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I Introduction 

 

The nominal price per barrel of crude oil fell by 65% from June 2014 to December 2015, and 

overall, the prices of consumer energy goods and services as measured by the personal 

consumption expenditures price index fell by 23% over this period.  A conventional view of the 

relationship between energy prices and consumer spending suggests that increases in oil prices 

slow consumer spending, akin to tax increases; in linear versions of this conventional view, a 

large decline in energy prices would be similar to a large tax cut, which would provide a strong 

boost to consumer spending.  Thus, it is notable that—in real time—analysts, forecasters, and 

energy experts were generally surprised by the lack of a sizable response of consumer spending 

to the declines in energy prices; see, e.g., Hamilton (2015).1 

There is a vast literature examining the relationship between the U.S. macro economy 

and oil price fluctuations (see, e.g., Hamilton 2005 and Kilian 2008 for surveys), and a key 

question in this literature has been whether the empirical evidence favors asymmetries and 

nonlinearities in this relationship.  Surprisingly, while most of the impact of energy price shocks 

on economic growth is thought to flow through adjustments in consumer spending (e.g., 

Bernanke 2006), relatively little research has focused on potential asymmetries in the response of 

consumer spending to oil and energy prices.  Using measures of positive oil price changes 

(following Mork 1989) or net oil price increases (following Hamilton 1996, 2003), Mehra and 

Petersen (2005) present empirical evidence suggesting that consumer spending responds 

                                                           
1 More generally, Baumeister and Kilian (2016b) note that movements in oil prices continue to surprise economists, 
policymakers, consumers, and financial market participants.  
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asymmetrically to oil price increases and decreases.2  More recently, Alsalman and Karaki 

(2019) use the nonlinear simultaneous equation model of Kilian and Vigfusson (2011a) to 

investigate the nonlinear relationship between consumer spending and oil prices and find strong 

evidence of asymmetries and nonlinearities in the response of consumption to oil price shocks.  

By contrast, Edelstein and Kilian (2009) argue that one cannot reject the null hypothesis of 

symmetry in the impulse response functions of consumer spending to energy price shocks; thus, 

their analysis focuses on symmetric linear models.   

This paper provides empirical evidence of asymmetries in the response of consumer 

spending to energy price increases and decreases in the context of a multivariate, multiple-

regime threshold vector autoregression (TVAR).  TVARs provide a parsimonious and flexible 

methodology to investigate potential asymmetric and nonlinear relationships, as regimes 

endogenously evolve in response to changing conditions.  Because the existence of multiple 

regimes raises the potential for overfitting due to parameter proliferation, we estimate the TVAR 

with Bayesian methods.  When we use monthly U.S. data on real consumption expenditures, 

energy inflation, and inflation excluding food and energy prices over an estimation sample 

spanning 1959-2014, the Bayesian measure of model fit—marginal likelihood—favors the two-

regime model over a single regime, thus allowing for the possibility of nonlinearities and 

asymmetric responses of consumption to energy price shocks.  The threshold variable separating 

our regimes is based on movements in real energy prices averaged over the past nine months.3  

                                                           
2 Wang (2013) uses a panel smooth transition regression model to examine the relationship between oil price 
changes and consumer spending in the G7 countries and documents evidence in support of nonlinear and 
asymmetric relationships. 
3 Koop and Potter (2010) document support for a regime-switching threshold model among the many potential 
candidates in their examination of the nature of the relationship between real GDP growth and oil prices. In that 
study, the regime-switching threshold model that was most favored by the data was based on a threshold defined as 
oil price inflation averaged over the past four quarters.   
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Within the context of our model, this assumption implies that a sustained period of relatively 

high or low real energy inflation—or a large enough positive or negative shock—would lead to 

different consumption dynamics.  With two regimes, our posterior mean estimates put the 

threshold at 0.36%.  Such a threshold estimate is highly intuitive: effectively, consumers behave 

in two different fashions depending on whether real energy inflation is positive or negative.  In 

response to small energy price shocks, the economy remains near the threshold separating the 

two regimes and the cumulative responses of consumption to positive and negative energy price 

shocks show modest asymmetries.  In response to larger shocks, the asymmetries are large: at the 

posterior median, the decline in consumption after one year in response to a 5% increase in 

energy prices is up to three times as large in absolute terms as consumption’s response to a 5% 

decrease in energy prices, while the ratio increases to five in response to 10% increases and 

decreases in energy prices.4   

Digging into the components of consumption, we find marked asymmetric responses of 

durable goods spending; asymmetric responses to nondurable goods spending and services 

spending are present but less pronounced.   

The energy literature has noted a number of channels that could generate asymmetric 

economic responses, including an uncertainty channel that can cause consumers to postpone 

purchases of durables in response to heightened uncertainty from falling energy prices (Bernanke 

1983) and a reallocation channel through which declines in energy prices have smaller impacts 

than increases in energy prices because the reallocation of resources in response to declines in 

energy prices offsets their economic benefits (Hamilton 1988).   

                                                           
4 For GDP, Kilian and Vigfusson (2011b) find no evidence of asymmetries for small shocks and statistically 
significant evidence of asymmetries for large shocks; see also Hamilton (2011).   



5 

 

The paper is structured as follows. The next section describes the related literature. 

Section III describes the data and the empirical models. Section IV discusses the empirical 

results. Section V reports the results for the components of consumption. Section VI concludes.  

 

II Related Literature 

 

The vast majority of the literature that has investigated the relationship between energy prices (or 

oil prices) and aggregate macroeconomic variables has focused on industrial production, real 

GDP, real stock returns, unemployment, and payroll employment.  With the exceptions of Mehra 

and Petersen (2005), Edelstein and Kilian (2009), Wang (2013), and Alsalman and Karaki 

(2019), which are the works most closely related to this paper, much less attention has focused 

on investigating the direct empirical relationship between aggregate consumption (including its 

disaggregates) and energy prices.5  This is surprising given that theoretical justifications of the 

channels contributing to asymmetries and nonlinearities in the relationship between energy 

prices and the macro economy primarily stem from the dynamics of consumer spending along 

with firms’ spending behavior (e.g., Hamilton 1988; Hamilton 2005).  

There are multiple theoretical reasons why economic activity in the U.S. should respond 

asymmetrically to energy price increases and decreases.  Arguably, the two main theoretical 

explanations for such asymmetries include the uncertainty effect and the reallocation effect; see 

Edelstein and Kilian (2009), Kilian (2008), or Kilian and Vigfusson (2011b) for more detailed 

discussions on the channels through which energy prices may impact consumer spending.  The 

                                                           
5 Baumeister and Kilian (2016a) provide an extended discussion of the response of consumer spending to the decline 
in energy prices over 2014-2015.  Gelman et al. (2016) use micro data to study consumption responses in the context 
of the 2014-2015 decline in energy prices.  These analyses do not focus on potential asymmetries. 
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uncertainty effect posits that unexpected changes in energy prices may help lead to uncertainty 

about the future trajectory of energy prices, which, in turn, may cause consumers to postpone 

purchases of consumer durables; see Bernanke (1983), Pindyck (1991), and Hamilton (2009).  

Edelstein and Kilian (2009) contrast this type of wait-and-see behavior in response to an increase 

in uncertainty with precautionary savings behavior, in which any change in energy prices 

generates an increase in uncertainty over future employment prospects that weighs on consumer 

spending; this precautionary savings behavior may be more plausible for big shocks than for 

small shocks.6  The reallocation effect refers to allocative disturbances that lead to intersectoral 

and intrasectoral shifts that cause capital and labor to be unemployed and thus reduce 

consumption, as in Hamilton (1988).  For example, reduced spending on consumer durables will 

lead to capital and labor shifting away from the auto sector (or changing production within the 

auto sector to different types of vehicles), but given the presence of frictions in both the capital 

and labor markets it will temporarily cause unemployment resulting in a further pull-back in 

consumption.   Leduc et al. (2016) posit that consumption responses would depend on 

consumers’ expectations regarding the persistence of the oil price changes: consumers respond to 

oil price shocks that they perceive to be persistent compared with temporary movements.  Using 

a macro model of learning, they show that consumers in late 2014 perceived the sharp oil price 

decline—at least initially—as temporary.7   

                                                           
6 This precautionary savings behavior would contribute to asymmetric consumption responses, because the 
precautionary behavior would dampen the positive impacts on spending from energy price declines and augment the 
negative impacts on spending from energy price increases. 
7 Aladangady and Sahm (2015) show that the households in the University of Michigan’s Survey of Consumers who 
expected the sharp decline in gasoline prices observed in the second half of 2014 to reverse were less enthusiastic 
about the survey question on whether it is a good time to buy durable goods such as automobiles. 
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Despite these theoretical arguments for asymmetric effects, the empirical evidence on the 

existence of such a relationship is far from settled.  Starting in the late 1980s, a considerable 

body of research documented empirical evidence in favor of asymmetries and nonlinearities in 

the relationship between oil prices and the U.S. macro economy; see, e.g., Lougani (1986); Mork 

(1989); Lee et al. (1995); Hooker (1996a, 1996b); Davis and Haltiwanger (2001); Balke et al. 

