 2.84 2.36
β = 0.9999 2.00 14.65 3.72 5.11
a = 1.00751/4 1.96 14.77 3.72 5.03
HKV policy rule 3.80 6.79 4.36 3.56
θ = 4 1.84 11.11 6.00 0.06
θ = 11 1.16 14.86 2.24 7.40

Notes: The table shows the annualized optimal trend inflation rate π̄∗ and the frequency of time at the
ZLB for the cases of the CES aggregator (ε = 0) and the Kimball-type non-CES aggregator with ε = −6.
The values of model parameters are reported in Table 1, except for those listed in the first column. The
“HKV policy rule” refers to Hirose et al. (2020)’s estimates of the policy-rule coefficients during the post-1982
period, φ = 2.995, φy = 0.104, φgy = 0.539, φr1 = 0.686, and φr2 = 0.

4.3 Welfare difference between 2 and 4 percent inflation targets

The analysis of optimal trend inflation in our model with the non-CES aggregator indicates

that a 2 percent inflation target may be somewhat low in the presence of the ZLB. This

result may support recent practical proposals, such as those by Blanchard et al. (2010), Ball

(2013), and Krugman (2014), to raise the Federal Reserve’s inflation target from the current

2 percent to 4 percent or even higher. This subsection thus focuses more directly on those

proposals by following Ascari et al. (2018) to examine the difference in the welfare level

between the cases of 2 percent and 4 percent trend inflation in our model with the non-CES

aggregator.

and with the slope of the NKPC in the model to align closely with their empirical counterparts as shown in
Figures 1 and 2.
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As in Ascari et al. (2018), two metrics are used for the welfare comparison. Each measures

welfare differences in consumption-equivalent units, as the fraction λ by which consumption

would have to be adjusted each period if trend inflation is 2 percent to attain the welfare

level associated with 4 percent trend inflation. Thus, positive (negative) values of λ indicate

that welfare is higher (lower) at 2 percent trend inflation than at 4 percent. The first metric

is based on steady-state welfare and is given by

λss = 1− exp [(1− β) (Γss(π̄ = 4)− Γss(π̄ = 2))] ,

where the arguments (π̄ = j) have been added to indicate that the welfare level corresponds

to the trend inflation rate of j = 2, 4 percent. The other metric is based on the stochastic

mean of welfare and is given by

λm = 1− exp [(1− β) (W (π̄ = 4)−W (π̄ = 2))] .

The metrics λss and λm are computed using the calibration of model parameters reported in

Table 1 and the ZLB constraint is operative in the model.

The welfare difference between the cases of 2 percent and 4 percent trend inflation is much

smaller with the non-CES aggregator than with the CES one. Table 5 reports the levels of λss

and λm as a percentage for a range of values of the curvature parameter. Although the table

indicates a very small welfare cost of higher trend inflation under the baseline calibration

of other parameters (the second and third columns), the non-CES aggregator substantially

affects the welfare cost. Lowering ε from 0 to −6 reduces the welfare cost of the higher trend

inflation by an order of magnitude according to the steady state-based metric and even makes

the higher trend inflation beneficial according to the stochastic mean-based metric. Ascari

et al. (2018) report substantially larger welfare differences between the cases of 2 percent

and 4 percent trend inflation using a medium-scale model. An alternative calibration using

β = 0.99, θ = 11, and α = 0.8 likewise generates a large steady-state welfare difference in

our model in the case of the CES aggregator (1.65 percent as shown in the last column).

Then, the non-CES aggregator with ε = −6 lowers the welfare difference dramatically (to

0.02 percent). Therefore, there is no crucial welfare difference between setting 2 percent and

4 percent inflation targets in our model.

32



Table 5: Welfare cost of 4 percent trend inflation relative to 2 percent.

ε 100λss 100λm 100λss
(alt. cal.)

0 0.0015 0.0015 1.6537
−2 0.0006 0.0004 0.0491
−4 0.0003 0.0001 0.0286
−6 0.0001 −0.0001 0.0216
−8 −0.0000 −0.0002 0.0177

Notes: The table shows the welfare cost of 4 percent trend inflation relative to 2 percent in consumption-
equivalent units. The second and third columns use the values of model parameters other than ε reported
in Table 1. The fourth column is based on the alternative parameter values β = 0.99, θ = 11, and α = 0.8.

Before proceeding to the concluding remarks on the paper, one caveat is worth noting.

The welfare difference analyzed in this subsection takes no account of transition costs, in-

cluding the cost of making the 4 percent inflation target credible. Thus, such a difference

does not properly capture the full cost of raising the Federal Reserve’s inflation target from

the current 2 percent to 4 percent.

