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1 Introduction

Central bankers face, in principle, a conceptually straightforward decision problem:
for a given stochastic process governing the economy (a model), choose the interest
rate that minimizes the expected loss. In practice, central bankers’ decisions are a
subjective combination of qualitative and quantitative information, rather than the
result of a formal optimization problem. We refer to those interest rate decisions as
judgmental decisions. This paper is concerned with the question of how to formally
incorporate judgmental decisions into modern dynamic stochastic general equilibrium
(DSGE) models.

We make three main contributions: two methodological and one empirical. First,
we show that Bayesian estimation of DSGE models imposes implicit choices of central
bankers’ judgmental decisions, via the prior distribution of model parameters. We find
that standard priors from the DSGE literature are associated with extreme and unre-
alistic judgmental decisions. Second, we propose an alternative frequentist approach
to incorporating judgmental decisions into a DSGE framework, taking the judgmental
decisions themselves, rather than the prior distribution, as a primitive of the decision
problem. Third, estimating a DSGE model with US data over the sample 1965-2007,
we find that the Federal Reserve’s judgmental decisions have been compatible with the
estimated DSGE model for slightly more than half of the sample. On the contrary they
have been excessively tight in the 1980s and late 1990s and excessively loose in the late
1970s and early 2000s.

More concretely, suppose that the economic environment has the following charac-

teristics:

1. the DSGE model is a correctly specified representation of the macroeconomic

stochastic process;
2. the underlying model parameters are known;

3. the central banker’s loss function is known.

Under these assumptions, the DSGE model can be solved and the loss function
minimized with respect to the interest rate (the decision variable), thus providing the
optimal solution to the central banker’s decision problem. In the real world, none
of those assumptions holds, a fact that goes a long way in explaining why judgment

continues to play a dominant role in arriving at interest rate decisions. In this paper,



we show how to formally include judgment in the central banker’s decision problem, by
maintaining two of the three assumptions above (1 and 3) and relaxing the hypothesis
that the underlying parameters of the model are known, but have to be estimated from
the data.

Since our objective is not to improve on the DSGE modeling front, we work with
the simplest possible, yet meaningful, three-equation New Keynesian DSGE model
(Clarida et al. 1999, Gali 2015, Woodford 2003). Utility maximizing households and
profit maximizing firms give rise to equilibrium conditions that describe the stochastic
evolution of output (IS equation) and inflation (New Keynesian Phillips curve). The
nominal interest rate is set by a central bank following a Taylor-type rule. This simple
three-equation model also has the advantage that all the objects of interest can be
obtained analytically.

We next derive the optimal monetary policy decision by following the standard
approach in the literature (Clarida et al. 1999). The central bank loss function is derived
by taking the second-order approximation of the utility function, thus representing a
welfare function. It turns out to be quadratic in inflation and the output gap, in line
with the spirit of a dual mandate of stabilizing inflation around a target level and
output around a reference equilibrium level. The optimal decision rule minimizes the
loss function subject to the constraints represented by the behavior of private agents
in the economy. We focus on the case of discretion for simplicity and because it better
reflects real-world central banks’ behavior.?

We compare two alternative empirical strategies for incorporating judgment into the
optimal monetary policy decision process.

First, we show how, in Bayesian estimation, judgment is indirectly introduced with
a prior distribution for the model parameters. The logic is the following. In standard
optimal monetary policy decision problems, the central banker minimizes the expected
loss function with respect to the interest rate, where the expectation is computed using
the posterior distribution. We perform this analysis too, but we also propose computing
the expected loss function using only the prior distribution. We refer to the interest
rate minimizing this expectation as the judgmental interest rate decision implied by
the priors.

This exercise is reminiscent of the prior predictive checks advocated, for instance, by
Lancaster (2004), Geweke (2005), Geweke (2010), and Jarocinski and Marcet (2019) in

'For an empirical investigation supporting our choice, see Chen et al. (2017).



time series models, and by Del Negro and Schorfheide (2008), Lombardi and Nicoletti
(2012), and Faust and Gupta (2012) in DSGE models.? Tt is important to stress that
our interpretation is that choosing priors is equivalent to endowing the central banker
with specific judgmental decisions. On the contrary the cited DSGE literature focuses
on the selection of priors based on their ability to match some features of the data, such
as steady state values and selected moments, or impulse response functions.

The second empirical strategy for arriving at the optimal decision is frequentist in
nature and relies on the following reasoning. It starts from an exogenous judgment,
formed by a judgmental decision and a confidence level. Judgment is exogenous in
the same sense of priors in Bayesian estimation. Given the global convexity of the
loss function, a necessary and sufficient condition for the optimality of the central
banker’s judgmental decision is that its first derivative with respect to the interest rate
(also labeled as the gradient henceforth) is equal to zero in population. Population
parameters, however, are unknown and the gradient can only be evaluated at their
estimated value. We estimate the model’s parameters by maximum likelihood. The
gradient evaluated at the judgmental decision and at the estimated parameters will be
different from zero with probability one. But the inference apparatus associated with
the maximum likelihood procedure (White, 1996) allows us to test the null hypothesis
that the judgmental decision is optimal by testing whether the empirical gradient is
statistically different from zero, using the given confidence level. If the test fails to reject
the null, we conclude that the econometric evidence provided by the DSGE model is
not sufficient to suggest significant departures from the judgmental decision. Rejection
of the null hypothesis, on the other hand, suggests marginally moving away from the
judgmental decision in the direction of the maximum likelihood decision, since we are
testing the null hypothesis that the gradient is equal to zero. By construction of the test
statistic, marginal moves will be statistically significant until the closest boundary of
the confidence interval associated with the gradient is reached. The implication of this
reasoning is that the optimal decision compatible with the data and the DSGE model
is the interest rate that sets the gradient not equal to zero (as in standard maximum
likelihood applications), but to the closest boundary of the confidence interval.