(2002); Hamilton (1996, 2003); Huang et al. (2005); and Herrera et al. (2011).8  Kilian and 

Vigfusson (2011a, 2011b) provide evidence to question the results of those earlier studies, with 

the main critique targeting the econometric methodology and diagnostic tests used to assess the 

degree of asymmetry.9  This has led to reexaminations of the previous studies using alternative 

econometric methodologies, which have collectively found no statistically significant evidence 

of asymmetric relationships between oil prices and the macro economy; see, e.g., Kilian (2014); 

Herrera et al. (2011, 2015); Alsalman and Herrera (2015); and Herrera and Karaki (2015).10 

Koop and Potter (2010) use an extremely flexible econometric framework to examine the 

relationship between real GDP growth and oil price inflation. Their framework uncovers strong 

support for a regime-switching threshold model, suggesting strong evidence in favor of a 

nonlinear relationship between oil prices and aggregate economic activity. 

TVARs have been widely used in other applications, some of which have involved oil or 

energy prices.  Univariate versions of threshold time series models have existed at least going 

                                                           
8 International evidence in favor of a nonlinear relationship between oil prices and real GDP has been documented 
by Cunado and Perez de Gracia (2003) for a host of European countries; Jimenez-Rodrigueza and Sanchez (2005) 
for Japan, Norway and the UK; Kim (2012) for six industrialized countries; Engemann et al. (2011) for OECD 
countries; and Donayre and Wilmot (2016) for Canada.  Herrera et al. (2015) find weak evidence of asymmetry in 
industrial production across OECD countries. 
9 Hamilton (2011) suggests that the relationship continues to be nonlinear for large shocks, pointing to the results of 
statistically significant nonlinearity for 2 standard deviation shocks in Kilian and Vigfusson (2011b). 
10 Herrera et al. (2011) find mixed evidence: using a longer sample that starts prior to 1973, they find evidence of 
asymmetry and nonlinearity, but that evidence becomes much weaker with data starting post-1973. 
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back to Tong (1978), but multivariate models have increased in popularity since Balke (2000), 

who investigated the role of credit in contributing to nonlinear dynamics in a model of aggregate 

output and credit conditions.  Huang et al. (2005) use a TVAR with two regimes to study the 

relationship between real stock returns (and industrial production) and oil prices; the threshold 

variable is based on movements in the nominal price of energy.  Van Robays (2016) uses 

macroeconomic uncertainty, which is strongly associated with oil price volatility, as the 

threshold variable in a TVAR to study the relationship between oil prices and macroeconomic 

uncertainty.   

 

III Empirical Models and Data 

 

Linear vector autoregressions (VARs) typically provide a useful starting point for assessing the 

economic impacts of energy price shocks; e.g., Edelstein and Kilian (2009) use a bivariate VAR 

in consumer spending and purchasing power changes related to energy price fluctuations.  As a 

baseline, we use trivariate VARs where the vector Yt contains energy inflation, energy
tπ , inflation 

excluding food and energy prices, core
tπ , and real consumption growth, ln tc∆ .11   A general 

representation of a linear VAR(p) model is: 

 1 1 ...t c t p t p tY A AY A Y u− −= + + + +   (1) 

where t=1,…,T, Ac is a vector of constants, A1,…,Ap are matrices of coefficients, and the error 

vector ut is normally distributed with mean zero and variance-covariance matrix t tEu u ′Σ = .  

                                                           
11 Clark and Terry (2010) use a four-variable system of real GDP, energy inflation, core inflation, and the federal 
funds rate to study time variation in the pass-through of energy shocks to core inflation.  Our results are unchanged 
by the addition of the federal funds rate. 
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VARs are susceptible to overfitting, and so to deal with this curse of dimensionality we use 

Bayesian estimation methods as discussed in Banbura et al. (2010), Koop (2013), and Carriero et 

al. (2015).  With a stationary model, the priors on the coefficients are set to zero for all variables, 

and we impose otherwise standard Minnesota and sum-of-coefficient priors in the estimation. 

To compute impulse response functions, we identify the energy price shock through 

Cholesky factorization, in which energy inflation is ordered first followed by core inflation and 

then real consumption growth.  This recursive identification scheme assumes that shocks to 

energy prices affect other variables contemporaneously, but other shocks affect energy inflation 

only with a lag.  We work with monthly data, and this exogeneity assumption over this 

timeframe is consistent with the findings of Kilian and Vega (2011) and a long line of empirical 

work; e.g., Edelstein and Kilian (2009) make a similar assumption.  In our main results, we 

identify the “average” energy price shock in our VAR, abstracting from energy supply and 

energy demand shocks as in Kilian (2009); we consider robustness below.  Given this linear 

model, computation of the impulse response functions is straightforward and standard. 

The linear VAR model in Equation (1) imposes restrictions that may prove to be 

inappropriate for our investigation.  Crucially, the structural impulse response functions from the 

linear VAR model impose symmetry in the responses of the system to a structural shock, both on 

impact and thereafter: the responses to a positive structural shock are mirror images of the 

responses to a negative structural shock.  Second, the responses to a shock necessarily follow the 

principle of proportionality; the impact of a 10% structural shock is exactly twice the response to 

a 5% structural shock.  Third, the responses of the linear VAR to a structural shock do not 

depend on when the structural shock occurs—i.e., the responses are state invariant.   
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A large literature beginning with Hamilton (1996) has argued that consumers (and firms) 

may respond more to big movements in energy prices than to small movements in energy prices, 

suggesting that a constant linear VAR model as in Equation (1) may not be an appropriate 

framework in this context.12  For additional flexibility, a natural extension is to allow for the 

possibility that VAR dynamics may be determined by different regimes that vary over time with 

some endogenous state.  In particular, consider the nonlinear threshold VAR (TVAR) that allows 

for two regimes: 

 ,1 1,1 1 ,1 ,1 ,2 1,2 1 ,2 ,2... ... (1 )t c t p t p t t c t p t p t tY A A Y A Y u D A A Y A Y u D− − − −   = + + + + + + + + + −      (2) 

where  

 
* *

* *

1 if 
0 if 

t d
t

t d

Y
D

Y
γ

γ
−

−

 ≤= 
>

  (3) 

and where the errors u1,t and u2,t  have variance-covariance matrices Σ1 and Σ2, respectively.  In 

this TVAR, the regimes are determined by the endogenous state Dt: when * *
t dY γ− ≤ , the VAR 

dynamics are (potentially) governed by a different set of coefficients and shock variances 

compared with when * *
t dY γ− > .  The unobserved threshold value is *γ , and the threshold variable 

is denoted *
t dY − .  In our application, we define the threshold variable in terms of a moving 

average of lagged real energy inflation—i.e., energy inflation minus core inflation. 

 ( )*

1

1 K
energy core

t d t j t j
j

Y
K

π π− − −
=

= −∑ .  (4) 

                                                           
12 Researchers have dealt with this issue by using a nonlinear transformation of the oil price in a constant linear 
VAR, commonly denoted as a censored linear VAR.  This nonlinear transformation is supposed to remove oil price 
declines and only measure oil price increases relative to some reference period (e.g., 1, 2, or 3-year peaks) and has 
usually taken the following form (e.g., Hamilton 2003): 1max{0, max{ ,..., }}t t t t kx X X X− −= −  where X is the price 
of oil and x is the nonlinear transformation of the oil price X. 
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Our results are similar if we use energy inflation instead of real energy inflation as the threshold 

variable.  As a baseline, we use a nine-month moving average to calculate the threshold variable, 

K=9.13  We set the parameter delay lag d=1.14  It is worth noting that with a delay lag d=1, in 

response to a shock the regime can only switch after at least a one-month delay.  For practical 

purposes, this means that, on impact, positive and negative shocks have symmetric effects until 

the regime can switch, suggesting that asymmetries found with this approach are likely to 

actually be conservative, a point we return to below.15 

Estimating the TVAR with Bayesian methods and producing impulse responses are 

computationally intensive.  A priori, we assume the regimes are identical and we impose the 

same Minnesota and sum-of-coefficient priors used earlier in the linear VAR case, and our prior 

for the threshold value is the sample mean for real energy inflation.  We estimate the TVAR 

model by following the Gibbs sampling procedure detailed in Alessandri and Mumtaz (2017) 

and Chib and Greenberg (1995).  For each simulation of the Gibbs sampling, their procedure 

includes a Metropolis-Hastings step to sample the threshold value.  Using the estimation results 

along with the data sample, we compute generalized impulse responses in the spirit of Koop et 

al. (1996), but with our identified structural shocks, as in Kilian and Vigfusson (2011a).  Unlike 