5 Conclusion

This paper has examined the welfare implications of a non-CES aggregator of the sort pro-

posed by Kimball (1995) in a staggered price model. Previous studies have shown that the

non-CES aggregator bestows on staggered price models empirically plausible short- and long-

run trade-offs between output and inflation. In the presence of the aggregator, lower trend

inflation flattens Phillips curves derived from the models and decreases steady-state output

by increasing the average markup, generating relationships with trend inflation that align

with the empirical evidence. This paper has demonstrated that the non-CES aggregator

reduces both the steady-state welfare cost of higher trend inflation and the inflation-related

weight in a model-based welfare function for higher trend inflation. Consequently, the op-

timal rate of trend inflation is moderately positive even without considering the ZLB on

nominal interest rates. Thus optimal trend inflation is only mildly affected by the ZLB.

Moreover, the welfare difference between the cases of 2 percent and 4 percent trend inflation

is much smaller than in the model with the CES aggregator.

Along with a few recent studies that show a positive rate of optimal trend inflation even in
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the absence of the ZLB, such as Adam and Weber (2019) and Bilbiie et al. (2014), our paper

suggests that further investigating the implications of microeconomic market structures is a

fruitful avenue for future research on monetary economics and monetary policy.
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Appendix

A Composite Coefficients in the New Keynesian Phillips
Curve

The coefficients in the log-linearized equilibrium conditions (22)–(26) are given by

κy ≡ 2κ, κ ≡ (1 + ε1)(1− απγ−1)(1− αβπ2γ)

απγ−1{(1 + ε3)[1− ε2γ/(γ − 1− ε2)] + γ}
,

κd ≡ γ

[
κ

(
1 +

1

1 + ε1

)
− κ̃d

]
− αβπ2γ − 1

απγ−1
,

κ̃d ≡
(1 + ε3)(1− απγ−1)(1− αβπγ−1)

απγ−1{(1 + ε3)[1− ε2(1 + γ)/(γ − 1)] + γ[1− ε2/(γ − 1)]}
,

κϕ ≡
β(π1+γ − 1)(1 + ε3)(1− απγ−1)

(1 + ε3)[1− ε2(1 + γ)/(γ − 1)] + γ[1− ε2/(γ − 1)]
,

κεζ ≡ −
ε3βπ(πγ − 1)(1− απγ−1)

(1 + ε3)[1− ε2γ/(γ − 1− ε2)] + γ
,

κεψ ≡
ε2β(π1+2γ − 1)(1 + ε3)(1− απγ−1)

πγ{(1 + ε3)[γ − 1− ε2(1 + γ)] + γ(γ − 1− ε2)}
,

ρd ≡
απ−1(1 + ε1π

γ)

1 + ε1
, κεd ≡ −

ε1απ
−1(πγ − 1)

(1 + ε1)(1− απ−1)
.

B Derivation of Second-order Approximated Utility Func-
tion (35)

This appendix derives a second-order approximation to the utility function (1) with unit

elasticity of labor supply (i.e., η = 1),

E0

∞∑
t=0

βt

(
log (Ct)−

∫ 1

0

(lt(f))2

2
df

)
= E0

∞∑
t=0

βt
(

log (ytAt)−
y2t∆t

2

)
.

The period consumption utility function can be approximated up to the second order as

log (ytAt) ≈ log (y) + ŷt + tip.

Therefore, the second-order approximation to the consumption part of the utility function

is given by

E0

∞∑
t=0

βt log (Ct) ≈
log (y)

1− β
+ E0

∞∑
t=0

βtŷt + tip. (39)
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Next turning to the labor part of the utility function, this paper extends the second-

order approximation of Alves (2014)—who considers the case of the CES aggregator—to

the general case of the Kimball-type aggregator. Log-linearizing the real marginal cost of

aggregating goods dt’s law of motion (16) yields

p̂∗t ≈
απγ−1

1− απγ−1

(
π̂t +

1

απγ−1
d̂t − d̂t−1

)
, (40)

and the second-order approximation to (16) leads to

p̂∗t ≈
απγ−1

1− απγ−1

[
π̂t +

1

απγ−1
d̂t − d̂t−1 −

1− γ
2(1− απγ−1)

(
π̂t + d̂t − d̂t−1

)2]
. (41)

Log-linearizing the variable st’s law of motion (33) yields

ŝt ≈ απ2γ ŝt−1 +
2γαπγ−1(π1+γ − 1)

1− απγ−1
(
π̂t + d̂t − d̂t−1

)
.

