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1 Introduction

Nowcasting is commonly viewed as an important and unique forecasting problem; see, e.g., Ban-

bura, Giannone, and Reichlin (2011), Banbura, et al. (2013), and Giannone, Reichlin, and Small

(2008). It is important because current-quarter forecasts of GDP growth and inflation provide

useful summaries of recent news on the economy and because these forecasts are commonly used

as inputs to forecasting models, such as some of the DSGE models in use at central banks, that are

effective in medium-term forecasting but not necessarily short-term forecasting. As studies such as

Faust and Wright (2009, 2013) have emphasized, initial-quarter forecasts often play a key role in

the accuracy of forecasts at subsequent horizons. Nowcasting is unique in that, to some degree, it

involves “simply” adding up information in data releases for the current quarter. A key challenge

is dealing with the differences in data release dates that cause the available information set to differ

over points in time within the quarter — what Wallis (1986) refers to as the “ragged edge” of data.

Much (although not all) of the nowcasting literature has focused on data available at a monthly

and quarterly frequency. In part, this may reflect data availability: the histories of weekly indicators

of economic activity are in many cases not all that long, constraining formal evaluation of forecasts

obtained from estimated models. The literature’s limited treatment of weekly data may also in

part reflect the finding by Banbura, et al. (2013) that higher frequency information does not seem

to be especially useful for nowcasting US GDP growth (except perhaps in a continuous monitoring

context). That said, higher frequencies have not been entirely ignored; for example, since 2008,

the Federal Reserve Bank of Philadelphia has published a weekly index of economic activity that

makes use of weekly data on initial claims for unemployment insurance, as developed by Aruoba,

Diebold, and Scotti (2009). Other examples using weekly or daily data include Aastveit, Foroni,

and Ravazzolo (2017), Andreou, Ghysels, and Kourtellos (2013), and Ferrara and Simoni (2019).1

In 2020, the shutdown of significant portions of the economy to restrain the outbreak of the

coronavirus has raised practical interest in high-frequency indicators of economic activity in the US

and other economies. For example, in the US, it was clear by mid-March that much of consumer

spending would be shutting down and would lead to large drops in employment and GDP in at

least the first and second quarters of the year. Yet, in the second half of March, the usual monthly

indicators of economic activity were only available for the month of February. Weekly indicators,

1Aastveit, Foroni, and Ravazzolo (2017) use weekly indexes of economic activity and financial conditions published
by the Federal Reserve Bank of Chicago to nowcast and forecast GDP growth. Andreou, Ghysels, and Kourtellos
(2013) apply MIDAS methods to daily financial data to nowcast GDP growth. Ferrara and Simoni (2019) use search
data from Google to produce and examine nowcasts (point nowcasts for the euro area) on a weekly basis.
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including — among others — initial claims for unemployment insurance, weekly retail sales from

Redbook, raw steel production, and output of electric utilities, began to draw attention for the

light they could more quickly shed on the emerging downturn. Lewis, Mertens, and Stock (2020)

developed and began to publish regular updates of a weekly economic index formed as a principal

component of 10 underlying series.

Apart from nowcasting considerations, a rapidly growing body of research has examined tail

risks in macroeconomic outcomes, typically at a horizon of one quarter or one year ahead. Most

of this work has focused on the risks of significant declines in GDP, and has relied on quantile

regression methods to estimate tail risks, as developed in Adrian, Boyarchenko, and Giannone

(2019), Adrian, et al. (2018), De Nicolo and Lucchetta (2017), and Giglio, Kelly, and Pruitt (2016)

and extended to vector autoregressive models in Chavleishvili and Manganelli (2019).2 Reichlin,

Ricco, and Hasenzagl (2020) propose using leverage indicators to obtain earlier signals of economic

vulnerabilities. Note also that, for output growth, nowcasting or forecasting tail risks has some

precedent in the literature on forecasting recessions or just periods of negative growth (see, e.g.,

Aastveit, Ravazzolo, and van Dijk (2018)).

In this context, this paper assesses the ability of models to produce accurate nowcasts of tail risk

to GDP with a potentially wide array of information. We consider accommodating large variable

sets through a range of approaches including Bayesian shrinkage, data reduction (factor-based

approaches, as well as approaches using Lasso penalties), and the combination of forecasts from

smaller models. Our starting point is the mixed frequency regression setup of Carriero, Clark, and

Marcellino (2015) (henceforth, CCM). In this CCM setup, for nowcasting GDP growth within a

quarter, each time series of monthly indicators is transformed into three quarterly time series, each

containing observations for, respectively, the first, second, or third month of the quarter. At the

moment in time that the forecast is formed, the model includes only the quarterly series without

missing observations, which addresses the ragged edge of the data. Bayesian methods are used to

estimate the model, which facilitates providing shrinkage on estimates of a model that can be quite

large, conveniently generates predictive densities, and readily allows for stochastic volatility.

Our paper makes three primary contributions. The first consists of extending the CCM forecast

calendar setup: to use 15 different weeks as forecast origins for a quarter’s nowcast rather than four

months. This setup permits an assessment of the evolution of forecasts with the week by week flow

2Gonzalez-Rivera, Maldonado, and Ruiz (2019) use quantile regression-based methods to obtain a “growth-in-
stress” index, based on stressed conditions of common factors in economic activity and their effects on growth, on a
cross-country basis.
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of information in the quarter, along with which indicators are most informative in that information

flow. A second contribution is to consider higher frequency data — in this paper a number of

indicators at a weekly frequency and not just monthly indicators as in CCM. We extend CCM by

including in the quarterly regression weekly indicators available at the time of the forecast origin.

Our third and key contribution is that we examine nowcasts of tail risks to economic activity.

Following precedents such as Adrian, Boyarchenko, and Giannone (2019) and Adrian, et al. (2018),

we use the 5 percent quantile forecast as the measure of tail risk, which we evaluate with the

quantile score (tick loss function). With some specifications, we also consider expected shortfall

and jointly evaluate the quantile and shortfall forecasts. We consider tail risk nowcasts from not

only Bayesian regressions but also several other quantile regression-based approaches making use

of mixed frequency data: simple quantile regression, quantile regression with a Lasso penalty,

and Bayesian quantile regression. (We have also considered quantile regression with mixed-data

sampling (MIDAS) but provide these results in the appendix rather than the paper since other

methods generally perform better.) We also consider models that make use of data reduction by

forming factors of the data with principal components or the partial quantile regression approach

of Giglio, Kelly, and Pruitt (2016).3

Our results show that, within some limits, more information helps the accuracy of tail risk

forecasts. Forecast accuracy typically improves as time moves forward from week to week within

a quarter, making additional data available, with monthly data more important to accuracy than

weekly data. In a given week, models with a wider array of indicators often forecast as well as

or better than small models, but again within some limits. In our real-time out-of-sample results,

there is a benefit to adding a base set of financial indicators (consisting of stock returns, a term

spread, a credit spread, and the Chicago Fed’s index of financial conditions) to the base set of

macro indicators. Adding other weekly indicators of economic activity doesn’t have much effect

on forecast accuracy, either to help or harm.4 Among the models or estimation approaches we

consider, our regression with stochastic volatility and our Bayesian quantile regression perform

reasonably consistently, offering solid gains in forecast accuracy (relative to a baseline quantile

regression model with just a small set of macro indicators), with the greatest benefits accruing

3All of our nowcasting models are univariate, although based on a large information set, and therefore combined
with direct forecasting. The use of multivariate models, such as vector autoregressions, combined with iterated
forecasting could yield some additional gains in terms of forecasting accuracy if the models are correctly specified.
Yet, the use of a large, mixed frequency information set would make estimation of a multivariate model much more
complex, inefficient, and prone to mis-specification, therefore likely reducing nowcast and forecast accuracy. See
Section 1.1 for some references and additional details.

4Admittedly, it is possible that, over time, as the time series samples of these weekly indicators grow and permit
more precise model estimation, these indicators could become more helpful to forecast accuracy.
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when financial indicators are included in the model. Some factor reduction methods, such as

partial quantile regression, and forecast averaging also improve accuracy with some consistency.

Some other methods do not perform well. In particular, tail risks obtained with simple quantile

regression are typically less accurate than a Bayesian mixed frequency regression with stochastic

volatility.

We conclude the paper with a report on recent — 2020:Q1 and 2020:Q2 — nowcasts from

this set of specifications. In these results, the arrival of weekly information within the quarter

typically lowers the tail risk nowcasts, although in 2020:Q1 this does not occur until some economic

indicators are clearly showing sharp falls due to the economic shutdown that began in mid-March.

For 2020:Q2, the 5 percent quantile nowcasts were sharply negative from the beginning of the

forecast calendar we use, and in most cases, the nowcasts turned more negative several weeks later,

in May. Since that downturn, most of the nowcasts put the 5 percent quantile at a historic -30

percent or worse. Although differences across models can be sizable, the nowcasts paint a broadly

similar picture of the risks to GDP growth in these quarters. Given a variable set, the nowcasts from

the Bayesian mixed frequency regressions with stochastic volatility and partial quantile regression

models tend to be more similar to one another than to the nowcasts from the Bayesian quantile

regression specification. Our takeaway from this illustration is similar to that of our historical

forecast evaluation: additional information on the quarter as time moves forward in the quarter

bears importantly on nowcasts of tail risk and their accuracy, and with sizable differences across

models possible, it is helpful to consider a range of forecasts. Our starting points would be the mixed

frequency regression with stochastic volatility, Bayesian quantile regression, and partial quantile

regression, applied to our baseline set of macroeconomic and financial indicators. We would also

consider forecasts from these same specifications but adding our small and large sets of weekly

economic indicators, as well as averages of a broader set of nowcasts.

The paper proceeds as follows. The remainder of this section summarizes some other related

nowcasting work. Sections 2 through 4 detail the data (including the release calendar setup),

models, and forecast metrics, respectively. Section 5 provides our empirical results. Section 6

concludes. A supplemental appendix provides some additional empirical results.

1.1 Relationship to other nowcasting work

To place our proposed approach within the broader nowcasting literature, it is helpful to use the

“partial model” (or single equation) methods and “full system” methods classification used by

Banbura, et al. (2013). The former type of approach involves specifications focused on the low
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frequency variable, in which the high frequency explanatory variables are not modeled. In the

latter approach, the low and high frequency variables are jointly modeled. Our proposed modeling

approach falls in the partial models class.

Among partial model methods, bridge and MIDAS models are most commonly used. Bridge

models, considered in such studies as Baffigi, Golinelli, and Parigi (2004), Diron (2008), and Ben-

civelli, Marcellino, and Moretti (2017), relate the period t value of the quarterly variable of interest,

such as GDP growth, to the period t quarterly average of key monthly indicators. The period t

average of each monthly indicator is obtained with data available within the quarter and forecasts

for other months of the quarter (obtained typically from an autoregressive model for the monthly

indicator). MIDAS-based models, developed in Ghysels, Santa-Clara, and Valkanov (2004) for fi-

nancial applications and applied to macroeconomic forecasting by, e.g., Clements and Galvao (2008)

and Guerin and Marcellino (2013), relate the period t value of the quarterly variable of interest to

a constrained distributed lag of monthly or weekly or even daily data on the predictors of interest.

The resulting model is then estimated by nonlinear least squares and used to forecast the variable

of interest from constrained distributed lags of the available data. Foroni, Marcellino and Schu-

macher (2015) propose the use of unconstrained distributed lags of the high frequency indicators,

a specification labeled unrestricted MIDAS, or U-MIDAS.

Full system methods for nowcasting include factor models and mixed frequency VARs. We

refer to the surveys in Banbura et al. (2013) and Foroni, Ghysels, and Marcellino (2013) for details

and references. Here we only mention a few studies closely related to our proposal. These include

Aastveit, et al. (2014), which, in contrast to most of the nowcasting literature, focuses on density

forecasts; Eraker, et al. (2015); Ghysels (2016); Schorfheide and Song (2015) and McCracken,

Owyang, and Sekhposyan (2020), both of which develop mixed frequency Bayesian VARs; and

Marcellino, Porqueddu, and Venditti (2016), which introduces a small scale factor model that

allows for stochastic volatility in the common and idiosyncratic components and provides density

forecasts.5 Schorfheide and Song (2020) focuses on forecasting during the pandemic with a mixed

frequency Bayesian VAR, using the original 11 monthly and quarterly indicators of Schorfheide and

Song (2015).

In other related quantile forecasting work, some studies have considered tail risks to other

variables, such as unemployment (e.g., Galbraith and van Norden (2019) and Kiley (2018)) and

inflation (e.g., Ghysels, Iania, and Striaukas (2018)). Earlier work of Manzan (2015) used quan-

5Koop, Gefang, and Poon (2020) develop variational Bayes methods to estimate large Bayesian mixed frequency
VARs with much greater computational efficiency.
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tile regression to assess the value of a large number of macroeconomic indicators in forecasting

the complete distribution of some key variables.6 Cook and Doh (2019) apply quantile regression

methods with a large set of predictors of growth, unemployment, and inflation, considering various

approaches to dimension reduction and forecast combination. Lima, Meng, and Godeiro (2019)

develop an approach for combining quantile forecasts to obtain point forecasts, in a setting with

some mixed frequency data. Ferrara, Mogliani, and Sahuc (2019) use the quantile regression setup

of Adrian, Boyarchenko, and Giannone (2019) to nowcast euro area GDP growth with an indicator

of financial conditions updated on a daily basis, making use of quantile regression and Bayesian

quantile regression with MIDAS. By comparison, our paper deploys a much richer set of economic

and financial variables and model specifications, along with an alternative approach to accommo-

dating mixed frequency data. Mazzi and Mitchell (2019) use quantile regression methods to form

density nowcasts of euro area GDP growth. We build on their work by focusing on point and tail

risk forecasts, a wider information set, and methods other than quantile regression and quantile

regression with Lasso (both estimated by Bayesian methods in their analysis). Plagborg-Moller,

et al. (2020) re-examine the ability to forecast and nowcast tail risks to GDP growth and con-

clude that the evidence of such predictability is weak. In their assessment, none of their predictors

yielded useful “...advance warnings of tail risks or indeed about any features of the GDP growth

distribution other than the mean.” The modestly more favorable results we report are likely due to

our use of some different indicators, a different nowcast calendar with more of a weekly breakdown,

and different measures of tail risk accuracy. That said, the limited statistical significance in our

results could be seen as consistent with the punchline of Plagborg-Moller, et al. (2020).

2 Data

As noted above, we focus on current-quarter forecasting of real GDP (or GNP for some of the

sample) in real time. This section first explains the general design of the forecast calendar used in

our analysis and then details the data used.

2.1 General design of the forecast calendar and data set

Whereas most of the nowcasting literature (including CCM) focuses on a monthly calendar of data

releases and forecast origins for nowcasting, we depart from and extend much of this literature by

6Other examples of studies of quantile forecasts in macroeconomics include Gaglianone and Lima (2012), Korobilis
(2017), and Manzan and Zerom (2013, 2015).
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considering a weekly calendar of data releases and forecast origins.7 With this weekly calendar, we

consider monthly data as well as weekly data. Our forecast calendar includes 15 weeks for each

quarter, reflecting four weeks per month of the quarter and the first three weeks of the following

quarter.8

We begin with the first full week of the quarter and end with the third week of the following

quarter (the last week before GDP for the prior quarter is typically released). For each indicator we

consider, we assign it a typical release or availability week based on its usual publication schedule.

As examples, at the end of week 1 of a quarter, a forecaster has available data on employment,

initial claims for unemployment insurance, interest rates, stock prices, and the NFCI for the prior

month, as well as interest rates and stock prices for the first week of the quarter. At the end of

week 2, a forecaster also has available (in addition to the data of week 1) retail sales for the prior

month, the NFCI for week 1 of the quarter, and interest rates and stock prices for week 2 of the

quarter.