                                                           
13 The use of a moving average process for the threshold variable is relatively common to have more persistence in 
the switching variable and to overcome month-to-month volatility in the underlying raw series.  A rough grid search 
over the number of lags p and the number of months K to include in the moving average process found that p=9 and 
K=9 maximized the marginal likelihood of the sample.   
14 While it is possible in principle to estimate d, we fix it to reduce the computational burden. 
15 Kilian and Lütkepohl (2016, p. 596) note that the rationale for a “hard” threshold (which produces an abrupt 
transition) is more compelling at the microeconomic level than at the macro level.  Because the thresholds governing 
consumer behavior would likely vary across individuals, in the aggregate a smooth threshold may therefore be more 
plausible, such as a regime-switching smooth transition regression based on a logistic transition function (STRL).  
The empirical studies using STRL (e.g., Granger et al. 1993; Weise 1999; Shintani et al. 2013) on the macro 
aggregates have estimated large values for the smoothness parameter of the transition function—where a larger 
value implies a less smooth or more abrupt transition—lending support to our use of a hard threshold.  Hence, we 
view the use of a TVAR for our application as a reasonable approach.  
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in the linear VAR case, in computing responses from this nonlinear TVAR model it is important 

to account for the initial state of the system when the shock hits, the sign of the shock, and the 

size of the shock, because all three of these factors can affect the endogenous evolution of the 

regimes; e.g., a starting position close to the threshold value is more likely to be crossed than a 

starting position far from it.  Thus, the impulse responses we show are broadly representative of 

the different potential starting points in the different regimes.  Their construction requires 

simulation techniques; the technical appendix provides detailed estimation steps and the 

algorithm for constructing the impulse responses. 

To take the linear VAR and multiple-regime TVAR to the U.S. data, our baseline results 

use monthly data beginning in January 1959 and ending in June 2014.  We end our primary 

sample in June 2014 so that we do not double-count the most recent decline in energy prices, 

which we used to motivate this study based on expressed concerns about the lack of a strong 

boost in consumer spending from the declines in energy prices from mid-2014 through the end of 

2015.  Our results are little changed by extending the sample through later dates.  We measure 

real consumer spending using monthly growth in real personal consumption expenditures (PCE).  

Our measure of energy inflation is monthly inflation in the PCE price index for energy goods and 

services.  Finally, our measure of core inflation is monthly inflation in the PCE price index 

excluding food and energy.  All three measures come from the Bureau of Economic Analysis.16  

With monthly data, we use p=9 lags in the linear VAR and the TVAR. 

 

                                                           
16 In all cases, monthly growth or inflation rates are computed as 100 times the natural log first difference. 



13 

 

IV Empirical Results 

 

To compare and contrast the linear VAR and TVAR models, we proceed by examining model fit 

and the plausibility of the estimated threshold, and then we move on to analyzing the impulse 

response functions.   

One advantage of estimating our models with Bayesian methods is the convenience of 

model comparisons in terms of model fit.  Using the Bayesian metric of marginal likelihood 

(ML), we can rank model specifications in terms of the degree to which they fit the sample data 

(see the technical appendix for details). In our case, model fit also provides evidence on potential 

nonlinearities and asymmetries.  If the linear VAR has a higher ML value compared to any of 

our TVAR specifications, then that would provide evidence in favor of a linear relationship; a 

higher ML value from a TVAR specification provides evidence in favor of nonlinearities.  

However, it does not determine the shape of the nonlinearities; e.g., the nonlinearities could be in 

energy inflation rather than the response of consumption to energy price shocks.  Impulse 

response analysis is necessary to examine the nature of the nonlinearities. 

Table 1 reports the logarithm of the ML for the specifications of the linear VAR and the 

baseline TVAR with two regimes (one threshold) and K=9 months for the moving average in the 

threshold variable.  The ML criterion strongly favors having multiple regimes over a single 

regime.  This finding holds for various values of K, the number of terms in the moving average.  

While not shown, based on the ML criterion, the data actually favor a TVAR model with three 

regimes over the two-regime specification in the table.  The drawback to three regimes is the 

potential for one regime to have a relatively small number of observations, which turns out to be 
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the case in this preferred specification.17  To avoid drawing inference on the basis of a small 

number of observations, we limit attention to the two-regime case.   

In a threshold VAR, the estimated threshold value partitions the sample into the desired 

number of regimes depending on the behavior of the threshold variable.  Table 1 also presents an 

estimate of the threshold value from our baseline TVAR specification.  The posterior mean of the 

threshold is 0.36%.  Such a value, when related to the threshold variable, appears plausible and is 

relatively intuitive: it essentially says that if real energy inflation has recently been zero or 

negative—i.e., 9*
1 1

(1/ 9) ( ) 0.36energy core
t t j t jj

Y π π− − −=
= − ≤∑  at the posterior mean—then the economy 

is in one regime, which we label generically regime 1; if it has recently been positive, then the 

economy is in regime 2. Large negative shocks are therefore likely to either push the economy 

into regime 1 or keep it there; large positive shocks are likely to do the same for regime 2. 

Figure 1 shows a time plot of the threshold variable along with the posterior mean 

estimated threshold from the TVAR model.  Prior to the 2000s, most of the time in the sample 

was spent in regime 1, with the exception of notable spikes in oil prices in the 1970s and the late 

1980s/early 1990s associated with OPEC actions and the first Gulf War.  Overall, 73% of 

observations lie below the estimated posterior mean threshold value, consistent with high real 

energy inflation being somewhat rare based on historical experience—although more common 

later in the sample. 

To assess the behavior of consumer spending in response to energy price shocks, we turn 

to impulse response exercises.  In the TVAR model specification, impulse responses can differ 

qualitatively and quantitatively based on the size of the shock, the sign of the shock, and the 

                                                           
17 In the three regime TVAR estimation, the two estimated posterior mean thresholds remain near zero: one is 
−0.47% and the other is 0.35%.  But only 10 percent of observations fall into regime 1. 
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starting position of the economy within one regime or another because the regime—and hence 

the model’s dynamics—can endogenously evolve over time.  As a result, the figures 

corresponding to impulse responses for TVARs show responses to both positive and negative 

shocks and to smaller and larger shocks.  Specifically, to get a visual sense of the evidence of 

asymmetry and nonlinearity we report results for responses of consumption to ±1%, ±5%, and 

±10% shocks to energy prices.   While monthly shocks in the range of ±10% are rare, they are 

more plausible when viewed over the span of a few months.18 

Figure 2 shows the cumulative consumption responses to ±1% energy price shocks in the 

linear VAR and conditional on the shock occurring in either regime 1 (low/negative real energy 

inflation) or regime 2 (positive real energy inflation); we report cumulative consumption 

responses at selected time periods in Table 2.  In all cases, the responses in the linear VAR to the 

positive and negative shocks are simply mirror images of each other, because the model imposes 

symmetry by assumption.  As noted above, on impact, the impulse responses within a given 

regime in the TVAR exercise are symmetric for positive and negative shocks because the regime 

is fixed within that period; it is only in the period after the shock occurs that the regime is able to 

change, which may generate nonlinearities and asymmetries.  Our threshold approach may be 

underestimating cumulative consumption asymmetries to the extent that differential responses 

occur on impact to positive and negative shocks. 

That said, in response to ±1% energy price shocks, evidence of asymmetries in the 

consumption response to energy price shocks is limited.  In regime 1, a positive 1% energy price 

shock reduces consumption by a cumulative 0.15% after 12 months; by contrast, a negative 1% 

                                                           
18 For example, the cumulative decline based on the monthly growth rate in PCE energy prices from October 2014 
to March 2015 was -17.28%, and from October 2014 to December 2015 it was -23.24%. 
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energy price shock that occurs in regime 1 boosts cumulative consumption by 0.11% after 12 

months.  The differences are smaller in regime 2—the positive real energy inflation regime.  

Nevertheless, the TVAR model produces notable differences vis-à-vis the canonical linear VAR.  