We implement the two empirical strategies using US data. Not surprisingly, we find

that the Bayesian decisions differ from the observed ones and from those obtained by

2 Although not exactly classifiable in the category of prior predictive checks, Reis (2009) compares
the response of endogenous variables to shocks computed on the basis of prior means and posterior
means within a DSGE model with sticky information.



maximum likelihood with judgment, at times quite substantially. What is striking is
that imposing standard priors from the Bayesian DSGE literature is equivalent to as-
suming that the central banker has extreme judgmental interest rate decisions, ranging
from -10 percent to 45 percent in annual terms. An important insight of our findings is
that the choice of the priors for Bayesian estimation is not an innocuous exercise, but
it shapes the type of judgmental information brought into the analysis and may have
strong and unwarranted implications for the decision process. Given the widespread
use of DSGE Bayesian estimation in the central banking community, we hope that
our findings raise awareness about the hidden behavioral assumptions implicit in this
practice.

As regards the frequentist approach of incorporating judgment, we take as a judg-
mental decision the observed interest rates (but it could be implemented with any other
arbitrary judgment). One way to read the empirical results of this paper is to check to
what extent the history of the Federal Reserve’s decisions has been compatible with the
three-equation DSGE model we are estimating. We find that there are long stretches
of time when the observed interest rate is consistent with the model. There are peri-
ods, however, where the DSGE model prescribes considerably different decisions, even
though not as extreme as in the case of Bayesian decisions. Our DSGE model would
have prescribed a significantly looser monetary policy in the 1980s and the late 1990s,
and significantly tighter in the late 1970s and early 2000s.

One important caveat of our findings is that the analysis rests on the assumption
of correct model specification. In practice, the discrepancy between the judgmental
and the model-based decisions may be due to randomness, bad judgment, or model
misspecification. In this paper, we cannot distinguish among these possibilities.

In terms of how our paper it related to the literature, only a few contributions con-
sider judgment. Svensson (2005) explicitly models the role of judgment in a monetary
policy decision problem. He represents judgment as the central bank’s superior ability
to estimate the conditional mean of stochastic deviations in the model equations. In
particular, central bankers are assumed to know the reduced-form parameters governing
the dynamics of the economy, so that they don’t face any estimation issues. There is
also a group of papers that model judgment as the ability to produce more accurate
forecasts on the basis of a larger information set coming from different sources (Tallman
and Zaman in press, Boneva et al. 2019, Domit et al. 2019 , Del Negro and Schorfheide
2013, and Monti 2010). All existing approaches, unlike ours, build on a specific mo-

deling of judgment. In this paper, instead, judgment is taken as an exogenous variable



to the decision problem, in the same spirit of the prior formulation in the Bayesian
analysis, in that we follow Manganelli (2009).

The paper is structured as follows. Section 2 presents the DSGE model. Section
3 solves the decision problem of the central banker and shows how to incorporate

judgment. Section 4 contains the empirical evidence. Section 5 concludes.

2 Maximum likelihood estimation of a stylized DSGE

model

We first present a stylized New Keynesian DSGE model in its log-linearized form. Next
we show how to construct the likelihood function and derive the asymptotic approxi-

mation to the variance covariance matrix of the model parameters.

2.1 The model

The model we consider is mainly taken from Clarida et al. (1999) with some elements
from Smets and Wouters (2007), with households, intermediate and final good produ-
cers, and a monetary and fiscal authority. The macroeconomic variables of interest are
output y,, the inflation rate 7;, and the nominal interest rate ;. The economy is driven
by three exogenous shocks: a price mark-up shock u;, a government spending shock g,
and a monetary policy shock €]. The optimizing behavior of the agents in the economy
implies the following equilibrium conditions:

Y = —i [re — Eymsa] + By — (y—l—ya)
Ty = BEtﬂ't_;,_l + A (O’ + l/) y: + /\ut (2)

AEt9t+1 (1)

where o is the inverse elasticity of intertemporal substitution, v the inverse of the
elasticity of work effort with respect to the real wage (or inverse Frisch elasticity), (
is the households’ discount factor, and \ = W’ with &, the Calvo parameter
that regulates the degree of price rigidities.

Equation 1 is the IS curve. It is expressed in terms of the output gap y;, which
is the difference between actual and potential output y;'. The latter is defined as the
counterfactual level of output that emerges in the absence of price rigidities and in the

absence of inefficient shocks, in our case the price mark-up shock. It is equal to ﬁ Ji-



Equation 2 is the New Keynesian Phillips curve. These two equilibrium conditions can
be used to solve the model, together with the log-linear approximation of the Taylor

rule:

re=preat (L= p) (Sem + b)) + Gaye (V5 — viny) + 0ve (3)

where p measures the interest rate smoothing, and ¢, is the systematic response to
inflation, ¢, to the output gap, and ¢a,~ to the output gap growth. The last term is
a monetary policy shock and it is assumed to be i.i.d. N (0, 1).

The other two structural shocks are assumed to follow an AR(1) process, evolving

according to the following parameterization:

log g: = pylog gi—1 + ogef (4)
log uy = py logui—y + o,ey (5)

with &, = [}, &l]’ ~ i.i.d.N(0,1).

Finally, we assume that the following variable are observed: the real GDP quarter-
on-quarter growth rate Alogy?®, the quarter-on-quarter GDP deflator inflation 72,
and the effective federal funds rate 7% for the period 1965¢1 — 2007¢3.3> The link

between model and observed variables is created through the following measurement

equations
obs
Alogy; = Yt — Yt—1
Wfbs =
bes = r

Define the vector of observables and the vector of the econometric parameter to be

estimated:*

v = [Alog g, w1 (6)

0= [Ug70'r70u7pg>pu;0'7 V]/ (7)

Define also the vector of state variables s; = [yi—1, g1, ut, 7, y; | and the vector of
structural shock innovations ¢; = [e},e{,e}]’. Then the state space representation of

3See Appendix A for details.
4In principle, abstracting from identification issues one can estimate all parameters. Our choice of
estimating only 7 parameters is explained in section 2.3.



this economy is:

zp = ¢(0)s (8)
sy = o(0)si—1 + ¥1(0)e 9)

for suitable choices of the matrices ¢(0), 1o(6) and 11(0).

2.2 Estimation and asymptotics

Assuming that the structural shocks are jointly normally distributed, it is possible to
construct the log-likelihood function for this economy.
Let us first set up some notation, following the general framework of White (1996).°

The history of observations available at time n is 2" = (x,...,2})". The observed

data x; are assumed to be a realization of a stochastic process with cdf F}, so that
Fi(x},...,2¥) = P(X} < zf,..., X7 < a|z'™1), ¢ = 1,2,... In our DSGE model z; is
defined in (6), so that v = 3.