Our starting point variable set largely corresponds to the small-model specification of CCM

(in their results, the small model performed as well as models with additional leading indicators

of the business cycle). In particular, we consider 5 monthly indicators broadly informative about

economic conditions, selected with some eye to timeliness: payroll employment, industrial produc-

tion, real retail sales (nominal deflated by the CPI), housing starts, and the manufacturing index

from purchasing managers published by the Institute for Supply Management (ISM). In our base-

line macro set, we add initial claims for unemployment insurance, using both monthly and weekly

observations as available. Initial claims are commonly considered to be a leading indicator of the

business cycle and have the advantage of being available weekly with a fairly short lag (one week).

We also consider financial indicators with an eye toward those that have been found in the literature

to have some predictive content for output: the Chicago Fed’s national financial conditions index

(NFCI), stock prices as measured by the S&P 500 index, the term spread between the 10-year and

1-year Treasury yields (constant maturity), and the credit spread between Moody’s Baa corporate

yield and the 10-year Treasury yield.9 Finally, in some additional specifications, we add to models

7Some studies consider a higher frequency calendar of nowcast updates. For example, Aastveit, et al. (2014)
consider 15 dates for data releases — most monthly or quarterly — in the three months of the quarter and the first
month of the following quarter.

8In the interest of tractability of our real-time forecast evaluation of a range of models or methods, our calendar and
forecasting design makes some simplifications that abstract from some complications that come with high frequency
forecasting, relating to matters such as dealing with exact days on which series are published in real time and timing
issues around weekly observations for overlapping starts and ends of months and quarters. Lewis, Mertens, and Stock
(2020) use a notion of pseudo-weeks to deal with such timing issues in constructing their weekly index of economic
activity.

9We conducted some limited checks replacing the NFCI with an indicator of financial stress in the US developed
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some indicators of economic activity available at a weekly frequency and over time samples going

back into at least the 1990s. For the most part, these series are those used in the weekly eco-

nomic activity index of Lewis, Mertens, and Stock (2020). Our set of additional weekly indicators

consists of continuing claims for unemployment insurance, consumer comfort from Bloomberg, raw

steel production, electric utility output, loadings of railroad cars, total fuel sales, and Redbook

same-store retail sales. Table 1 lists the variables and our calendar assumptions.

Our model specifications reflect additional choices regarding transformations and treatment of

data frequency. As Table 1 indicates, with variables subject to trends, such as GDP, employment,

or stock prices, we use growth rates. For variables available at a daily frequency (interest rates and

stock prices), we use monthly averages and weekly averages as our monthly and weekly observations.

At a monthly frequency, the growth rate of the S&P 500 is the percent change in the month-average

index values. At a weekly frequency, to smooth out some of the higher frequency noise in stock

prices, we use the percent change in the average weekly value of the index in one week compared

to the average in the same week one quarter ago. In the case of the weekly indicators of steel

production, utility output, car loadings, fuel sales, and Redbook retail sales, in light of the noisiness

of the data and strong seasonality, we follow Ferrara and Simoni (2019) and Lewis, Mertens, and

Stock (2020) and rely on year-over-year (52-week) growth rates. We leave as a subject for future

research whether alternative treatments of seasonality in these series could be appropriate. We

smooth the consumer comfort measure by using a four-week moving average of the weekly data.

The next section will provide additional detail on the treatment of monthly and weekly data in our

nowcasting models.

2.2 Details of data used

Quarterly real-time data on GDP or GNP are taken from the Federal Reserve Bank of Philadelphia’s

Real-Time Data Set for Macroeconomists (RTDSM), in monthly vintages. For simplicity, hereafter

“GDP” refers to the output series, even though the measures are based on GNP and a fixed weight

deflator for much of the sample.

For the variables we use to nowcast GDP growth, for those subject to significant revisions —

payroll employment, industrial production, retail sales, and housing starts — we use real-time data,

obtained from the RTDSM (employment, industrial production, and housing starts) or the Federal

Reserve Bank of St. Louis’ ALFRED database (retail sales). For the CPI used to deflate retail

and published by the European Central Bank. The results we obtained with this indicator are similar to those
obtained with the NFCI.
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sales, we use the 1967-base-year CPI available from the BLS rather than a real-time series; Kozicki

and Hoffman (2004) show that the 1967-base-year series is very similar to real-time CPI inflation.

For the other variables, subject to either small revisions or no revision, we simply use the currently

available time series, obtained from sources including the Federal Reserve Board’s FAME database,

the Federal Reserve Bank of St. Louis’ FRED database, or Haver Analytics. Appendix Table A1

gives the source from which we obtained each series.

The full forecast evaluation period runs from 1985:Q1 through 2019:Q3 (using period t to refer to

a forecast for period t), which involves real-time data vintages from January 1985 through February

2020. For each forecast origin t starting in the first week of 1985:Q1, we use the real-time data

vintage t to estimate the forecast models and construct forecasts of GDP growth in the quarter.

In forming the data set used to estimate the forecasting models at each point in time, we use the

monthly vintages of (quarterly) GDP available from the RTDSM, taking care to make sure the

GDP time series used in the regression is the one available at the time the forecast is being formed.

The starting point of the model estimation sample varies across some of our specifications due to

differences in data availability. With our baseline macro models, estimation starts with 1970:Q2,

the soonest possible given data availability and lags allowed in models. Adding financial indicators

makes the estimation starting point 1971:Q2, due to the availability of the NFCI. Adding some more

weekly indicators of economic activity pulls the estimation sample start up to 1987:Q1, and adding

the full set moves the estimation start date to 1996:Q3. In these cases, we shorten the evaluation

samples to run from 2000:Q1 through 2019:Q3 and 2007:Q1 through 2019:Q3, respectively.

As discussed in such sources as Croushore (2006), Romer and Romer (2000), and Sims (2002),

evaluating the accuracy of real-time forecasts requires a difficult decision on what to take as the

actual data in calculating forecast errors. The GDP data available today for, say, 1985, represent

the best available estimates of output in 1985. However, output as defined and measured today is

quite different from output as defined and measured in 1970. For example, today we have available

chain-weighted GDP; in the 1980s, output was measured with fixed-weight GNP. Forecasters in 1985

could not have foreseen such changes and the potential impact on measured output. Accordingly,

we follow studies such as Clark (2011), Faust and Wright (2009), and Romer and Romer (2000)

and use the second available estimates in the quarterly vintages of the RTDSM of GDP/GNP as

actuals in evaluating forecast accuracy.
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3 Models and Methods

This section details our proposed nowcasting models and methods. In general, to accommodate

potentially large sets of indicators, we consider a range of approaches. (As noted earlier, we have

also considered quantile regression with MIDAS but provide these results in the appendix rather

than the paper since other methods generally perform better.) First, we use Bayesian shrinkage

methods to estimate models with large sets of indicators. Second, we examine some factor-based

approaches to dimension reduction, first forming common factors of available monthly and weekly

indicators and then estimating regression models including the factors. Third, we consider forecast

combination, by averaging forecasts across models, in two different ways. Under some estimation

approaches (not featuring shrinkage) we estimate smaller models featuring one indicator at a time

and then average forecasts from one-at-a-time models. In addition, we consider various other

averages of other forecasts, such as an average across all forecasts. Note that, in averaging, we use

equal weights, in light of evidence in the literature that, in practice, simple averages are typically

hard to beat.10

To help the discussion flow, we first specify the general model and method forms in sections 3.1

through 3.6, and then in section 3.7, we detail the sets of indicators in the model. The appendix

(included in the paper) provides the priors and algorithms used in Bayesian estimation.

3.1 General model forms: Bayesian mixed frequency model with stochastic
volatility (BMF-SV)

At the outset, we should specify variable notation. The vector Xw,t contains the available predictors

at the time the forecast is formed, t is measured in quarters, and w indicates a week within or shortly

beyond the quarter. As detailed below, given a set of indicators to be used, there is a different

regressor set Xw,t (and therefore model) for each week w = 1, . . . , 15 within the quarter, reflecting

data availability. As also detailed below, the regressors of Xw,t include a constant, past GDP

growth, and selected available monthly and weekly variables. Let X̃w,t refer to the subset of Xw,t

that is the available monthly and weekly variables in week w, and let Zw,t refer to the subset

of Xw,t composed of the constant and lagged GDP growth (so Zw,t = (1,GDPt−p)
′), such that

Xw,t =
(
Z ′w,t, X̃

′
w,t

)′
. As detailed below, depending on timing and data availability, the GDP lag

p is either 1 or 2.

10Studies including Giacomini and Komunjer (2005) and Taylor (2020) have developed methods for combining
tail risk forecasts. In Taylor’s (2020) results, a simple average sometimes performs as well as a more sophisticated
combination. See Timmermann (2006) for a survey of evidence of the challenges of beating a simple average.
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Among our models, we use CCM’s Bayesian mixed frequency model with stochastic volatility

(BMF-SV).11 We consider nowcasting the quarterly growth rate of GDP in week w of the current

quarter based on the following regression with stochastic volatility:

yt = X ′w,tβw + vw,t

vw,t = λ0.5
w,tεw,t, εw,t ∼ i.i.d. N(0, 1) (1)

log(λw,t) = log(λw,t−1) + νw,t, νw,t ∼ i.i.d. N(0, φw).

Following the approach pioneered in Cogley and Sargent (2005) and Primiceri (2005), the log of the

conditional variance of the error term in equation (1) follows a random walk process. In a vector

autoregressive context, studies such as Clark (2011), D’Agostino, Gambetti, and Giannone (2013),

and Clark and Ravazzolo (2015) have found that this type of stochastic volatility formulation

improves the accuracy of both point and density forecasts.

In results omitted in the interest of brevity, we have also considered a model with stochastic

volatility that allows a link of financial conditions to not only the conditional mean of GDP growth

but also its conditional variance. In this case, in a model we refer to as the BMF-GFSV specification,

the stochastic volatility process has an AR(1) form augmented with an indicator of recent financial

conditions, measured by the NFCI.12 Studies such as Adrian, Boyarchenko, and Giannone (2019)

and Carriero, Clark, and Marcellino (2020) have emphasized such a linkage as possibly helpful in

forecasting macroeconomic tail risks. In our nowcast setting, this model yields results no better

than those we report for the BMF-SV specification.

The specification of the regressor vector Xw,t in the BMF-SV model is partly a function of the

way we sample the monthly and weekly variables. For each monthly variable, we first transform

it at a monthly frequency as necessary to achieve stationarity. At a quarterly frequency, for each

monthly variable, we then define three different variables, by sampling the monthly series separately

for each month of the quarter. The availability of these variables for forecasting GDP in period t

as of week w of the quarter drives whether they appear in the forecasting model for that forecast

origin.

Exactly which variables are included in Xw,t depends on when in the quarter the forecast is

11We also produced results for a homoskedastic version of the BMF regression specification. Stochastic volatility
typically yields a significant improvement in in-sample model fit (marginal likelihood) and more accurate point and
density nowcasts.

12As implemented in our nowcasting specification, the volatility process takes the form log(λw,t) = δ0 +
δ1 log(λw,t−1) + δ2NFCIw,t + νw,t, where NFCIw,t refers to the most recent 4-week average of the NFCI. The use
of the 4-week average is meant to capture recent financial conditions in a simple way and with a modest amount of
smoothing to mitigate weekly noise.
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formed. As noted in section 2, we consider forecasts formed at 15 weeks associated with each

quarter. At each of the 15 forecast origins we consider for each quarter t, the regressor set Xw,t

is specified to include the subset of variables available for t as of that week (details are given

below in subsection 3.8). At these points in time, the availability of other indicators also varies.

As a consequence, the model specification changes in each week of the quarter, reflecting and

accommodating the ragged edge of the data, in line with a direct approach to forecasting.13

3.2 Quantile regression (QR) and quantile regression with Lasso penalty (QR-
Lasso)

Our model set also includes quantile regression specifications patterned after the forecasting for-

mulation developed in, among others, Adrian, Boyarchenko, and Giannone (2019). Out of concern

for the variability of model estimates in small samples (especially small with respect to tail obser-

vations), we obtain our reported QR results by putting one predictor in the model at a time and

averaging (simple equal weighting) the forecasts across indicators. In a different setting, Korobilis

(2017) also uses a one-predictor-at-a-time approach, applying Bayesian model averaging to quantile

regressions. We have produced out-of-sample nowcasts with models putting all elements of Xw,t

in a single regression at forecast origin w, but in larger models the coefficient estimates vary con-

siderably over time, harming out-of-sample forecast accuracy (the appendix provides some of this

evidence). Our averaging of one-at-a-time predictions works better.

More specifically, at the forecast origin of week w, let X̃w,j,t denote one of the (scalar) monthly

or weekly indicators of X̃w,t, and let Xw,j,t denote the vector containing a constant, lagged GDP

growth, and X̃w,j,t, such that Xw,j,t =
(
Z ′w,t, X̃

′
w,j,t

)′
. For each j, for a given quantile τ we estimate

a quantile regression including as predictors the vector Xw,j,t, of the form:

yt = X ′w,j,tβτ ,w,j + ετ ,w,j,t, (2)

in which the coefficient vector and innovation term are specific to quantile τ , as well as week w and

j. The parameter vector βτ ,w,j is obtained with quantile regression:

β̂τ ,w,j = argmin
βτ,w,j

T∑
t=1

(
τ · 1(yt≥X′w,j,tβτ,w,j)|yt −X

′
w,j,tβτ ,w,j |+ (1− τ) · 1(yt<X′w,j,tβτ,w,j)

|yt −X ′w,j,tβτ ,w,j |
)
.

(3)

13We should stress that this approach does not involve bridge methods. Bridge methods require forecasting monthly
or weekly observations of monthly or weekly variables for any months or weeks of quarter t for which data are not
yet available. We do not use such forecasts. Rather, we only put on the right-hand side of the regression model the
actual monthly and weekly observations that are available for the quarter, in the form of different quarterly variables
associated with the different months and weeks of the quarter.
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For each monthly and weekly indicator j of Xw,t, we form the quantile forecast as the pre-

dicted component X ′w,j,tβ̂τ ,w,j . Our quantile regression forecast for quantile τ at forecast origin

w is then a simple average of these individual nowcasts, from a total of J indicators in week w:

J−1
∑J

j=1X
′
w,j,tβ̂τ ,w,j .

As one approach to dimension reduction, we also consider quantile regression with a Lasso

penalty. In this case, we include in the regression the complete vector of weekly predictors Xw,t

yt = X ′w,tβτ ,w + ετ ,w,t, (4)

and the minimization problem underlying estimation includes the Lasso penalty:

β̂τ ,w = argmin
βτ,w

{
T∑
t=1

(
τ · 1(yt≥X′w,tβτ,w)|yt −X ′w,tβτ ,w|+ (1− τ) · 1(yt<X′w,tβτ,w)|yt −X ′w,tβτ ,w|

)
+ λ

K∑
k=1

|βk|

}
.

(5)

For computational simplicity, we implement QR-Lasso with a fixed penalty parameter of λ = 5,

using the quantreg package in R.14

3.3 Bayesian quantile regression (BQR) and Bayesian quantile regression with
Lasso penalty (BQR-Lasso)

As just noted, with the large number of indicators associated with our mixed frequency approach,

estimate imprecision can harm the forecast performance of simple quantile regression. Bayesian

shrinkage may mitigate such imprecision and help the forecast performance of quantile models. Ac-

cordingly, we also consider models estimated with Bayesian quantile regression methods, including

all predictors of Xw,t in a single model rather than estimating separate models for each indicator.

