
w o r k i n g

p a p e r

F E D E R A L R E S E R V E B A N K O F C L E V E L A N D

19 29

Sequential Bayesian Inference for
Vector Autoregressions with
Stochastic Volatility

Mark Bognanni and John Zito

ISSN: 2573-7953

Working papers of the Federal Reserve Bank of Cleveland are preliminary materials circulated to
stimulate discussion and critical comment on research in progress. They may not have been subject to the
formal editorial review accorded official Federal Reserve Bank of Cleveland publications. The views stated
herein are those of the authors and are not necessarily those of the Federal Reserve Bank of Cleveland or
the Board of Governors of the Federal Reserve System.

Working papers are available on the Cleveland Fed’s website:
https://clevelandfed.org/wp

RWorking Paper 19-29 December 2019

Sequential Bayesian Inference for
Vector Autoregressions with Stochastic Volatility

Mark Bognanni and John Zito

We develop a sequential Monte Carlo (SMC) algorithm for Bayesian inference in
vector autoregressions with stochastic volatility (VAR-SV). The algorithm builds
particle approximations to the sequence of the model’s posteriors, adapting
the particles from one approximation to the next as the window of available
data expands. The parallelizability of the algorithm’s computations allows
the adaptations to occur rapidly. Our particular algorithm exploits the ability
to marginalize many parameters from the posterior analytically and embeds
a known Markov chain Monte Carlo (MCMC) algorithm for the model as an
effective mutation kernel for fighting particle degeneracy. We show that, relative
to using MCMC alone, our algorithm increases the precision of inference while
reducing computing time by an order of magnitude when estimating a medium-
scale VAR-SV model.

JEL Codes: C11, C32, C51, E17.

Keywords: Vector autoregressions, stochastic volatility, sequential Monte Carlo,
particle filter, Rao-Blackwellization.

Suggested citation: Bognanni, Mark, and John Zito. 2019. “Sequential Bayesian
Inference for Vector Autoregressions with Stochastic Volatility.” Federal Reserve
Bank of Cleveland, Working Paper no. 19-29. https://doi.org/10.26509/frbc-
wp-201929.

Mark Bognanni is at the Federal Reserve Bank of Cleveland (mark.j.bognanni@
gmail.com). John Zito is at Rice University.

1. Introduction

Over the last 40 years the vector autoregression (VAR) has become a bench-
mark tool in empirical macroeconomics. Among the various extensions to the
VAR, stochastic volatility (SV) has perhaps been the most robustly successful at
improving forecasting and model fit. The demonstrated preference of standard
macroeconomic time-series for including some form of SV in the VAR has been
evident at least since Primiceri (2005) and Sims and Zha (2006).1 In a particularly
thorough recent example, Clark and Ravazzolo (2015) show that a wide variety
of stochastic volatility specifications robustly improve VAR forecasting perfor-
mance.2 However, while the gains from including stochastic volatility in the VAR
are now well documented, so too are the challenges of VAR-SV model estimation.
Most practitioners analyze the model from a Bayesian perspective, but, unlike
with a constant-parameter VAR, the Bayesian posterior distribution of the VAR-
SV cannot be fully characterized analytically. Simulation-based computational
methods are then the key tool for posterior inference.

This paper’s primary contribution is to develop a parallelizable algorithm for
sequential Bayesian estimation of VAR-SV models. By “sequential” we mean
that when new data are incorporated into the model estimates, an approximation
to the new posterior adapts the approximation to the old posterior. Importantly,
our proposed approach remains fully Bayesian in the sense that inference is based
on the model’s full likelihood function and the algorithm can estimate posterior
moments arbitrarily accurately in the limit of certain algorithm settings. The
upshot of our estimation algorithm is that, given an approximation of the posterior
at time t, the approximation of the posterior at time t + 1 can be obtained an
order of magnitude faster than under the extant approach in the literature. We
demonstrate the effectiveness of our estimation approach by applying it to a seven-
variable “medium scale” VAR-SV, in which our sequential algorithm yields more
precise estimates than when using the extant Markov chain Monte Carlo (MCMC)
algorithm alone, while also dramatically decreasing computation time.

Our estimation method is fundamentally a sequential Monte Carlo (SMC)

1In the context of regime-switchingmodels like Sims and Zha (2006), also see Sims,Waggoner,
and Zha (2008) and Bognanni and Herbst (2017).

2Also see Clark (2011) and Carriero, Clark, and Marcellino (2016) for additional results on
the forecasting gains from adding stochastic volatility to a VAR, as well as Chan and Eisenstat
(2018) for similar conclusions about model fit.

1

algorithm. Sequential Monte Carlo algorithms are particle-based methods that
approximate a sequence of densities of interest with discrete approximations based
on weighted samples. In our setting, the relevant densities to approximate are the
sequence of VAR-SV posteriors as the available time-series of data expands. An
important practical aspect of SMC, and one that we heavily exploit, is that the
most computationally intensive parts of the algorithm can be executed in parallel.

Our SMC implementation leverages the known structure of the VAR-SV pos-
terior in two important ways in order to tackle the notoriously difficult problem of
simultaneous sequential inference for both static parameters (the linear VAR co-
efficients) and dynamic parameters (latent volatility states). First, when updating
the particles from one stage to the next, we use the fact that one can analytically
marginalize the static parameters, at which point we are effectively executing
the algorithm in a parameter space of reduced dimension while still accounting
for the posterior of the static parameters.3 Second, when rejuvenating particle
diversity, a stage of SMC called “mutation,” we use a known MCMC algorithm
specifically tailored to the VAR-SV. The MCMC algorithm is of a relatively
efficient variety known as a Gibbs sampler, which makes our algorithm consider-
ably more effective at rejuvenating meaningful particle diversity compared to
more naive alternatives. The potential utility of such approaches has long been
discussed within the SMC literature, in which SMC and MCMC are sometimes
referred to as “complementary.”4 In practice, however, SMC algorithms used
in the literature are usually implemented with only relatively naive mutation
kernels. Our paper shows, in a practical and empirically relevant example, the
usefulness of folding a relatively more effective MCMC kernel into SMC when
such a kernel is available.

To contextualize our contribution, it is helpful to understand the standard
method of Bayesian inference for the VAR-SV. To date, fully Bayesian inference
in the VAR-SV is conducted by means of simulating random samples from a
Markov chain Monte Carlo (MCMC) algorithm. The key strength of the MCMC
algorithm is that it “works” in the formal sense that, asymptotically in the number
of iterations of the Markov chain, posterior moments of interest can be estimated

3One might just as well say that we “Rao-Blackwellize” the static parameters.
4For example, see the discussion in the introductory section of Del Moral, Doucet, and Jasra

(2006).

2

arbitrarily accurately. Indeed this fact motivates our inclusion of the MCMC
algorithm into our approach as the mutation kernel. However, MCMC also has
two key weaknesses that our SMC algorithm addresses. The first weakness is
that MCMC samples must be generated serially. This is a simple consequence
of the fact that the distribution of the itℎ random sample from a Markov chain
conditions on the (i − 1)tℎ random sample. Hence, the MCMC algorithm cannot
be cleanly parallelized, and the only way to increase its estimation accuracy is
to simply let it run longer. In contrast, key steps of our SMC algorithm can be
executed in parallel. This means the SMC algorithm’s accuracy can be improved
by making use of additional CPUs while keeping the runtime fixed.

The second weakness is that any change to the information set, such as the
arrival of a new data point, alters the joint posterior distribution of all model
parameters, but the MCMC algorithm has no notion of an incremental update to
existing posterior samples. Rather the MCMC algorithm must simply be rerun
from scratch using the new data set.5 In a production environment, the model
parameters would ideally always be estimated from the most recent, and most
complete, information set to yield the best possible forecasts and analysis. Hence,
it would be a substantial nuisance that a satisfactory run of the MCMC algorithm
for the seven-variable model takes three hours. In contrast, the key benefit of our
algorithm is that it can rapidly update estimates from a previous period.

Lastly, this paper also contributes by demonstrating the practical viability of
using publicly available resources to implement high performance computing
tasks. This is important because our algorithm performs best when using com-
puting hardware that few researchers have physically available in their offices.
However, our implementation uses only resources, including the computing hard-
ware, that are readily accessible to every researcher with an internet connection.
To be more specific, the key features of the computational environment we use

5This annoyance has been observed since, and served as a motivator for, the early work on
sequential algorithms for Bayesian inference. For the moment lettingHt denote a posterior sample
of a model’s parameters based on information through time t, Berzuini et al. (1997) write, “When
computing the new sample Ht+1, it seems sensible to try to use information contained in the
available sampleHt. Under conventional MCMC sampling, this is not possible; with each new
data item, the available sample of parameter values must be discarded, and a new sample must
be created by restarting the MCMC from scratch on the entire model. This waste of information
causes responses to new data to become slow. In particular, it hampers application of the method
in real-time contexts.”

3

are threefold: 1) the computer hardware was remotely provisioned from a public
cloud service, namely, Amazon Web Services; 2) our programs are written in the
Julia language, which is open source and distributed under the MIT License;
and 3) the parallelism is implemented using only “high level” Julia commands.

Algorithm in Context of the Literature. With regard to the estimation algo-
rithm, our paper clearly builds off of the vast literatures on SMC and particle
filters. One can find excellent overviews of SMC methods in Doucet, de Freitas,
and Gordon (2001) and Doucet and Johansen (2011). With discussions more
targeted to the interests of economists, Creal (2012) and Herbst and Schorfheide
(2015) also provide thorough overviews. Our algorithm is also closely related
to the sequentially adaptive Bayesian learning (SABL) algorithm, which is also
based on SMC, used in Durham and Geweke (2014) and Durham et al. (2019).

Somewhat more specifically, our interest in sequential estimation of both
static and dynamic unobservables is related to the work of Storvik (2002), Fearn-
head (2002), and Djurić and Miguez (2002), all of which are also aimed at
circumventing the poor performance of a more naive SMC approach of simply
augmenting the state vector with the unknown static parameters and use a particle
filter to estimate the augmented state. Such an approach is known to degenerate
rapidly.6 Our approach differs from these by integrating Rao-Blackwellization
into a key stage of the algorithm.

