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1 Introduction

It is well documented that the distributions of income and wealth in the United States and other

developed nations are skewed to the right, with tails that may be well approximated by a Pareto

distribution. For instance, Atkinson et al. (2011) survey empirical studies of top incomes and find

that the density f of incomes in the United States in 2009 satisfied

f(z) ∼ C

z1+α

as z →∞ for some constant C, with α approximately equal to 1.53. Further, numerous authors have

observed a sharp rise in income inequality in the United States and other developed countries over

the past few decades. Using data from the Statistics of Income division of the Internal Revenue

Service, Piketty and Saez (2003) estimate that the top 10 percent income share has risen from

approximately 34 percent to nearly 50 percent over the period 1980-2015 and that the top 1 percent

income share has risen from approximately 8 percent to over 20 percent over the same period.

Although the magnitudes of both levels and trends differ depending upon data sources and units

of analysis, this significant rise in income inequality has also been observed in survey data1 and in

administrative-level data on labor incomes obtained from the Social Security Administration.2

What is perhaps less well known is that much of the recent increase in income inequality is due

to the growing importance of business income. Smith et al. (2019) and Cooper et al. (2016) use

administrative tax data to document that business income now accounts for a greater share of the top

0.1 percent of income than both non-business capital income and wage income, and that the majority

of this growth is due to private, pass-through entities (those not taxed at the firm level), such as

partnerships and S-corporations. The importance of business income is reinforced by the observation

of Guvenen and Kaplan (2017) that the increase in inequality in the past decade observed in IRS data

has not coincided with a similar rise in labor incomes recorded by the Social Security Administration.

Smith et al. (2019) also note that top income earners are disproportionately business owners, with

households in the top 1 percent of the income distribution 50 times more likely to receive partnership

income than households in the bottom half of the income distribution. Further, these authors show

business income depends on the owners’ active participation rather than passive ownership by

documenting that the unexpected death of an owner-manager gives rise to an average fall in profits
1See, e.g., Heathcote et al. (2010), and references therein.
2See Guvenen et al. (2014), Guvenen and Kaplan (2017) and Song et al. (2014).
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of 54 percent.

The appropriate policy response to this large degree of inequality and its increase over recent

decades depends on the underlying economic mechanisms by which these phenomena arise. Guided

largely by the (static) Mirrlees (1971) model, Diamond and Saez (2011) survey the literature on

optimal taxation and argue that the top marginal tax rates may be as high as 80 percent, far higher

than the current statutory maximum of 39.6 percent. However, the disproportionate role of business

income among high earners and its higher level of idiosyncratic risk suggests that appropriate policy

responses must consider the role of entrepreneurial activity, a phenomenon absent from the static

Mirrlees model. Similarly, although the seminal contributions of Atkinson and Stiglitz (1976),

Chamley (1986) and Judd (1985) imply zero capital taxation in the long run, in these models "capital

income" is homogeneous and identified with the (safe) returns to savings. They are therefore silent

on the question of whether business income ought to be taxed differently from savings, given that

the former may depend in part on the past investments of effort undertaken by the owner.

This paper develops theory and numerical techniques to characterize constrained efficient allo-

cations in an environment capable of capturing the above stylized features. Specifically, I assume

that both initial ability (whether or not one may run a business) and effort exerted to improve

productivity are privately observed only by the agent. In doing so, I draw upon the existing litera-

ture on both dynamic contracting and heterogeneous-agent macroeconomics. The first part of the

paper extends the principal-agent model of Sannikov (2008) to this richer setting with endogenous

productivity. To preserve incentives for high effort, high realizations of productivity growth must be

rewarded by either high future consumption or leisure, leading to imperfect risk-sharing and ex-post

inequality in all efficient allocations. I then show how this principal-agent model may be used to

derive implications for aggregate quantities by decomposing the problem of a benevolent planner

facing a continuum of agents with random lifespans into a series of problems of dealing with each

generation in isolation, given (shadow) prices for goods and labor that may then be varied until

resources balance.

The incorporation of endogenous human capital formation into the agency problem has impor-

tant implications for both the dynamics of risk-sharing and its distribution across income levels.

In any agency model with unobserved effort, high realizations of output must be rewarded with
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high consumption or leisure in the future in order to align the incentives of the principal and the

agent. In the presence of wealth effects in consumption, it becomes increasingly expensive over time

to motivate agents with histories of high output. With fixed productivity, the principal therefore

rewards rich agents with leisure rather than consumption, and so, such agents bear little to no risk.