Yu and Moyeed (2001) established that quantile regression has a convenient mixture representation

that enables Bayesian estimation. We use the Gibbs sampler of Khare and Hobert (2012), along

with their mixture representation.

In our BQR formulation, for GDP growth in quarter t to be forecast as of week k of the quarter,

we begin with a model

yt = X ′w,tβτ ,w + στ ,wετ ,w,t, (6)

where ετ ,w,t has a mixture representation. For each model at quantile τ and week w, the represen-

tation includes zτ ,w,t, which is exponentially distributed with scale parameter στ ,w. The mixture

representation of the quantile regression model can be written as

yt = X ′w,tβτ ,w + θzτ ,w,t + κ
√
στ ,wzτ ,w,tuτ ,w,t, (7)

14We experimented with a few other settings for λ, obtaining either similar results (for λ = 3) or worse results (for
still smaller settings).
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where θ and κ are fixed parameters as functions of the quantile κ and uτ ,w,t is i.i.d. standard normal.

The quantile forecast is the predicted component X ′w,tβ̂τ ,w. We compute the forecast at the single

point of the posterior mean of the coefficient vector βτ ,w.

In addition to a Bayesian shrinkage approach to QR, we consider a combination of shrinkage

with a Lasso penalty that is meant to capture a form of variable selection. In the Bayesian setting,

the Lasso penalty (in the loss function minimized to obtain estimates in the frequentist setting) on

the sum of the absolute value of coefficients is tantamount to adjusting BQR to feature a Laplace

prior on the regression coefficients. The Laplace distribution has a sharp peak at 0, which captures

the Lasso idea of setting some coefficients to 0. The resulting model has a hierarchical form,

for which Li, Xi, and Lin (2010) develop a Gibbs sampler. We follow their approach with our

BQR-Lasso model. Mazzi and Mitchell (2019) use the model to examine density nowcasts.

3.4 Factor-based specifications: BMF-factor-SV, QR-factor, and BQR-factor

As another possible approach to nowcasting tail risks with large sets of regressors, we consider

several specifications that rely on dimension reduction, in the form of common factors in the

monthly and weekly indicators used in a given specification. Specifically, at each forecast origin,

consider the vector of variables Xw,t included in the BMF-SV specification above, associated with

week w. We estimate a vector of common factors fw,t as the first three principal components of the

monthly and weekly indicators of X̃w,t. We then estimate forecasting models relating GDP growth

to Zw,t (a constant and lagged GDP growth) and the factor vector fw,t. We only apply factor-

based approaches with our larger variable sets (detailed below) that, in addition to the baseline

macroeconomic indicators, include sets of financial indicators or sets of weekly activity indicators.

We consider this factor-based data reduction approach with three different specifications. One,

the BMF-factor-SV model, takes the form of our BMF-SV model but replaces the full predictor

vector Xw,t with Zw,t and fw,t:

yt = Z ′w,tβw,Z + f ′w,tβw,f + vw,t, (8)

with stochastic volatility in the innovation process. Our QR-factor and BQR-factor specifications

rely on quantile regression with Zw,t and fw,t as predictors in a regression model of the form:

yt = Z ′w,tβτ ,w,Z + f ′w,tβτ ,w,f + στ ,wετ ,w,t. (9)

Giglio, Kelly, and Pruitt (2016) refer to this type of approach as principal components quantile

regression, which they apply to a panel of systemic risk measures for forecasting indicators of

economic activity.

14



3.5 Mixed frequency partial quantile regression (PQR)

As another approach to data reduction with large sets of regressors, we consider the partial quantile

regression (PQR) method of Giglio, Kelly, and Pruitt (2016, GKP). GKP characterize partial

quantile regression as an adaptation of partial least squares to a quantile regression framework.

PQR is targeted to quantile regression in that it uses quantile regression in the factor estimation.

In our implementation, we follow GKP in using a single factor specification.15

At each forecast origin, consider the vector of variables Xw,t included in the BMF-SV specifi-

cation above, associated with week w. For each quantile τ , we follow the quantile regression-based

approach of GKP to obtain a time series of a scalar factor fτ ,w,t from the monthly and weekly

indicators of X̃w,t.
16 We then estimate the mixed frequency quantile regression

yt = Z ′w,tβτ ,w,Z + fτ ,w,tβτ ,w,f + ετ ,w,t (10)

and form the associated PQR nowcast for quantile τ with the resulting coefficient estimates.

3.6 Forecast averages

As indicated above, with some models (such as QR), we form forecasts by estimating specifications

with a single weekly or monthly indicator and then averaging across the smaller models’ projections.

We also consider some combinations of larger sets of forecasts as another approach to exploiting

large sets of information and models. Combination has been shown to be helpful to forecast accuracy

in a range of settings (see, e.g., the survey of Timmermann (2006)). In our implementation, partly

in light of the known difficulty of beating simple averages when the forecast set can be large, we

only consider simple averages. Note that each average uses only those forecasts of the indicated

type available over the evaluation sample being used. More forecasts are available for the shorter

samples than for the full 1985-2019 sample. Our average forecasts consist of the following, using

data sets defined in the next section:

• avg. all: simple average of all forecasts;

• avg. base M-F: simple average of all forecasts using the base M-F variable set;

• avg. base M-F + small weekly: simple average of all forecasts using the base M-F + small

weekly variable set;

15As an alternative to the PQR approach that targets the prediction of GDP growth, one might instead construct
quantile factors of economic and financial conditions as in Chen, Dolado, and Gonzalo (2019) and use those factors
to predict tail risk to GDP growth.

16In the first stage quantile regression used to obtain the factor, we include a constant, lagged GDP growth, and
one of the components of X̃w,t, on a one-at-a-time basis.
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• avg. base M-F + large weekly: simple average of all forecasts using the base M-F + large

weekly variable set;

• avg. BMF-SV: simple average of all forecasts from the BMF-SV specification;

• avg. BQR: simple average of all forecasts from the BQR specification; and

• avg. BQR-Lasso: simple average of all forecasts from the BQR-Lasso specification.

Among the averages that focus on a single model specification and average forecasts obtained with

different variable sets, we limit our attention to the few models that do not already include some

averaging of forecasts or data reduction via factors. Based on this rationale, we include an average

of BQR forecasts but exclude a similar average of QR forecasts, since the latter are obtained by

averaging across one-at-a-time models.

3.7 Indicators used

We report below results for a total of five different variable combinations, each (with some exceptions

noted below) applied with the BMF-SV, QR, QR-Lasso, BQR, BQR-Lasso, BMF-factor-SV, QR-

factor, BQR-factor, and PQR models or methods, along with some forecast averages.

• Our starting point is the base M (“M” for macro) set of six macroeconomic activity indicators

consisting of the small variable set of CCM plus initial claims for unemployment insurance.

In this case, we have six monthly variables (payroll employment, ISM manufacturing index,

industrial production, real retail sales, housing starts, and initial claims) and one weekly

variable (initial claims).

• We also consider a base M + NFCI set that adds to the base M variable set a single summary

indicator of financial conditions, the NFCI, available both monthly and weekly.

• Our third variable set — base M-F — adds to the base M variable set a set of monthly and

weekly financial indicators (“F” for financial) consisting of the NFCI, S&P 500 stock returns,

the Treasury term spread, and the Baa-Treasury credit spread.

• The variable set base M-F + small weekly adds to the base M-F variable set the small set

of weekly indicators (continuing claims for unemployment insurance, consumer comfort, steel

production, and electric utility output).
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• The variable set base M-F + large weekly adds to the base M-F variable set the large set of

weekly indicators (continuing claims for unemployment insurance, consumer comfort, steel

production, electric utility output, car loadings, fuel sales, and Redbook sales). Again, with

a short sample available, we only evaluate forecasts starting in 2007 and omit some models

or methods from consideration.

In results omitted in the interest of brevity, we also considered variants of the variable sets base

M-F + small weekly and base M-F + large weekly that omit the financial indicators. These results

indicate that adding weekly indicators of economic activity to the base M variable set does not

improve forecast accuracy. It is more helpful to add financial indicators (i.e., use the base M-F

variable set) than it is to add the small or large sets of weekly indicators.

In the results reported in this paper, for the most part we only include in the model values

of these variables for the current quarter t, the quarter for which GDP growth is being forecast.

Our rationale is primarily that, in the simpler monthly setup of CCM, we didn’t find any payoff

to longer lags. However, in most of our variable-model combinations, our general approach easily

allows the use of values from previous quarters (while this makes the models even larger, Bayesian

shrinkage helps limit the effects of parameter estimation error on forecast accuracy).

All model specifications include in the regressor set Xw,t a constant and one lag of GDP growth.

In most cases, this means the models include GDP growth in period t− 1. However, in the case of

models used to forecast in the first few weeks of the quarter, because the value of GDP growth in

period t− 1 is not actually available in real time, we include in the models GDP growth in period

t− 2. (This is consistent with our general direct multi-step treatment of the forecasting models.)

As noted above, depending on the week of the quarter that the forecast is being formed, ex-

actly which variables are in the forecasting models (that is, in Xw,t) varies, reflecting real-time

data availability and the usual publication schedules of the indicators. Table 2 details the model

specifications (and variable timing) we use, covering, for simplicity, just a few of our variable sets.

For each week indicated in the first column, the table has three rows of entries, with the first listing

the relevant base macro indicators, the second row covering the base finance indicators, and the

third listing the small weekly indicators included in the given week’s models. The variable sets

base M, base M-F, and base M-F + small weekly combine these predictors as indicated. Of the

other variable sets, models for the base M + NFCI set include the first row indicators plus the

NFCI indicators shown in the second row (for a given week). Models for the base M-F + large

weekly variable set include the first, second, and third row indicators plus three additional weekly
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indicators with the same specification shown for the variables in the third row.

We now offer some additional explanations of model details:

• The dependent variable of the model is GDP growth in quarter t. Subscripts of t+ 1, t, t− 1,

and t− 2 refer to the next, current, once lagged, and twice lagged quarters, respectively.

• Months and weeks within the quarter are indicated by superscripts containing m1, m2, m3 for

the first to third months of the quarter and containing w1, w2, . . ., w12 for weeks 1 through

12 of the quarter and w13 through w15 for the first few weeks of the next quarter. For a

given variable in a given week, the table shows in the superscripted notation which months

or weeks of the variable in question are available and included in the model. For example, in

week 9 of the quarter, we have available and included in the model employment data for the

first two months of the quarter and retail sales for just the first month of the quarter. The

table indicates this aspect of the specification with the week 9, row 1 entries of emp
(m1,m2)
t

and retail
(m1)
t .

• With the weekly indicators of unemployment claims and financial conditions, in light of their

overlap with monthly data, our models reflect some specific choices on the timing or selection

of which readings are included. For these variables, once a full month is available, we include

the full month average in the model and not weekly observations from that month. With

weekly observations that are included, we take an average across the weeks available for the

month and put that average in the model and not each week’s reading. For example, with

stock prices and spreads, at the end of the third week of a month, we have available readings

for weeks 1 through 3, and we enter the three-week average in the model. In the table, this is

denoted with a superscript showing w1 +w2 +w3. For instance, in the specification for week

10 using the base M-F variable set, the BMF-SV and BQR specifications include variables

for each of the month 1, month 2, and week 9 readings of the NFCI (indicated by the row 2

entry NFCI
(m1,m2,w9)
t ) and variables for each of the month 1, month 2, and weeks 9-10 average

reading of the term spread (indicated by SP
(m1,m2,w9+w10)
t ).

• With other weekly indicators of economic activity, in light of the underlying transformations

used to reduce their noise (52-week percent changes in most cases), we only include in the

model a single weekly reading that is the most recent available for the quarter. For example,

in the specification for week 10 including the small set of weekly economic activity indicators,

the predictors include the week 9 readings on consumer sentiment (the 4-week average), steel
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production (52-week percent change), and electric utility output (52-week percent change),

indicated by the table entries sment
(w9)
t , steel

(w9)
t , and util

(w9)
t .

Across variable sets and forecast origins, our forecasting models vary widely in size. In some

cases (base M, week 5), the model is relatively small, with six predictors. In many other cases,

the models have a healthy number of regressors without necessarily being large (e.g., the base

M-F model in week 7 has 17 predictors). In some settings, the model becomes quite large: the

base M-F + large weekly model peaks at 47 regressors (in week 15), large enough that, with the

short sample available for estimation and forecast evaluation, we omit results for specifications that

do not feature any variable reduction (BMF-SV, BQR, and BQR-Lasso). With models of these

medium to large sizes, under simple OLS or QR estimation, parameter estimation error may be

expected to have large adverse effects on forecast accuracy. Some results we have produced (most of

these in the appendix) bear this out: For example, QR models featuring large variable sets together

(rather than on a one-at-a-time basis) fare poorly in out-of-sample forecast accuracy. Our Bayesian

approaches to estimation incorporate shrinkage to help limit the effects of parameter estimation

error on forecast accuracy, as can some of the other dimension reduction approaches we consider.

4 Forecast Metrics

In assessing the efficacy of the models described in the previous section, we consider a range of

forecast metrics, with a focus on the 5 percent tail. Note that the tail quantile forecast corresponds

to the value at risk (VaR) forecast, and Adrian, et al. (2018) coined the term “growth at risk” for

the 5 percent quantile of GDP growth forecasts (De Nicolo and Lucchetta (2017) coined similar

terms for industrial production and employment). We have verified that our main results on lower

tail forecasts (QS, FZG score, and coverage, detailed below) are robust to using 10 percent and 15

percent quantiles in lieu of the baseline 5 percent quantile; the appendix provides 10 percent and

15 percent quantile results. We also provide some comparisons that include an upper quantile of

95 percent.

In some limited results, to establish some patterns with different information sets using a familiar

metric, we refer to point forecasts. In the assessment of point forecasts, we define them as the mean

of the predictive distributions for the BMF-SV and related models and the prediction obtained at

the quantile τ = 0.5 for the quantile-based regression models. We evaluate the point forecasts with

the root mean squared error (RMSE).

To assess the efficacy of the models in quantifying tail risks, for all models or methods we
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consider two basic measures of the accuracy of the lower tail quantile estimate. For the BMF-SV

and related models, the quantile is simply estimated as the associated percentile of the simulated

predictive distribution. For the quantile regression and related models, we use the prediction

obtained from the quantile regression at the quantiles τ = 0.05 and 0.10. Applied to these quantile

estimates, the first accuracy measure is the quantile score, commonly associated with the tick loss

function (see, e.g., Giacomini and Komunjer (2005)). The quantile score (QS) is computed as

QSt = (yt −Qτ ,t)(τ − 1(yt<=Qτ,t)), (11)

where yt is the actual outcome for GDP growth, Qτ ,t is the forecast quantile at quantile τ = 0.05

or 0.10, and the indicator function 1(yt<=Qτ,t) has a value of 1 if the outcome is at or below the

forecast quantile and 0 otherwise. Although much of the recent literature has not included formal

statistical evaluations of quantile accuracy, Manzan (2015) relied on the quantile score. The second

accuracy measure is a simple coverage measure for the interval forecast: the percentage of outcomes

falling below the 5 and 10 percent quantiles of the forecast distribution.