From here the rest of the paper proceeds as follows. In Section 2 we introduce
the VAR-SV model and describe some of its key analytical properties. In Section
3 we describe our sequential Monte Carlo. In Section 4 we apply our estimation
method to a seven-variable VAR-SV and rigorously document the algorithm’s
performance relative to using MCMC alone. In Section 5 we describe some
additional details of our computational environment. In Section 6 we conclude.

6Another attempt to address this is from Kitagawa (1998) and Liu and West (2001), who
introduced artificial dynamics for the parameters. While lessening the degeneracy problem, this
approach changes the structure of the model and requires careful application-specific tuning to
work well. The recent SMC2 approach of Chopin, Jacob, and Papaspiliopoulos (2013) uses
nested SMC algorithms to jointly estimate parameters and states. Unlike the aforementioned
“state-augmentation” approaches, SMC2 does not suffer as badly from degeneracy, and is asymp-
totically valid. For more on particle-based approaches to joint state and parameter inference, see
Kantas et al. (2015).

4

2. Bayesian VAR-SV Model

The VAR-SV model stipulates that an n × 1 vector of time-series data yt
evolves according to

y′t =
p
∑

l=1
y′t−lB(l) + c + u′t , ut ∼ N(0,�t) , for 1 ≤ t ≤ T ,(1)

where eachB(l) is an n×nmatrix, c is a length n vector, ut is a length n vector, and
�t is an n × n time-varying symmetric, positive-definite covariance matrix of the
model’s mean-zero forecast errors. Equation (1) can be written more compactly
by defining B = [B′

(1),… ,B′
(p), c

′]′ and xt = [y′t−1,… , y′t−p, 1]
′, and writing

y′t = x
′
tB + u′t , ut ∼ N(0,�t) , for 1 ≤ t ≤ T(2)

where xt is m × 1 for m = np + 1. Regardless of the details of how �t evolves,
the conditional density for the observation yt takes the form

p(yt|B, xt,�t) = N(yt|B′xt,�t)(3)

and the density of the full sequence y1∶T , given B and the sequence �0∶T , is
p(y1∶T |B,�1∶T) =

∏T
t=1 p(yt|B, xt,�t).We define b = vec(B) and refer to b and

B interchangeably when including them in a conditioning set of information.
In this paper we consider models for which�t is parameterized as in Primiceri

(2005), that is

�t = A−1
t �tA

−1′
t(4)

with

At =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 ⋯ 0
a2,1,t 1 ⋱ ⋮

⋮ ⋱ ⋱ 0
an,1,t ⋯ an,n−1,t 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, �t =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

exp(v1,t) 0 ⋯ 0
0 exp(v2,t) ⋱ ⋮

⋮ ⋱ ⋱ 0
0 ⋯ 0 exp(vn,t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.(5)

It will be useful to have notation to refer to all of the free elements ofAt and�t. To
that end, let ai,t be the vector containing the free elements of the i-th row of At so,

5

for example, a1,t is empty and in general ai,t = [ai,1,t,… , ai,i−1,t]′. We then let at be
the vector that concatenates all of the ai,t vectors so that at ≡ [a′2,t, a

′
3,t,… , a′n,t]

′.
To collect all of the free parameters that pin down �t, we define the length
ns ≡ n(n + 1)∕2 vector st ≡ [v′t, a

′
t]
′ where vt ≡ [v1,t,… , vn,t]′. Lastly, we let

f (st) be the function that maps st to �t via the transformations in equations (4)
and (5).

Law of Motion for Latent States. The stochastic volatility piece of the model
is completed by specifying a law of motion for st. We allow each element of st to
change over time according to an AR(1) process,

si,t = �i,0 + �i,1si,t−1 + �i,t , �i,t ∼ N
(

0, �2
i

)

for 1 ≤ t ≤ T(6)

where si,t denotes the i-th element of st. To collect the unobservables pertaining
to the i-th state transition equation we define the vectors �i ≡

[

�i,0, �i,1
]′ and

�i ≡
[

� ′
i , �

2
i

]′, and finally the full set of static parameters governing all the state
transitions is denoted � =

{

�i
}ns
i=1. The normally distributed innovations �i,t are

assumed to be independently distributed across both i and t. The joint density for
the sequence of all latent states, given initial conditions, then takes the form

p(s1∶T |�, s0) =
ns
∏

i=1

T
∏

t=1
p(si,t|�i, si,t−1)(7)

Priors. To complete the definition of the VAR-SV as a Bayesian model requires
prior distributions for the initial conditions of the latent states s0 and for the two
sets of static parameters, b and �.We assume that the joint prior p(b, s0,�) can
be factored as

p(b, s0,�) = p(b)
ns
∏

i=1
p(si,0)p(�i),(8)

where b ∼ N
(

b0,V0
)

and si,0 ∼ N
(

si,0, &2i,0
)

for each i. The prior for each �i takes
the natural conjugate form for the AR(1) laws of motion specified in equation (6)
but with the parameter space truncated to enforce nonexplosiveness of each si,t

6

process.7 This is to say that, for i = 1,… , ns,

p(�i,�2
i) = p(�i|�2

i) p(�
2
i) ∝ N

(

�i|� i, �2
i�i,�

)

IG
(

�2
i |ai, bi

)

⋅ 1
{

|�i,1| ≤ 1
}

(9)

where IG denotes the inverse gamma distribution and 1{⋅} denotes the indicator
function.8 The prior hyperparameters

(

b0,V0
)

,
{

si,0, &2i,0
}ns
i=1, and

{

� i, �i,� , ai, bi
}ns
i=1

are objects specified by the researcher. Appendix B describes the way we set the
prior hyperparameters for the application in Section 4.

2.1 Tractable Features of the Posterior and Predictive Distributions

The joint posterior of the VAR-SV’s unobservables takes the form

p(s0∶T ,b,�|y1∶T) =
p(y1∶T |b, s0∶T) p(s0∶T |�) p(b)

∏ns
i=1 p(si,0)p(�i)

p(y1∶T)
.(10)

It is the density in equation (10) that the researcher must characterize in order to
proceed with Bayesian inference. Unfortunately, arbitrary moments of interest
from the posterior distribution are not available analytically. However, a few
particular analytical properties of the distribution are available in closed form
and will be usefully incorporated into our estimation method. At a high level,
one might summarize the analytically tractable aspects of the model as,“if, at
time t, we knew the latent states s0∶t in addition to y1∶t, then we would know
everything.” Two manifestations of that fact are particularly useful for us: first,
the ability to simulate iid values from the predictive distribution of st+1 given
the history s0∶t; second, the ability to evaluate the model’s predictive density for
yt+1, but marginal of b, given y1∶t and values for s0∶t+1.

Toward the first property, note that a valid way to generate simulations from
each of the distributions p(si,t+1|si,0∶t) is to simulate from the joint distribution
p(si,t+1,�i|si,0∶t) and then simply discard the draws of �i. To that end, note further
that p(si,t+1,�i|si,0∶t) can be factored into a marginal and a conditional as

p(si,t+1,�i|si,0∶t) = p(si,t+1|�i, si,t)p(�i|si,0∶t).(11)

7This restriction is standard in the literature. Even when researchers do not explicitly say so
within the text, the restriction is typically imposed in their computer code.

8There are various parameterizations of the inverse gamma distribution used in the lit-
erature. Our parameters (a, b) pertain to an inverse gamma density of the form p(x|a, b) ∝
x−a−1 exp(−b∕x).

7

In principle, simulations from the predictive distribution of si,t+1|si,0∶t can then be
produced by using the right-hand side of equation (11), that is by first simulating
from the marginal for �i and then conditioning on its value to simulate si,t+1.9

Each piece required for that method is indeed tractable. The posterior distribution
p(�i|si,0∶t) takes the same functional form as equation (9) and thus draws from
p(�|s0∶t) can be readily simulated.10 Lastly, the sample from p(si,t+1|�i, si,t) is
then produced by simply simulating forward equation (6).

Toward the second property, note that the posterior of b conditional on �1∶T

is known in closed form as

p(b|y1∶T , s0∶T) =
p(y1∶T |b,�1∶T) p(b)

p(y1∶T |�1∶T)
= N

(

b |bT ,VT
)

(12)

where the parameters of the posterior normal distribution are given by

VT =
(

V−1
0 +

T
∑

t=1

(

�−1
t ⊗ xtx′t

)

)−1
(13)

bT = VT
(

V−1
0 b0 +

T
∑

t=1
vec

(

xty′t�
−1
t

)

)

(14)

and �t = f (st) for each t. This known functional form plays an important role in
the MCMC algorithm embedded within our SMC algorithm. It also leads to the
result that when also conditioning on st+1, the predictive density for yt+1 takes
the form

p(yt+1|y1∶t,�1∶t+1) = ∫b
p(yt+1|y1∶t,b,�1∶t+1)p(b|y1∶t,�1∶t)db(15)

= N
(

yt+1|yt+1,�t+1
)

(16)

where

yt+1 = B
′

txt+1 and �t+1 = �t+1 + X′
t+1VtXt+1(17)

9The two-step procedure is required because of the truncation on the space of �i. In the
absence of the truncation, the predictive distribution of each si,t+1 is known in closed form as a
Student’s T-distribution.

10If nothing else, the truncation can then be implemented by a simple accept-reject algorithm,
though more efficient approaches are available and we describe the one we use in the Appendix.

8

and Xt+1 = In ⊗ xt+1. Hence, knowledge of the latent states is also sufficient to
fully characterize the model’s predictive distribution analytically.

3. A Sequential Algorithm for Fully Bayesian Inference

One might inutitively expect that the posteriors for successive time periods
would be, in some sense, similar. After all, the only change in the information set
is typically a single vector of observations. The idea of sequential inference is
to leverage the similarity of the posteriors in proximate periods and adapt the
approximation of the old posterior into an approximation of the new posterior. The
SMC algorithm we develop in this section builds this idea into an algorithm for
which the larger SMC literature provides formal statements about the algorithm’s
ability to systematically estimate features of the posterior. We next describe our
algorithm, as we implement it, and then follow with a discussion. Appendix C
contains additional details about some of the algorithm’s technical properties.