The log-likelihood function is £,(X™ 0) = n=t 7", log f;(X*',0), where fi(-,0) :
R — RT is the pdf of the multivariate normal distribution and § € R?, p € N, is
a finite dimensional parameters vector. In our case, 6 is defined in (7) and therefore
p = 7. The pdf fi(X* 6) can be constructed recursively from the system (8)-(9), for
a given initial value sy (see, for instance, chapter 10 of Fernandez-Villaverde et al.,
2016). At each point in time ¢, it is the pdf of a normal distribution with mean
&(0)100(0)s;—1 and variance [¢(0)11(0)][(0)11(0)]'. The maximum likelihood estimator
is 0(X™) = argmaxy £,,(X",0).

Assuming also that the conditions for consistency and asymptotic normality are
satisfied (White, 1996) gives:

B2 AVn(6(X™) — 6) A N(0, 1) (10)

where A = E(V?(,(X",0)), B* = var(y/nV{,(X™, 0)) and I, is the identity matrix of

dimension p. The asymptotic covariance matrix A~'BA~! is consistently estimated by

5In the DSGE literature, the convention is to use upper case letters to denote levels of variables
and lower case letters for the logs. In econometrics, upper case letters denote the random variable,
while lower case letters denote the realization of the random variable.



A A

AZ'BL A, where:

n

A, =073 Viog fi( X1 0(X™)

t=1

B,=n" an Vlog f;(X",0(X™))V'log f,( X", 0(X™))

t=1

2.3 Implementation

Estimating the model via maximum likelihood can be challenging, mainly because of
parameter identifiability issues, also in the context of our simple model (see, for instance,
Canova and Sala, 2009 and Iskrev, 2010 for details). We refer to Mickelsson (2015),
Andreasan (2010), and Ireland (2004) for details on maximum likelihood estimation of
DSGE models.

To ensure that the estimated parameters are invariant to the optimization algorithm
used and to the parameters’ initial values, we restrict the number of parameters to be
estimated. To choose the subset, we first estimate all 13 parameters in the model with
Bayesian methods.® We then use the modes of the posterior distributions to initialize
the maximum likelihood estimation. We start by estimating the parameters related to
the shocks and fixing the others to the posterior modes. We progressively add the other
parameters until the point at which different optimizers deliver the same estimates. At
this point, we test for different initial values. Our benchmark specification is reported
in Table 1.7 All of the comparisons below between the frequentist and the Bayesian

approach are based on the same set of estimated parameters.

3 Optimal monetary policy with judgment

The problem of optimal monetary policy is to choose the interest rate r; that minimizes
the central banker’s expected loss. Following Gali (2015), the loss function is derived

from the second-order approximation of the households’ utility function. It can be

61dentification issues are independent of the estimation methodology. Bayesian estimation produces
estimates for all parameters, even those not identified. In maximum likelihood estimation, unidentified
parameters cannot be estimated and must be given specific values. In our simple model, the parameter
B is clearly not identified given that the posterior distribution is identical to the prior.

"There is another subset of parameters that fulfill our criteria. Our results hold also with that
alternative.



shown that it can be expressed in terms of inflation and the output gap.® Hence, the

central banker’s problem at time ¢ is:

min L(O,r) =

DO | —

B30 i+ ] (11)
=0
s.t. 7Tt+i = 5Et7rt+1+i + )\ (U + V) y;(_,'_l + )\ut-i-i

where w, = o + v and w, = £.° This problem can be solved analytically.!® Under

£
5
discretion it gives the following first-order condition for the interest rate:

V. LO,r) =1 — hi(6) (12)
—0
where .
@ = [1 20 s 7 (o, 1) (13

is a function of the model parameters.

If § were known, the solution to the central banker’s problem is 7, = hy(f). In
other words, equation (12) establishes for every quarter a unique optimal value for the
interest rate. Any deviation from that would be sub-optimal, so the central banker
should always decide to set 7; if she wants to minimize her loss.

In this paper, though, we are interested in the situation when @ is unknown and
needs to be estimated from the data. We introduce additional structure to the problem
in the form of judgment. We assume that the central banker has judgment summarized
by the pair {7, a}. The judgmental decision 7, € R can be thought of as the decision
the central banker would take at time ¢ on the basis of unmodeled private information.
The other component of judgment, « € [0,1], is the confidence level that the central
banker has about her judgmental decision. It also represents the probability used to

conduct the hypothesis testing at the base of our analysis that we discuss in the following

8See Gali (2015), chapter 4, for details. This assumption slightly deviates from Clarida et al.
(1999). They assume an ad-hoc loss function with an identical functional form, but where the weights
on inflation and the output gap are not a function of the model’s deep parameters. We have performed
our analysis under that alternative environment and the results are qualitatively similar. We believe
that the current specification is more consistent with the rest of the analysis.

9 is the elasticity of substitution among differentiated intermediate goods. It is related to the
steady state value of the mark-up shock U as follows: U = 6%1 We set it at 6, a common value in the
literature, which implies a steady state value of the net mark-up of 20 percent.

10See Appendix D.

10



paragraphs.
Since the decision maker wishes to minimize the loss function in population, she can

test that the population gradient evaluated at the judgmental decision is zero:
Hy:V.,.L(0,7)=0 (14)

Given that the estimated parameters are now random variables, the empirical gra-
dient is too. Hence, hypothesis (14) can be tested by using the test statistic V,.L,(6(X™), ;)
and noting that by the asymptotic properties of §(X") described in section 2.2:

VRS, L(0(X™), 7) ~ N(0,1) (15)

where 3?2 = Vol (0)A ' B, A 'Vyhi(0)."1 We denote with Vyh.(#) the vector of first
derivatives of the first-order condition (12) with respect to the estimated parameters.
Individual entries are reported in Appendix F.