For some models, we consider another measure of the accuracy of lower tail nowcasts. Concep-

tually, VaR has a number of disadvantages, and in research and practice (e.g., Basel standards on

financial risk management), some prefer to focus on expected shortfall (ES). In our context, at the

5 percent level, ES is a measure of the average growth rate that would be observed if growth were in

that tail of the distribution. However, as explained in Fissler and Ziegel (2016), expected shortfall

by itself is not an elicitable risk measure (i.e., the correct forecast need not be the unique minimizer

of the loss function). Instead, VaR and ES can be jointly elicited.17 Accordingly, in some cases

we report results for evaluating shortfall nowcasts using the joint value at risk-expected shortfall

(VaR-ES) score from Fissler, Ziegel, and Gneiting (2015). The joint VaR-ES score is computed as

St = Qτ ,t · (1(yt<=Qτ,t) − τ)− yt · 1(yt<=Qτ,t) (12)

+
eESτ,t

1 + eESτ,t

(
ESτ ,t −Qτ ,t + τ−1 (Qτ ,t − yt) 1(yt<=Qτ,t)

)
+ ln

2

1 + eESτ,t
,

where τ = 0.05 and ESτ ,t denotes the expected shortfall nowcast at quantile τ .

Out of consideration of computational simplicity and performance in the simpler QS results,

we only report VaR-ES scores for the BMF-SV and related models, as well as the base M: QR

specification we will take as a baseline. With the BMF-SV and related specifications, it is easy

to estimate — using draws of the posterior forecast distribution — the expected shortfall as the

17See Taylor (2019) for another application using the Fissler, Ziegel, and Gneiting (2015) score and a useful
discussion of challenges in evaluating shortfall by itself.
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mean of forecast draws in the 5 percent tail of the predictive distributions. In contrast, for the

methods relying on quantile regression, obtaining a shortfall estimate would involve a second-

step estimation of a predictive distribution from different quantile estimates (see, e.g., the second

step used in Adrian, Boyarchenko, and Giannone (2019)). In light of the considerable number of

forecasts we examine and the performance of quantile regression-based methods vis-a-vis BMF-SV

specifications, we only make these computations for the QR specification estimates with the base

M variable set and otherwise omit these QR-based approaches from our VaR-ES score results.

To gauge statistical significance, we estimate Diebold and Mariano (1995)–West (1996) t-tests

for equality of the average loss (with loss defined as squared error, quantile score, or VaR-ES

score). We also compute t-tests for the empirical coverage rate equaling the nominal rate of 5

or 10 percent. In the tables, differences in accuracy or departures from nominal coverage that

are statistically different from zero are denoted by one, two, or three asterisks, corresponding to

significance levels of 10 percent, 5 percent, and 1 percent, respectively. The underlying p-values

are based on t-statistics computed with a serial correlation-robust variance, using the pre-whitened

quadratic spectral estimator of Andrews and Monahan (1992). For the equal MSE, QS, and VaR-

ES score tests, we conduct them on a one-sided basis, such that the alternative hypothesis is that

the indicated forecast is more accurate than the benchmark.

5 Empirical Results

This section presents our results on the accuracy of out-of-sample nowcasts of GDP growth. Again,

with the tail risk results presented herein, we focus on the 5 percent quantile; our general results

also apply to the 10 percent and 15 percent quantiles, and the appendix reports these estimates. In

light of the interest in tail risks and recent events, we also report some forecast accuracy results for

just the periods of NBER-dated recessions (using their quarterly dating, in line with our forecasting

of quarterly GDP growth). These results address forecast accuracy conditional on being in a state

of recession (taking as given the ex post dating by the NBER). In these results, though, in light

of the small samples of observations occurring in recessions, we abstract from tests of statistical

significance. The section concludes with recent examples of nowcasts, using 2020:Q1 nowcasts

produced with data as of late April 2020 and 2020:Q2 nowcasts produced with data as of late July

2020.

Although our focus is on conventional out-of-sample forecasts, we have produced and examined
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results on in-sample forecasts, and some of the results are in the appendix.18 Our rationale for

considering — only briefly here in the text — in-sample results is that, with some of the weekly

indicators having data starting only in the 1990s, only a short out-of-sample evaluation period is

possible, which makes it more difficult to establish meaningful differences in accuracy. In addition,

for assessing tail risks, the most relevant periods are probably recessions, and these only occur

periodically (roughly once every 10 years since the early 1980s). The in-sample evidence yields

the following broad results. First, using the full sample of data and model fit measured by the

marginal likelihood of the BMF-SV specification, model fit typically improves with additional data

— both more observations on the quarter as the weekly origin moves forward and more indicators

in a larger variable set compared to a smaller. Second, in-sample prediction accuracy also typically

improves with the addition of more variables. Third, the gap between in-sample and out-of-sample

performance can be wide, particularly with large models estimated without some form of shrinkage.

In forecast accuracy, some models perform relatively much better on an in-sample basis than on an

out-of-sample basis. our benchmark model is much more readily beaten in in-sample predictions

than in real-time out-of-sample nowcasts. On an in-sample basis, quantile regression and can be

estimated with full sets of predictors rather than one predictor at a time and yield predictions of high

accuracy. But in the shorter estimation samples of out-of-sample forecast comparisons, parameter

estimates can become highly variable over time and make these methods much less accurate. (And

it is for that reason that, in the out-of-sample results we present below, we estimate these models

with one indicator at a time and average the resulting nowcasts.)

5.1 Out-of-sample nowcast accuracy

As a starting point, we assess how increasing the basic information set over the weeks of the

quarter affects forecast accuracy. Due to the familiarity of point forecast accuracy, for comparison

we include RMSE measures of point forecasts along with measures of tail risk forecast accuracy.

Figure 1 reports RMSEs, 5 percent quantile scores, and 5 percent VaR-ES scores from the BMF-

SV model estimated with the base M variable set, for samples of 1985:Q1-2019:Q3 (upper panel)

and 2000:Q1-2019:Q3 (lower panel). To facilitate comparisons, for each measure we normalize the

accuracy in a given week by the accuracy in week 1, so that in week 1 the observation is equal to 1.0.

For the 1985:Q1-2019:Q3 sample, both RMSE and 5 percent QS fairly steadily improve by the week;

additional information on the quarter materially improves the accuracy of both point and tail risk

18We compute in-sample forecast results just as we do for the out-of-sample case, with the differences that the
parameter estimates used are obtained for the full sample rather than a recursive window, and we abstract from
real-time data in the in-sample results.
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forecasts. From week 1 to week 15, the RMSE and QS for the model improve by 25 to 30 percent.

That said, even at week 15, shortly before the initial estimate of GDP is released, the forecast

uncertainty is considerable, with the level of the RMSE at 1.44 (not shown). The VaR-ES score

also improves considerably as more information becomes available by the week, but not uniformly:

By this measure, tail forecast accuracy improves substantially from week 1 through about week

9 and then levels off or even deteriorates some. For the shorter sample of 2000:Q1-2019:Q3, the

patterns are largely the same.

To compare real-time accuracy across models and variable sets, Figures 2 and 3 and Table

3 provide QS and coverage results using the variable sets available for the forecast evaluation

sample of 1985:Q1 through 2019:Q3. To facilitate comparisons of quantile score accuracy, we use

quantile regression with the base M set of indicators as the benchmark specification and for other

specifications report results relative to this benchmark. In tail risk forecast accuracy as measured by

the QS, the benchmark base M: QR specification is easily beaten by a number of other specifications

(the appendix provides RMSE results for point forecasts in which the same is true). Using just

the base M variable set, a few of the other models or methods considered — including QR-Lasso,

BQR, and BMF-SV — consistently and significantly improve the QS. For example, with the base

M variable set, the BMF-SV specification yields scores as much as 35 percent better than the QR

benchmark. For most models, extending the variable set to include the NFCI slightly to modestly

improves tail forecast accuracy. Further extending the variable set to the base M-F set does

not yield much further improvement in accuracy relative to the base M + NFCI set (although QR

performance is better with just the NFCI than the full set of financial indicators added), but it does

not harm accuracy, either. With the base M-F variable set, almost all of the models significantly

improve on the accuracy of the base M: QR baseline, with the better-performing choices (such as

BMF-SV) lowering the QS by 30 to 40 percent across weeks. In general, then, the results indicate

that, along some dimensions, tail risk forecast accuracy improves with more data — both with the

addition of more timely indicators across weeks (with the benchmark scores falling across weeks, as

noted above and reported in the top row of the table) and with the addition of financial variables

to the base M variable set.

Considering alternative models for nowcasting tail risks with potentially large variable sets, the

QR method stands out for not faring very well. Quantile regression approaches that make use of

shrinkage or dimension reduction through factors fare better. As summarized visually in Figure 2,

with the base M-F variable set, BMF-SV, BQR, and PQR all perform similarly (and BQR-factor
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does too, although with a little more variability across weeks), as does the BMF-factor-SV approach

covered in Table 3 but not in the figure. These better approaches materially improve on the base M:

QR results. Bayesian shrinkage and dimension reduction through factors both seem helpful to tail

risk forecasting. The alternative shrinkage approach of combining forecasts — either averaging all

available or averaging all of those using the base M-F variable set — can achieve comparable gains

in accuracy of tail risk forecasts. Despite potentially small samples of tail outcomes (for example,

with a total of 139 observations in the 1985-2019 evaluation sample, only about 7 should fall in

the 5 percent tail of focus), a number of these approaches improve significantly on the quantile

regression baseline, and as noted above, we obtain similar results at quantiles of 10 percent and 15

percent.

Regarding the empirical coverage of the 5 percent quantile forecast, the only specifications that

consistently (across weeks and variable sets) deliver accurate coverage are those with stochastic

volatility, the BMF-SV and BMF-factor-SV models. As a quick summary of this evidence, consider

the asterisks reported in the lower panel of Table 3. Hardly any appear for these model specifica-

tions. Other models or methods are more challenged to yield accurate coverage in the 5 percent tail,

most typically with coverage rates that are too low, reflecting a quantile estimate that is too low.

For example, coverage rates with QR are too low with each variable set considered for the 1985:Q1

through 2019:Q sample. Coverage is also routinely too low with the base M-F: PQR specification.

With the base M-F variable set, some other methods yield accurate coverage: these include the

QR-factor and BQR-factor specifications (as well as QR-Lasso, to a lesser extent).

Figure 4 and Tables 4 and 5 provide QS and coverage results using the variable sets available

for the forecast evaluation sample of 2000:Q1 through 2019:Q3. With the shorter sample, we are

able to include comparisons to nowcasts that make use of an additional variable set — base M-F

+ small weekly. The patterns in results are similar to those for the full sample. With just the

base M variable set, a few models — including QR-Lasso, BQR, and BMF-SV — significantly

improve on the quantile score accuracy of the baseline model. Relative to the benchmark variable

set and model (base M: QR), adding financial indicators to the base variable set yields significant

gains in accuracy as measured by the quantile score. For example, for many weeks, the QS for

the base M-F: BMV-SV specification is roughly 25-30 percent lower than the benchmark. With

financial indicators in the models, adding the small set of weekly indicators doesn’t much help or

harm accuracy: For the better performing approaches, QS ratios are broadly similar across the

base M-F and base M-F + small weekly variable sets. Focusing on alternative models or methods,
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it remains the case that QR does not perform well. Several approaches, including BQR, BQR-

factor, PQR, and BMF-SV, perform comparably, once again indicating that Bayesian shrinkage

and dimension reduction through factors can be helpful to tail risk forecasting. The alternative

approach of combining forecasts — averaging all forecasts, averaging just the base M-F forecasts,

and averaging the base M-F + small weekly forecasts — achieves comparable gains.

With the shorter sample of 2000:Q1-2019:Q3, empirical coverage rates are modestly better, in

the sense that fewer forecasts have coverage rates significantly different from 5 percent. For some

forecast methods, such as BQR, the 5 percent quantile forecast is systematically low in the 1985-

2000 period and not as low relative to the data in the remainder of the sample (see Figure 7).

The bands for the 5 percent and 95 percent quantiles are noticeably narrower early in the sample

with the BMF-SV specification (see Figure 6); the coverage challenges of other models may be due

to the treatment of innovation variances as constant, when in fact volatility fell sharply with the

Great Moderation of the mid-1980s.

Figure 5 and Table 6 provide QS results using the variable sets available for the forecast evalu-

ation sample of 2007:Q1 through 2019:Q3. This sample allows us to make use of the large weekly

variable set (but due to the short data sample available for model estimation in the early years of

the evaluation period, we omit results for the shrinkage-based approaches that allow all available

indicators to enter the model). However, the short evaluation sample makes it more difficult to

achieve statistical significance in accuracy differences. The broad patterns in tail forecast accuracy

over this sample are quite similar to those over longer samples. Again, tail forecast accuracy gener-

ally improves as additional observations on the quarter become available across weeks. In addition,

extending the base M variable set to include financial indicators improves accuracy. With financial

indicators in the model, adding weekly activity indicators does not harm accuracy (however, this

is more clearly the case for the small weekly set than for the large weekly set). As to model or

approach choice, it remains the case that QR does not fare well; Bayesian shrinkage or variable

reduction typically yields more accurate forecasts. Over this shorter sample, some of the forecast

averages — such as averaging all forecasts or averaging the base M-F or base M-F + small weekly

projections — may be seen as having advantages of consistency and relative accuracy.

As another assessment of the accuracy of tail risk forecasts, Table 7 reports VaR-ES scores from

the BMF-SV and BMF-factor-SV specifications, relative to the benchmark base M: QR specifica-

tion, for each evaluation sample (as noted above, we consider just these models in part because the

expected shortfall can easily be computed from the posterior sampler). The top row of each panel
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shows that, as additional information becomes available across weeks of the quarter, the quantile

and shortfall forecasts improve and the VaR-ES scores fall. With the base M variable set, a number

of the specifications with stochastic volatility significantly improve (more readily in the 1985-2019

and 2000-2019 samples than the 2007-2019 sample) on the score accuracy of the QR benchmark.

However, in contrast to the QS results, changing the variable set to include more indicators does

not consistently improve the tail risk forecasts. Consider, for example, results with the BMF-SV

model. Over the 1985:Q1-2019:Q3 sample (top panel), adding the NFCI or the full set of financial

indicators to the base M variable set doesn’t add much to the forecast gains achieved by the model

with the base M variable set. Overall, by this measure of tail risk accuracy, adding information

with the weekly flow of information helps, but there isn’t much evidence that adding other variables

does the same.

In light of the interest in downside tail risks and the interest in quickly detecting the extent

of the downturn following the recent outbreak of the pandemic, we now consider the accuracy of

tail risk forecasts during past NBER recessions.19 To be clear, these quantile scores are not any

different from the quantile scores for the 5 percent quantile forecasts. Rather, we are just computing

their averages in the subset of quarters that fall in recessions rather than for the full sample. It is

in these quarters that we might expect GDP growth to be close to or below its 5 percent quantile

forecast, although growth may be close to or below its tail quantile even in periods of expansions.

Table 8 provides QS and selected VaR-ES score (5 percent) results for 1985:Q1-2019:Q3, the longest

sample available among our variable sets, in order to maximize the coverage of recessions. Still,

the sample only contains three recessions and a total of 11 quarterly observations of GDP growth,

which likely factors into some of the considerable variation across models and weeks evident in

the results. The top rows of the table’s two panels show that, with recessions, as with the full

sample, nowcast accuracy improves substantially as more information becomes available across the

weeks of the quarter. For the most part, using the larger set of base M-F variables improves on the

forecasts of the base M variable set, but not always. For example, the QS and VaR-ES scores are

lower in the base M-F: BMF-SV estimates than in the base M: BMF-SV estimates. But to take a

contrary example, for some weeks early in the quarter, before many monthly observations on the

quarter are available, the QS scores are lower for base M: QR than for base M-F: QR. A number

of models or approaches perform fairly well, including the shrinkage-based BMF-SV specification,

the factor-based QR-factor, BQR-factor, and PQR approaches, and some of the forecast averages,

particularly the average across all base M-F forecasts.