3.1 SMC for the VAR-SV

At a general level, SMC algorithms recursively construct discrete approxima-
tions to the distribution of the random variables of a sequence of target densities.
In our setting, the sequence of target distributions consists of the sequence of
joint posteriors for the VAR-SV’s unobservables. Two key properties of SMC
make it particularly attractive for our purposes. First, the discrete approximations
constructed by SMC can be used for provably valid Bayesian inference about mo-
ments of interest, and the inference can be made arbitrarily accurate by increasing
the granularity of the approximation. Second, we can build the approximation
sequentially, adapting the approximation from one stage to the next rather than
starting the inference from scratch at each stage.

SMC consists of an initialization stage followed by, for each target density,
an iteration over three phases: correction, selection, and mutation. We denote
the t-th target density as �t so �t = p(s0∶t|y1∶t) for t = 1, 2,… , T . The i-th point
in the discrete approximation to �t consists of a weight, 0 ≤ W i ≤ 1, and a
vector of values for the unobservables, si0∶t.We refer to the tuple

(

si0∶t,W
i
)

as
a particle and to the collection ofN particles

{

si0∶t,W
i
}N
i=1 as a swarm, where

∑N
i=1W

i = 1.
Algorithm 1 summarizes the structure of an SMC algorithm and we subse-

quently describe each stage in detail.

9

Algorithm 1 - SMC for VAR-SV

Initialize
{

si0 , W
i
0

}N
i=1 via s

i
0 ∼ p(s0) andW i

0 = 1
N
for i = 1,… , N

for t = 1,… , T

1. Correction (Algorithm 2)

{s̃i0∶t , W̃
i
t }

N
i=1 ← correction

(

{si0∶t−1,W
i
t−1}

N
i=1 , y0∶t

)

2. Selection (Algorithm 3)
{ŝi0∶t , W

i
t }

N
i=1 ← selection

(

{s̃i0∶t, W̃
i
t }

N
i=1

)

3. Mutation (Algorithm 4)
{si0∶t , W

i
t }

N
i=1 ← mutation

(

{ŝi0∶t,W
i
t }

N
i=1 , y0∶t

)

end

Correction. The “Correction” phase updates the particles to correct for the
discrepancy between the old target kernel kt−1 and the new target kernel kt. In full
generality, this is done by importance sampling �t(s0∶t) = p(s0∶t|y1∶t). Importance
sampling entails simulating values for s0∶t from a proposal distribution g(s̃i0∶t|y1∶t)
and reweighting the draws appropriately to account for the discrepancy between
the proposal and target densities. In particular, defining a particle’s incremental
weight w̃i

t as

w̃i
t =

kt(si0∶t)
kt−1(si0∶t−1)

1
g(si0∶t|y0∶t)

.(18)

and constructing each particle’s unnormalized and normalized weights, respec-
tively, as

wi
t = w̃i

tW
i
t−1(19)

W̃ i
t =

wi
t

∑N
i=1w

i
t

.(20)

10

yields a particle approximation
{

s̃i0∶t , W̃
i
t

}N
i=1 for which laws of large numbers

and central limit theorems for moments of �t obtain in the number of particles.
In our setting, the expression for the incremental weights in equation (18)

can be simplified considerably. Defining the target kernel kt as

kt(s0∶t) = p(s0∶t)p(y1∶t|s0∶t),(21)

the ratio of target kernels required for the computation of the incremental weights
w̃t according to equation (18) becomes11

kt(s0∶t)
kt−1(s0∶t−1)

= p(st|s0∶t−1)p(yt|y0∶t−1, s0∶t).(22)

Lastly, we need to specify a proposal distribution g(s0∶t|y1∶t). In practice,
upon entering stage t, researchers usually propose s0∶t by keeping each particle’s
si0∶t−1 fixed at their values from the end of stage t − 1 and proposing a new value
for only s̃it from a source density gt(s̃it|s

i
0∶t−1, y1∶t).

12 It is common in particle filter
applications to use the law of motion for the dynamic parameters as proposal
distribution, in which case gt = p(s̃it|s

i
0∶t−1) and the algorithm is known as the

bootstrap particle filter. We follow that choice here. With the bootstrap choice of
gt(⋅), and using the expression in equation (22), the expression for the incremental
weight in equation (18) reduces to simply

w̃i
t = p(yt|y1∶t−1, si0∶t−1, s̃

i
t).(23)

The recipe for implementing the correction phase is then given by Algorithm 2.

Algorithm 2 - Correction

(parallel)for i = 1,… , N

11The subsequent expression uses the fact that p(y1∶t−1|�0∶t−1) = p(y1∶t−1|�0∶t), hence

p(y0∶t|�0∶t)
p(y1∶t−1|�0∶t−1)

=
p(y0∶t|�0∶t)
p(y1∶t−1|�0∶t)

= p(yt|y1∶t−1,�0∶t).

12In this case one could say that g is still source density for the whole sequence but with a
pointmass for s̃i0∶t−1 at the values s

i
0∶t−1.

11

1. Sample s̃it ∼ p(s̃it|s
i
0∶t−1).

2. Compute incremental weight w̃i
t via equation (23).

3. Compute unnormalized weight wi
t via equation (19).

end

• Compute normalized weights {W̃ i
t }

N
i=1 via equation (20).

• The particle system is now given by
{

s̃i0∶t, W̃
i
t

}N
i=1

To recap the key ingredients required of our Correction recipe, we need to
know how to simulate from the proposal distribution p(st|s0∶t−1) and how to
evaluate pointwise p(yt|y1∶t−1, s1∶t), with both densities marginal of all static
parameters. For the VAR-SV model of interest here, both tasks are feasible using
the expressions in Section 2.1.

Selection. The selection phase consists of either resampling the particles or
doing nothing. When resampling, we use multinomial resampling because SMC’s
theoretical properties are best understood with this choice.13 This amounts to
sampling iid, with replacement, from the set of trajectories {s̃i0∶t}

N
i=1, with the itℎ

trajectory being sampled with probability W̃ i
t . In Algorithm 3 we denote such a

sample as ŝit ∼ {s̃i0∶t, W̃
i
t }

N
i=1.We resample at stage t if the diversity of particles

with meaningful weights falls below a particular threshold.14 In particular, we
follow a standard choice in the literature and resample if a summary statistic of
particle degeneracy in the swarm, the “effective sample size” (ESS), falls below
the thresholdN∕2. The recipe for implementing the selection phase is then given
by Algorithm 3.

13In particular, multinomial resampling at the selection phase has facilitated the proof of central
limit theorems for the particle approximation. In practice, alternative resampling strategies can
give better performance. See Douc and Cappe (2005) and Murray, Lee, and Jacob (2016) for
alternative resampling algorithms.

14This type of resampling rule is called “adaptive” because it depends on the current state of
the particle approximation. Importantly, Del Moral, Doucet, and Jasra (2012) prove that, with
adaptive resampling schemes such as this one, posterior moments computed from the particle
system still converge to their true values asymptotically inN.

12

Algorithm 3 - Selection

• Compute ESS =
(

∑N
i=1(W̃

i
t)

2
)−1

.

if (ESS∕N) < 0.5

for i = 1,… , N

Sample ŝit ∼ {s̃i0∶t, W̃
i
t }

N
i=1

end

SetW i
t = 1∕N for each i.

else

Set (ŝi0∶t,W
i
t) = (s̃i0∶t, W̃

i
t) for each i.

end

• The particle system is now given by
{

ŝi0∶t,W
i
t

}N
i=1.

Mutation. At a high level, the Mutation phase consists of “jittering” each
particle’s values for si0∶t. This step is critical for combating the well-known issue
of particle degeneracy, particularly when many identical copies of the same
particle were created by resampling in the Selection phase.15 Critically for the
computational efficiency of the algorithm, the mutation steps occur on a per
particle basis, where each particle is mutated independently of the others. Hence,
the computationally intensive Mutation phase can be executed in parallel across
particles.

We mutate each particle by iteratively sampling, nmut times, its values of
s0∶t from a known MCMC algorithm for the VAR-SV. We denote the MCMC
kernel as Kt. The MCMC algorithm is, in most respects, not an innovation to
this paper so we leave the details to Appendix E.16 A key thing to note about
our implementation of this stage is that, as an MCMC algorithm for the full

15Mutation steps are also sometimes known as “move” steps.
16The MCMC algorithm is essentially Algorithm 3 of Del Negro and Primiceri (2015), but

with a time-invariant b.

13

model, Kt generates samples of (s0∶t,b,�), while we only carry the sample of
s0∶t into period t + 1 as part of the particle. For our purposes, the samples of
(b,�) are merely a byproduct of using an algorithm that operates in the full
parameter space to efficiently move the values s0∶t around the target posterior.
Hence, the samples of (b,�) are simply discarded after completing the mutation
phase. Importantly, since our mutation kernel is a Gibbs sampler, it is extremely
efficient at rejuvenating the diversity of s0∶t values. The recipe for implementing
the mutation phase is given by Algorithm 4.

Algorithm 4 - Mutation

• LetKt be aMarkov transition kernel with invariant distribution p(s0∶t,b,�|y1∶t).

(parallel)for i = 1,… , N

Set si,(0)0∶t = ŝi0∶t and sample (b
(0),�(0)) ∼ p(b,�|y1∶t, s

i,(0)
0∶t)

for j = 1,… , nmut

Sample
(

si,(j)0∶t ,b
(j),�(j)

)

∼ Kt
(

si,(j)0∶t ,b
(j),�(j)|si,(j−1)0∶t ,b(j−1),�(j−1)

)

.

end

Set si0∶t = s
i,(nmut)
0∶t

end

• The particle system is now given by {si0∶t,W
i
t }

N
i=1

3.2 Discussion

The algorithm we have presented leaves two aspects to be chosen by the
researcher: the number of particles (N) and the number of mutation steps per
phase (nmut). In both respects, the most basic fact to be aware of is that “more
is better.” Importantly, Gilks and Berzuini (2001) and Chopin (2004) show that
a central limit theorem continues to obtain for estimating moments of interest
when using mutation steps in the SMC algorithm. In Appendix C we describe
formally the sense in which our algorithm is equivalent to an SMC algorithm for
the full parameter space.