Testing the null (14) is equivalent to testing whether the judgmental decision 7 is
optimal. If the null is not rejected, statistical evidence is not strong enough to sug-
gest any deviation from 7;. Rejection at the confidence level a;, however, implies that
marginal moves away from 7; in the direction of the maximum likelihood decision do
not increase the loss function with probability 1 — a. Since any statistical procedure
involves uncertainty, there is still the possibility that moves toward the maximum like-
lihood increase the loss function. However, this statistical risk is bounded above by the
chosen confidence level and happens only with probability less than or equal to «, the
probability of a Type I error. Iterating forward this reasoning leads to the conclusion
that the decision with judgment lies at the boundary of the (1 — «) confidence interval
associated with (15). We refer to Manganelli (2009) for details.

Given the observed sample realization z" and using (12), the decision rule incor-
porating the central banker’s judgment is the one that, in case of rejection, sets the

gradient equal to the boundary of the confidence interval:

he(0(z™)) + n_l/Zitca/g if 2, < cajo

Fo(z|Fy, ) = < 7y if cap < 2t < cioay (16)

hi(0(z")) + nil/zitcl—a/Z if 2, > ci_a)2

1Gee Appendix E for a formal derivation of this result.

11



where z, = /n3; (7 — hy(A(2z™))) is the sample realization of the asymptotically nor-
mally distributed gradient in (15), 33, is a consistent estimator of the asymptotic vari-
ance, and ¢, = ®1(a), ®(-) being the cdf of the standard normal distribution.

A plain English interpretation of this rule is the following. Check whether the gra-
dient (12) evaluated at the estimated parameters 0(z") and at the judgmental interest
rate 7, falls within the confidence interval. If it does, retain the judgmental decision 7.
If it doesn’t, choose the interest rate that moves the empirical gradient to the closest
boundary of the confidence interval. A graphical representation of this reasoning is
reported in Figure 1.

This decision coincides with the judgmental decision if there is not enough statistical

evidence against it, and shrinks toward the maximum likelihood decision otherwise.

4 Have Fed interest rate decisions been compatible
with the DSGE model?

In this section we use the estimated models to compare the decisions that a frequentist
and a Bayesian decision maker would reach by following their respective statistical
approach. We take a historical perspective. We run a counterfactual experiment aimed
at evaluating how different central banker types would have set the policy rate compared
to the observed rate over our sample.

We first need to describe how the Bayesian decision is constructed. The econome-
trician first has to choose a prior distribution for the parameters ¢ of the DSGE model.
Let us denote it with p(6). This prior distribution is then combined with the likelihood
function to arrive at a posterior distribution p(é|z™). The posterior distribution is fi-
nally used to compute the expectation of (11), which is then minimized with respect

to the interest rate. The Bayesian decision is therefore:
F(a"lp(9)) = axgmin [ £(0,7)dp(0]a") (17)

This way of considering parameter uncertainty in the Bayesian framework is common
in the optimal monetary policy DSGE literature, for instance, in Levin et al. (2006),
Reis (2009), and Edge et al. (2010).

Turning to the frequentist decision with judgment discussed in section 3, the key

input is the judgment, which is defined as a judgmental decision and a confidence level

12



associated with it. For the confidence level, we take a standard 5 percent probability,
which results in 95 percent confidence intervals. For the judgmental decision, we take
the observed interest rate.

It is important to stress that our framework could be implemented with any arbitrary
judgmental decision. Nevertheless, using the observed rate gives us the advantage
of making our counterfactual more comparable with the Bayesian case. But, most
importantly, it clarifies the relationship of our framework to the literature on optimal
monetary policy. In fact, even if parameter uncertainty has been considered in some
Bayesian studies, it is more common to analyze the counterfactual under optimal policy
on the basis of point estimates, either maximum likelihood values or a selected moment
of the posterior distributions. This is true not only in the three papers mentioned
above, where the case of no parameter uncertainty is the baseline and the alternative
is a robustness check, but also in those papers where parameter uncertainty is simply
ignored, for instance, Smets and Wouters (2002), Adjemian et al. (2008), Justiniano
et al. (2013), Chen et al. (2017), Bodenstein and Zhao (2019), and Furlanetto et al.
(2020).

Our counterfactual is similar in spirit, but it takes parameter uncertainty explicitly
into account in the frequentist case. It is a shrinkage toward the maximum likelihood
decision, i.e., toward the decision that the literature would emphasize first. It is worth
noting that we can also recover that decision within our framework, obviously in the
trivial case of completely abstracting from considering parameter uncertainty, but also
in the case in which the policy maker sets o equal to 1. The confidence interval then
collapses to a single value, i.e., exactly the maximum likelihood decision. The latter is
reported as a dotted blue line in the bottom panel of Figure 2.

Hence, given the observed FOMC interest rate decision, we ask the following que-
stions: Is this decision compatible with the DSGE model discussed in this paper? If
not, how can it be improved? This can be checked by testing the null hypothesis (14)
at each point in time, which in turn can be implemented by setting up the confidence
intervals for the empirical gradient V,.L(6(X™), r;), where we have imposed r; = 7. The
decision rule (16) prescribes that if the empirical gradient falls within the confidence
interval, the judgmental decision is retained. If, instead, the empirical gradient falls
outside the confidence interval (that is, if the null hypothesis is rejected), the optimal
decision is the interest rate that moves the empirical gradient to the closest boundary
of the confidence interval. This procedure is depicted in the upper panel of Figure 2. A

clear interpretation of that figure follows by bearing in mind the procedure as described

13



in Figure 1. The latter is repeated for every quarter. One has to imagine a normal
distribution with zero mean and a different variance for every quarter .

In order to fully appreciate the difference between the judgment and our suggested
optimal decision, we report in the bottom panel of Figure 2 both of those series in
annual percentage terms. Our optimal decision deviates from judgment 45 percent of
times. Discrepancies are quite large at times, reaching values of 3.34 percent (0.83
percent in quarterly terms) in a single quarter (1972ql). The mean deviation is 0.95
percent. Looking at the same panel in Figure 2, it is possible to effectively visualize
the shrinkage of our decision toward the maximum likelihood.