19We define the periods of recessions using the NBER’s quarterly dating of business cycle peaks and troughs.
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To help shed some light on the patterns documented above, we conclude our evidence with a

few examples of the historical time series of forecasts. We first show in Figures 6, 7, and 8 forecasts

from the BMF-SV, BQR, and PQR specifications estimated with the base M-F variable set. These

charts include the point, 5 percent quantile, and 95 percent quantile forecasts produced at a set of

selected forecast origins within the quarter, along with the actual GDP growth outcome. Figure

9 shows just 5 percent quantile forecasts, at weeks 7, 11, and 15, for a slightly wider array of

specifications. Figure 10 reports 5 percent expected shortfall forecasts for BMF-SV specifications

with different variable sets.

As indicated in Figure 6, with the BMF-SV model and the base M-F variable set, the 5 percent

and 95 percent forecast quantiles tend to move together. In nowcasting, with conditioning on

some information for the quarter being forecast, we don’t seem to obtain the asymmetric moves

in quantiles (with the downside moving down more than the upside does, around the times of

recessions) evident in the 1-quarter-ahead and 4-quarter-ahead results of Carriero, Clark, and

Marcellino (2020). Consistent with the results already documented, the visual evidence suggests

that the point forecasts get a little more accurate as more data become available across the weeks

of the quarter, especially during recessions. In addition, during recessions, the 5 percent forecast

quantile declines with more weeks of data becoming available in the quarter, as does the 95 percent

quantile. In weeks of the first half of the quarter, the tail forecast ends up being close to actual

GDP growth in downturns, but in later weeks, the outcome is not as bad as the 5 percent quantile

forecast.

As evident from Figures 7 and 8, with the BQR and PQR specifications, as with the BMF-SV

model, with some conditioning on information within the quarter for nowcasting, there doesn’t

appear to be much asymmetry in movements of downside tail risks as compared to upside risks —

notwithstanding the use of quantile regression-based methods. Early in the sample, the BQR and

PQR bands are quite wide, consistent with the coverage issues noted above; the narrower bands

produced by the BMF-SV specification reflect its incorporation of time-varying volatility and the

influences of the Great Moderation. The tendency of the PQR model estimated with the base M-F

variable set to produce wide bands persists into the later portion of the sample.

Figure 9’s selected comparisons make clear that the addition of data across weeks of the quarter

can produce sizable changes in tail quantile forecasts. With the information available as of week 7

of the quarter, the base M-F: BMF-SV and base M-F: PQR nowcasts move together fairly closely

in the early years of the sample (top panel). However, their comovement in the early years of the
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sample (before the 1990-1991 recession) is noticeably weaker with information as of week 11 of

the quarter (middle panel). The figure also indicates that — for the estimates reported — the 5

percent quantile forecasts become more similar in the 1990-1991 and 2007-2009 recessions than in

other periods, including the shallower recession of 2001 and periods of economic expansions. This

pattern, though, does not appear to be a general pattern in the wider array of our nowcasts. We

have checked the dispersion of nowcasts across the models and variable sets considered, and by this

broader quantification the dispersion of 5 percent quantile nowcasts tends to go up rather than

down during recessions.

The expected shortfall forecasts in Figure 10 display more similarity to one another than do

the quantile forecasts, but that is partly because the shortfall estimates are all based on BMF-SV

specifications. In recessions, the shortfall estimates tend to become more negative as additional

weeks of data become available. The shortfall nowcasts are similar over time for the base M, base M

+ NFCI, and base M-F variable sets; from the late 1990s until the mid-2000s, estimates using the

base M-F + small weekly variable set can differ notably from the other estimates, but then become

more similar. Some of the differential could have to do with the shorter time sample available for

estimation with the base M-F + small weekly variable set compared to the others.

5.2 Current example: Forecasts for 2020:Q1 and 2020:Q2

We conclude our analysis with real-time examples of nowcasting tail risks to GDP growth in the

early stages of a pandemic-driven recession in the US. In particular, with selected variable sets and

models, we report forecasts for growth in 2020:Q1 produced across the weeks of the quarter using

data available in late April 2020 (about the time a first draft of this paper was prepared), which is

weeks 1 through 15 in our setup.20 Note that, shortly after the 2020:Q1 forecasts were produced,

the Bureau of Economic Analysis published the first estimate of GDP in 2020:Q1, and that outcome

(as an annualized log growth rate) was -4.9 percent, subsequently revised to -5.2 percent in the

second estimate. We also report forecasts for growth in 2020:Q2 produced across the weeks of the

quarter using data available in late July 2020 (at the time we began to prepare a third draft of

this paper), spanning weeks 1 through 15 in our setup. Shortly after the 2020:Q2 forecasts were

produced, the Bureau of Economic Analysis published the first estimate of GDP in 2020:Q2, and

that outcome (as an annualized log growth rate) was -39.9 percent.

20In the 2020:Q1 exercise, for simplicity we use the third estimate of GDP growth in 2019:Q4 and the current
vintage time series of monthly and weekly indicators available in late April and abstract from updates of preliminary
data that occurred over the course of 2020:Q1. In the 2020:Q2 exercise, we use the third estimate of GDP growth
in 2020:Q1 and the current vintage time series of monthly and weekly indicators available in late July and abstract
from updates of preliminary data that occurred over the course of 2020:Q2.
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To limit the volume of results, we use just a few variable sets and models, selected on the basis

of our assessment of the more successful historical approaches. In particular, we report results for

the BMF-SV, BQR, and PQR models estimated with the base M-F, base M-F + small weekly, and

base M-F + large weekly variable sets.

As indicated in the nowcasts in the left column of Figure 11, early in 2020:Q1, before the

pandemic spread and shutdowns began (in mid- to late March in most of the US), almost all of

the BMF-SV, BQR, and PQR nowcasts of the 5 percent quantile were above 0. For example, in

week 9, the reported nowcasts ranged from 0.2 percent to 1.5 percent. It was around week 8 that

stock prices started to register a falloff in response to global news on the pandemic’s outbreak. It

took a little more time for indicators of economic activity to reflect the shutdown. The nowcasts

suddenly turned sharply negative in week 13, and most, although not all, turned more negative in

week 14. Except for the base M-F: BQR specification, all of the week 14 nowcasts of the 5 percent

quantile are below the second estimate of actual GDP growth in the quarter. For 2020:Q2, the 5

percent quantile nowcasts were sharply negative from the beginning (weeks overlapping with the

last couple of weeks of nowcasts for 2020:Q1), with the week 1 projections ranging from -7.3 percent

to -19.2 percent. The nowcasts turned sharply more negative in week 5, with the availability of the

first monthly economic indicators on the second quarter; over the ensuing few weeks, some of the

nowcasts deteriorated further and others remained broadly stable, before some became modestly

less negative over the last several weeks. At the last weekly forecast origin, all but one of the

nowcasts projected a historic tail risk to GDP growth, with a decline of at least 20 percent. As to

patterns across models and variable sets, the nowcasts are relatively similar with the base M-F +

small weekly and base M-F + large weekly variable sets; for a given model, these nowcasts are more

similar to one another than to the nowcast obtained with just the base M-F variable set. Although

differences across models can be sizable, the nowcasts paint a broadly similar picture of the risks

to GDP growth in these quarters. Given a variable set, the nowcasts from the BMF-SV and PQR

models tend to be more similar to one another than to the nowcasts from the BQR specification

(albeit more so for 2020:Q2 than 2020:Q1). Our takeaway from this illustration is similar to that of

our historical forecast evaluation: additional information on the quarter as time moves forward in

the quarter bears importantly on nowcasts and their accuracy, and with sizable differences across

models possible, it is likely helpful in practice to consider a range of forecasts.
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6 Conclusions

This paper focuses on nowcasts of tail risk to GDP growth, with a potentially wide array of monthly

and weekly information. We consider different models (Bayesian mixed frequency regressions with

stochastic volatility, as well as classical and Bayesian quantile regressions) and also different meth-

ods for data reduction (either forecasts from models that incorporate data reduction through factors

or the combination of forecasts from smaller models).

Our results show that, within some limits, more information helps the accuracy of tail risk

forecasts. Tail forecast accuracy generally improves as additional observations on the quarter

become available across weeks, with monthly indicators more important than weekly indicators. In

addition, extending the base macro variable set to include financial indicators improves accuracy.

Adding just the small weekly or large weekly indicators to the base macro variable set does not help

accuracy, but as long as financial indicators are in the model, adding weekly activity indicators does

not harm accuracy. As to model or approach choice, our regression with stochastic volatility and

our Bayesian quantile regression perform reasonably consistently, offering solid gains in forecast

accuracy (relative to a baseline quantile regression model with just a small set of macro indicators),

with benefits maximized when financial indicators are included in the model. Some factor reduction

methods, such as partial quantile regression, and forecast averaging also improve accuracy with some

consistency. Simple quantile regression is consistently less accurate than the benchmark nowcast.

To conclude, based on the many results already presented, what would we recommend for

tail risk nowcasts? Our starting points would be the mixed frequency regression with stochastic

volatility, Bayesian quantile regression, and partial quantile regression, applied to our baseline set

of macroeconomic and financial indicators. As a practical matter, we would also consider forecasts

from these same specifications but adding our small and large sets of weekly economic indicators,

as well as averages of a broader set of nowcasts.
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A Appendix

This appendix provides information on the Bayesian priors and algorithms used with some of our

models.

A.1 Priors for models estimated with Bayesian methods

In the case of the BMF-SV, BQR, and BQR-Lasso models, Bayesian estimation methods necessitate

priors. For the BMF-SV models with stochastic volatility (the same approach is used for the BMF-

factor-SV models), we use independent priors for the coefficients (normal distribution) and volatility

components (details below). Since the form of the prior is not dependent on m, in spelling out

the prior we drop the index m from the model parameters for notational simplicity. For the BQR

specifications, we use an independent Normal-Gamma prior, with a normal distribution for the

regression coefficients and a Gamma distribution for the scale parameter (following Khare and

Hobert (2012)). The BQR-Lasso specification has many similarities to the BQR case, but with a

hierarchical structure and a Laplace (rather than Normal) prior on the regression coefficients, with

independence across coefficients.

With BMF-SV and BQR specifications, the normal priors on the coefficient vector β have mean

0 (for all coefficients) and variance that takes a diagonal, Minnesota-style form. The prior variance

is Minnesota style in the sense that shrinkage increases with the lag (with the quarter, not with

the month within the quarter), and in the sense that we take account of the relative scales of

variables. The shrinkage is controlled by three hyperparameters (in all cases, a smaller number

means more shrinkage): λ1, which controls the overall rate of shrinkage; λ2, which controls the

rate of shrinkage on variables other than lags of the dependent variable; and λ3, which determines

the rate of shrinkage associated with longer lags of GDP growth (it is not applied with monthly

variables).

At each forecast origin, the prior standard deviation associated with the coefficient on the

monthly or weekly variable Xw,j,t of Xw,t is specified as follows:

sdj,t = λ1λ2
σGDP
σj

. (13)

For coefficients on lag l of GDP, the prior standard deviation is

sdl =
λ1

lλ3
. (14)

Finally, for the intercept, the prior is uninformative:

sdint = 1000σGDP . (15)
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In setting these components of the prior, for σGDP and σj we use standard deviations from AR(4)

models for GDP growth and Xw,j,t estimated with the available sample of data as of the forecast

origin. In all of our results, we follow CCM and fix the hyperparameters at values that may be

considered very common in Minnesota-type priors and forecasting: λ1 = 0.2, λ2 = 0.2, and λ3 = 1.

In the prior for the volatility-related components of the model, our approach is similar to that

used in such studies as Clark (2011), Cogley and Sargent (2005), and Primiceri (2005). For the

prior on φ, we use a mean of 0.035 and 5 degrees of freedom. For the period 0 value of volatility,

we use a prior of

µ
λ

= log λ̂0,OLS , Ωλ = 4. (16)

To obtain log λ̂0,OLS , we use a training sample of 40 observations preceding the estimation sample

to fit an AR(4) model to GDP growth.

For the scale parameter στ ,w of the BQR and BQR-Lasso models, we use an inverse Gamma

prior with 5 degrees of freedom and, for simplicity, with the mean set at the standard deviation of

the residuals from regressing GDP growth on the variables of the model over the sample. In the

Gamma prior on the parameter η2 that governs the regularization rate of the BQR-Lasso model,

we set the scale parameter at 2 and set the shape parameter to make the prior mean equal 5.

A.2 Estimation algorithms

We estimate the BMF-SV models with a Metropolis-within-Gibbs algorithm, used in such studies

as Clark (2011) and CCM. The posterior mean and variance of the coefficient vector are given by

µ̄β = Ω̄β

{
T∑
t=1

λ−1
t Xw,tyt + Ω−1

β µ
β

}
(17)

Ω̄−1
β = Ω−1

β +

T∑
t=1

λ−1
t Xw,tX

′
w,t, (18)

where we again omit the w index from the parameters for notational simplicity. For the BMF-SV

model and its variants, we obtain forecasts from the posterior predictive distribution. The point

forecast is the posterior mean forecast, and we compute the quantiles of interest from the quantiles

of forecast draws.

We estimate the Bayesian quantile regression with the three-step Gibbs sampling approach

of Khare and Hobert (2012). The first step samples the mixture state time series z from an

inverse Gaussian distribution. The second draws the scale parameter στ ,w from its inverse Gamma

conditional posterior. In the third step, the regression parameter vector βτ ,w is drawn from its
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Normal conditional posterior, with posterior mean and variance that can be expressed in the same

basic form indicated above for the BMF-SV case.

Finally, we estimate BQR-Lasso models with the Gibbs sampler of Li, Xi, and Lin (2010), which

shares a number of the aspects of the BQR algorithm. The first step samples the mixture state

time series z from an inverse Gaussian distribution. The second draws variance scale parameters

(denoted sk for each parameter k in the notation of Li, Xi, and Lin (2010)) associated with each

regression coefficient from an inverse Gaussian distribution. In the third step, each individual

element of the regression parameter vector βτ ,w is drawn from its Normal conditional posterior,

with posterior mean and variance of the same basic form as that of the BMF-SV and BQR cases.

The fourth step draws the scale parameter στ ,w from its inverse Gamma conditional posterior, and

the fifth draws from a Gamma distribution the parameter η2 that governs the Lasso regularization

rate.