The cumulative posterior median estimates for the linear VAR are consistently smaller, in 

absolute terms, than the cumulative posterior median estimates from the TVAR: the linear VAR 

tends to underestimate the sensitivity of consumer spending to relatively small energy price 

shocks, both positive and negative.   

Larger energy shocks generate noticeable asymmetries.  Figure 3 plots the impulse 

responses to ±5% energy price shocks.  While the linear model’s impulse response to a −5% 

shock produces an increase in cumulative consumer spending that is quantitatively similar to 

those from the TVAR model regardless of the starting regime, the estimated effects from a +5% 

shock in the linear model are much smaller compared with those from the TVAR.  Starting from 

regime 1, a +5% shock to energy prices eventually results in a 0.93% decrease in cumulative 

consumer spending after 12 months in the TVAR specification—approximately three times as 

large as the linear model would predict.  Clear evidence of regime dependence also emerges in 

response to larger shocks.  Asymmetries are more pronounced in regime 1 between positive and 

negative shocks.  After 12 months, a +5% shock generates a 0.93% decrease in cumulative 

consumer spending, while a −5% shock generates a 0.33% increase in cumulative consumer 

spending; the consumption response to the positive energy price shock is nearly three times as 

large in absolute terms as the response to the negative energy shock.  In regime 2, the 

consumption response to a +5% energy price shock is less than twice as large in absolute terms 

as the response to a −5% energy price shock. 
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Qualitatively similar results are obtained from ±10% shocks in Figure 4.  The posterior 

median from the linear VAR tends to understate the consumption response to a positive shock of 

this size while overstating the response to the large negative shock.  A +10% energy price shock 

in regime 1 tends to have a large depressing effect on consumption, while a −10% shock 

provides a relatively small boost—such that the 70% probability bands for the cumulative 

consumption response include zero throughout the response horizon.   As shown in Table 2, 

starting from regime 1, the consumption response to a +10% shock is five times larger in 

absolute value after 12 months than the response to a −10% shock. 

Overall, these exercises suggest several conclusions.  First, the data tend to favor the 

TVAR model based on the Bayesian metric of model fit, marginal likelihood.  Second, the 

impulse responses coming from linear VARs understate the responsiveness of consumption to 

small energy price shocks; for larger energy price shocks, the linear VAR continues to understate 

the sensitivity of consumption to energy price increases and to overstate its sensitivity to energy 

price decreases.  Third, while evidence of asymmetries in consumption responses is visible 

following small energy price shocks, the asymmetries are more prominent in response to 

relatively large energy price shocks.  

 

V Responses of Consumption Components and Robustness 

 

The estimated asymmetric and nonlinear behavior between aggregate consumption and energy 

prices may not necessarily hold for each of the components of aggregate consumption.  To get a 

sense of which of the underlying components of the consumption basket may be contributing to 

the observed asymmetric behavior of aggregate consumption, we repeat the above exercises by 
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examining the responses of the three main consumption components—consumer spending on 

durables, nondurables, and services—to energy price shocks.   

In each case, we find that the marginal likelihood is maximized by the TVAR model 

estimated using Bayesian methods rather than the linear VAR model, and the posterior mean 

estimated thresholds are all incredibly similar—either 0.36% or 0.37%, compared with 0.36% in 

our baseline estimation with total aggregate consumption.  The online appendix provides further 

details and a complete set of figures for the impulse responses.  We compactly summarize these 

results by looking at the responses of real spending on durables in Table 3, real spending on 

nondurables in Table 4, and real spending on services in Table 5.   

Qualitatively, the patterns of asymmetries are identical to those for total consumption 

across the three major consumption components.  In all cases, the linear model understates the 

responsiveness of consumer spending on durables, nondurables, and services to small energy 

shocks, and it markedly understates the responsiveness of consumption at the component level in 

response to large positive energy shocks.  We also document sizeable asymmetries in response to 

the same-sized positive and negative shocks: consumer spending on durables, nondurables, and 

services is more responsive to positive energy shocks than to negative energy shocks, especially 

in response to relatively larger shocks.   

Quantitatively, the extent of the asymmetries differs somewhat at the component level.  

After 12 months, the decline in durable consumption in response to a +5% energy shock is 3.3 

times larger than the response to a −5% shock when starting in regime 1 (−2.29% v. +0.70%).  

For nondurable consumption and services consumption, the comparable ratio is 2.7 times 

(−0.79% v. +0.29% for nondurables, and −0.70% v. +0.26% for services).  As with the results 
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for aggregate consumer spending, the asymmetries are smaller when starting in regime 2; the 

comparable ratios are 1.7 for durables and 1.5 for both nondurables and services.  

In other robustness exercises, we examine asymmetries in the relationship between 

consumer spending and energy prices in the period since 1985.  As reported in the online 

appendix, we find that the asymmetries documented above are still present but are generally 

smaller.19  In results not reported, we find that extending the sample to include recent periods of 

declining energy prices or augmenting the specification of the model to include inflation 

expectations and financial conditions does not affect our results, and we obtain similar results 

when replacing our energy price series with the purchasing power series in Edelstein and Kilian 

(2009).  We also investigated asymmetries in the consumption response to energy supply and 

energy demand shocks, based on Kilian (2009).  Using our TVAR framework estimated using 

Bayesian methods, we find that energy-specific demand shocks produce the strongest 

asymmetric responses of consumption, complementing the findings of Alsalman and Karaki 

(2019) using the Kilian and Vigfusson (2011a) nonlinear simultaneous modeling framework. 

 

VI Conclusion 

 

This paper reconsiders the issue of potential asymmetries and nonlinearities in the relationship 

between consumer spending and energy prices.  Using a multivariate threshold vector 

autoregressive model estimated with Bayesian methods, we document that the historical U.S. 

                                                           
19 Using industrial production data, Herrera et al. (2011) find stronger evidence of asymmetries and nonlinearities 
using data before 1973 compared with more recent data.  Hooker (1996a, 1996b), Mehra and Petersen (2005), and 
Edelstein and Kilian (2009) document that the relationship between oil prices and many macroeconomic variables 
has weakened over time. 
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data prefer multiple regimes.  We document notable asymmetries of consumer spending in 

response to large energy shocks: consumer spending declines more in response to large energy 

price increases than it increases in response to the same-sized energy price decreases.  By 

contrast, evidence of asymmetries is more limited in response to small shocks.  Notably, we 

provide evidence that the linear model not only misses the asymmetries, but it also 

underestimates the sensitivity of consumption to small shocks (both negative and positive) as 

well as large positive shocks.  Finally, we find qualitatively similar results for spending on 

consumer durables, nondurables, and services.   

 

VII Technical Appendix 

 

Linear VAR Estimation 

In the linear VAR model of Eq. (1), coefficient estimates in 1,..., pA A and Σ are shrunk to 

their prior means.  The prior beliefs for the mean and variances of the coefficient matrices are as 

follows:  

 

( , )

2
( , ) 2

2 2

, , 1
[ ]

0,

1[ ] , 1,...,

ii j
k

i j i
k

j

if i j k
E A

otherwise

Var A l p
l

δ

σλ
σ

= =
= 


= =
                 (A.1) 

Since all variables are transformed to growth rates (i.e., they are stationary) prior to estimation, 

we set 0iδ =  for all variables. The scale factor 21/ l  helps impose the prior belief that recent lags 

play a more influential role compared to the distant ones by proportionally shrinking the 

variances on the more distant lags (centered on the prior mean of zero). The prior parameter iσ  
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equals the standard deviation of the residuals obtained from regressing the variable iy  on its own 

p lags and a constant over the sample period up to time t. The hyperparameter λ  governs the 

tightness of our prior beliefs. As 0λ →  the prior dominates and so the posterior equals the prior, 

i.e., the data have no say; as λ →∞ , the prior has no influence and so the posterior estimates 

converge to OLS estimates. We set λ to 0.2, a value often used in the literature.20 

Imposing sum-of-coefficient priors on the equations of the VAR can be helpful in 

improving forecast accuracy.  The parameter µ  governs the tightness of this prior and is set to 1, 

indicating a very loose prior. Prior specification for each equation is symmetric in its treatment 

of own lags of the dependent variable and lags of other variables. As a result, we have a prior 

that is a natural conjugate (normal-inverted Wishart prior), which proves to be convenient when 

solving for the model as these priors can be implemented easily by augmenting the data matrices 

with fictitious data, permitting OLS to estimate the model. 

For notational convenience, we re-write the linear VAR model of Eq. (1) in a compact 

matrix notation, 

𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝑈𝑈              (A.2) 

where 𝑌𝑌 = [𝑦𝑦1, … ,𝑦𝑦𝑇𝑇]′ is a 𝑇𝑇 × 𝑁𝑁 matrix, and 𝑋𝑋 = [𝑥𝑥1, … , 𝑥𝑥𝑇𝑇]′ is a 𝑇𝑇 × 𝑘𝑘 matrix. 