14

Lastly, we note that in typical macroeconomic applications, a substantial set
of observations are already available in the first estimation period of interest. In
other words, updates based on one observation at a time will be necessary in the
future, but the batch of observations y0∶t is available today. A reasonable approach
to putting the SMC updates into practice would then be to generate a sample from
the posterior up to the most recent available data using the MCMC algorithm, and
subsequently using SMC to update the draws as subsequent observations become
available The MCMC draws would be used as an equally weighted sample of �t
to initialize the SMC algorithm, from which Algorithm 1 would then proceed as
usual when yt+1 becomes available.17

4. Application: Estimating a Seven-variable VAR-SV

In this section we demonstrate the effectiveness of our proposed estimation
algorithm. Ideally, we would be able to compare our algorithm’s estimation
output to iid posterior draws. Unfortunately, this is not possible for the VAR-SV
(else we would not have needed to write this paper at all). We can, however,
compare our algorithm to the extant MCMC estimation method. When correctly
specified, both SMC and MCMC yield samples of draws from which posterior
moments can be consistently estimated. Hence, we compare SMC to MCMC
in terms of their reliability, across repeated runs, at estimating features of the
posterior. Lending further credence to the exercise, the correctness of the MCMC
algorithm can be readily verified, and we have done so, using the “getting it right”
test of Geweke (2004).18

As a setting for the comparison we estimate a VAR-SV with n = 7 variables,
the same variables used in the “medium scale” system in Giannone, Lenza, and
Primiceri (2015).19 At a conceptual level, the variables in the VAR are real output
(GDP), prices (P), consumption (C), investment (I), hours worked (H), wages (W),
and interest rates (R). We give the details on the exact data series used for each
object in Appendix A. The time-series consists of quarterly observations running
from 1954:Q3 to 2019:Q1 and the VAR has p = 4 lags. This seven-variable

17Koop and Potter (2007) also suggest this type of hybrid approach in the context of estimating
their “change point” models.

18See Appendix F.
19They are also the same variables, at least conceptually if not the precise choice of data series,

used to inform the Smets and Wouters (2007) model.

15

system, with a year’s worth of lags of each variable, is rich enough to capture
many of the key macroeconomic dynamics of interest to policymakers while
remaining parsimonious enough to not be too unwieldy.20

4.1 The Estimation Algorithms to Be Compared

We begin by describing the algorithms we compare. Standard practice in the
literature is for researchers to work with a sample of 10,000 draws to approximate
the posterior. Hence, we take a posterior approximation based on 10,000 values
of the unobservables as the focal point for our comparisons.21

For MCMC, we consider two different ways to obtain the 10,000 draws.

1. MCMC-short. A “quick and dirty” MCMC chain of 10,000 iterations and
preserving all of them.

2. MCMC-long. An MCMC chain of 105,000 iterations, burning the first
5,000 and thinning the remaining draws to 10,000 by keeping the sample
from only every 10th iteration.

The MCMC-short algorithm is simply the fastest way to get 10,000 draws from
theMCMC chain. We will see that, in terms of computing time, this is a highly rel-
evant comparison for SMC’s speed at producing a posterior update. The MCMC-
long algorithm closely comports with what researchers do in practice when they
wish to obtain an accurate posterior approximation.

For SMC we focus on algorithms with nmut = 5 and nmut = 25 while keeping
the granularity of the approximation atN =10,000. We will sometimes refer to
the two algorithms with the shorthand SMC-5 and SMC-25. We also compute
the runtime for an SMC algorithm with no mutation steps at all, which, when
compared to the other two specifications, facilitates the calculation of how much

20It is known in the literature that, for the stochastic volatility model described in Section 2,
the order of the variables in yt matters for inference. Relatedly, one of this paper’s authors has
research questioning the suitability for structural inference of models with this form of stochastic
volatility; see Bognanni (2018). Nonetheless, models of this form have a strong track record in
macroeconomic forecasting, as shown in the papers cited in our introduction, so we expect their
estimation to be of interest for the foreseeable future. We use the variables in exactly the order in
which they are listed above; in effect, this choice becomes part of the model. This is simply the
order in which the variables appear, from left to right, in the Giannone, Lenza, and Primiceri
(2015) replication files (though not exactly the order given in their Table 1).

21For the MCMC algorithms, each draw is of course equally weighted, while the SMC draws
will potentially have different weights as determined by the algorithm described in Section 3.

16

TABLE I
COMPUTING TIME IN MINUTES TO ESTIMATE 7-VARIABLE VAR-SV

POSTERIORS

p
(

s0∶t|y1∶t
)

|p
(

s0∶t−1|y1∶t−1
)

Estimation Method t = 100 t = T = 217 p
(

s0∶T |y1∶T
) {

p
(

s0∶t|y1∶t
)}T

t=1

SMC – nmut = 0 0.2 0.3 41.9 41.9
SMC – nmut = 5 1.0 2.2 247.5 247.5
SMC – nmut = 25 4.5 9.5 1067.9 1067.9

MCMC – short 6.9 20.0 20.0 1838.1
MCMC – long 66.9 175.8 175.8 17606.1

Notes. SMC times are based on using 96 virtual CPUs. The p(s0∶t|y1∶t)|p(s0∶t−1|y1∶t−1) columns
give computing time to estimate the time t posterior given the estimates of the time t−1 posterior.
The p(s0∶T |y1∶T) column gives the computing time to estimate the posterior for the full trajectory
of s0∶T using all of the data but starting from scratch. The {p(s0∶t|y1∶t)}Tt=1 column gives the
cumulative computing time required to estimate all of the posteriors for s0∶t with an expanding
window of observations.

time the algorithm spends in the mutation phase.22 The reasons for our choices
for nmut will be apparent after some discussion of the runtime results.

4.2 Estimation Algorithm Computation Times

In Table I we tabulate the runtime required for each algorithm to complete
three different tasks of posterior inference. The first two columns of runtimes give
the time required to approximate a particular posterior, p(s0∶t|y1∶t), conditional
on having available an approximation to the previous period’s posterior, for which
we use our swarm notation p(s0∶t|y1∶t). The next column tabulates the runtime
required to approximate the full posterior p(s0∶T |y1∶T), all the way to t = T , from
scratch. The last column gives the runtime required to approximate all of the
posteriors, starting with t = 1 and running through the end of the sample.

Table I makes clear a number of key points about the way the algorithms work.
First, focusing on the two columns of runtimes for incremental updates, the SMC
algorithms generate a new posterior approximation in an order of magnitude less
time than the MCMC-long algorithm and still only half as long as the more crude
MCMC-short algorithm. This is our single most important point in this section,
but the runtimes in the last two columns give some additional clarity about how

22With nmut = 0 the algorithm is equivalent to the “sequential importance sampling-resampling”
(SISR) algorithm of Gordon, Salmond, and Smith (1993).

17

the algorithms differ.
Turning then to the third column of runtimes, one can see why the SMC

incremental updates tabulated in the second column were so much faster than
the MCMC algorithms. Namely, the MCMC algorithms have no notion of an
incremental update at all. Rather, since the MCMC algorithms have to estimate
the full target posterior from scratch, the MCMC “incremental” times for the T
posterior are inherently identical to their full sample runtimes. However, for a
single full sample estimation one can see that even the MCMC-long is consider-
ably faster than the SMC algorithms. Hence, it is worth emphasizing that we do
not claim to have a better method for estimating a single posterior.

The last column of runtimes makes clear that, although the SMC algorithm is
slower to generate full sample estimates when starting from scratch, in doing so
it is producing an approximation to all t = 1,… , T intervening posteriors. This
point is made clear by the fact that the SMC algorithm runtimes to the last two
columns are identical. This is an important point because it also summarizes the
total computation time required over the life of the algorithm if it had been run
“online” in a production setting from t = 1 onward. One can see that running the
MCMC-long algorithm would have been more time consuming, by an order of
magnitude, than SMC.

Lastly, we point out that for all of the algorithms considered here, increasing
t increases the computing time. This is true for the MCMC algorithms (and thus
the mutation phase of the SMC algorithms), since each iteration has to wash over
an expanding sequence of s0∶t. Also, and perhaps less obvious, it is true (though a
minor consideration) for incremental updates for SMC even without any mutation
steps. This is because the marginalization of (b,�) requires computing statistics
that depend on the full sequences y1∶t and s0∶t. Hence, as these sequences expand,
the computation of those statistics takes longer. In this sense our algorithm is
“sequential” but not “online” in the sense often meant by statisticians in which
updates take a fixed amount of computation time.

4.3 High-Level Comparison of SMC and MCMC Estimates

We now document how effectively each algorithm approximates key poste-
rior features. Before turning to the formal metrics, we begin with a high-level
demonstration of “what’s going on.” Namely, when sized large enough, both al-

18

FIGURE 1.—p(a5,4,t=180|y1∶T) Estimates

gorithms yield identical posteriors. Of course the space of potential comparisons
of posterior features is enormous. Each st has 28 free elements, and with 217
quarters of data (plus initial conditions) the full trajectory of s0∶T contains 6,104
distinct unobservables, any moment or cross-moment of which could form the
basis of a posterior comparison. Here we focus on the features of the posterior
of a5,4,0∶T simply because it yields particularly clean visual comparisons among
algorithms. In the next section we document the broader posterior features more
rigorously and more thoroughly.

The three panels of Figure 1 show histograms of this posterior as estimated
by SMC with 10,000 particles and 1, 5, and 25 mutation steps (columns). For
comparison, each panel also shows a histogram of the estimated posterior from
the MCMC-long algorithm. When the two histograms appear essentially on top
of each other, the two algorithms have generated essentially the same posterior
approximations.

Looking across the panels, from left to right, it is visually apparent that as we
increase nmut the SMC swarm characterizes the model’s posterior increasingly
accurately. The appendix contains figures with a full battery of plots for compar-
isons across algorithm specifications and for the means and 68 percent credible
sets for the full trajectories of the elements of s0∶T . The key takeaway is simply
that as we increase the number of mutation steps, the SMC posterior estimates
become indistinguishable from the MCMC posterior estimates. This gives us
a sense of what we should expect to be true when examining the more formal
estimation metrics in the next section.