The comparison between the observed, frequentist, and Bayesian decisions is repor-
ted in Figure 3, where the observed interest rates are plotted together with the optimal
decisions according to the DSGE model for the two decisions.!'? As already emphasized,
when the maximum likelihood decision incorporating judgment advocated in this paper
coincides with the judgmental decision itself, the optimal decision is identical to the
observed one. The Bayesian decision, on the other hand, while correlating substanti-
ally with the observed one (the correlation is 0.87), at times and on average dictates
significant departures from it. For instance, in the mid-1970s the Bayesian interest
rate is up to 5 percentage points higher than the observed one, while in the late 1990s,
it is 2 percentage points lower. The literature also shows sizable effects of parameter
uncertainty on the optimal policy outcomes compared to the no uncertainty case.

As for the comparison with the frequentist decision, differences are also very large in
those periods. But they are quite large also on average. The mean difference along the
sample is 1.05 percent. We can overall conclude that the discrepancies between the two
estimates are qualitatively small (the correlation is 0.94), but quantitatively sizable.

Finally, it is possible to establish a link between the judgmental decision 7; and the
prior p(f). The judgmental decision implied by the prior is the optimal interest rate

when the optimization problem in (17) is computed with respect to the prior:

Ty = arg Hgn/ﬁ(e,ﬁ)dp(e) (18)

This allows us to highlight some other important aspect of our analysis. Our choice

of priors follows the standards in the literature and is reported in Table 1. We find

12 According to our estimated parameters, the implied weights in the loss function are w,=407.76
and w,=8.04. Hence, we are de facto considering the case of a strict inflation targeting central bank,
although this is not exactly equivalent to the case where w,=1 and w,=0.

14



it difficult to assess whether these are sensible priors on the basis of our knowledge of
the parameters. And we find it even more difficult to convey to the decision maker
(the central banker) the type of non-sample information that is incorporated in the
Bayesian decision. Equation (18), however, provides a simple way to evaluate the prior,
by asking the following question: What interest rate decision is associated with the
prior distribution over the DSGE parameters described in Table 17 This exercise is
similar in spirit to the prior predictive checks, as discussed in Lancaster (2004), Geweke
(2005), Geweke (2010), and Jarocinski and Marcet (2019) in time series models, and
in Del Negro and Schorfheide (2008), Lombardi and Nicoletti (2012), and Faust and
Gupta (2012) in DSGE models. The difference is that instead of checking whether
the model and the priors are compatible with specific moments of the observables, we
compute the optimal interest rate decision that minimizes the central banker’s expected
loss using the prior distribution.

The results of this exercise are reported in Figure 4 and are quite striking. Imposing
the standard priors of the literature is equivalent to endowing the central banker (our
decision maker) with nonsensical judgmental decisions. The judgmental interest rate
implied by our priors ranges from -10 percent at the beginning of 2000 to more than 45
percent at the beginning of the 1980s.

These results should warn the reader about the hidden implications of blindly ap-
plying Bayesian techniques. They impose implicit restrictions on the behavior of the

decision maker.

5 Robustness

The results obtained so far depend, among other things, on the empirical Taylor rule,
as specified in equation (3). Even though none of the estimated parameters in that
equation directly affects the solution of the model under optimal policy, the specification
has an impact on the other estimated parameters.

Typically the literature does not address that issue. All papers cited in the previous
section are no exception. Nevertheless, we address it by assessing the robustness of
our results to different specifications of the Taylor rule. This is to be sure that our

counterfactual experiments satisfy as much as possible the principle of counterfactual
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equivalence as in Beraja (2019). We select two alternatives:

re = prio1 + (1= p) oy + 0vef (19)

(1-0p)
4

Tt = pre-1 + [ (T 4+ M1 + T + T—3) + Oay (Ye — Ye—a)] + 0re] (20)

Specification (20) is often used in empirical papers, for instance, in Justiniano et al.
(2013) and Christiano et al. (2014).

We estimate the models with those rules following the same procedure used to
estimate our baseline model. We report our results in Figure 5. The upper panels show
the gradients, the 95 percent confidence intervals, and the resulting optimal decision
for the model with equation (19) (left panel) and (20) (right panel). The maximum
likelihood estimate of the parameter ¢ continues to be very high for both Taylor rule
specifications. This implies that the solution of the model under optimal monetary
policy continues to be similar to the case of a strict inflation targeting central bank.
That explains why the gradients are similar to the one in our baseline case in Figure
2. As for the confidence intervals, they depend on other factors too, so they do not
necessarily have to be similar.

Given the small differences in the gradients and despite the somewhat large dif-
ferences in the confidence intervals across different specifications, the implied optimal
decisions reached by the central bank under the three Taylor rules do not show sub-
stantial discrepancies (Figure 5, bottom panel). We conclude that our results do not
depend on the Taylor rule selected to estimate the model.

According to the log-marginal data density of the three models, our baseline speci-
fication is by far the one that fits the data better. Those values are —318.91 for our
baseline model, —331.70 for the model with equation (19), and —344.16 for the model
with equation (20).

6 Conclusion

Judgment plays an important role in the decision making process of a central bank.
There are many quantitative and qualitative considerations that eventually lead to a
decision on interest rates. For the purpose of this paper, we refer to the observed
decisions as judgmental decisions. We then ask whether these judgmental decisions are

compatible with an off-the-shelf DSGE model estimated with maximum likelihood. For
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a given loss function, which is derived to be quadratic in inflation and the output gap,
the optimal interest rate sets the gradient of the loss function equal to zero. Since the
gradient depends on unknown estimated parameters, it is possible to test whether the
gradient evaluated at the judgmental decision is equal to zero. If it is, we conclude that
the statistical evidence provided by the estimated DSGE model is not sufficiently strong
to reject the judgmental decision. If, on the other hand, the gradient is statistically
different from zero, our statistical decision rule prescribes changing the interest rate up
to the point where the gradient is no longer statistically different from zero, a point
that coincides with the closest boundary of the confidence interval.

We estimate this decision rule on US data from 1965 to 2007. We find that the
Federal Reserve’s judgmental decisions have been compatible with the estimated DSGE
model for slightly more than half of the sample. On the contrary, the judgmental interest
rate decisions were tighter than what the model would have prescribed in the 1980s and
late 1990s, and looser than what the model would have prescribed in the late 1970s and
early 2000s.