 𝐴𝐴 = [𝐴𝐴𝑐𝑐 𝐴𝐴1 … 𝐴𝐴𝑝𝑝]′ is a 𝑘𝑘 × 𝑁𝑁 matrix of VAR coefficients. 𝑈𝑈 = [𝑢𝑢1 𝑢𝑢2 … 𝑢𝑢𝑇𝑇]′ is a 

 𝑇𝑇 × 𝑁𝑁 matrix of error terms.  

Let 𝛼𝛼 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴) of size 𝑘𝑘𝑘𝑘 × 1.  

Then, the natural conjugate prior or normal inverse-Wishart prior (N-IW) is specified as, 

                                                           
20 In principle, the value of these prior parameters could be obtained through a grid search that maximizes the 
marginal likelihood. The value we are using happens to be close to values that other researchers have obtained 
through a grid search optimization. 
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𝛼𝛼|Σ ~ 𝑁𝑁�𝛼𝛼, Σ ⊗Ω�                       (𝐴𝐴. 3) 

and     Σ ~ 𝑖𝑖𝑖𝑖�𝑆𝑆, 𝜈𝜈�                   (𝐴𝐴. 4) 

where 𝛼𝛼 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴), Ω, 𝑆𝑆, and 𝜈𝜈 are prior hyperparameters whose values are set using the 

prior moment conditions specified in Eq. (A.1).  

The resulting joint posterior density, 𝑝𝑝(𝛼𝛼, Σ |𝑌𝑌) also has the form N-IW. 

𝛼𝛼|Σ, Y ~ 𝑁𝑁�𝛼𝛼, Σ ⊗Ω�                       (𝐴𝐴. 5) 

and     Σ|Y ~ 𝑖𝑖𝑖𝑖�𝑆𝑆, 𝜈𝜈�                  (𝐴𝐴. 6) 

where 𝛼𝛼 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴) 

𝐴𝐴 = �Ω−1 + 𝑋𝑋′𝑋𝑋�
−1
�Ω−1𝐴𝐴 + 𝑋𝑋𝑌𝑌′�             (𝐴𝐴. 7) 

Ω =  �Ω−1 + 𝑋𝑋′𝑋𝑋�
−1

                                      (𝐴𝐴. 8) 

𝜈𝜈 = 𝜈𝜈 + 𝑇𝑇                                                          (𝐴𝐴. 9) 

S = 𝐴𝐴 + 𝑢𝑢�′ 𝑢𝑢� + 𝐴̂𝐴′𝑋𝑋′𝑋𝑋𝐴̂𝐴 + 𝐴𝐴′ Ω−1𝐴𝐴  −  𝐴̂𝐴′Ω
−1
𝐴̂𝐴             (𝐴𝐴. 10) 

 where 𝐴̂𝐴 is the OLS estimate and 𝑢𝑢�  are OLS residuals defined as  𝐴𝐴� = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌  

and 𝑢𝑢� = 𝑌𝑌 −  𝑋𝑋𝐴̂𝐴 respectively.  

 

Computation of the Marginal Likelihood in a Linear VAR 

The marginal likelihood is, 

𝑝𝑝(𝑌𝑌) =  �𝑝𝑝(𝑌𝑌|𝜃𝜃)𝑝𝑝(𝜃𝜃)𝑑𝑑𝑑𝑑 

where 𝜃𝜃 collects all the VAR model parameters. An advantage of working with an N-IW prior is 

that a closed-form solution exists for 𝑝𝑝(𝑌𝑌) and it is, 
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𝑝𝑝(𝑌𝑌) =  �
1
𝜋𝜋
�
𝑁𝑁𝑁𝑁
2

× �(𝐼𝐼 + 𝑋𝑋Ω𝑋𝑋′)−1�
𝑁𝑁
2  ×  �𝑆𝑆�

𝜐𝜐
2  ×  

Γ𝑁𝑁 �
𝜐𝜐 + 𝑇𝑇

2 �

Γ𝑁𝑁 �
𝜐𝜐

  2 �
  

×  �𝑆𝑆 + (𝑌𝑌 − 𝑋𝑋𝐴𝐴)′(𝐼𝐼 + 𝑋𝑋Ω𝑋𝑋′)−1(𝑌𝑌 − 𝑋𝑋𝐴𝐴)�
− 
𝜐𝜐+𝑇𝑇
2               (𝐴𝐴. 11) 

 

Impulse Response in a Linear VAR 

To compute impulse response functions, we require an identification strategy to solve for 

the energy price shock. We adopt a Cholesky factorization method to identify the energy price 

shock, in which energy inflation is ordered first, followed by core inflation and then real 

consumption growth.  This recursive identification scheme assumes that shocks to energy prices 

affect other variables contemporaneously, but other shocks affect energy inflation only with a 

lag. 

Formally, the impulse responses are constructed by a simple Monte Carlo procedure, 

which sequentially samples from the model’s conditional posterior densities defined in Eq. (A.5), 

and Eq. (A.10). For each posterior draw of parameters, 𝐴𝐴 and Σ, the corresponding structural 

coefficients are computed using the Cholesky method (which involves triangular decomposition 

of the Σ). The structural coefficients along with the desired magnitude of the energy shock are 

used to construct impulse response functions. Cycling through all the posterior draws provides us 

with an empirical posterior distribution of the impulse response functions, which are used to 

compute the posterior median response and the posterior probability intervals. 
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TVAR Estimation 

To permit Bayesian inference in the TVAR model, a posterior simulator using an MCMC 

algorithm is developed. Specifically, we use the Metropolis-within-Gibbs algorithm identical to 

the one used by Alessandri and Mumtaz (2017), which in turn is based on the Gibbs sampler of 

Chen and Lee (1995). 

A. Prior specification: Define priors for all the TVAR model parameters 

a.  For the TVAR parameters, 𝐴𝐴 = {𝐴𝐴𝑟𝑟1,𝐴𝐴𝑟𝑟2} and Σ = {Σ𝑟𝑟1, Σ𝑟𝑟2}, the prior assumptions are 

identical to the one specified for the parameters, 𝐴𝐴 and Σ in the linear VAR model, i.e., 

Eq. (A.3) and Eq. (A.4). Note, 𝐴𝐴𝑟𝑟1 and Σ𝑟𝑟1 corresponds to the VAR parameters and error 

variance matrix in regime 1, and similarly, 𝐴𝐴𝑟𝑟2 and Σ𝑟𝑟2 correspond to the VAR 

parameters and error variance matrix in regime 2. 

b.  For the threshold parameter, 𝛾𝛾∗ , a normal prior is assumed: 𝛾𝛾∗~ 𝑁𝑁(𝛾𝛾,𝑣𝑣 ), where 𝛾𝛾 is the 

mean of the threshold variable 𝑌𝑌𝑡𝑡∗, and 𝑣𝑣 = 10. Set the starting value, 𝛾𝛾∗ (0) =  𝛾𝛾. 

B: Develop a posterior simulator: In order to perform posterior inference in the TVAR model in 

Eq. (2), we require sampling from the joint posterior density, 𝑝𝑝(𝐴𝐴𝑟𝑟1, Σ𝑟𝑟1,𝐴𝐴𝑟𝑟2, Σ𝑟𝑟2,𝛾𝛾∗|𝑌𝑌). It can 

be seen that conditional on 𝛾𝛾∗ and with the assumption of conjugate N-IW priors, the TVAR 

model specified in Eq. (2) collapses into two separate linear VAR models with conjugate N-IW 

priors. Hence, using the rules of probability, the joint posterior density can be written as 

𝑝𝑝(𝐴𝐴𝑟𝑟1, Σ𝑟𝑟1,𝐴𝐴𝑟𝑟2, Σ𝑟𝑟2,𝛾𝛾∗|𝑌𝑌) =  𝑝𝑝(𝐴𝐴𝑟𝑟1, Σ𝑟𝑟1|𝑌𝑌𝑟𝑟1,𝛾𝛾∗)  𝑝𝑝(𝐴𝐴𝑟𝑟2, Σ𝑟𝑟2|𝑌𝑌𝑟𝑟2, 𝛾𝛾∗) 𝑝𝑝(𝛾𝛾∗|𝑌𝑌). 