The last aspect of estimation to mention is that our forecasts are produced by estimating the

forecasting models with a recursive scheme: the estimation sample expands as forecasting moves

forward in time. A rolling scheme, under which the size of the estimation sample remains fixed over

time but the first observation moves forward in time, is in general less efficient but can be more

robust in the presence of changes in regression parameters and (for density-related forecasts) error

variances. However, in the nowcast (point and density) comparisons of CCM, recursive scheme

forecasts were more accurate than rolling scheme forecasts.
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Table 1: Variables used

indicator mnemonic frequency release
(transformation) week

real GDP GDP (400∆ ln) quarterly 4
payroll employment emp (∆ ln) monthly 1
ISM purchasing managers index, manufacturing ISM monthly 1
retail sales (nominal/CPI) retail (∆ ln) monthly 2
industrial production IP (∆ ln) monthly 3
housing starts starts (ln) monthly 3
initial claims for unemployment insurance claims weekly, monthly 2
continuing claims for unemployment insurance cclaims weekly, monthly 2
Chicago Fed index of financial conditions NFCI weekly, monthly 2
S&P index of stock prices SP (∆ ln) weekly, monthly 1
term spread: 10-year less 1-year Treasury rates TS weekly, monthly 1
credit spread: Moody’s Baa yield less 10-year Treasury CS weekly, monthly 1
Bloomberg index of consumer comfort sment weekly 2
raw steel production steel (∆ ln, 52 week) weekly 2
electric utility output util (∆ ln, 52 week) weekly 2
loadings of railroad cars loads (∆ ln, 52 week) weekly 2
fuel sales fuel (∆ ln, 52 week) weekly 2
Redbook same-store retail sales rbook (%∆, 52 week) weekly 2

Notes: The first column lists the variables included in our models. The second column gives the indicator names
used, along with any transformations made of the data. Note that because Redbook sales are reported as a 52-week
percent change, for this indicator we used the simple percent change rather than the log growth rate applied to other
trending variables. The third column indicates the frequency of the underlying data available and used. The final
column gives the week in which each indicator is commonly reported and which determines which variables enter our
models at each forecast origin (our dating is based on end-of-week availability). As examples, GDP for quarter t−1 is
typically reported in the last (fourth) week of month 1 of quarter t, employment for month t−1 is normally published
in week 1 of month t, the NFCI for week t− 1 is reported in week t, and Treasury yields and stock prices for week t
are published in (at the end of) week t.
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Table 2: Specifications of BMF models of GDP growth

week of qrtr. variables (in addition to constant)
(forecast origin)

1 (qrtr. t) GDPt−2, emp
(m1,m2,m3)
t−1 , ISM

(m1,m2,m3)
t−1 , retail

(m1,m2)
t−1 , IP

(m1,m2)
t−1 , starts

(m1,m2)
t−1 , claims

(m1,m2,m3)
t−1

NFCI
(m1,m2,m3)
t−1 , SP

(m1,m2,m3)
t−1 , TS

(m1,m2,m3)
t−1 , CS

(m1,m2,m3)
t−1 , SP

(w1)
t , TS

(w1)
t , CS

(w1)
t

cclaims
(m1,m2,m3)
t−1

2 (qrtr. t) GDPt−2, emp
(m1,m2,m3)
t−1 , ISM

(m1,m2,m3)
t−1 , retail

(m1,m2,m3)
t−1 , IP

(m1,m2)
t−1 , starts

(m1,m2)
t−1 , claims

(m1,m2,m3)
t−1 , claims

(w1)
t

NFCI
(m1,m2,m3)
t−1 , SP

(m1,m2,m3)
t−1 , TS

(m1,m2,m3)
t−1 , CS

(m1,m2,m3)
t−1 , NFCI

(w1)
t , SP

(w1+w2)
t , TS

(w1+w2)
t , CS

(w1+w2)
t

cclaims
(m1,m2,m3)
t−1 , cclaims

(w1)
t , sment

(w1)
t , steel

(w1)
t , util

(w1)
t

3 (qrtr. t) GDPt−2, emp
(m1,m2,m3)
t−1 , ISM

(m1,m2,m3)
t−1 , retail

(m1,m2,m3)
t−1 , IP

(m1,m2,m3)
t−1 , starts

(m1,m2,m3)
t−1 , claims

(w1+w2)
t

NFCI
(w1+w2)
t , SP

(w1+w2+w3)
t , TS

(w1+w2+w3)
t , CS

(w1+w2+w3)
t

cclaims
(w1+w2)
t , sment

(w2)
t , steel

(w2)
t , util

(w2)
t

4 (qrtr. t) GDPt−1, emp
(m1,m2,m3)
t−1 , ISM

(m1,m2,m3)
t−1 , retail

(m1,m2,m3)
t−1 , IP

(m1,m2,m3)
t−1 , starts

(m1,m2,m3)
t−1 , claims

(w1+w2+w3)
t

NFCI
(w1+w2+w3)
t , SP

(w1+w2+w3+w4)
t , TS

(w1+w2+w3+w4)
t , CS

(w1+w2+w3+w4)
t

cclaims
(w1+w2+w3)
t , sment

(w3)
t , steel

(w3)
t , util

(w3)
t

5 (qrtr. t) GDPt−1, emp
(m1)
t , ISM

(m1)
t , claims

(m1)
t

NFCI
(m1)
t , SP

(m1,w5)
t , TS

(m1,w5)
t , CS

(m1,w5)
t

cclaims
(m1)
t , sment

(w4)
t , steel

(w4)
t , util

(w4)
t

6 (qrtr. t) GDPt−1, emp
(m1)
t , ISM

(m1)
t , retail

(m1)
t , claims

(m1,w5)
t

NFCI
(m1,w5)
t , SP

(m1,w5+w6)
t , TS

(m1,w5+w6)
t , CS

(m1,w5+w6)
t

cclaims
(m1,w5)
t , sment

(w5)
t , steel

(w5)
t , util

(w5)
t

7 (qrtr. t) GDPt−1, emp
(m1)
t , ISM

(m1)
t , retail

(m1)
t , IP

(m1)
t , starts

(m1)
t , claims

(m1,w5+w6)
t

NFCI
(m1,w5+w6)
t , SP

(m1,w5+w6+w7)
t , TS

(m1,w5+w6+w7)
t , CS

(m1,w5+w6+w7)
t

cclaims
(m1,w5+w6)
t , sment

(w6)
t , steel

(w6)
t , util

(w6)
t

8 (qrtr. t) GDPt−1, emp
(m1)
t , ISM

(m1)
t , retail

(m1)
t , IP

(m1)
t , starts

(m1)
t , claims

(m1,w5+w6+w7)
t

NFCI
(m1,w5+w6+w7)
t , SP

(m1,w5+w6+w7+w8)
t , TS

(m1,w5+w6+w7+w8)
t , CS

(m1,w5+w6+w7+w8)
t

cclaims
(m1,w5+w6+w7)
t , sment

(w7)
t , steel

(w7)
t , util

(w7)
t

9 (qrtr. t) GDPt−1, emp
(m1,m2)
t , ISM

(m1,m2)
t , retail

(m1)
t , IP

(m1)
t , starts

(m1)
t , claims

(m1,m2)
t

NFCI
(m1,m2)
t , SP

(m1,m2,w9)
t , TS

(m1,m2,w9)
t , CS

(m1,m2,w9)
t

cclaims
(m1,m2)
t , sment

(w8)
t , steel

(w8)
t , util

(w8)
t

10 (qrtr. t) GDPt−1, emp
(m1,m2)
t , ISM

(m1,m2)
t , retail

(m1,m2)
t , IP

(m1)
t , starts

(m1)
t , claims

(m1,m2,w9)
t

NFCI
(m1,m2,w9)
t , SP

(m1,m2,w9+w10)
t , TS

(m1,m2,w9+w10)
t , CS

(m1,m2,w9+w10)
t

cclaims
(m1,m2,w9)
t , sment

(w9)
t , steel

(w9)
t , util

(w9)
t

11 (qrtr. t) GDPt−1, emp
(m1,m2)
t , ISM

(m1,m2)
t , retail

(m1,m2)
t , IP

(m1,m2)
t , starts

(m1,m2)
t , claims

(m1,m2,w9+w10)
t

NFCI
(m1,m2,w9+w10)
t , SP

(m1,m2,w9+w10+w11)
t , TS

(m1,m2,w9+w10+w11)
t , CS

(m1,m2,w9+w10+w11)
t

cclaims
(m1,m2,w9+w10)
t , sment

(w10)
t , steel

(w10)
t , util

(w10)
t

12 (qrtr. t) GDPt−1, emp
(m1,m2)
t , ISM

(m1,m2)
t , retail

(m1,m2)
t , IP

(m1,m2)
t , starts

(m1,m2)
t , claims

(m1,m2,w9+w10+w11)
t

NFCI
(m1,m2,w9+w10+w11)
t , SP

(m1,m2,w9+w10+w11+w12)
t , TS

(m1,m2,w9+w10+w11+w12)
t , CS

(m1,m2,w9+w10+w11+w12)
t

cclaims
(m1,m2,w9+w10+w11)
t , sment

(w11)
t , steel

(w11)
t , util

(w11)
t

13 (qrtr. t + 1) GDPt−1, emp
(m1,m2,m3)
t , ISM

(m1,m2,m3)
t , retail

(m1,m2)
t , IP

(m1,m2)
t , starts

(m1,m2)
t , claims

(m1,m2,m3)
t

NFCI
(m1,m2,m3)
t , SP

(m1,m2,m3,w13)
t , TS

(m1,m2,m3,w13)
t , CS

(m1,m2,m3,w13)
t

cclaims
(m1,m2,m3)
t , sment

(w12)
t , steel

(w12)
t , util

(w12)
t

14 (qrtr. t + 1) GDPt−1, emp
(m1,m2,m3)
t , ISM

(m1,m2,m3)
t , retail

(m1,m2,m3)
t , IP

(m1,m2)
t , starts

(m1,m2)
t , claims

(m1,m2,m3,w13)
t

NFCI
(m1,m2,m3,w13)
t , SP

(m1,m2,m3,w13+w14)
t , TS

(m1,m2,m3,w13+w14)
t , CS

(m1,m2,m3,w13+w14)
t

cclaims
(m1,m2,m3,w13)
t , sment

(w13)
t , steel

(w13)
t , util

(w13)
t

15 (qrtr. t + 1) GDPt−1, emp
(m1,m2,m3)
t , ISM

(m1,m2,m3)
t , retail

(m1,m2,m3)
t , IP

(m1,m2,m3)
t , starts

(m1,m2,m3)
t , claims

(m1,m2,m3,w13+w14)
t

NFCI
(m1,m2,m3,w13+w14)
t , SP

(m1,m2,m3,w13+w14+w15)
t , TS

(m1,m2,m3,w13+w14+w15)
t , CS

(m1,m2,m3,w13+w14+w15)
t

cclaims
(m1,m2,m3,w13+w14)
t , sment

(w14)
t , steel

(w14)
t , util

(w14)
t

Notes: For each week indicated in the first column, the table has three rows of entries, with the first listing the
relevant base macro indicators, the second row covering the base finance indicators, and the third listing the small
weekly indicators included in the given week’s models. The variable sets base M, base M-F, and base M-F + small
weekly combine these predictors as indicated.
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Table 3: Out-of-sample forecast accuracy, 1985:Q1-2019:Q3

variable and model week 1 week 3 week 5 week 7 week 9 week 11 week 13 week 15
5% quantile score

base M: QR 0.31 0.30 0.25 0.27 0.26 0.26 0.26 0.26
base M: QR-Lasso 0.86 ** 0.88 ** 0.98 0.74 *** 0.76 *** 0.72 *** 0.71 *** 0.72 ***
base M: BQR 0.97 0.91 ** 1.10 0.90 *** 0.90 *** 0.86 *** 0.86 *** 0.85 ***
base M: BQR-Lasso 0.73 *** 0.80 *** 0.99 0.89 0.93 0.94 0.92 0.91
base M: BMF-SV 0.78 *** 0.72 *** 0.83 0.72 *** 0.72 *** 0.71 *** 0.68 *** 0.65 ***
base M + NFCI: QR 0.93 *** 0.98 0.90 *** 0.89 *** 0.92 *** 0.91 *** 0.92 *** 0.92 ***
base M + NFCI: QR-Lasso 0.64 *** 0.73 *** 0.83 *** 0.71 *** 0.69 *** 0.67 *** 0.66 *** 0.68 ***
base M + NFCI: BQR 0.73 *** 0.74 *** 0.85 *** 0.72 *** 0.73 *** 0.70 *** 0.67 *** 0.64 ***
base M + NFCI: BQR-Lasso 0.65 *** 0.66 *** 0.71 *** 0.80 * 0.82 0.86 0.87 0.79 *
base M + NFCI: BMF-SV 0.69 *** 0.67 *** 0.77 ** 0.67 *** 0.69 *** 0.69 *** 0.67 *** 0.64 ***
base M-F: QR 0.98 1.00 1.08 0.95 ** 1.00 0.98 * 1.01 0.98 *
base M-F: QR-Lasso 0.81 * 0.77 ** 0.99 0.83 0.82 0.87 0.81 * 0.75 **
base M-F: QR-factor 0.74 *** 0.76 *** 0.85 * 0.62 *** 0.73 *** 0.64 *** 0.74 *** 0.69 ***
base M-F: BQR 0.71 *** 0.67 *** 0.76 *** 0.62 *** 0.68 *** 0.65 *** 0.65 *** 0.66 ***
base M-F: BQR-Lasso 0.69 *** 0.63 *** 0.76 ** 0.69 *** 0.67 *** 0.76 ** 0.78 ** 0.74 **
base M-F: BQR-factor 0.67 *** 0.71 *** 0.77 *** 0.62 *** 0.69 *** 0.63 *** 0.72 *** 0.68 ***
base M-F: PQR 0.66 *** 0.70 *** 0.74 *** 0.61 *** 0.70 *** 0.65 *** 0.70 *** 0.67 ***
base M-F: BMF-SV 0.69 *** 0.66 *** 0.76 *** 0.63 *** 0.68 *** 0.70 *** 0.71 *** 0.71 ***
base M-F: BMF-factor-SV 0.69 *** 0.61 *** 0.78 *** 0.68 *** 0.68 *** 0.64 *** 0.66 *** 0.64 ***
avg. all 0.69 *** 0.70 *** 0.79 *** 0.68 *** 0.71 *** 0.69 *** 0.69 *** 0.67 ***
avg. base M-F 0.65 *** 0.62 *** 0.71 *** 0.61 *** 0.64 *** 0.62 *** 0.65 *** 0.64 ***
avg. BQR 0.77 *** 0.76 *** 0.89 *** 0.74 *** 0.76 *** 0.71 *** 0.70 *** 0.67 ***
avg. BQR-Lasso 0.62 *** 0.62 *** 0.75 *** 0.76 *** 0.78 ** 0.80 * 0.83 0.77 **
avg. BMF-SV 0.70 *** 0.68 *** 0.77 ** 0.67 *** 0.69 *** 0.69 *** 0.67 *** 0.66 ***