While Figure 1 shows a comparison of posteriors for a single t, one could
also examine a visual comparison for the full trajectory p(a5,4,0∶T |y1∶T), which

19

FIGURE 2.—SMC vs. MCMC: Quantile Estimates of p(a5,4,t|y1∶T)

is what we present in the left panel of Figure 2 (titled “Single Run Estimates”).
The shaded regions in the figure demarcate, at each t, the MCMC estimate of
p(a5,4,t|y1∶T) divided into its 5tℎ, 16tℎ, 50tℎ, 84tℎ, and 95tℎ quantiles. The black
lines are estimates from the SMC-25 algorithm of the same quantiles. In fact, the
shaded regions are divided by thin white bands but, to the extent that the white
bands are not visible and the black lines appear to outline the shaded regions, the
MCMC and SMC quantile estimates coincide across all t. We will not belabor
the point further as these visual comparisons merely suggest that SMC is capable
of generating the “same” results as MCMC. The more rigorous comparison is
foreshadowed by the right panel of Figure 2, to which we next turn.

4.4 Formal Comparisons of Estimation Accuracy

There will of course be Monte Carlo variation in the estimates generated
across runs of any of the estimation algorithms. Having seen that SMC can give
estimation results comparable to MCMC, we next turn to comparisons of the
Monte Carlo variation of estimates across repeated runs. The goal is to assess
SMC’s reliability at systematically producing accurate posterior characterizations.

We begin with the posterior features described at the end of the previous
section, but now turning to the right panel of Figure 2. The right panel shows the
Monte Carlo variation in the estimates of each quantile across 10 runs of each

20

FIGURE 3.—Numerical Standard Errors of Posterior Moments of a5,4,1∶T

algorithm. Each band is centered at the mean of the estimates and extends to ±1.5
of the standard deviation of the estimates across runs (the numerical standard
error or “NSE”). Hence, provided that the bands are centered in approximately
the same place, the algorithm with the narrower bands is the more accurate
one. In the example in 2 one can see that the SMC-25 bands live strictly inside
of the MCMC bands for virtually all quantiles and all t, and hence provides
systematically more accurate approximation to the posterior.

Another way to see the result is to focus directly on the NSEs. For example,
Figure 3 shows the NSE of the means, standard deviations, and four different quan-
tiles of the approximation to the distribution p(a5,4,t|y1∶T) at each t = 1,… , T .
Each line in a panel shows the NSE from estimation with a different algorithm.
Smaller numbers indicate increased estimation accuracy, in the sense of lower
variation across runs of the estimation algorithm. The results are unambiguous.
For every object of interest, and every t, the SMC algorithm with 25 mutation
steps dominates the other estimation approaches, which is shown by the fact that
its line traces out the smallest values in each panel and at each t.

The important question is then the extent to which this is a more general
phenomenon for features of the model’s posterior. It turns out that the key re-
lationships among the algorithms that became visible with the spotlight on

21

FIGURE 4.—Share of Smallest NSE Posterior Feature by Algorithm.

p(a5,4,0∶T |y1∶T) in Figures 2 and 3 hold very generally across all the posterior
for all elements of s0∶T . Figure 4 summarizes numerous comparisons of the
NSEs from estimating various posterior quantities. Each bar indicates the share
of moments for which each algorithm has the smallest NSE. The label on the
horizontal axis indicates which subset of moments we are restricting attention to
for the comparison, while the rightmost bar gives the aggregated result across all
moments we computed. The results are again unambiguous, with the SMC-25
algorithm having the smallest NSE for all subsets of moments we compare.

Lest one fear that the NSEs are somehow misleading as a result of an esti-
mation algorithm systematically missing a given posterior feature in the same
way, the appendix contains a full battery of figures (Figures 6–12) comparing the
mean estimates of each feature from MCMC-long and SMC-25. Those figures
show that the two estimates are always on top of each other. The appendix also
contains figures showing the NSEs of each moment, at each t for all elements of
s0∶T (Figures 13–19).

5. Computational Environment

The SMC results in the previous section make use of computing resources
that few, if any, researchers will have physically present in their offices. For this
reason, and as an additional contribution, we demonstrate that the algorithms
could be readily implemented with publicly provisioned computing resources.
In fact we had little choice; we do not have 96 vCPU machines in our offices
either. To this end, we carried out all of our computations using the “public
cloud,” namely, using resources available through Amazon Web Services (AWS).

22

From AWS we could readily obtain virtual machines equipped with as many
as 96 virtual CPUs. The fact that such a large degree of parallelization is now
readily available on even a single machine instance is important for preserving
the simplicity of our implementation, as it meant that we did not need to combine
multiple virtual machine instances into a cluster.

Of course, since we provisioned our computing resources from the public
cloud, we had to pay market prices for those resources. At the time of writing,
virtual machine instances with 96 virtual CPUs were readily available as “spot”
instances for $0.95 per hour. Hence, the posterior update at T for SMC-25, taking
9.5 minutes (see Table I), cost only $0.15. The “on demand” price was $4.61 per
hour, at which rate the 9.5-minute update would still cost only $0.73.

Another consideration closely related to computing on the public cloud is
the choice of software in which to write our computer code. We wanted the
implementation to be entirely in a programming language that was open source
and free to use, including its parallel functionality, so that we had no special
licenses to procure in order to execute our programs on the AWS machines.23

To this end, we wrote our computer code in Julia.24 Essentially, all of Julia’s
functionality, including the ability to parallelize to an arbitrary number of cores,
is freely available and free to distribute and deploy. Though relatively new,
Julia has garnered substantial attention as a programming language for scientific
computing. For quantitative applications in economics, Julia’s attractive balance
of performance and ease of use has been highlighted by Aruoba and Fernández-
Villaverde (2015) and by its ongoing inclusion in the QuantEcon organization’s
projects.25 The machines on which we executed the programs run the Ubuntu
18.04 LTS operating system, which is also open source and free to use.

Lastly, we handle the entirety of the parallelization with high-level commands

23For some closed-source, proprietary programming languages we would need to procure
special licenses to install and use the requisite software on cloud resources. Some such programs
also require additional proprietary packages to use high-level commands for parallelism, and
these packages can come at a significant additional cost. In the recent past, some such software
programs have also restricted the degree of parallelism allowed even after purchasing the requisite
licenses for parallel functionality.

24See Bezanson et al. (2017) for an exposition of the key concepts guiding the Julia program-
ming language’s original, and ongoing, development.

25See Aruoba and Fernández-Villaverde (2018) for updated computational results. Quan-
tEcon was founded, and remains co-chaired, by Thomas J. Sargent and John Stachurski. See
https://quantecon.org/ for more information on the QuantEcon organization.

23

https://quantecon.org/

in Julia, i.e., wemake no direct recourse to passing instructions at a lower level.26

In particular, the aspects of the code that are specific to a parallel implementation
consist entirely of only the following three functions or decorators defined by the
Distributed package included in the standard Julia distribution: 1) addprocs,
to make all of the machine’s processors available to Julia for computation
(known in Julia as “workers”); 2) @everywhere, to instantiate the key model
objects on all the workers; and 3) pmap, to distribute the workload of parallelizable
tasks across the available workers.

6. Conclusion

We developed a sequential Monte Carlo (SMC) algorithm for sequential
Bayesian inference in vector autoregressions with stochastic volatility. The al-
gorithm builds particle approximations to the sequence of posteriors under an
expanding window of data, adapting the particles from one approximation to the
next. Our SMC algorithm embeds the known MCMC algorithm for the model
as an effective mutation kernel for fighting particle degeneracy. The algorithm
is highly parallelizable, allowing for rapid updates from one posterior to the
next. We applied the algorithm to a seven-variable vector autoregression and
demonstrated that the SMC algorithm yields inference as precise as running the
MCMC algorithm from scratch, but does so in only a fraction of the time.

Lastly, although MCMC and SMC methods tend to be pitted against each
other in the literature, this paper demonstrates in a practical setting how the two
methods can be complementary, namely, by using a known and efficient MCMC
algorithm for a particular model as the mutation kernel within the SMC algorithm.
In doing so we are largely able to have “the best of both worlds” in a time-series
application.

26Fernández-Villaverde and Valencia (2018) also highlight the simplicity of parallel computing
in Julia using the same functions that we highlight here.

24

A. Data

The specific data series used in the VAR, and their transformations, are given
in Table A-1.

TABLE A-1
DATA FOR VAR-SV

Name Abbreviation FRED Mnemonic Transformation

Real GDP GDP GDPC1 400 ⋅ log
Prices P GDPCTPI 400 ⋅ log
Consumption C PCECC96 400 ⋅ log
Investment I GPDIC1 400 ⋅ log
Hours worked H HOANBS 400 ⋅ log
Wages W COMPRNFB 400 ⋅ log
Interest rates R FEDFUNDS none

Notes. All data are quarterly. Variables are ordered in yt as they are listed above. Training sample:
1954:Q3 – 1964:Q4. Estimation sample: 1965:Q1 – 2019:Q1. All variables except FEDFUNDS
are seasonally adjusted and the adjustment is made by the data source.

B. Prior Hyperparameters in the Application

The prior specification described in Table A-2 references a few objects we
describe here. We follow Primiceri (2005) and train the prior on a pre-sample of
observations spanning 1954:Q3 to 1964:Q4. Using the 1954:Q3 observation for
initialization, we fit a constant-coefficient VAR(1) with intercept to the T0 = 41
remaining pre-sample observations. Letting B̂0 and �̂0 denote the MLE estimates
of the VAR coefficients over the pre-sample, we compute the T0 × n matrix of
pre-sample residuals Û0 = Y0 − X0B̂0 and thus Û0 column-wise stores the time
series of T0 estimated residuals, ûi, for each variable i = 1,… , n.

A few aspects of the prior are worth highlighting. The prior for vec(B) is
centered at a random walk with Minnesota variances. The priors for the initial
states are independent Gaussian and trained on the pre-sample. The priors on the
the static parameters in each law of motion are independent across equations and

25

take the natural conjugate form

p(�2
j) = IG

(aj,0
2
,
bj,0
2

)

(24)

p(�j | �2
j) = N

(

�j,0, �2
j ⋅

−1
j,0

)

,(25)

denotedNIG(aj,0∕2, bj,0∕2, �j,0,
−1
j,0). The marginal prior distribution of � in

each equation is a multivariate t-distribution with covariance matrix bj,0
aj,0−2

−1
j,0,

so we set
−1
i,0 in order to directly set the marginal prior variance of �.