With endogenous human capital formation there is a countervailing effect: when agents affect the

growth rate, rather than the level, of output, the benefits of motivating an agent rise with their

productivity. Although it is still true that the cost of motivating agents rises with their consump-

tion, agents typically obtain high consumption precisely because their productivity rose, and so the

societal benefit of effort rises along with the costs. I provide sufficient conditions for the former

to overwhelm the latter in terms of the underlying preferences. I show that this has first-order

effects on the implied stationary distribution, and in particular, the thickness of the right tail of

consumption. The tractability of the model then allows for simple comparative statics connecting

changes in aggregate technology with efficient distributions of income and firm size. Specifically, in

response to any change in resources or technology that increases the marginal productivity of an

entrepreneur, a benevolent planner will wish to make incentives for effort more high-powered, which

necessitates an increase in inequality ex-post.

In the final section of the paper I connect the abstract characterization above with taxation

policy. Prescriptions for taxes depend naturally upon assumptions regarding the degree of risk-

sharing present in private markets and the complexity of contracts that agents are assumed capable

of signing. To isolate the role for government and its relation to the degree of imperfections in pri-

vate markets, I consider two separate decentralizations that capture opposite extreme assumptions

regarding the richness of private financial markets. In the first, agents may sign long-term contracts

of arbitrary complexity with a perfectly competitive sector of financial intermediaries. Such con-

tracts are required only to respect the asymmetric information constraints above and so may depend

upon the entire history of firm performance. In this environment the decentralization is very simple

and calls only for linear taxes on firm profits. The intuition behind this result is an extension of

that embedded in Prescott and Townsend (1984): since the government has no obvious advantage

over the private sector at overcoming agency frictions, the latter continues to provide utility at the

lowest cost possible. However, since the private sector will not achieve the redistributive goals of

the government, a tax on firm profits is necessary for precisely this purpose.
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This decentralization assumes that the financial intermediaries are capable both of committing

to long-term contracts and monitoring the consumption of agents. Since both assumptions may be

unreasonably strong, to complement the above I conclude with a restricted-instruments exercise and

analyze linear taxation in an environment in which agents may only save in a risk-free bond and

trade shares of their firms in spot markets. Within this setting the dependence of firm productivity

growth on unobserved (and non-contractible) effort implies a novel effect of taxation policy: taxes on

capital income affect the incentives for retaining ownership of one’s business and hence the degree

of risk-sharing present in the private sector. Intuitively, the willingness of investors to purchase

shares in a firm will depend upon the incentives of the owner to exert continued effort to improve

productivity, and hence upon the outside option, the return on (passive) savings. Within this

linear class, the optimal policy calls for taxes on corporate profits, capital income, and wealth.

However, interestingly, the taxes on personal capital income and wealth play no redistributive role,

and vanish as agency frictions become negligible. Instead, the redistributive role is played by the

corporate income tax, as this simply lowers the value of the firm ex-ante, and thereby taxes the

elastic quantity of the model: the endowed talent of the firm owner. In contrast, taxes on capital

income alter the private returns to effort in one’s business and consumption smoothing, respectively.

Related literature. A vast literature builds upon the seminal contribution of Mirrlees (1971)

to derive optimal taxes in informationally constrained economies. Rothschild and Scheuer (2013)

conduct an optimal taxation exercise in an environment in which agents self-select into one of two

industries and wages are endogenous. Scheuer (2014) explicitly considers entrepreneurs and firm

formation within a static model and allows for both pecuniary externalities across occupations and

the possibility of occupational-specific taxation. Ales et al. (2017) adopt a span-of-control technology

as in Rosen (1982) and Lucas (1978) and allow firm size to be endogenous. Scheuer and Werning

(2016) explore how optimal taxation policy must be altered in the presence of "superstar" effects in

the form of assortative matching between individuals and firms. Ales and Sleet (2016) conduct an

optimal taxation exercise in a similar environment in which the planner has an explicit concern for

the welfare of shareholders, and Ales et al. (2015) consider the role of skill-biased technical change.

The above models are all static, and so in contrast with the current paper, no agent bears risk or

is subject to a moral hazard problem.