We compare our frequentist decision rule with decisions obtained with standard
Bayesian estimation methods. Bayesian optimal monetary policy decisions are derived
by minimizing the expected central banker’s loss function with respect to the interest
rate, using the posterior distribution to compute the expectation. We highlight how
Bayesian estimation of DSGE models incorporates judgment in an indirect way, via
priors on statistical parameters. Priors implicitly assume a judgmental decision, which
is obtained by minimizing the expected loss function with respect to the interest rate,
using the prior distribution to compute the expectation. We show how standard pri-
ors from the mainstream DSGE literature are associated with unrealistic judgmental

decisions on interest rates.
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Appendices

A Data

In the estimation we use quarterly data on real GDP (GDPC1), GDP deflator (GDP-
DEF), and the federal funds rate (FEDFUNDS). All series are available in FRED, the
online database maintained by the Federal Reserve Bank of St. Louis at https://fred.stlouisfed.org/.
FRED’s abbreviations are in parenthesis. The GDP growth rate is the quarter-on-
quarter log-difference of real GDP. Inflation is the quarter-on-quarter log-difference of
the GDP deflator. The fed funds rate is divided by 4. All series are demeaned. In the

figure below we show them as they enter the estimation.

o _GDP growth _

1965 1970 1975 1980 1985 1990 1995 2000 2005

Inflation

1965 1970 1975 1980 1985 1990 1995 2000 2005
Interest rate
T T

1965 1970 1975 1980 1985 1990 1995 2000 2005
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Figure 1: Example of decision rule with judgment
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Note: The decision rule with judgment tests whether the gradient of the loss function at the judgmental
decision 7 is statistically different from zero. If it is, the optimal decision is the one associated with the
closest boundary of the confidence interval (depicted in the top two charts). If it is not, the judgmental
decision is retained (bottom chart). The maximum likelihood decision chooses the action setting the
empirical gradient to zero. It corresponds to a decision with judgment by setting v = 1, as in this
case the confidence interval degenerates to a point, the judgmental decision is always rejected, and the

closest boundary always coincides with the empirical gradient being set to zero.
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Figure 2: Empirical gradient associated with the judgmental decision
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Note: The figure reports in the upper panel the 95% confidence intervals associated with the empirical
gradient (dashed red line), the realized empirical gradient (blue line) and the optimal decision (dashed-
dotted black line). In the lower panel in annual percentage terms, the realized interest rate (judgment,
solid magenta line), the optimal interest rate obtained from the shrinkage (dashed-dotted black line),

and the maximum likelihood decision (dotted blue line).
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Figure 3: Rate levels implied by different estimation methodologies
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Note: The figure reports the realized interest rates, together with the optimal interest rates obtained
from a maximum likelihood and a Bayesian estimation of the DSGE model.
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Figure 4: Judgmental decision associated with the prior distributions
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Note: The figure reports the interest rate decision solving the optimization problem (18) using only
the prior distribution, together with the optimal interest rates obtained from a maximum likelihood
and a Bayesian estimation of the DSGE model.
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Figure 5: Robustness
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Note:

alternative interest rate rules.

The figure reports the gradients and the implied interest rate levels obtained by imposing
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C The model

C.1 Production sector

Final good producers. These types of producers operate in a perfectly competitive
market. They produce the final good Y}, to be sold to households, by combining a

continuum of intermediate goods Y (i), @ € [0, 1], according to the technology

1 14+U;

Y, = {/OlYt(z')wtdz‘ (21)

where U, determines the degree of substitutability across intermediate goods in the
production of the final good and hence the elasticity of demand for each of these inter-

mediates. It is modelled as an exogenous stochastic process

1+ U,
14+U

log = logu; = pylogui—1 + oy}
where U is the steady state level of U; and &¥ is an 4.i.d.N (0, 1) innovation.'® The latter
is defined as price mark-up shock.

Profit maximization and the zero profit condition imply that the price of the final

good, P, is a CES aggregate of the prices of the intermediate goods, P;(7)

,Ut

1 1
j [/ P, (i) T di
0

and that the demand function for intermediate good i is

+U¢

Y, (i) = (Pt (i))_let

By

Intermediate goods producers. A monopolistic competitive firm produces the

intermediate good ¢ using labor input L; according to the following production function

Yy (i) = Ly (4) (22)

3Throughout this Appendix, small case letters always indicate log-deviation from the steady state,
while letters without the subscript ¢ indicate the steady state value.
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The cost minimization problem is

ILIR% Ly (i) = WL (i) + MC [Y,(i) — Ly()]

where W}" represents nominal wages, and M C}; nominal marginal cost.

The first-order condition is

9L, (i)
L. (i)

W — MC, =0 (23)

which also implies that W" /P, = MC;/P, = Mc;, where M¢; is real marginal cost.

As for the pricing decision, following the formalism proposed in Calvo (1983), each
firm may reset its price only with probability 1 — £, in any given period. Thus, each
period a measure 1 — &, of producers reset their prices, while a fraction &, keep their
prices unchanged.

The above environment implies that the aggregate price dynamics is described by

the equation
_UL , _UL =U
b= fpptflt "’(1_519) (Pt) t]

where Pt/ is the price set in period t by firms reoptimizing their price in that period.
A firm reoptimizing in period ¢ will choose the price P, that maximizes the current
market value of the profits generated while that price remains effective. Formally, it

solves the following problem

0o A k
max [ Z éﬁﬁk%\tk Kpt (l) H Ht+s—1 - MCt+k> Yt+k (1)1
k=0 s=1

Py(3)

subject to the sequence of demand constraints

_ AUk

Py (i) [szy Migsa Ytk
Yitk
Py

Yigw (1) = <

for k =0,1,2,... where 5 and A; are respectively the discount factor and the marginal

utility of the representative household that owns the firm, and II;,; = % is the gross
inflation rate. The first-order condition associated with the problem above takes the
form i
E; Y &8 N Yy, [P; [T eess = (14 Usi) MCM] =0 (24)
k=0 s=1
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where Pt/ is the optimally chosen price, which is the same for all producers, and Y;rk is
the demand they face in t + k.