TABLE A-2
PRIOR FOR VAR-SV

Object Distribution Details

vec(B) N
(

vec
(

B0

)

, diag
[

sd(bi,j,l)2
]

)

B0 =
[

In 0′m−n,n
]′

sd(bi,j,l) =
⎧

⎪

⎨

⎪

⎩

�4si l = 0
�1
l�3

i = j
�1�2
l�3

si
sj

else

�1 = 0.1; �2 = 1; �3 = 1; �4 = 100
si: OLS residual std from full sample AR(1)
for variable i

v0 N
(

v0, In
)

v0 = log diag(�̂0)

ai, 0 N
(

ai,0, 4 ⋅ diag(qi)
)

ai,0 =
[

�̂(OLS)k

]

qi =
[

var
(

�̂(OLS)k

)]

from regression ûj =
∑j−1
k=1 �kûk + "

�j , �2j NIG
(aj,0

2 ,
bj,0
2 , �j,0, diag(!j,1, !j,2)

)

aj,0 =

{

8 j = 1, ..., n
3 else

bj,0 = dj,0 ⋅

{

0.03 j = 1, ..., n
0.12 else

�j,0 =
[

0.9 0.0
]′

!j,1 =
aj,0−2
bj,0

⋅

{

0.12 j = 1, ..., n
0.012 else

!j,2 =
aj,0−2
bj,0

⋅

{

0.12 j = 1, ..., n
0.0012 else

Notes. st = [v′t, a
′
t]
′ with generic element sj,t, j = 1,… , ns. bi,j,l is the element of B correspond-

ing to the (i, j)tℎ element of B′
(l) from equation (1).

26

C. Reformulation as SMC in the Space of All Unobservables

While Section 3 describes the algorithm as we implement it in practice,
in this section we describe how it should be formally interpreted as an SMC
algorithm to which results such as CLTs and SLLNs in the SMC literature apply.
Namely, it might appear that there is an inconsistency between the target density
in Correction and the invariant distribution of the Mutation kernel. Recall that the
target density, as defined during the Correction phase, is the marginal posterior
p(s0∶t|y1∶t), while the mutation kernel iterates in the large parameter space of
(s0∶t,b,�). This matters because SMC’s theoretical results with mutation steps
require these two distributions to coincide, in the sense thatKt should be aMarkov
transition kernel with the target density as its invariant distribution. As a Gibbs
sampler, Kt is Markov in the full set of unobservables (s0∶t,b,�) and possesses
the unique invariant distribution p(s0∶t,b,�|y1∶t).However, becauseKt is amulti-
step Gibbs sampler, it is notMarkov in the subset of unobservables s0∶t. Nor does
Kt have the marginal posterior p(s0∶t|y1∶t) as its unique invariant distribution.
See Robert (2007) and Robert and Casella (2004) for further discussion on
these properties of multi-step Gibbs samplers. We next show that our estimation
algorithm implements a valid SMC algorithm in the full parameter space.

At a high level, let the stage t target density be the joint distribution �̃t =
p(s0∶t,b,�|y1∶t). Now consider factoring the joint posterior density as follows:

�̃t = p(s0∶t,b,�|y1∶t) = p(s0∶t|y1∶t)p(b,�|y1∶t, s0∶t)(26)

and thus a kernel of the target density is

k̃t = p(s0∶t)p(y1∶t|s0∶t)p(b,�|y1∶t, s0∶t).(27)

One could then importance sample the target density by sampling from a density
g̃t(s0∶t,b,�|y1∶t) and giving the itℎ draw the unnormalized weight

wi
t =

p(s0∶t)p(y1∶t|s0∶t)p(b,�|y1∶t, s0∶t)
g̃t(s0∶t,b,�|y1∶t)

(28)

27

Without loss of generality, the proposal distribution can be factored as

g̃t(s0∶t,b,�|y1∶t) = g̃t,1(s0∶t|y1∶t) g̃t,2(b,�|s0∶t, y1∶t).(29)

Multiplying the top and bottom by kt−1 gives

wi
t =

p(s0∶t−1)p(y1∶t−1|s0∶t−1)p(b,�|y1∶t−1, s0∶t−1)
p(s0∶t−1)p(y1∶t−1|s0∶t−1)p(b,�|y1∶t−1, s0∶t−1)

⋅
p(s0∶t)p(y1∶t|s0∶t)p(b,�|y1∶t, s0∶t)
g̃t,1(s0∶t|y1∶t) g̃t,2(b,�|s0∶t, y1∶t)

.
(30)

Noting that

p(s0∶t)
p(s0∶t−1)

= p(st|s0∶t−1) and
p(y1∶t|s0∶t)

p(y1∶t−1|s0∶t−1)
= p(yt|y1∶t−1, s0∶t),(31)

equation (30) can be rearranged and written as

wi
t =
p(s0∶t−1)p(y1∶t−1|s0∶t−1)p(b,�|y1∶t−1, s0∶t−1)

p(b,�|y1∶t−1, s0∶t−1)

⋅
p(st|s0∶t−1)p(yt|y1∶t−1, s0∶t)p(b,�|y1∶t, s0∶t)

g̃t,1(s0∶t|y1∶t) g̃t,2(b,�|s0∶t, y1∶t)
.

(32)

Next, multiplying top and bottom by the proposal densities from t − 1 gives

wi
t =

p(s0∶t−1)p(y1∶t−1|s0∶t−1)p(b,�|y1∶t−1, s0∶t−1)
g̃t−1,1(s0∶t−1|y1∶t−1) g̃t−1,2(b,�|s0∶t−1, y1∶t−1)

⋅
p(st|s0∶t−1)p(yt|y1∶t−1, s0∶t)p(b,�|y1∶t, s0∶t)g̃t−1,1(s0∶t−1|y1∶t−1)

g̃t,1(s0∶t|y1∶t) g̃t,2(b,�|s0∶t, y1∶t)

⋅
g̃t−1,2(b,�|s0∶t−1, y1∶t−1)
p(b,�|y1∶t−1, s0∶t−1)

(33)

From equation (28), the first term is equivalent to wi
t−1. If we also set

g̃t,2(b,�|s0∶t, y1∶t) = p(b,�|s0∶t, y1∶t),(34)

and similarly for t − 1, then all terms directly invoking (b,�) cancel and the

28

expression for the weights becomes

wi
t = wi

t−1

p(st|s0∶t−1)p(yt|y1∶t−1, s0∶t)g̃t−1,1(s0∶t−1|y1∶t−1)
g̃t,1(s0∶t|y1∶t)

(35)

Lastly, choosing g̃t,1(s0∶t|y1∶t) = p(s0∶t), and similarly for g̃t−1,1, we have that

g̃t−1,1(s0∶t−1|y1∶t−1)
g̃t,1(s0∶t|y1∶t)

=
p(s0∶t−1)
p(s0∶t)

= 1
p(st|s0∶t−1)

(36)

and equation (35) becomes

wi
t = wi

t−1 p(yt|y1∶t−1, s0∶t).(37)

Defining the incremental weight as in equation (23), we can see that the recursive
expression for the weights is the same as that given in Section 3.

The weights we calculate in the algorithm described in the main text are
then equivalent to the weights we would have calculated by “targeting” the joint
posterior of all unobservables, and sampling the static parameters from their
exact conditional posterior. Indeed, we do sample them in this way; we just do not
bother to do it until initializing the Mutation phase, as can be seen in Algorithm 4.
This is fine because, as can be seen in the preceding arguments, the sample of
(b,�) does not affect the weights.

D. Additional Computational Considerations

Defining

Ht ≡ �−1
t =

(

A−1
t �tA

−1′
t

)−1 = A′
t�

−1
t At ,(38)

the posterior mean and covariance matrix in equations (13) and (14) can be
written as

VT =
(

V−1
0 +

T
∑

t=1

(

Ht ⊗ xtx′t
)

)−1
(39)

bT = VT
(

V−1
0 b0 +

T
∑

t=1
vec

(

xty′tHt
)

)

(40)

29

Note that Ht can be constructed from st without needing to invert any matrices
by populating At directly with the elements of at and using the fact that

�−1
t = diag

(

1.∕ exp(vt)
)

.(41)

D.1 Posterior density of state transition parameters

In the absence of the truncation, the posterior density for �i can be factored
as

p(�i, �2
i |si,1∶t) = p(�2

i |si,1∶t)p(�i|si,1∶t, �
2
i)(42)

where the density of �i is multivariate normal,

p(�{0}, �{1}|si,1∶t, �2) = N

([

�0
�1

]

,

[

Q0,0 Q0,1

Q1,0 Q1,1

])

(43)

The joint distribution in equation (43) can be equivalently expressed as a factor-
ization into a marginal and a conditional as

p(�{0}i |si,1∶t, �
2
i)p(�

{1}
i |si,1∶t, �

2
i , �

{0}
i)(44)

where p(�{0}|y1∶t, �2) = N(�0, Q0,0) and

p(�{1}|y1∶t, �2, �{0}) = N
(

�1|0, Q1|0
)

,(45)

for

�1|0 = �1 +Q1,0Q
−1
0,0(�

{0} − �0)(46)

Q1|0 = Q1,1 −Q1,0Q
−1
0,0Q0,1(47)

Accounting for the truncation yields density

p̃(�{1}|y1∶t, �2, �{0}) =
p(�{1}|y1∶t, �2, �{0}) ⋅ 1

{

|�{1}| < 1
}

�(1|�1|0, Q1|0) −�(−1|�1|0, Q1|0)
(48)

where�(x|a, b) denotes the cdf of a univariate normal distribution with mean a
and variance b evaluated at the value x. Random samples from truncated normals

30

can be generated efficiently using the algorithms in Robert (1995).