5% coverage
base M: QR 0.02 * 0.01 *** 0.01 *** 0.01 *** 0.01 *** 0.01 *** 0.01 *** 0.01 ***
base M: QR-Lasso 0.02 ** 0.02 *** 0.01 *** 0.01 *** 0.01 *** 0.02 ** 0.02 ** 0.02 **
base M: BQR 0.01 ** 0.01 *** 0.02 * 0.01 *** 0.01 *** 0.01 *** 0.01 *** 0.01 ***
base M: BQR-Lasso 0.02 ** 0.02 ** 0.03 0.04 0.02 ** 0.04 0.02 ** 0.03
base M: BMF-SV 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 *
base M + NFCI: QR 0.02 * 0.02 * 0.01 *** 0.01 *** 0.01 *** 0.01 *** 0.01 *** 0.01 ***
base M + NFCI: QR-Lasso 0.04 0.07 0.04 0.05 0.02 ** 0.06 0.04 0.04
base M + NFCI: BQR 0.03 0.01 *** 0.02 * 0.02 ** 0.02 ** 0.03 0.03 0.04
base M + NFCI: BQR-Lasso 0.07 0.05 0.04 0.06 0.06 0.05 0.07 0.08
base M + NFCI: BMF-SV 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04
base M-F: QR 0.02 * 0.02 * 0.02 * 0.01 *** 0.01 *** 0.01 *** 0.01 *** 0.01 ***
base M-F: QR-Lasso 0.11 * 0.07 0.06 0.09 0.08 0.09 0.07 0.09
base M-F: QR-factor 0.07 0.06 0.07 0.04 0.08 0.06 0.05 0.05
base M-F: BQR 0.04 0.01 *** 0.03 0.03 0.04 0.03 0.03 0.04
base M-F: BQR-Lasso 0.09 ** 0.08 0.04 0.09 * 0.07 0.09 0.09 * 0.07
base M-F: BQR-factor 0.05 0.04 0.06 0.04 0.06 0.05 0.06 0.04
base M-F: PQR 0.04 0.01 *** 0.05 0.04 0.01 *** 0.01 *** 0.01 *** 0.01 ***
base M-F: BMF-SV 0.08 0.05 0.06 0.06 0.04 0.04 0.04 0.04
base M-F: BMF-factor-SV 0.04 0.04 0.04 0.03 * 0.04 0.04 0.03 * 0.03 *
avg. all 0.02 ** 0.01 *** 0.01 *** 0.01 *** 0.01 *** 0.02 ** 0.02 ** 0.02 **
avg. base M-F 0.04 0.02 ** 0.04 0.03 * 0.01 *** 0.02 ** 0.02 ** 0.03 *
avg. BQR 0.03 0.01 *** 0.02 * 0.02 ** 0.02 ** 0.02 ** 0.02 ** 0.01 ***
avg. BQR-Lasso 0.05 0.02 ** 0.02 ** 0.04 0.04 0.04 0.04 0.05
avg. BMF-SV 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Notes: The weeks indicated in the columns refer to the weeks of forecast origins for the quarter (omitting even-
numbered weeks to reduce the size of the table). In the top panel, the top row gives the 5% quantile scores (QS)
from the benchmark model and variable set, and other rows report the ratio of QS for the indicated variable set and
model to the benchmark (lower is better). The lower panel reports empirical coverage rates for 5% quantile forecasts
(percentage of outcomes at or below the quantile). Statistical significance of differences in quantile scores is indicated
by *** (1%), ** (5%), or * (10%), obtained with the Diebold and Mariano–West t-test, conducted on a one-sided basis,
such that the alternative hypothesis is that the indicated forecast is more accurate than the benchmark. Statistical
significance of departures of empirical coverage from the nominal 5% is also indicated by *** (1%), ** (5%), or *
(10%), obtained with two-sided t-tests.
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Table 4: Out-of-sample forecast accuracy: 5% quantile score, 2000:Q1-2019:Q3

variable and model week 1 week 3 week 5 week 7 week 9 week 11 week 13 week 15
base M: QR 0.31 0.29 0.22 0.25 0.24 0.24 0.23 0.24
base M: QR-Lasso 0.88 0.85 * 1.12 0.73 ** 0.78 ** 0.75 *** 0.76 *** 0.80 **
base M: BQR 0.96 0.90 * 1.12 0.89 ** 0.89 *** 0.87 *** 0.88 *** 0.88 **
base M: BQR-Lasso 0.75 ** 0.78 ** 0.95 1.07 1.15 1.22 1.19 1.18
base M: BMF-SV 0.88 0.80 ** 1.07 0.84 * 0.84 * 0.83 ** 0.78 *** 0.77 **
base M + NFCI: QR 0.94 ** 0.99 0.93 *** 0.90 *** 0.92 *** 0.92 *** 0.93 *** 0.93 ***
base M + NFCI: QR-Lasso 0.77 * 0.78 ** 0.95 0.77 ** 0.75 ** 0.75 ** 0.73 ** 0.81
base M + NFCI: BQR 0.79 ** 0.75 ** 0.86 * 0.81 ** 0.81 ** 0.80 ** 0.76 *** 0.75 **
base M + NFCI: BQR-Lasso 0.71 ** 0.66 *** 0.83 * 1.01 1.08 1.12 1.20 1.09
base M + NFCI: BMF-SV 0.81 ** 0.78 ** 0.98 0.80 *** 0.81 ** 0.80 *** 0.78 *** 0.76 ***
base M-F: QR 1.03 1.02 1.15 0.96 0.99 0.97 1.01 0.99
base M-F: QR-Lasso 0.86 0.90 1.23 0.97 0.96 1.11 1.02 0.94
base M-F: QR-factor 0.73 * 0.63 *** 0.92 0.65 ** 0.78 0.70 ** 0.82 0.76
base M-F: BQR 0.80 * 0.75 ** 0.83 0.68 *** 0.75 ** 0.71 ** 0.75 ** 0.79 *
base M-F: BQR-Lasso 0.65 ** 0.67 ** 0.77 * 0.78 0.77 ** 0.91 1.02 0.94
base M-F: BQR-factor 0.72 ** 0.63 *** 0.89 0.65 ** 0.77 * 0.72 * 0.82 0.77
base M-F: PQR 0.69 ** 0.78 *** 0.81 ** 0.67 *** 0.76 ** 0.71 *** 0.75 ** 0.75 **
base M-F: BMF-SV 0.77 ** 0.76 ** 0.88 0.69 *** 0.71 *** 0.71 *** 0.73 *** 0.72 ***
base M-F: BMF-factor-SV 0.76 ** 0.65 *** 0.84 * 0.69 ** 0.73 ** 0.74 ** 0.77 * 0.76 *
base M-F + small weekly: QR 1.01 1.03 1.07 0.96 0.89 0.87 * 0.90 0.89
base M-F + small weekly: QR-Lasso 0.91 1.00 1.19 1.10 1.18 1.30 1.11 1.22
base M-F + small weekly: QR-factor 0.96 0.94 1.14 0.92 0.92 1.12 1.00 0.99
base M-F + small weekly: BQR 0.78 ** 0.87 0.91 0.71 *** 0.71 *** 0.72 *** 0.75 ** 0.77 *
base M-F + small weekly: BQR-Lasso 0.86 1.11 1.31 0.90 0.90 1.07 1.22 0.93
base M-F + small weekly: BQR-factor 0.76 ** 0.79 * 0.78 ** 0.72 ** 0.76 ** 0.75 * 0.79 * 0.80
base M-F + small weekly: PQR 0.75 ** 0.71 *** 0.90 * 0.71 *** 0.78 ** 0.80 ** 0.85 0.83 *
base M-F + small weekly: BMF-SV 0.78 ** 0.76 ** 0.87 0.78 * 0.79 0.76 * 0.78 * 0.78 *
base M-F + small weekly: BMF-factor-SV 0.72 *** 0.80 0.79 ** 0.72 ** 0.76 ** 0.74 ** 0.77 * 0.81
avg. all 0.73 *** 0.73 *** 0.86 ** 0.72 *** 0.74 *** 0.74 *** 0.73 *** 0.71 ***
avg. base M-F 0.70 *** 0.66 *** 0.78 ** 0.64 *** 0.69 *** 0.67 *** 0.71 ** 0.71 **
avg. base M-F + small weekly 0.72 *** 0.83 0.85 * 0.70 *** 0.69 *** 0.72 ** 0.71 ** 0.71 **
avg. BQR 0.81 *** 0.78 *** 0.90 0.76 *** 0.76 *** 0.72 *** 0.71 *** 0.71 ***
avg. BQR-Lasso 0.65 ** 0.69 ** 0.83 ** 0.85 0.84 0.98 0.96 0.93
avg. BMF-SV 0.78 ** 0.77 ** 0.95 0.76 *** 0.76 ** 0.75 *** 0.73 *** 0.69 ***

Notes: The weeks indicated in the columns refer to the weeks of forecast origins for the quarter (omitting even-
numbered weeks to reduce the size of the table). The top row gives the 5% quantile scores (QS) from the benchmark
model and variable set, and other rows report the ratio of QS for the indicated variable set and model to the
benchmark (lower is better). Statistical significance of differences in quantile scores is indicated by *** (1%), **
(5%), or * (10%), obtained with the Diebold and Mariano–West t-test, conducted on a one-sided basis, such that the
alternative hypothesis is that the indicated forecast is more accurate than the benchmark.
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Table 5: Out-of-sample forecast accuracy: 5% coverage, 2000:Q1-2019:Q3

variable and model week 1 week 3 week 5 week 7 week 9 week 11 week 13 week 15
base M: QR 0.04 0.01 *** 0.03 0.01 *** 0.01 *** 0.01 *** 0.03 0.03
base M: QR-Lasso 0.04 0.01 *** 0.03 0.03 0.03 0.04 0.04 0.04
base M: BQR 0.03 0.01 *** 0.04 0.01 *** 0.03 0.03 0.03 0.03
base M: BQR-Lasso 0.03 0.01 *** 0.05 0.05 0.04 0.06 0.04 0.05
base M: BMF-SV 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.04
base M + NFCI: QR 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03
base M + NFCI: QR-Lasso 0.06 0.08 0.06 0.08 0.04 0.10 * 0.05 0.06
base M + NFCI: BQR 0.05 0.03 0.04 0.04 0.04 0.05 0.05 0.06
base M + NFCI: BQR-Lasso 0.08 0.06 0.06 0.06 0.08 0.08 0.10 * 0.11 **
base M + NFCI: BMF-SV 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05
base M-F: QR 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03
base M-F: QR-Lasso 0.11 0.10 0.10 0.15 ** 0.14 * 0.15 ** 0.13 ** 0.15 **
base M-F: QR-factor 0.05 0.04 0.06 0.05 0.08 0.08 0.06 0.06
base M-F: BQR 0.06 0.03 0.05 0.04 0.05 0.04 0.04 0.04
base M-F: BQR-Lasso 0.10 * 0.08 0.04 0.10 * 0.09 0.10 * 0.13 ** 0.08
base M-F: BQR-factor 0.06 0.01 *** 0.06 0.04 0.08 0.06 0.06 0.06
base M-F: PQR 0.04 0.01 *** 0.03 0.04 0.03 0.03 0.03 0.01 ***
base M-F: BMF-SV 0.08 0.06 0.06 0.05 0.03 0.04 0.04 0.05
base M-F: BMF-factor-SV 0.04 0.04 0.04 0.03 0.05 0.04 0.03 0.04
base M-F + small weekly: QR 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03
base M-F + small weekly: QR-Lasso 0.10 0.08 0.05 0.10 0.16 ** 0.13 ** 0.11 0.18 **
base M-F + small weekly: QR-factor 0.09 0.09 0.09 0.10 0.08 0.10 * 0.09 0.09
base M-F + small weekly: BQR 0.05 0.06 0.06 0.05 0.05 0.06 0.06 0.05
base M-F + small weekly: BQR-Lasso 0.13 ** 0.13 * 0.18 *** 0.16 *** 0.14 *** 0.18 *** 0.19 *** 0.16 ***
base M-F + small weekly: BQR-factor 0.04 0.04 0.04 0.05 0.05 0.06 0.08 0.08
base M-F + small weekly: PQR 0.04 0.03 0.04 0.05 0.03 0.05 0.06 0.05
base M-F + small weekly: BMF-SV 0.08 0.08 0.05 0.08 0.11 ** 0.09 0.11 * 0.15 **
base M-F + small weekly: BMF-factor-SV 0.03 0.05 0.04 0.04 0.04 0.04 0.04 0.05
avg. all 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.04
avg. base M-F 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04
avg. base M-F + small weekly 0.04 0.05 0.04 0.04 0.06 0.06 0.08 0.05
avg. BQR 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.05
avg. BQR-Lasso 0.05 0.05 0.06 0.06 0.06 0.08 0.06 0.08
avg. BMF-SV 0.05 0.06 0.05 0.04 0.05 0.05 0.05 0.04

Notes: The weeks indicated in the columns refer to the weeks of forecast origins for the quarter (omitting even-
numbered weeks to reduce the size of the table). The table reports empirical coverage rates for 5% quantile forecasts
(percentage of outcomes at or below the quantile). Statistical significance of departures of empirical coverage from
the nominal 5% is also indicated by *** (1%), ** (5%), or * (10%), obtained with two-sided t-tests.
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Table 6: Out-of-sample forecast accuracy: 5% quantile score, 2007:Q1-2019:Q3

variable and model week 1 week 3 week 5 week 7 week 9 week 11 week 13 week 15
base M: QR 0.33 0.29 0.21 0.25 0.24 0.24 0.23 0.23
base M: QR-Lasso 0.87 0.87 1.31 0.73 * 0.81 * 0.78 ** 0.82 0.88
base M: BQR 0.99 0.93 1.15 0.94 0.93 0.91 *** 0.92 * 0.92
base M: BQR-Lasso 0.69 * 0.72 * 0.98 1.13 1.22 1.15 1.21 1.24
base M: BMF-SV 1.02 0.88 1.28 0.92 0.93 0.87 0.86 0.84
base M + NFCI: QR 0.98 1.03 0.99 0.91 *** 0.94 *** 0.93 *** 0.95 * 0.95
base M + NFCI: QR-Lasso 0.73 ** 0.82 1.15 0.84 0.80 0.73 ** 0.77 0.85
base M + NFCI: BQR 0.85 0.77 ** 0.98 0.85 ** 0.87 * 0.82 * 0.80 * 0.79 *
base M + NFCI: BQR-Lasso 0.72 * 0.68 * 0.94 1.04 1.12 1.11 1.25 1.14
base M + NFCI: BMF-SV 0.89 0.86 1.17 0.84 ** 0.87 0.84 * 0.84 0.81
base M-F: QR 1.11 1.07 1.27 0.95 0.99 0.97 1.02 1.01
base M-F: QR-Lasso 0.73 ** 0.88 1.56 1.16 1.14 1.22 1.18 1.02
base M-F: QR-factor 0.81 0.67 ** 1.12 0.72 0.86 0.80 0.88 0.89
base M-F: BQR 0.84 0.78 1.00 0.69 ** 0.78 * 0.74 * 0.78 0.87
base M-F: BQR-Lasso 0.69 0.70 0.92 0.80 0.76 ** 0.84 1.01 0.90
base M-F: BQR-factor 0.79 0.67 ** 1.07 0.71 0.86 0.80 0.86 0.89
base M-F: PQR 0.72 * 0.82 * 0.87 0.70 * 0.78 * 0.78 * 0.82 0.83
base M-F: BMF-SV 0.83 0.83 1.01 0.69 ** 0.75 * 0.75 * 0.78 * 0.79
base M-F: BMF-factor-SV 0.81 0.66 ** 0.94 0.74 0.80 0.80 0.84 0.88
base M-F + small weekly: QR 1.21 1.27 1.34 1.11 1.01 0.98 1.03 1.02
base M-F + small weekly: QR-Lasso 0.92 1.06 1.55 1.16 1.40 1.42 1.26 1.28
base M-F + small weekly: QR-factor 1.14 1.06 1.33 0.99 1.06 1.33 1.18 1.20
base M-F + small weekly: BQR 0.90 1.02 1.02 0.67 ** 0.72 * 0.75 * 0.83 0.89
base M-F + small weekly: BQR-Lasso 0.95 1.34 1.64 0.88 0.91 1.06 1.01 0.95
base M-F + small weekly: BQR-factor 0.84 0.93 0.81 0.72 * 0.81 0.80 0.87 0.91
base M-F + small weekly: PQR 0.80 * 0.76 *** 0.99 0.71 ** 0.81 * 0.86 0.91 0.93
base M-F + small weekly: BMF-SV 0.85 0.83 1.00 0.73 * 0.83 0.76 0.82 0.80
base M-F + small weekly: BMF-factor-SV 0.78 * 0.89 0.85 0.72 0.78 0.77 0.84 0.90
base M-F + large weekly: QR 1.29 1.41 1.51 1.24 1.11 1.08 1.15 1.15
base M-F + large weekly: QR-Lasso 1.33 1.51 2.08 1.77 1.41 1.45 1.17 1.56
base M-F + large weekly: QR-factor 0.92 1.40 0.99 0.92 0.97 0.93 1.18 1.36
base M-F + large weekly: BQR-factor 0.86 0.87 0.97 0.81 0.88 0.86 0.90 0.97
base M-F + large weekly: PQR 1.00 1.08 1.29 0.91 0.93 0.95 1.04 1.02
base M-F + large weekly: BMF-factor-SV 0.78 ** 0.85 0.88 0.69 * 0.85 0.79 0.85 0.88
avg. all 0.79 * 0.84 0.99 0.76 ** 0.79 * 0.78 * 0.79 0.81
avg. base M-F 0.74 * 0.69 ** 0.86 0.66 ** 0.73 * 0.71 * 0.76 0.79
avg. base M-F + small weekly 0.82 0.99 0.99 0.73 ** 0.72 * 0.76 * 0.76 0.79
avg. base M-F + large weekly 0.91 1.11 1.18 0.79 * 0.77 * 0.77 * 0.84 0.99
avg. BQR 0.89 0.85 1.01 0.78 *** 0.81 ** 0.76 ** 0.78 * 0.80
avg. BQR-Lasso 0.67 * 0.73 0.97 0.86 0.83 0.92 0.97 0.96
avg. BMF-SV 0.87 0.85 1.11 0.80 ** 0.82 * 0.78 * 0.79 * 0.76 *