C.2 Households

The economy is populated by a continuum of households. The representative household
j derives utility from consuming the final good C; and disutility from labor L;. It

maximizes its discounted expected utility

00 C, (i l—0o L N1+
max B34 < )7 L)
C(])tvL(])t t=0 1 — 0 ]. + 1%

where ¢ > 0 is the inverse of the intertemporal elasticity of substitution, and v > 0 is
the inverse of the labor supply elasticity (or inverse Frisch elasticity). The maximization

is subject to the following budget constraint
PCy(j) + By (3) + To = Wi (§) Li () + Ri—1Bia (j) + Divy

where T} is the lump-sum tax levied on households, and Div,; are dividends derived from
firms. Households have access to the bond market where they can buy risk-free bonds
B; with a risk-free gross nominal return R, = (1 + ), where r, is the net nominal
return.

The constrained problem can be written as follows

1—0 1+v
+B8°Ae (W (5) Le (§) + Re—1Bia (j) + Divy — P.Cy (j) — Be (j) — T4

Ct(j)th(j)vBt(j)

pas, o £00) = By p |G O

The first-order conditions are the following

0L, (j) N—o _

aft (]) . t S\ V t no(s) —

L) —BL, () 4 BEAW () =0 (26)
8£t (]) . t t _
95, (7) BN R — BN, =0 (27)

Combining equations 25 and 27 we can derive the consumption Euler equation
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(where we drop index j)

Ciy1\ 7 Ry ]
E < ) —1 28
' [B Cy ) M (28)
The labor supply condition, from 25 and 26, can be written as follows
Ly wp
= — 29

C.3 Monetary and government policy

We assume that the monetary authority controls the nominal interest rate and sets
it according to a feedback rule, of the type that has been found to provide a good
description of actual monetary policy in the United States at least since Taylor (1993).
We chose the same specification of Smets and Wouters (2007); hence, the policy rule
features interest rate smoothing, governed by parameter p; a systematic response to
inflation, measured by parameter ¢, ; a systematic response to the output gap, measured

by parameter ¢,-; and a response to the output gap growth with intensity ¢«

R, R,_1\* s o 11p Y;* Day* )
L 1%~ (V%)% ore;
R ( R ) e (V)™ vy, ©

where R is the steady state value of the nominal interest rate, Y;* is the output gap

(to be defined in the next section), and ] ~ i.i.d. N (0, 1) is a monetary policy shock.

Public spending F; is determined exogenously as a time-varying fraction G, of out-

put
1
E=1-—=)Y, 30
' ( Gt> ' (30)
where
log &t — = J
oga—loggt—pgloggtfﬁragé?t

with €f an 4.4.d.N(0, 1) innovation. The latter is defined as government spending
shock.

C.4 Equilibrium and log-linearized model

Market clearing in the goods market requires

Y, =C,+ E,
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Using expression 30

1
Y, = 1——1Y,
t Ct+( Gt> ¢

Y

o

and taking logs
G =Y — 0t (31)
Log-linearizing the Euler equation 28 yields

1
C = e [re — Eymea] + Erce

and using 31
1
Yt — gt = —g [Tt - Et7Tt+1] + Eyir1 — EiGia

1
be==7 [re = Evmen] + By — AE g (32)

Market clearing in the labor market requires

Lt:/OlL(i)di

Using 22 we have

Lt:/olY(i)dz'

R

It
L:Y/ AC di
t tO(R&) 1

where the second equality follows from 21 and goods market clearing. Taking logs

ly =y + dy

14U,
where d, = log [ (P, (i) / Pt)_Ttt is a measure of price (and, hence, output) dispersion

across firms. In a neighborhood of the zero inflation steady state, d; is equal to zero up
to a first-order approximation. Hence, one can write the following approximate relation

between aggregate output and employment

li =y,
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Turning to the price equations, the log-linear approximation of the price setting

equation for firms changing prices (equation 24) becomes
0 , k
Ey Z £§ﬁ’“ [pt - Z Mits — WUtk — mct+k1 =0
k=0 s=1

Solving for the summation

1

727; =E >0 f;;ﬂk [ZE:I Tits + Utk + mCtJrk]
1- gpﬁ
= Y0 Tugs + U + My + %Et Yoamt T +
+f§ﬁkEt 2he1 55_15k_1 [ZI§=1 Tpst1 T Uk T mCt+k]

= U + meg + %Et [p;H + 7Tt+1}

Prices evolve as
0= (1 - fp)p:: - gp'ﬁt

from which we obtain the New Keynesian Phillips curve

Tt = /BEtWt+1 + )\mct + )\Ut (33)

where \ = 1=)(-80)
&p :

We now want to derive an expression for the output gap Y;*, namely the difference
between actual output Y; and the natural level of output Y;*. The latter is defined as
the equilibrium level of output under flexible prices and no price mark-up shocks. The
model will be expressed then in terms of the output gap rather than actual output. We

start by taking logs of equation 23. That yields
log Mc; = log W} —log P,

From 29
vlog Ly + olog C; = logW," — log P,

So
log M¢; = vlog Ly + o log Cy
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Using 22 and 31
log Me; = vlogY; + o (logV; — log Gy)

log Me; = (v +0)logY; — olog Gy (34)

It follows that in the natural economy

logMc= (v+o0)logY," —ologG; (35)
Given that in the natural economy logMc¢ = —U, 35 implies the following expression
log Y;" 7 logG (36)

O = —— 10 —

T ) T o)

And in log-deviation from the steady state

o
v+o0)

n

yt:(

gt

Equation 34 minus 35 provides the relationship between marginal costs and the

output gap log-deviation from steady state terms
mey = (Vv+o0)y;

where y; = (y; — y}') is the output gap.