The first two components on the right-hand side are the joint posterior densities of VAR 

parameters in regime 1 and regime 2, respectively, and the third component is the conditional 
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posterior density (or the marginal posterior density) for the threshold parameter. Drawing from 

the joint posterior density of VAR parameters corresponding to regime 1, 𝑝𝑝(𝐴𝐴𝑟𝑟1, Σ𝑟𝑟1|𝑌𝑌𝑟𝑟1, 𝛾𝛾∗) is 

equivalent to drawing first from the conditional posterior, 𝑝𝑝(𝐴𝐴𝑟𝑟1|𝑌𝑌𝑟𝑟1, Σ𝑟𝑟1 ,𝛾𝛾∗), which is normal, 

and then drawing from the conditional posterior, 𝑝𝑝(Σ𝑟𝑟1|𝑌𝑌𝑟𝑟1,𝐴𝐴𝑟𝑟1, 𝛾𝛾∗), which is inverse-Wishart.  

Therefore, drawing from the joint posterior density, 𝑝𝑝(𝐴𝐴𝑟𝑟1, Σ𝑟𝑟1|𝑌𝑌𝑟𝑟1,𝛾𝛾∗) is straightforward as it 

takes a convenient form of N-IW density. Similarly, drawing from joint posterior 

𝑝𝑝(𝐴𝐴𝑟𝑟2, Σ𝑟𝑟2|𝑌𝑌𝑟𝑟2,𝛾𝛾∗) is straightforward. However, the conditional posterior density 𝑝𝑝(𝛾𝛾∗|𝑌𝑌) does 

not take the form of any standard density suggesting the need for a Metropolis-Hastings step to 

draw from this conditional posterior. Accordingly, to simulate posterior density of the TVAR 

parameters, the posterior draws are obtained via an MCMC algorithm that sequentially cycles 

through the following four steps, for g=1 to G draws. 

Step 1: Split the estimation sample.  

Conditional on the draw of 𝛾𝛾∗, split the estimation sample into 𝑟𝑟1, 𝑟𝑟2 regimes 

Regime 1 (denoted 𝑟𝑟1): * *
1tY γ− ≤  

𝑌𝑌𝑟𝑟1 = 𝑋𝑋𝑟𝑟1𝐴𝐴𝑟𝑟1 + 𝑈𝑈𝑟𝑟1            (𝐴𝐴. 12)      

Set 𝛼𝛼𝑟𝑟1 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝑟𝑟1)    and   Σ𝑟𝑟1 is the error covariance matrix in regime 1 

             Regime 2 (denoted 𝑟𝑟2): * *
1tY γ− >  

𝑌𝑌𝑟𝑟2 = 𝑋𝑋𝑟𝑟2𝐴𝐴𝑟𝑟2 + 𝑈𝑈𝑟𝑟2            (𝐴𝐴. 13) 

Set 𝛼𝛼𝑟𝑟2 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝑟𝑟2)   and   Σ𝑟𝑟2 is the error covariance matrix in regime 2   

Step 2:  Draw from 𝑝𝑝(𝛼𝛼𝑟𝑟1|Σ𝑟𝑟1,𝑌𝑌𝑟𝑟1, 𝛾𝛾∗)  and 𝑝𝑝(Σ𝑟𝑟1|𝑌𝑌𝑟𝑟1,𝐴𝐴𝑟𝑟1, 𝛾𝛾∗) details below. 

Step 3:  Draw from 𝑝𝑝(𝛼𝛼𝑟𝑟2|Σ𝑟𝑟2,𝑌𝑌𝑟𝑟2, 𝛾𝛾∗)  and 𝑝𝑝(Σ𝑟𝑟2|𝑌𝑌𝑟𝑟2,𝐴𝐴𝑟𝑟2, 𝛾𝛾∗) details below. 

For notational sake, let’s denote the regimes 𝑟𝑟 = {𝑟𝑟1, 𝑟𝑟2}, then 
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                                   𝛼𝛼𝑟𝑟|Σ𝑟𝑟,𝑌𝑌𝑟𝑟 , 𝛾𝛾∗~ 𝑁𝑁�𝛼𝛼𝑟𝑟 ,  Σ𝑟𝑟 ⨂(𝑋𝑋∗′𝑋𝑋∗)−1�          (𝐴𝐴. 14) 

where 𝑋𝑋∗ = �𝑋𝑋𝑟𝑟;  𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� and 𝛼𝛼𝑟𝑟 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝑟𝑟) 

Σ𝑟𝑟|𝑌𝑌𝑟𝑟, 𝛾𝛾∗  ~ 𝑖𝑖𝑖𝑖(𝑆𝑆𝑟̅𝑟, 𝜈̅𝜈𝑟𝑟)               (𝐴𝐴. 15) 

where 𝜈̅𝜈𝑟𝑟 =  𝜈𝜈 + 𝑇𝑇𝑟𝑟 ; 𝑇𝑇𝑟𝑟 represents the number of observations in regime 𝑟𝑟 

 𝑆𝑆𝑟𝑟 = 𝐴𝐴𝑟𝑟 + 𝑢𝑢�𝑟𝑟
′𝑢𝑢�𝑟𝑟 + 𝐴̂𝐴𝑟𝑟

′𝑋𝑋′𝑋𝑋𝐴̂𝐴𝑟𝑟 + 𝐴𝐴𝑟𝑟′ Ω𝑟𝑟−1𝐴𝐴𝑟𝑟  −  𝐴̂𝐴𝑟𝑟′ Ω𝑟𝑟
−1
𝐴̂𝐴𝑟𝑟 

where Ω =  Ω𝑟𝑟 and  𝐴𝐴 =  𝐴𝐴𝑟𝑟;  𝑢𝑢�𝑟𝑟 = 𝑌𝑌𝑟𝑟 −  𝑋𝑋𝑟𝑟𝐴̂𝐴𝑟𝑟 

Note: Symbols with a bar on top represent the posterior mean estimates; those with a 

bar below represent prior mean estimates; and those with a hat on top represent OLS 

estimates.  

Step 4: Draw from   𝑝𝑝( 𝛾𝛾∗|𝑌𝑌)  

Conditional on the draw of parameters sampled in steps 2 and 3 above, a candidate draw for the 

threshold parameter 𝛾𝛾∗is obtained using the random walk Metropolis-Hastings step, which 

generates candidate draws as, 

  𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗ =  𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜∗ +  Ψ1/2𝜐𝜐,      𝜐𝜐 ~ 𝑁𝑁(0,1)         (𝐴𝐴. 16) 

where Ψ is the scaling factor whose value is chosen to keep the acceptance probability in the 

range of 20 to 40 percent.   

Acceptance probability,  𝜚𝜚(𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜∗ , 𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑝𝑝(𝛾𝛾∗= 𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗  | 𝑌𝑌,Θ)
𝑝𝑝(𝛾𝛾∗= 𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜

∗ | 𝑌𝑌,Θ)
, 1�        (𝐴𝐴. 17) 

where p(.) represents the posterior density of 𝛾𝛾∗; Θ denotes all other TVAR model parameters; 

the min operator ensures that the acceptance probability does not exceed 1.   

Deriving the posterior density of  𝛾𝛾∗: 

The Bayes theorem implies 

𝑝𝑝(𝛾𝛾∗|𝑌𝑌)  ∝ 𝑝𝑝(𝑌𝑌|𝛾𝛾∗)𝑝𝑝(𝛾𝛾∗)          (𝐴𝐴. 18) 
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and                                         𝑝𝑝(𝑌𝑌|𝛾𝛾∗) =  𝑝𝑝(𝑌𝑌𝑟𝑟1|𝛾𝛾∗) 𝑝𝑝(𝑌𝑌𝑟𝑟2|𝛾𝛾∗)       (𝐴𝐴. 19)  

where 𝑝𝑝(𝑌𝑌𝑟𝑟1|𝛾𝛾∗) is the marginal likelihood for the linear VAR process of regime 1, and 

𝑝𝑝(𝑌𝑌𝑟𝑟2|𝛾𝛾∗) is the marginal likelihood for the linear VAR process of regime 2. 