Using these three equations, the second-order approximation to (33) leads to

ŝt ≈ απ2γ ŝt−1 +
2γαπγ−1Φ

1− απγ−1
(
π̂t + d̂t − d̂t−1

)
+
γαπγ−1(1− απ2γ)(1 + γ + 2γΦ)

(1− απγ−1)2
(
π̂t + d̂t − d̂t−1

)2
+ 2γαπ2γ(1− απ2γ)

[
1

1− απγ−1
(
π̂t + d̂t − d̂t−1

)
ŝt−1 +

1

4γ
ŝ2t−1

]
,

where Φ ≡ π1+γ − 1. As in Alves (2014), it is assumed that Φ is of first order and ŝ−1 is of

second order. Then, it follows that

ŝt ≈ απ2γ ŝt−1 +
2γαπγ−1

1− απγ−1
Φ
(
π̂t + d̂t − d̂t−1

)
+
γαπγ−1(1− απ2γ)(1 + γ)

(1− απγ−1)2
(
π̂t + d̂t − d̂t−1

)2
+ 2γαπ2γ(1− απ2γ)

[
1

1− απγ−1
(
π̂t + d̂t − d̂t−1

)
ŝt−1 +

1

4γ
ŝ2t−1

]
,

which implies that ŝt is of second order. Consequently, the second-order approximation is

reduced to

ŝt ≈ απ2γ ŝt−1 +
2γαπγ−1

1− απγ−1
Φ
(
π̂t + d̂t − d̂t−1

)
+
γαπγ−1(1− απ2γ)(1 + γ)

(1− απγ−1)2
(
π̂t + d̂t − d̂t−1

)2
=

t∑
j=0

(απ2γ)t−j

 γαπγ−1(1−απ2γ)(1+γ)
(1−απγ−1)2

(
π̂j + d̂j − d̂j−1

)2
+ 2γαπγ−1

1−απγ−1 Φ
(
π̂j + d̂j − d̂j−1

)
+ tip,
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and thus
∞∑
t=0

βtŝt ≈
∞∑
t=0

βt

 γαπγ−1(1−απ2γ)(1+γ)
(1−απγ−1)2(1−αβπ2γ)

(
π̂t + d̂t − d̂t−1

)2
+ 2γαπγ−1

(1−απγ−1)(1−αβπ2γ)
Φ
(
π̂t + d̂t − d̂t−1

)
+ tip. (42)

Similarly to st, log-linearizing the variable sε,t’s law of motion (34) yields

ŝε,t ≈ απγ ŝε,t−1 +
γαπγ−1(π − 1)

1− απγ−1
(
π̂t + d̂t − d̂t−1

)
.

Using this equation as well as (40) and (41), the second-order approximation to (34) leads

to

ŝε,t ≈ απγ ŝε,t−1 +
γαπγ−1Φε

1− απγ−1
(
π̂t + d̂t − d̂t−1

)
+
γαπγ−1(1− απγ)(1 + γΦε)

2(1− απγ−1)2
(
π̂t + d̂t − d̂t−1

)2
+ γαπγ(1− απγ)

[
1

1− απγ−1
(
π̂t + d̂t − d̂t−1

)
ŝε,t−1 +

1

2γ
ŝ2ε,t−1

]
,

where Φε ≡ π−1. Under the assumption that Φε is of first order and ŝε,−1 is of second order,

it follows

ŝε,t ≈ απγ ŝε,t−1 +
γαπγ−1

1− απγ−1
Φε

(
π̂t + d̂t − d̂t−1

)
+
γαπγ−1(1− απγ)

2(1− απγ−1)2
(
π̂t + d̂t − d̂t−1

)2
+ γαπγ(1− απγ)

[
1

1− απγ−1
(
π̂t + d̂t − d̂t−1

)
ŝε,t−1 +

1

2γ
ŝ2ε,t−1

]
,

which implies that ŝε,t is of second order. Consequently, the second-order approximation is

reduced to

ŝε,t ≈ απγ ŝε,t−1 +
γαπγ−1

1− απγ−1
Φε

(
π̂t + d̂t − d̂t−1

)
+
γαπγ−1(1− απγ)

2(1− απγ−1)2
(
π̂t + d̂t − d̂t−1

)2
=

t∑
j=0

(απγ)t−j

 γαπγ−1(1−απγ)
2(1−απγ−1)2

(
π̂j + d̂j − d̂j−1

)2
+ γαπγ−1

(1−απγ−1)
Φε

(
π̂j + d̂j − d̂j−1

)
+ tip,

and thus

∞∑
t=0

βtŝε,t ≈
∞∑
t=0

βt

 γαπγ−1(1−απγ)
2(1−απγ−1)2(1−αβπγ)