E. MCMC Algorithm for Mutation

Equations (49)–(67) below summarize the key relationships referenced in the
subsequent description of the MCMC algorithm.

y′t = x
′
tB + u′t ut ∼ N(0, �t)(49)

�t = A−1
t �t(A

−1
t)′(50)

At =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 ⋯ 0
a′2, t 1 ⋯ 0
⋮ ⋱ ⋮

a′n, t 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(51)

�t = diag[exp(vt)](52)

b = vec(B)(53)

ai, t = Giai, t−1 + gi + �i,t �i,t ∼ N(0,
i)(54)

vt = G1vt−1 + g1 + �t �t ∼ N(0,
1)(55)

ai, 0 ∼ N(āi, 0, Wi, 0)(56)

v0 ∼ N(v̄0|0, P0|0)(57)

b ∼ N(b̄0, V0)(58)
[

G′
i gi

]′
,
i ∼MNIW

(

�(i)0 , 	
(i)
0 , �

(i)

0 , �
(i)−1
0

)

(59)

� = {Gi, gi,
i}ni=1(60)

c̄ = 0.0001(61)

�(x) =
10
∑

k=1
pkN(x |mk, v2k)(62)

ut = yt − B′xt(63)

et = Atut(64)

ẽt = ln[e2t + c̄](65)

"̃t = ẽt − vt(66)

zi, t ∈ {1, ..., 10}(67)

31

Algorithm 5 - MCMC for VAR-SV

Block 1. p(v0∶T | y1∶T , b, a1∶T , �, z1∶T)

Let q(v0∶T) = p̃(v0∶T | ẽ1∶T , �, z1∶T) denote the posterior for the linear Gaussian
state-space system:

ẽt = vt +mt(zt) + "t "t ∼ N(0, �t(zt))

vt = G1vt−1 + g1 + �t �t ∼ N(0,
1)

v0 ∼ N(v̄0|0, P0|0)

where, for each t = 1,… , T , ẽt is observable and computed from equations
(63)–(65) and

mt(zt) =
[

mz1, t ,… , mzn, t
]

and �t(zt) = diag
(

[

�2z1, t ,… , �2zn, t
]

)

.

with mzi, t and �
2
zi, t

determined by the integer value of zi, t and values given in
Table A-3.

Sample a proposal v∗0∶T ∼ q(v0∶T) by running the Kalman filter forward and
then sampling from the simulation Kalman smoother.

Compute the acceptance/rejection probabilities

r =
p
(

v∗0∶T | ⋅
)

q
(

v(m−1)0∶T

)

p
(

v(m−1)0∶T | ⋅
)

q
(

v∗0∶T
)

=

∏T
t=1

[

N(et | 0, �∗
t)
∏n

i=1 �
(

"̃(m−1)i, t

)]

∏T
t=1

[

N
(

et | 0, �
(m−1)
t

)

∏n
i=1 �

(

"̃∗i, t
)

]

� = min{1, r}

where each �∗
t = f (v∗t) according to equation (52) and the "̃

∗
i, t are computed as

in equation (66) using the proposed v∗t .

32

Set v(m)0∶T according to

v(m)0∶T =

⎧

⎪

⎨

⎪

⎩

v∗0∶T with probability �

v(m−1)0∶T with probability 1 − �.

Block 2. p
(

b|y1∶T , v0∶T , a0∶T ,�, z1∶T
)

Note that

p
(

b|y1∶T , v0∶T , a0∶T ,�, z1∶T
)

= p
(

b|y1∶T , v0∶T , a0∶T
)

= N
(

b |bT , VT
)

with the parameters
(

bT ,VT
)

given in equations (13) and (14) of the main
text.

Block 3. p(a0∶T | y1∶T , v1∶T , b, �)

For i = 2, ..., n use the Kalman filter and simulation smoother to sample
ai, 0∶T from the posterior of this linear Gaussian system:

ui, t = −
[

u1, t ⋯ ui−1, t
]

ai, t + ri, t ri, t ∼ N
(

0, exp(vi, t)
)

ai, t = Giai, t−1 + gi + �i,t �i,t ∼ N(0,
i)

ai, 0 ∼ N(āi, 0, Wi, 0).

where each ut is observable and computed via equation (63).

Block 4. � ∼ p(� | v0∶T , a0∶T)

For i = 1,… , ns sample �i as described in Appendix D.1.

Block 5. p(z1∶T | y1∶T , b, a0∶T , �)

For each i = 1,… , n and t = 1,… , T , draw zi, t ∈ {1,… , 10} according
to the discrete distribution with probabilities

Pr(zi, t = k | "̃i, t) =
pkN("̃i, t |mk, �2k)

10
∑

j=1
pjN("̃i, t |mj , �2j)

k = 1, ..., 10

33

where "̃i,t denotes the i-th element of "̃t as defined in equation (66) and the
parameters

{

pk, mk, �2k
}n
k=1 are given in Table A-3.

k pk mk �2k
1 0.00609 1.92677 0.11265
2 0.04775 1.34744 0.17788
3 0.13057 0.73504 0.26768
4 0.20674 0.02266 0.40611
5 0.22715 -0.85173 0.62699
6 0.18842 -1.97278 0.98583
7 0.12047 -3.46788 1.57469
8 0.05591 -5.55246 2.54498
9 0.01575 -8.68384 4.16591
10 0.00115 -14.65000 7.33342

TABLE A-3
GAUSSIAN MIXTURE APPROXIMATION TO ln�2(1) DISTRIBUTION, AS GIVEN IN

OMORI ET AL. (2007).

The main element to call attention to is the introduction of a vector of indica-
tors z1∶T on mixture components used in sampling v0∶T . The use of the mixture
approximation introduces a potential wedge between the invariant distribution of
the algorithm’s simulations and the model’s true posterior. The MCMC algorithm
we use corrects for this wedge by using the mixture approximation as a device
for generating good proposals rather than just accepting the mixture output “as
is,” yielding a sampler with the correct invariant distribution.

F. MCMC Algorithm “Getting it Right”

The MCMC algorithm plays a critical role in our SMC algorithm, so we used
the “Getting it Right” algorithm of Geweke (2004) to formally verify that the
algorithm (and our implementation of it) are correct. The test environment uses
T = 10, n = 3, and p = 4.We take 105 draws from the “marginal-conditional
(MC)” simulator and run 4 × 106 iterations of the “successive-conditional (SC)”
simulator, which we thin to 105 draws.

We summarize the results of the tests in Table A-4, which shows the p-values
associated with nine different test functions, and we provide additional visual

34

diagnostics in the form of Q-Q plots in Figure 5. The null hypothesis to which
the p-values pertain is that the moment (test function) is equal in the distributions
of the MC and SC draws. From the p-values given in the table it is apparent
that this null hypothesis is not rejected for any of the test functions. The Q-Q
plots show the quantiles from MC and SC simulators for each of the same test
functions. Each dot in the plot pertains to a quantile, while the dashed red line is
the “45-degree” line. If the two distributions are the same, then the dots should
lie on the line. One can see in Figure 5 that all of the dots appear on the 45-degree
line. With all p-values outside standard “significance” levels, and the dots in the
Q-Q plots on top of the 45-degree line, we can be confident that our MCMC
algorithm is implemented correctly.

TABLE A-4
“GETTING IT RIGHT” TEST OUTPUT FOR MCMC (ALGORITHM 5)

test function p-value test function p-value test function p-value

B3, 3 0.100 �22, 1 0.828 v1, t=6 0.702
B2
3, 3 0.823 a3, 2, t=7 0.507 v21, t=6 0.209

�2, 1 0.834 a23, 2, t=7 0.191 a3, 2, t=7 ⋅ v1, t=6 0.709

35

FIGURE 5.—Q-Q plots of test functions for “getting it right.” Dots represent
quantiles; red dashed line is the 45-degree line.

36

FI
G
U
R
E
6.
—

M
ea
n
in

ea
ch
t:
m
ea
n
es
tim

at
e
ac
ro
ss

ru
ns

of
M
CM

C
an
d
SM

C

37

FI
G
U
R
E
7.
—

St
an
da
rd

de
vi
at
io
n
in

ea
ch
t:
m
ea
n
es
tim

at
e
ac
ro
ss

ru
ns

of
M
CM

C
an
d
SM

C

38

FI
G
U
R
E
8.
—

5t
h
qu
an
til
e
in

ea
ch
t:
m
ea
n
es
tim

at
e
ac
ro
ss

ru
ns

of
M
CM

C
an
d
SM

C

39

FI
G
U
R
E
9.
—

16
th

qu
an
til
e
in

ea
ch
t:
m
ea
n
es
tim

at
e
ac
ro
ss

ru
ns

of
M
CM

C
an
d
SM

C

40

FI
G
U
R
E
10

.—
50

th
qu
an
til
e
in

ea
ch
t:
m
ea
n
es
tim

at
e
ac
ro
ss

ru
ns

of
M
CM

C
an
d
SM

C

41

FI
G
U
R
E
11

.—
84

th
qu
an
til
e
in

ea
ch
t:
m
ea
n
es
tim

at
e
ac
ro
ss

ru
ns

of
M
CM

C
an
d
SM

C

42

FI
G
U
R
E
12

.—
95

th
qu
an
til
e
in

ea
ch
t:
m
ea
n
es
tim

at
e
ac
ro
ss

ru
ns

of
M
CM

C
an
d
SM

C

43

FI
G
U
R
E
13

.—
N
SE

so
fP

os
te
rio

rM
ea
ns

44

FI
G
U
R
E
14

.—
N
SE

so
fP

os
te
rio

rS
TD

s

45

FI
G
U
R
E
15

.—
N
SE

so
fP

os
te
rio

r5
th

Pe
rc
en
til
e

46

FI
G
U
R
E
16

.—
N
SE

so
fP

os
te
rio

r1
6t
h
Pe
rc
en
til
e

47

FI
G
U
R
E
17

.—
N
SE

so
fP

os
te
rio

r5
0t
h
Pe
rc
en
til
e

48

FI
G
U
R
E
18

.—
N
SE

so
fP

os
te
rio

r8
4t
h
Pe
rc
en
til
e

49

FI
G
U
R
E
19

.—
N
SE

so
fP

os
te
rio

r9
5t
h
Pe
rc
en
til
e

50

References
Aruoba, S. Borağan and Jesús Fernández-Villaverde (2015). “A comparison of programming
languages in macroeconomics.” Journal of Economic Dynamics and Control, 58, pp. 265 –
273. doi:https://doi.org/10.1016/j.jedc.2015.05.009.