We can now re-write the IS curve (equation 32) in terms of the output gap

* n 1 * n
Y T Y = s 1y — Evmep] + By + Byl — AEgea

1

Y = - [re = Evmon] + Evyiy + By — 0 — AEgin
* 1 * g
Yo =—7 [re — Eymii] + By + WAEtgt—s—l — ALigi
* 1 * v
Y = s [re — Eymsa] + By — mAEtng (37)
And also the New Keynesian Phillips curve
Ty = /BEtWt+1 + )\ (U + V) y: + )\Ut (38)
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Finally the log-linear approximation of the Taylor rule

re=proa+ (1= p) (Sem+ b)) + Gay (05 — yim) +0ve
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D Derivation of the optimal simple rule

The central bank problem is
1 >
min £(0, ;) = min §Et {Z g [wyyﬁi + wﬂﬁfﬂ} }
Tt Yyt =0

s.t. Ty = BEMp14s + A (0 +0) yi + Mgy

where w, = o+v, wy = 5, and ¢ is the elasticity of substitution among differentiated
intermediate goods. It is related to the steady state value of the mark-up shock U as
follows: U = 5%1 Under discretion expectations are taken as given so the Lagrangian
is
min £(0,r,) = ! [wyyf + w,ﬂrﬂ +F4nm—ANo+v)y — fi]

YLt 2

where F;, = S E, { ©. B [wyyﬁi + wﬂﬂfﬂl} and f, = BEm 145 + My The fo.c.s

are

oL .
ay;f : —wyyy — A (0 +v) =0 (39)
oL
a—ﬁz ; —wem + 1 =0 (40)
Combining the two f.o.c.s we obtain
. Ao+ v)w
ji= T (41)
Wy

Using this to substitute y; in the Phillips curve 2 and solving forward we obtain

Ty = Wy AUy (42)
_ 1 _ 1 _ 1 G
WheTe ¢ = ety () — Moo ety (1B — Mool —ppn DUPSH

ting this last expression into 41 it follows

. Ao+ V) wy,
Y, = —¥qu)\ut
Wy

Y = =\ (0 + V) waquy (43)

Finally using expressions 42 and 43 in the Euler equation we derive the optimality
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condition for the nominal interest rate as follows

1—p,) o€ ov

U

m(ﬂg—l)gtz()

To derive equation 42 we start by substituting expression 41 in the Phillips curve 2

A2 (0 +v) wy

Wy

T = BT — T+ Aug

A2 ? n
[1 + (U_FV)W‘| T = 5Et7rt+1 + >\Ut

Wy

Amy = BEmiq + Ay

where A = % Solving 1 step forward
A
T = flEtﬂ't+1 + Zut
A A
= ﬁ ﬁEtﬂ't+2 + ZEtut+1 + Zut
from 5, Eyus 1 = p,uy, hence
2 )\
T = ﬁEﬂTtH + jz)‘puut + i
Solving 2 steps forward
2 A /\
T = le liEﬂH:& + AEtUtJrQ] IfQ APyl + — A
3 /\
Ty = 513 Etﬂ't+3 + ﬁ?) )\puut + IfQ )\puut + — A

3 2 A
Ty = ﬁSEﬂTH?’ + (iqu + iﬂu + 1) 7l

Solving 7 — oo steps forward

37 DR VA
Ty = EEtTrH-j + AUt]ZO Eﬂi
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The ratio % goes to 0 for j — oo, while the series > 72, %% converges to - !

_Zpu
Recalling the value of A = W
A 1
T, = —u
t A tl - %pu
1
Ty = )\U/ e
t tA - Bpu
1
Ty = )\Ut 5
wy A2 (o V) wn
oy Bpu
Ty = qu)\ut (44)

1
>\2(a+l/)2wﬁ+wy(1—ﬁpu)
tuting 44 into 41.

Finally, we can get the optimality condition for the nominal interest rate by using
42 and 43 in the IS curve 1

where ¢ = . The expression for 43 is obtained simply by substi-

Yy = e [re — Eymiqa] + Evyia — mAEtgtH
9 1 1 9 v
A (o +v)wequp = ——1¢ + —wWygA B — A (0 +v)wrqBiu1 — ——AEgi
o o (v+0)
ov
re = 0N (0 + V) wequy + Wy APyt — oA (0 4 V) Weqputly — mAEtng
(1= pu)oX(o+v)w, ov
-1 Wy G\ —1)g:=0
T l + Py PuldyqAU + v +0) (g ) 9t
(1—=pu)or(c+v)5 ov
ry— |1+ Wy AU + -1 =0
t [ pu (O_ _'_ V) p yq t (V + O') (pg )gt
(1 —pu)oe
~ Wy g\ 1), =0
Ty [ + S PuldyqAUL + (v +0) (g ) 9t
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E Derivation of the asymptotic distribution of the

gradient

The gradient evaluated at the maximum likelihood estimator and at the judgmental
decision 7 is V,.L(0(X™),7) = 7 — ht(0(X™)). A mean value expansion around the

population value 6 gives:

e = h(0(X")) = 7t — he(0) — Vhe(0)(0(X™) — 0)

where 6 lies between 6 and 6(X™). Since under the null hypothesis # — hy(6) = 0,
multiplying by /n and using (10) gives the result.

F Gradient’s derivatives

In this appendix we show the individual entries of the vector Vgh(f), the vector of
the first derivatives with respect to the estimated parameters of the central banker’s
first-order condition V,.L£(#,r;). The size of that vector is p = 7. We report here only
4 derivatives, with respect to p,, py, 0, and v, because those with respect to the shock

variances oy, 0., and o,, are all zero in every quarter ¢.

8ht(9) vo
h:(0) = = —
Yyl (0) Opy 0+ugt
8ht(9) EO u
= — - ¢
T R o)

g0 (1= pu) + pu
Pu [1%09((1;56%) +e(o+ 1/)}
A (=) (L= ) o (1= ) £
) [(a +u) (1= Bpy) + s(a+u)2(1979)(1759)}

t
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aht(g) _ €o (1 B pu) + Pu g
do (0 +v) [ole T +e(o+v)]

(1 - pu)

9 ( Bpu)

( ) (1-B6)2(v+0)2[e0 (1~ pu) +pu] 26— =g 22270 ]
0

2
2
0 [5(179)(1759)(U+V) + (1 o Bpu) (0_ + V)}

(pg — v

+

Uy

Uy

0ht(9) €0 (1 — pu) + Pu

_ ”
o 0 (1-Bpu)
v (v +0) [aley (T +e v +0)] 8
(1-0)*(1—B0)* (v+0)*[eo(1—pu) +pul [ 26— 7= 257577 |
[

2
BT (1) )

[}
(pg—1)0°
B (V+a)2 gt

Uy
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