Notes: The weeks indicated in the columns refer to the weeks of forecast origins for the quarter (omitting even-
numbered weeks to reduce the size of the table). The top row gives the 5% quantile scores (QS) from the benchmark
model and variable set, and other rows report the ratio of QS for the indicated variable set and model to the benchmark
(lower is better). Statistical significance of differences in MSEs and quantile scores is indicated by *** (1%), ** (5%),
or * (10%), obtained with the Diebold and Mariano–West t-test, conducted on a one-sided basis, such that the
alternative hypothesis is that the indicated forecast is more accurate than the benchmark.
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Table 7: Out-of-sample forecast accuracy, 5% VaR-ES scores

variable and model week 1 week 3 week 5 week 7 week 9 week 11 week 13 week 15

1985:Q1-2019:Q3
base M: QR 0.86 0.84 0.65 0.74 0.73 0.74 0.74 0.76
base M: BMF-SV 0.26 *** 0.35 *** 0.28 *** 0.47 *** 0.49 *** 0.38 *** 0.46 *** 0.49 ***
base M + NFCI: BMF-SV 0.42 *** 0.42 *** 0.36 *** 0.49 *** 0.44 *** 0.36 *** 0.42 *** 0.45 ***
base M-F: BMF-SV 0.30 ** 0.38 *** 0.28 *** 0.40 *** 0.25 * 0.11 0.11 -0.00
base M-F: BMF-factor-SV 0.23 * 0.47 *** 0.05 0.14 0.29 * 0.45 *** 0.40 ** 0.39 *

2000:Q1-2019:Q3
base M: QR 0.86 0.83 0.57 0.69 0.69 0.70 0.70 0.71
base M: BMF-SV 0.23 * 0.32 *** 0.11 0.44 *** 0.43 *** 0.32 ** 0.39 *** 0.34 **
base M + NFCI: BMF-SV 0.34 ** 0.31 ** 0.17 0.45 *** 0.42 *** 0.36 ** 0.35 *** 0.35 **
base M-F: BMF-SV 0.27 0.33 ** 0.14 0.49 *** 0.46 *** 0.42 *** 0.39 ** 0.40 **
base M-F: BMF-factor-SV 0.24 0.43 ** 0.04 0.33 0.29 0.32 0.21 0.16
base M-F + small weekly: BMF-SV 0.20 0.48 ** 0.13 0.20 0.09 0.11 0.05 -0.04
base M-F + small weekly: BMF-factor-SV 0.36 * 0.45 *** 0.16 0.31 0.24 0.28 0.21 0.02

2007:Q1-2019:Q3
base M: QR 0.90 0.87 0.53 0.73 0.72 0.74 0.73 0.75
base M: BMF-SV 0.00 0.16 0.02 0.30 *** 0.27 ** 0.29 *** 0.27 ** 0.20
base M + NFCI: BMF-SV 0.13 0.09 0.04 0.34 *** 0.30 *** 0.29 *** 0.22 * 0.19
base M-F: BMF-SV 0.00 0.15 -0.01 0.32 ** 0.23 0.24 * 0.19 0.15
base M-F: BMF-factor-SV 0.02 0.25 -0.25 0.04 -0.02 0.06 -0.10 -0.24
base M-F + small weekly: BMF-SV -0.10 0.28 -0.13 0.24 -0.17 0.02 -0.17 -0.09
base M-F + small weekly: BMF-factor-SV 0.17 0.34 * -0.01 0.12 0.04 0.09 -0.07 -0.33
base M-F + large weekly: BMF-factor-SV 0.27 0.32 0.08 0.28 -0.13 0.06 -0.20 -0.36

Notes: The weeks indicated in the columns refer to the weeks of forecast origins for the quarter (omitting even-
numbered weeks to reduce the size of the table). The first row gives the 5% VaR-ES from the benchmark model
and variable set, and other rows report the difference in score for the indicated variable set and model relative to the
benchmark (higher is better). Statistical significance of differences in scores is indicated by *** (1%), ** (5%), or *
(10%), obtained with the Diebold and Mariano–West t-test, conducted on a one-sided basis, such that the alternative
hypothesis is that the indicated forecast is more accurate than the benchmark.
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Table 8: Out-of-sample forecast accuracy during recessions: 5% QS and VaR-ES score,
1985:Q1-2019:Q3

variable and model week 1 week 3 week 5 week 7 week 9 week 11 week 13 week 15
5% quantile score

base M: QR 0.52 0.33 0.28 0.36 0.31 0.30 0.27 0.24
base M: QR-Lasso 0.44 0.49 1.31 0.58 0.71 0.73 0.68 1.05
base M: BQR 0.65 0.60 1.28 1.12 1.10 0.95 0.98 0.97
base M: BQR-Lasso 0.49 0.47 0.98 2.13 2.39 2.10 2.55 2.60
base M: BMF-SV 1.37 1.24 1.96 1.37 1.32 1.20 1.00 0.89
base M + NFCI: QR 1.03 1.19 0.92 0.88 0.89 0.86 0.88 0.88
base M + NFCI: QR-Lasso 1.25 1.07 1.13 0.85 0.80 0.84 0.52 0.69
base M + NFCI: BQR 1.02 0.80 0.90 1.07 1.10 1.11 1.01 0.92
base M + NFCI: BQR-Lasso 0.77 0.65 0.91 1.90 2.13 2.28 2.54 1.98
base M + NFCI: BMF-SV 1.29 1.28 1.78 1.19 1.19 1.09 0.93 0.87
base M-F: QR 1.40 1.36 1.37 0.78 0.82 0.83 0.95 0.97
base M-F: QR-Lasso 1.42 2.11 2.82 2.15 1.91 2.56 2.25 1.93
base M-F: QR-factor 0.59 0.42 0.49 0.30 0.36 0.41 0.87 0.70
base M-F: BQR 1.04 0.83 0.70 0.58 0.75 0.66 0.88 0.94
base M-F: BQR-Lasso 0.31 0.42 1.12 0.45 0.60 0.58 1.20 0.69
base M-F: BQR-factor 0.62 0.44 0.42 0.29 0.38 0.52 0.88 0.67
base M-F: PQR 0.48 0.63 0.76 0.33 0.53 0.48 0.63 0.72
base M-F: BMF-SV 1.04 1.09 1.32 0.66 0.57 0.57 0.62 0.64
base M-F: BMF-factor-SV 1.02 0.54 0.61 0.37 0.43 0.53 0.67 0.63
avg. all 0.64 0.53 0.76 0.74 0.82 0.74 0.78 0.67
avg. base M-F 0.68 0.41 0.44 0.37 0.43 0.41 0.58 0.59
avg. BQR 0.80 0.62 0.96 0.87 0.89 0.75 0.77 0.64
avg. BQR-Lasso 0.39 0.37 0.60 1.43 1.66 1.57 2.01 1.39
avg. BMF-SV 1.23 1.18 1.67 1.07 1.00 0.90 0.82 0.75

5% VaR-ESscore
base M: QR 1.28 1.09 1.03 1.11 1.06 1.05 1.02 0.99
base M: BMF-SV -0.38 -0.13 -0.31 -0.64 -0.27 -0.16 0.01 0.07
base M + NFCI: BMF-SV -0.53 -0.26 -0.27 -0.59 -0.41 -0.24 -0.05 -0.00
base M-F: BMF-SV -0.34 -0.12 -0.18 -0.31 0.02 0.10 0.06 0.11
base M-F: BMF-factor-SV -0.38 0.13 0.11 0.27 0.22 0.15 0.04 0.14

Notes: The weeks indicated in the columns refer to the weeks of forecast origins for the quarter (omitting even-
numbered weeks to reduce the size of the table). In the upper panel, the first row gives the 5% quantile scores (QS)
from the benchmark model and variable set, and other rows report the ratio of QS for the indicated variable set and
model to the benchmark (lower is better). In the lower panel, the first row gives the 5% VaR-ES from the benchmark
model and variable set, and other rows report the difference in score for the indicated variable set and model relative
to the benchmark (higher is better).
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Benchmark forecast accuracy by week (normalized):  RMSE, QS, and VaR-ES score
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Benchmark forecast accuracy by week (normalized):  RMSE, QS, and VaR-ES score
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Figure 1: Out-of-sample forecast accuracy of base M: BMF-SV forecasts: levels of RMSE, 5% QS,
and 5% VaR-ES score across weeks 1 through 15 of forecast origins are indicated on the horizontal
axis. The benchmark forecasts come from the BMF-SV model estimated with the base macro
variable set. The top and bottom panels provide results for the 1985:Q1-2019:Q3 and 2000:Q1-
2019:Q3 samples, respectively.
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5% QS comparisons: base M

base M:  QR base M:  BQR base M:  BMF-SV
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5% QS comparisons: base M + NFCI
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5% QS comparisons: base M-F

base M-F:  QR base M-F:  BQR base M-F:  BQR-factor base M-F:  PQR base M-F:  BMF-SV
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Figure 2: Out-of-sample forecast accuracy, 1985:Q1-2019:Q3: comparisons of 5% QS across variable
sets (indicated in panel header) and models (indicated in key label). Scores are reported as relative
to the base M: QR specification, so lower numbers represent more accurate forecasts. The weeks 1
through 15 of forecast origins are indicated on the horizontal axis.
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5% coverage rate comparisons: base M

base M:  QR base M:  BQR base M:  BMF-SV
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5% coverage rate comparisons: base M + NFCI

base M + NFCI:  QR base M + NFCI:  BQR base M + NFCI:  BMF-SV

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.000

0.025

0.050

0.075

0.100

0.125

0.150

5% coverage rate comparisons: base M-F

base M-F:  QR base M-F:  BQR base M-F:  BQR-factor base M-F:  PQR base M-F:  BMF-SV
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Figure 3: Out-of-sample forecast accuracy, 1985:Q1-2019:Q3: comparisons of 5% coverage rates
across variable sets (indicated in panel header) and models (indicated in key label). The black
horizontal line at 0.05 denotes the nominal coverage rate. The weeks 1 through 15 of forecast
origins are indicated on the horizontal axis.
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5% QS comparisons: base M

base M:  QR base M:  BQR base M:  BMF-SV
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5% QS comparisons: base M + NFCI

base M + NFCI:  QR base M + NFCI:  BQR base M + NFCI:  BMF-SV
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5% QS comparisons: base M-F

base M-F:  QR base M-F:  BQR base M-F:  BQR-factor base M-F:  PQR base M-F:  BMF-SV
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5% QS comparisons: base M-F + small weekly
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base M-F + small weekly:  BQR-factor
base M-F + small weekly:  PQR
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Figure 4: Out-of-sample forecast accuracy, 2000:Q1-2019:Q3: comparisons of 5% QS across variable
sets (indicated in panel header) and models (indicated in key label). Scores are reported as relative
to the base M: QR specification, so lower numbers represent more accurate forecasts. The weeks 1
through 15 of forecast origins are indicated on the horizontal axis.

53



5% QS comparisons: base M

base M:  QR base M:  BQR base M:  BMF-SV
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5% QS comparisons: base M + NFCI

base M + NFCI:  QR base M + NFCI:  BQR base M + NFCI:  BMF-SV
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5% QS comparisons: base M-F

base M-F:  QR base M-F:  BQR base M-F:  BQR-factor base M-F:  PQR base M-F:  BMF-SV
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5% QS comparisons: base M-F + large weekly

base M-F + large weekly:  QR base M-F + large weekly:  BQR-factor base M-F + large weekly:  PQR
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Figure 5: Out-of-sample forecast accuracy, 2007:Q1-2019:Q3: comparisons of 5% QS across variable
sets (indicated in panel header) and models (indicated in key label). Scores are reported as relative
to the base M: QR specification with monthly macroeconomic indicators, so lower numbers represent
more accurate forecasts. The weeks 1 through 15 of forecast origins are indicated on the horizontal
axis.

54



base M-F:  BMF-SV, 3 weeks of data
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base M-F:  BMF-SV, 7 weeks of data

actual point forecast 5th-%ile 95th-%ile

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019
-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

base M-F:  BMF-SV, 11 weeks of data
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base M-F:  BMF-SV, 15 weeks of data
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Figure 6: Out-of-sample forecasts from the base M-F variable set and BMF-SV model, selected
weeks indicated in panel headers. Each panel reports actual GDP growth (black line), the point
forecast (blue line), and 5%-95% forecast quantiles (red lines). Shaded regions denote NBER
recessions.
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base M-F:  BQR, 3 weeks of data

actual point forecast 5th-%ile 95th-%ile
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base M-F:  BQR, 7 weeks of data
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base M-F:  BQR, 11 weeks of data
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base M-F:  BQR, 15 weeks of data
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Figure 7: Out-of-sample forecasts from the base M-F variable set and BQR model, selected weeks
indicated in panel headers. Each panel reports actual GDP growth (black line), the point forecast
(blue line), and 5%-95% forecast quantiles (red lines). Shaded regions denote NBER recessions.
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base M-F:  PQR, 3 weeks of data

actual point forecast 5th-%ile 95th-%ile
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base M-F:  PQR, 7 weeks of data
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base M-F:  PQR, 11 weeks of data
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Figure 8: Out-of-sample forecasts from the base M-F variable set and PQR model, selected weeks
indicated in panel headers. Each panel reports actual GDP growth (black line), the point forecast
(blue line), and 5%-95% forecast quantiles (red lines). Shaded regions denote NBER recessions.
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week 7: 5% quantile forecasts
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week 11: 5% quantile forecasts
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week 15: 5% quantile forecasts
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Figure 9: Comparisons of 5 percent quantile forecasts across selected variable-model combinations
(indicated in key labels for each chart), for selected weeks of the quarter, indicated in panel headers.
Shaded regions denote NBER recessions.
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week 7: 5% expected shortfall forecasts
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week 11: 5% expected shortfall forecasts
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week 15: 5% expected shortfall forecasts
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Figure 10: Comparisons of 5 percent expected shortfall forecasts across selected variable-model
combinations (indicated in key labels for each chart), for selected weeks of the quarter, indicated
in panel headers. Shaded regions denote NBER recessions.
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5 percent quantile forecasts for 2020:Q1 from BMF-SV
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5 percent quantile forecasts for 2020:Q2 from BMF-SV
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5 percent quantile forecasts for 2020:Q1 from BQR
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5 percent quantile forecasts for 2020:Q2 from BQR
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5 percent quantile forecasts for 2020:Q1 from PQR
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5 percent quantile forecasts for 2020:Q2 from PQR
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Figure 11: Forecasts of GDP growth in 2020:Q1 (left column) and 2020:Q2 (right column) from
selected variable sets and models, for weeks in which data were available up through late April
2020 for 2020:Q1 and late July 2020 for 2020:Q2. Weeks of forecast origin are indicated on the
horizontal axis.
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