Aruoba, S. Borağan and Jesús Fernández-Villaverde (2018). “A comparison of programming
languages in macroeconomics: an update.” Mimeo, University of Pennsylvania.

Berzuini, Carlo, Nicola G. Best, Walter R. Gilks, and Cristiana Larizza (1997). “Dynamic
conditional independence models and markov chain monte carlo methods.” Journal of the
American Statistical Association, 92(440), pp. 1403–1412. doi:10.1080/01621459.1997.
10473661.

Bezanson, J., A. Edelman, S. Karpinski, and V. Shah (2017). “Julia: A fresh approach to numerical
computing.” SIAM Review, 59(1), pp. 65–98. doi:10.1137/141000671.

Bognanni, Mark (2018). “A class of time-varying parameter structural vars for inference under
exact or set identification.” Federal Reserve Bank of Cleveland, Working Paper no 18-11.
doi:https://doi.org/10.26509/frbc-wp-201811.

Bognanni, Mark and Edward Herbst (2017). “A sequential monte carlo approach to inference in
multiple-equation markov-switching models.” Journal of Applied Econometrics, 33(1), pp.
126–140. doi:10.1002/jae.2582.

Carriero, Andrea, Todd E. Clark, and Massimiliano Marcellino (2016). “Common drifting
volatility in large bayesian vars.” Journal of Business & Economic Statistics, 34(3), pp.
375–390. doi:10.1080/07350015.2015.1040116.

Chan, Joshua C. C. and Eric Eisenstat (2018). “Bayesian model comparison for time-varying
parameter vars with stochastic volatility.” Journal of Applied Econometrics, 33(4), pp. 509–532.
doi:10.1002/jae.2617.

Chopin, N., P. E. Jacob, and O. Papaspiliopoulos (2013). “SMC2: An efficient algorithm for
sequential analysis of state space models.” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 75(3), pp. 397–426. doi:10.1111/j.1467-9868.2012.01046.x.

Chopin, Nicolas (2004). “Central limit theorem for sequential monte carlo methods and its
application to bayesian inference.” The Annals of Statistics, 32(6), pp. 2385–2411. doi:
10.1214/009053604000000698.

Clark, Todd E. (2011). “Real-time density forecasts from bayesian vector autoregressions with
stochastic volatility.” Journal of Business & Economic Statistics, 29(3), pp. 327–341. doi:
10.1198/jbes.2010.09248.

Clark, Todd E. and Francesco Ravazzolo (2015). “Macroeconomic forecasting performance
under alternative specifications of time-varying volatility.” Journal of Applied Econometrics,
30(4), pp. 551–575. doi:10.1002/jae.2379.

Creal, Drew (2012). “A survey of sequential monte carlo methods for economics and finance.”
Econometric Reviews, 31(3), pp. 245–296. doi:10.1080/07474938.2011.607333.

Del Moral, Pierre, Arnaud Doucet, and Ajay Jasra (2006). “Sequential monte carlo samplers.”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3), pp. 411–436.
doi:10.1111/j.1467-9868.2006.00553.x.

Del Moral, Pierre, Arnaud Doucet, and Ajay Jasra (2012). “On adaptive resampling strategies
for sequential monte carlo methods.” Bernoulli, 18(1), pp. 252–278. doi:10.3150/10-BEJ335.

Del Negro, Marco and Giorgio E. Primiceri (2015). “Time varying structural vector autore-
gressions and monetary policy: A corrigendum.” The Review of Economic Studies, 82(4), pp.
1342–1345. doi:10.1093/restud/rdv024.

Djurić, P. M. and J. Miguez (2002). “Sequential particle filtering in the presence of ad-
ditive gaussian noise with unknown parameters.” In 2002 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, volume 2, pp. II–1621–II–1624. doi:
10.1109/ICASSP.2002.5744928.

51

Douc, R. and O. Cappe (2005). “Comparison of resampling schemes for particle filtering.” In
ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing
and Analysis, 2005., pp. 64–69. doi:10.1109/ISPA.2005.195385.

Doucet, Arnaud, Nando de Freitas, and Neil Gordon, editors (2001). Sequential Monte Carlo
in Practice. Statistics for Engineering and Information Science. Springer. doi:10.1007/
978-1-4757-3437-9.

Doucet, Arnaud and Adam Johansen (2011). “A tutorial on particle filtering and smoothing:
Fifteen years later.” In Dan Crisan and Boris Rozovskiı̌, editors,Oxford Handbook of Nonlinear
Filtering. Oxford University Press.

Durham, Garland and John Geweke (2014). “Adaptive sequential posterior simulators for mas-
sively parallel computing environments.” Bayesian Model Comparison (Advances in Econo-
metrics). doi:10.1108/s0731-905320140000034003.

Durham, Garland, John Geweke, Susan Porter-Hudak, and Fallaw Sowell (2019). “Bayesian
inference for arfima models.” Journal of Time Series Analysis, 40(4), pp. 388–410. doi:
10.1111/jtsa.12443.

Fearnhead, Paul (2002). “Markov chain monte carlo, sufficient statistics, and particle fil-
ters.” Journal of Computational and Graphical Statistics, 11(4), pp. 848–862. doi:
10.1198/106186002835.

Fernández-Villaverde, Jesús and David Zarruk Valencia (2018). “A practical guide to paral-
lelization in economics.” Working Paper 24561, National Bureau of Economic Research.
doi:10.3386/w24561.

Geweke, John (2004). “Getting it right.” Journal of the American Statistical Association, 99(467),
pp. 799–804. doi:10.1198/016214504000001132.

Giannone, Domenico, Michele Lenza, and Giorgio E. Primiceri (2015). “Prior selection for
vector autoregressions.” The Review of Economics and Statistics, 97(2), pp. 436–451. doi:
10.1162/REST_a_00483.

Gilks, Walter R. and Carlo Berzuini (2001). “Following a moving target—monte carlo inference
for dynamic bayesian models.” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 63(1), pp. 127–146. doi:10.1111/1467-9868.00280.

Gordon, Neil J, David J Salmond, andAdrian FMSmith (1993). “Novel approach to nonlinear/non-
gaussian bayesian state estimation.” In IEE Proceedings F (radar and signal processing),
volume 140, pp. 107–113. IET. doi:10.1049/ip-rsn:19990255.

Herbst, Edward and Frank Schorfheide (2015). Bayesian Estimation of DSGE Models. Princeton
University Press, Princeton. doi:10.23943/princeton/9780691161082.001.0001.

Kantas, Nikolas, Arnaud Doucet, Sumeetpal Singh, Jan Maciejowski, and Nicolas Chopin (2015).
“On particle methods for parameter estimation in state-space models.” Statistical Science,
30(3), pp. 328 – 351. doi:10.1214/14-STS511.

Kitagawa, Genshiro (1998). “A self-organizing state-space model.” Journal of the American
Statistical Association, 93(443), pp. 1203 – 1215. doi:10.2307/2669862.

Koop, Gary and Simon M. Potter (2007). “Estimation and Forecasting in Models with Multiple
Breaks.” The Review of Economic Studies, 74(3), pp. 763–789. doi:10.1111/j.1467-937X.
2007.00436.x.

Liu, Jane and Mike West (2001). “Combined parameter and state estimation in simulation-
based filtering.” In Sequential Monte Carlo Methods in Practice. Springer. doi:10.1007/
978-1-4757-3437-9_10.

Murray, Lawrence M., Anthony Lee, and Pierre E. Jacob (2016). “Parallel resampling in the
particle filter.” Journal of Computational and Graphical Statistics, 25(3), pp. 789–805. doi:
10.1080/10618600.2015.1062015.

Omori, Yasuhiro, Siddhartha Chib, Neil Shephard, and Jouchi Nakajima (2007). “Stochastic
volatility with leverage: Fast and efficient likelihood inference.” Journal of Econometrics,
140(2), pp. 425 – 449. doi:https://doi.org/10.1016/j.jeconom.2006.07.008.

52

Primiceri, Giorgio E. (2005). “Time Varying Structural Vector Autoregressions and Monetary
Policy.” The Review of Economic Studies, 72(3), pp. 821–852. doi:10.1111/j.1467-937X.2005.
00353.x.

Robert, Christian (2007). The Bayesian Choice: From Decision-Theoretic Foundations to Com-
putational Implementation. Springer Science & Business Media.

Robert, Christian and George Casella (2004). Monte Carlo Statistical Methods. Springer Texts
in Statistics. Springer.

Robert, Christian P (1995). “Simulation of truncated normal variables.” Statistics and Computing,
5(2), pp. 121–125. doi:10.1007/BF00143942.

Sims, Christopher A., Daniel F. Waggoner, and Tao Zha (2008). “Methods for inference in large
multiple-equation markov-switching models.” Journal of Econometrics, 146(2), pp. 255 – 274.
doi:10.1016/j.jeconom.2008.08.023.

Sims, Christopher A. and Tao Zha (2006). “Were there regime switches in u.s. monetary policy?”
The American Economic Review, 96(1), pp. 54–81. doi:10.1257/000282806776157678.

Smets, Frank and Rafael Wouters (2007). “Shocks and frictions in us business cycles: A bayesian
dsge approach.” American Economic Review, 97(3), pp. 586–606. doi:10.1257/aer.97.3.586.

Storvik, Geir (2002). “Particle filters for state-space models with the presence of unknown static
parameters.” IEEE Transactions on Signal Processing, 50(2), pp. 281–289. doi:10.1109/78.
978383.

53

	Introduction
	Bayesian VAR-SV Model
	Tractable Features of the Posterior and Predictive Distributions

	A Sequential Algorithm for Fully Bayesian Inference
	SMC for the VAR-SV
	Discussion

	Application: Estimating a Seven-variable VAR-SV
	The Estimation Algorithms to Be Compared
	Estimation Algorithm Computation Times
	High-Level Comparison of SMC and MCMC Estimates
	Formal Comparisons of Estimation Accuracy

	Computational Environment
	Conclusion
	Data
	Prior Hyperparameters in the Application
	Reformulation as SMC in the Space of All Unobservables
	Additional Computational Considerations
	Posterior density of state transition parameters

	MCMC Algorithm for Mutation
	MCMC Algorithm ``Getting it Right''