(
π̂t + d̂t − d̂t−1

)2
+ γαπγ−1

(1−απγ−1)(1−αβπγ) Φε

(
π̂t + d̂t − d̂t−1

)
+ tip. (43)

Then, the period labor disutility function can be approximated up to the second order as

y2t∆t

2
≈ y2∆

2

(
1 + 2

(
ŷt + ŷ2t

)
+
sŝt + 2εsεŝε,t
s+ 2εsε + ε2

)
,
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since st, sε,t, and ∆t are of second order. Using this equation as well as (42) and (43), the

second-order approximation to the labor part of the utility function is given by

E0

∞∑
t=0

βt
∫ 1

0

(lt(f))2

2
df = E0

∞∑
t=0

βt
y2t∆t

2
≈ E0

∞∑
t=0

βt
y2∆

2

(
1 + 2

(
ŷt + ŷ2t

)
+
sŝt + 2εsεŝε,t
s+ 2εsε + ε2

)

≈ y2∆

2(1− β)
+ y2∆E0

∞∑
t=0

βt
(
ŷ2t + ŷt

)
+

y2

2(1 + ε)2

(
sE0

∞∑
t=0

βtŝt + 2εsεE0

∞∑
t=0

βtŝε,t

)

≈ y2∆

2(1− β)
+ y2∆E0

∞∑
t=0

βt
(
ŷ2t + ŷt

)
+

y2

2(1 + ε)2
γαπγ−1

(1− απγ−1)2

(
s(1− απ2γ)(1 + γ)

1− αβπ2γ
+
εsε(1− απγ)

1− αβπγ

)
× E0

∞∑
t=0

βt
[(
π̂t + d̂t − d̂t−1

)2
− 2Φπ

(
π̂t + d̂t − d̂t−1

)]
+ tip,

where

Φπ ≡
(1− απγ−1)[s(1− αβπγ)Φ + εsε(1− αβπ2γ)Φε]

s(1− απ2γ)(1− αβπγ)(−1− γ)− εsε(1− απγ)(1− αβπ2γ)
.

Because both Φ and Φε are of first order, so is Φπ. Following Woodford (2003) and Alves

(2014), the inefficiency degree Φy of steady-state output in our model satisfies

1

y
(1− Φy) = y∆ ⇔ Φy = 1− y2∆.

Moreover, it is assumed that Φy is of first order. Hence, it follows

E0

∞∑
t=0

βt
∫ 1

0

(lt(f))2

2
df ≈ y2∆

2(1− β)
+ E0

∞∑
t=0

βt
[
ŷ2t + (1− Φy) ŷt

]
+

Γπ
2
E0

∞∑
t=0

βt
(
π̂t + d̂t − d̂t−1 − Φπ

)2
− Γπ

2(1− β)
Φ2
π + tip, (44)

where

Γπ ≡
1

∆(1 + ε)2
γαπγ−1

(1− απγ−1)2

(
s(1− απ2γ)(1 + γ)

1− αβπ2γ
+
εsε(1− απγ)

1− αβπγ

)
.

Therefore, from (39) and (44), the second-order approximation to the utility function
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leads to (35), where the coefficients and constants are given by

Γss ≡ log(y)− y2∆

2
, Γdev ≡

2ΓπΦ2
π + Φ2

y

4
,

Γπ ≡
1

∆(1 + ε)2
γαπγ−1

(1− απγ−1)2

(
s(1− απ2γ)(1 + γ)

1− αβπ2γ
+
εsε(1− απγ)

1− αβπγ

)
,

Φπ ≡
(1− απγ−1)[s(π1+γ − 1)(1− αβπγ) + εsε(π − 1)(1− αβπ2γ)]

s(1− απ2γ)(1− αβπγ)(−1− γ)− εsε(1− απγ)(1− αβπ2γ)
, Φy = 1− y2∆.

In the special case of the CES aggregator (i.e., ε = 0), the second-order approximated

utility function can be reduced to (37), where the coefficients and constants are given by

Γss0 ≡ log(y)− y2∆

2
, Γdev0 ≡

2Γπ0Φ
2
π0 + Φ2

y0

4
, Γπ0 ≡

θαπθ−1(1− απ2θ)(1 + θ)

(1− απθ−1)2(1− αβπ2θ)
,

Φπ0 ≡ −
(π1+θ − 1)(1− απθ−1)

(1− απ2θ)(1 + θ)
, Φy0 = 1− y2∆,

y =

[
θ − 1

θ

1− αβπ2θ

1− αβπθ−1

(
1− α

1− απθ−1

)θ+1
θ−1

]1
2

, ∆ =
1− α

1− απ2θ

(
1− απθ−1

1− α

) 2θ
θ−1

.
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