The above relationship implies 

𝑝𝑝( 𝛾𝛾∗ =  𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗  |𝑌𝑌)  ∝ 𝑝𝑝(𝑌𝑌|𝛾𝛾∗ =  𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗  )𝑝𝑝(𝛾𝛾∗)           (𝐴𝐴. 20) 

Similarly,   

𝑝𝑝( 𝛾𝛾∗ =  𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜∗  |𝑌𝑌)  ∝ 𝑝𝑝(𝑌𝑌|𝛾𝛾∗ =  𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜∗  )𝑝𝑝(𝛾𝛾∗)      (𝐴𝐴. 21) 

Accordingly, 

𝑝𝑝( 𝛾𝛾∗ =  𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗  |𝑌𝑌)
𝑝𝑝( 𝛾𝛾∗ =  𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜∗  |𝑌𝑌)  ∝  

𝑝𝑝(𝑌𝑌|𝛾𝛾∗ =  𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗  )
𝑝𝑝(𝑌𝑌|𝛾𝛾∗ =  𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜∗  )

       (𝐴𝐴. 23) 

where 𝑝𝑝(𝑌𝑌|𝛾𝛾∗ =  𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗  ) is the marginal likelihood of the TVAR model evaluated at 𝛾𝛾∗ =  𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗  

and 𝑝𝑝(𝑌𝑌|𝛾𝛾∗ =  𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗  ) is the marginal likelihood of the TVAR model evaluated at 𝛾𝛾∗ =  𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜∗  

Note: 𝑝𝑝( 𝛾𝛾∗ =  𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗  |𝑌𝑌) =  𝑝𝑝( 𝛾𝛾∗ =  𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗  |𝑌𝑌,Θ) and 𝑝𝑝( 𝛾𝛾∗ =  𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜∗  |𝑌𝑌) =

 𝑝𝑝( 𝛾𝛾∗ =  𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜∗  |𝑌𝑌,Θ) 

Therefore, the acceptance probability is the ratio of the marginal likelihoods of the TVAR 

model evaluated at thresholds 𝛾𝛾𝑛𝑛𝑛𝑛𝑛𝑛∗  and 𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜∗ . 

We set G=11,000, and use the first 10,000 posterior draws as a burn-in sample (i.e., 

discard draws) and store the remaining 1,000 posterior draws for posterior inference. 

 

Marginal Likelihood in a Threshold VAR 

The marginal likelihood of the TVAR conditional on threshold 𝛾𝛾∗ is 

𝑝𝑝(𝑌𝑌|𝛾𝛾∗) =  𝑝𝑝(𝑌𝑌𝑟𝑟1|𝛾𝛾∗) 𝑝𝑝(𝑌𝑌𝑟𝑟2|𝛾𝛾∗)               (𝐴𝐴. 24) 
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𝑝𝑝(𝑌𝑌𝑟𝑟1|𝛾𝛾∗) =  �
1
𝜋𝜋
�
𝑁𝑁𝑇𝑇𝑟𝑟1
2

×  �(𝐼𝐼 + 𝑋𝑋𝑟𝑟1Ω𝑋𝑋𝑟𝑟1′)−1�
𝑁𝑁
2  ×  �𝑆𝑆�

𝜐𝜐
2  ×  

Γ𝑁𝑁 �
𝜐𝜐 + 𝑇𝑇𝑟𝑟1

2 �

Γ𝑁𝑁 �
𝜐𝜐

  2 �
  

×  �𝑆𝑆 + (𝑌𝑌𝑟𝑟1 − 𝑋𝑋𝑟𝑟1𝐴𝐴)′(𝐼𝐼 + 𝑋𝑋𝑟𝑟1Ω𝑋𝑋𝑟𝑟1′)−1(𝑌𝑌𝑟𝑟1 − 𝑋𝑋𝑟𝑟1𝐴𝐴)�
− 
𝜐𝜐+𝑇𝑇𝑟𝑟1
2               (𝐴𝐴. 25) 

𝑝𝑝(𝑌𝑌𝑟𝑟2|𝛾𝛾∗) =  �
1
𝜋𝜋
�
𝑁𝑁𝑇𝑇𝑟𝑟2
2

×  �(𝐼𝐼 + 𝑋𝑋𝑟𝑟2Ω𝑋𝑋𝑟𝑟2′)−1�
𝑁𝑁
2  ×  �𝑆𝑆�

𝜐𝜐
2  ×  

Γ𝑁𝑁 �
𝜐𝜐 + 𝑇𝑇𝑟𝑟2

2 �

Γ𝑁𝑁 �
𝜐𝜐

  2 �
  

×  �𝑆𝑆 + (𝑌𝑌𝑟𝑟2 − 𝑋𝑋𝑟𝑟2𝐴𝐴)′(𝐼𝐼 + 𝑋𝑋𝑟𝑟2Ω𝑋𝑋𝑟𝑟2′)−1(𝑌𝑌𝑟𝑟2 − 𝑋𝑋𝑟𝑟2𝐴𝐴)�
− 
𝜐𝜐+𝑇𝑇𝑟𝑟2
2               (𝐴𝐴. 26) 

To obtain the marginal likelihood  𝑝𝑝(𝑌𝑌) we need to evaluate the 𝑝𝑝(𝑌𝑌|𝛾𝛾∗) for every possible 

threshold and then average them 

𝑝𝑝(𝑌𝑌) =  �𝑝𝑝(𝑌𝑌|𝛾𝛾∗)𝑝𝑝(𝛾𝛾∗)𝑑𝑑𝛾𝛾∗            (𝐴𝐴. 27) 

 

TVAR Impulse Response Construction 

 To construct the impulse response functions from the TVAR specifications, we closely 

follow the steps detailed in Alessandri and Mumtaz (2017), and Chiu and Hoke (2016) which in 

turn are based on Koop et al. (1996).21  We quantify the response of the system to an energy 

price shock of size(s) φ.  In particular, we choose φ from the set {−10%, −5%, −1%, 1%, 5%, 

10%}.  Analyzing the responses of the system to shocks of various magnitudes and signs helps 

assess the degree of asymmetry and nonlinearity in the relationship between energy prices and 

other variables of the model.  Lets denote the regimes by {1,…,R}, and let H be the number of 

                                                           
21 Koop et al. (1996) developed the algorithm for generating the nonlinear VAR impulse response functions, and that 
procedure has been referred to as generalized impulse response functions.  As mentioned in Kilian and Lütkepohl 
(2017), the focus of Koop et al. (1996) was on reduced-form impulse response functions, not structural impulse 
response functions.  We modify the procedure of Koop et al. (1996) along the lines of Kilian and Vigfusson (2011a) 
to generate structural impulse response functions, using Cholesky ordering to identify the shocks.   
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months of responses that are of interest after the initial period t when the shock is realized.  We 

then use the following algorithm to construct the impulse responses.    

For each of the energy price shock, φ from {−10%, −5%, −1%, 1%, 5%, 10%} do 

  For each of the regimes, r = 1,…,R do 

For each of the retained draws of Gibbs sampling, i = 1,…,G do 

For each of the history corresponding to the data sample falling under the regime r, state=1,..,T do 

1. Pick a block of ‘p’ consecutive actual values of all the variables. This block constitutes the 
history (or the initial state: lagged values) at time t, denoted as the Hist-1  

2. For reps=1:Reps do 

3. Simulate two forecast paths (unconditional and conditional on the energy price 
shock) of the variables of the system for horizon=0,..,H months 

4. The first simulated forecast path is constructed by randomly drawing forecast 
errors for each variable of the system and for each horizon from an independent 
Gaussian distribution with mean zero and variance covariance matrix, Ʃr,i . Along 
with these error draws, and VAR parameter draw i, the evolution of Yt+horizon over 
the H+1 periods is constructed. This resulting path of Yt+horizon is the 
unconditional forecast and is denoted as Yt+horizon(Histt-1).   

5. The second simulated forecast path is constructed by first applying Cholesky 
decomposition to the error draw obtained in the previous step 4 to orthogonalize 
the shocks which allows us to solve for the energy price shock. The value of the 
energy price shock is replaced with the energy price shock of interest φ and the 
entire forecast error matrix is reconstructed (i.e., responses are rescaled and 
normalized). Along with this updated forecast error matrix, and VAR parameter 
draw i, the evolution of Yt+horizon over the H+1 periods is constructed. This 
resulting path of Yt+horizon is the forecast conditional on a one-period energy price 
shock and is denoted as Yt+horizon(φt , Histt-1)  

6. The draw of the generalized impulse responses of interest is the difference 
between: 

GIRFY r,i,state,reps(φt)= Yt+horizon(φt , Histt-1) - Yt+horizon(Histt-1) 

End reps loop 



30 

 

7. Averaging over all the reps gives the consistent estimate of the GIRF corresponding to Gibbs 
draw i, shock φt and conditional on a particular history of regime r: GIRFY r,i,state(φt) 

End state loop 

8. Average over all the histories (i.e., initial states) corresponding to regime r, which gives the 
average GIRF corresponding to regime r and Gibbs draw i for an energy price shock φt :  
GIRFY r,i(φt) 

End i loop 

9. We end up with G generalized impulse responses (i.e., a distribution of GIRFs). 
Averaging over all these G draws of the generalized impulse responses obtained in step 8 
gives us the average generalized impulse response (posterior response) for an energy 
price shock φt conditional on being in regime r: GIRFY r(φt). Similarly, we use the 
distribution of the GIRF to construct the 70% probability bands. We show both the 
posterior GIRF median response and the 70% probability bands in the figures shown  in 
the paper. 

End r loop 

End φ loop 
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Table 1: Marginal Likelihood Values and Estimated Threshold 

 Linear VAR TVAR 
Marginal likelihood 526.7 589.4 

Estimated threshold --- 0.36% 
 [0.34, 0.38] 

 
Notes: The estimated threshold is the posterior mean of the retained draws; the numbers in the brackets correspond 
to the 70% interval. The reported marginal likelihood values correspond to the log of the expected posterior 
likelihood. The estimation sample is February 1959 to June 2014. 
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Table 2: Cumulative Response of Aggregate Consumption to Energy Price Shocks 

Cumulative Consumption Response after 6 Months 
 Size of Energy Price Shock 
 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.05 +0.05 -0.23 +0.23 -0.45 +0.45 
TVAR, Regime 1 -0.10 +0.07 -0.69 +0.17 -1.18 +0.14 
TVAR, Regime 2 -0.08 +0.07 -0.44 +0.24 -0.86 +0.29 

 
Cumulative Consumption Response after 12 Months 

 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.07 +0.07 -0.35 +0.35 -0.69 +0.69 
TVAR, Regime 1 -0.15 +0.11 -0.93 +0.33 -1.55 +0.34 
TVAR, Regime 2 -0.12 +0.11 -0.68 +0.43 -1.23 +0.55 

 
Cumulative Consumption Response after 18 Months 

 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.07 +0.07 -0.37 +0.37 -0.74 +0.74 
TVAR, Regime 1 -0.16 +0.12 -0.97 +0.34 -1.61 +0.35 
TVAR, Regime 2 -0.13 +0.12 -0.72 +0.45 -1.31 +0.58 

 
Notes: All cumulative responses are expressed as percentages.  The numbers reported reflect the estimated posterior 
median responses to the energy price shocks given in the table.  The estimation sample is February 1959 to June 
2014. 
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Table 3: Cumulative Response of Durable Consumption to Energy Price Shocks 

Cumulative Durable Consumption Responses after 6 Months 
 Size of Energy Price Shock 
 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.11 +0.11 -0.55 +0.55 -1.10 +1.10 
TVAR, Regime 1 -0.22 +0.15 -1.67 +0.24 -3.01 -0.05 
TVAR, Regime 2 -0.19 +0.16 -1.21 +0.54 -2.48 +0.53 

 
Cumulative Durable Consumption Responses after 12 Months 

 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.21 +0.21 -1.05 +1.05 -2.11 +2.11 
TVAR, Regime 1 -0.36 +0.27 -2.29 +0.70 -3.94 +0.61 
TVAR, Regime 2 -0.33 +0.29 -1.89 +1.09 -3.55 +1.38 

 
Cumulative Durable Consumption Responses after 18 Months 

 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.23 +0.23 -1.15 +1.15 -2.31 +2.31 
TVAR, Regime 1 -0.38 +0.29 -2.42 +0.75 -4.13 +0.67 
TVAR, Regime 2 -0.36 +0.31 -2.05 +1.19 -3.82 +1.53 

 
Notes: All cumulative responses are expressed as percentages.  The numbers reported reflect the estimated posterior 
median responses to the energy price shocks given in the table.  The estimation sample is February 1959 to June 
2014. 
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Table 4: Cumulative Response of Nondurable Consumption to Energy Price Shocks 

Cumulative Nondurable Consumption Responses after 6 Months 
 Size of Energy Price Shock 
 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.04 +0.04 -0.20 +0.20 -0.41 +0.41 
TVAR, Regime 1 -0.09 +0.07 -0.59 +0.19 -0.98 +0.22 
TVAR, Regime 2 -0.07 +0.06 -0.38 +0.25 -0.71 +0.34 

 
Cumulative Nondurable Consumption Responses after 12 Months 

 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.05 +0.05 -0.25 +0.25 -0.50 +0.50 
TVAR, Regime 1 -0.13 +0.10 -0.79 +0.29 -1.29 +0.35 
TVAR, Regime 2 -0.11 +0.10 -0.58 +0.39 -1.04 +0.52 

 
Cumulative Nondurable Consumption Responses after 18 Months 

 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.05 +0.05 -0.27 +0.27 -0.54 +0.54 
TVAR, Regime 1 -0.14 +0.11 -0.83 +0.31 -1.36 +0.37 
TVAR, Regime 2 -0.12 +0.11 -0.62 +0.41 -1.12 +0.56 

 
Notes: All cumulative responses are expressed as percentages.  The numbers reported reflect the estimated posterior 
median responses to the energy price shocks given in the table.  The estimation sample is February 1959 to June 
2014. 
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Table 5: Cumulative Response of Services Consumption to Energy Price Shocks 

Cumulative Services Consumption Responses after 6 Months 
 Size of Energy Price Shock 
 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.03 +0.03 -0.15 +0.15 -0.29 +0.29 
TVAR, Regime 1 -0.08 +0.06 -0.52 +0.15 -0.86 +0.17 
TVAR, Regime 2 -0.05 +0.04 -0.28 +0.17 -0.53 +0.19 

 
Cumulative Services Consumption Responses after 12 Months 

 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.04 +0.04 -0.20 +0.20 -0.41 +0.41 
TVAR, Regime 1 -0.11 +0.09 -0.70 +0.26 -1.13 +0.29 
TVAR, Regime 2 -0.08 +0.07 -0.43 +0.28 -0.76 +0.35 

 
Cumulative Services Consumption Responses after 18 Months 

 +1% -1% +5% -5% +10% -10% 
Linear VAR -0.04 +0.04 -0.21 +0.21 -0.43 +0.43 
TVAR, Regime 1 -0.12 +0.09 -0.73 +0.26 -1.17 +0.29 
TVAR, Regime 2 -0.08 +0.08 -0.45 +0.29 -0.79 +0.35 

 
Notes: All cumulative responses are expressed as percentages.  The numbers reported reflect the estimated posterior 
median responses to the energy price shocks given in the table.  The estimation sample is February 1959 to June 
2014. 
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Figure 1: Estimated Thresholds under Two Regimes 
 

 

Notes: The figure plots the threshold variable (one-period lagged 9-month moving average of real energy price 
inflation), estimated threshold (posterior mean), and identified regimes based on the posterior mean. The system is 
in regime 1 (declining to moderately increasing real energy price inflation) when the threshold variable is less than 
or equal to 0.36% (indicated by pink shaded area). The system is in regime 2 (increasing real energy price inflation) 
when the threshold variable exceeds 0.36% (indicated by yellow shaded area).  The estimation sample is February 
1959 to June 2014.  



42 

 

Figure 2: Cumulative Response of Aggregate Consumption: +1% Energy Shock (upper panel) 
and -1% Energy Shock (lower panel) 

 
Notes: The figure shows the impulse response functions from the linear VAR and threshold VAR starting in either 
regime 1 or regime 2 estimated with monthly data over February 1959 to June 2014. The responses represent the 
cumulative posterior median responses of aggregate consumption to a one-time estimated +1% and -1% shock to 
energy price inflation. The grey shaded areas are 70% probability bands. Regime 1 corresponds to the low energy 
inflation regime and regime 2 corresponds to the high energy inflation regime. 
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Figure 3: Cumulative Response of Aggregate Consumption: +5% Energy Shock (upper panel) 
and -5% Energy Shock (lower panel) 

 

Notes: The figure shows the impulse response functions from the linear VAR and threshold VAR starting in either 
regime 1 or regime 2 estimated with monthly data over February 1959 to June 2014. The responses represent the 
cumulative posterior median responses of aggregate consumption to a one-time estimated +5% and -5% shock to 
energy price inflation. The grey shaded areas are 70% probability bands. Regime 1 corresponds to the low energy 
inflation regime and regime 2 corresponds to the high energy inflation regime. 
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Figure 4: Cumulative Response of Aggregate Consumption: +10% Energy Shock (upper panel) 
and -10% Energy Shock (lower panel) 

 

Notes: The figure shows the impulse response functions from the linear VAR and threshold VAR starting in either 
regime 1 or regime 2 estimated with monthly data over February 1959 to June 2014. The responses represent the 
cumulative posterior median responses of aggregate consumption to a one-time estimated +10% and -10% shock to 
energy price inflation. The grey shaded areas are 70% probability bands. Regime 1 corresponds to the low energy 
inflation regime and regime 2 corresponds to the high energy inflation regime. 

 