Stantcheva (2015) conducts an optimal taxation exercise in a life-cycle model with risky human
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capital, but the nature of the private-information problem differs from that considered in this paper.

An agent’s wage at any moment is a function of her exogenously evolving stochastic ability and

stock of human capital. Ability is unobservable, while the stock of human capital is observable,

evolves deterministically and depends on monetary costs expended by the agent. The impediments

to risk-sharing are therefore better thought of as hidden type rather than moral hazard, and the

incorporation of human capital does not fundamentally alter the incidence of risk-bearing as in this

model. Similarly, in papers within the New Dynamic Public Finance literature, such as Golosov et al.

(2016) and Farhi and Werning (2013), the private information is in the form of hidden productivity

and there is once again no moral hazard problem. Closer to the current paper are the works of

Albanesi (2006), Kapička and Neira (2013), and Best and Kleven (2012), who conduct optimal

taxation exercises in two-period economies with hidden effort, and Makris and Pavan (2019), who

conduct a similar analysis in an environment with learning-by-doing. However, these papers do not

derive implications of their framework for long-run distributions of consumption or income. Owing

to their two-period nature,3 these models cannot address how the risk borne by any agent depends

upon her history of productivity shocks.

Jones and Kim (2014) characterizes competitive equilibria in an environment in which en-

trepreneurs are assumed to be unable to save and the growth rate of each agent’s productivity

depends partly on luck and partly on effort. I follow Jones and Kim (2014) in my modeling of

the underlying technology of human capital, but in contrast to these authors, I do not impose a

particular market structure and instead require only that allocations respect the underlying infor-

mational asymmetry. Ai et al. (2016), Shourideh (2013), and Phelan (2019) all show how a Pareto

distribution of consumption may emerge in the presence of asymmetric information with optimal

contracting in private insurance markets. The difference here is the nature of the agency problem:

instead of allowing entrepreneurs to divert delegated assets to private consumption, in this paper

entrepreneurs exert (privately observed) effort to improve (publicly observed) firm productivity.4

I adopt the specification of random human capital governed by hidden effort because it better

captures the aforementioned importance of individual-specific characteristics for business income.

3Makris and Pavan (2019) calibrate their model to fit the average working lifespan in the US, but the productivity

of agents only changes once, so the dynamics of consumption and risk-bearing are identical to a two-period model.
4There are several other modeling differences: the welfare notion and life-cycle structure adopted here also differs

from Shourideh (2013), while Ai et al. (2016) pursue an equilibrium analysis.
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One virtue of this approach is that unlike Shourideh (2013), Jones and Kim (2014), and Ai et al.

(2016), the efficient allocation in this paper does not possess the (counterfactual) property that the

Pareto exponents for income and firm size must coincide. To the best of my knowledge, the only other

paper with this feature is Ai et al. (2015), where it arises because of a limited commitment problem

in which the manager may abscond with a fixed fraction of the firm’s capital stock and productively

deploy it outside the firm. Efficient allocations are quite different in these two economies. If the

market friction is limited commitment on the part of entrepreneurs, then a government may trivially

implement the first-best allocation by levying confiscatory taxes on entrepreneurs’ income above a

certain point (independent of firm performance) to effectively eliminate the outside option. In

contrast, in this model the efficient allocations possess the qualitative features noted above (thick

right tails in consumption and income), albeit with tail parameters that need not correspond with

their empirical counterparts.

For clarity, the first section of this paper analyzes a principal-agent problem between a risk-

averse entrepreneur and a risk-neutral principal in partial equilibrium where the flow output of the

entrepreneur depends solely upon her individual productivity. I characterize and compute the policy

functions of the principal and show numerically that typically the agent will exert more effort and

bear more risk when more productive. In the subsequent overlapping generations economy with a

continuum of agents, the productivity of any entrepreneur will depend both on her productivity and

the endogenously determined shadow price of labor, as the latter determines the societal (resource)

cost of assigning workers to entrepreneurs. This allows me to address how exogenous changes in

the number of entrepreneurs, or changes in technology that primarily benefit entrepreneurs relative

to workers, ought to translate into changes in inequality both between workers and entrepreneurs

and among entrepreneurs. I view this as complementary to the above contributions, as I have

a rich dynamic moral hazard component, and, accordingly, simplify the ex-ante heterogeneity for

tractability.

The outline of the paper is as follows: Section 2 characterizes the optimal contract between a

single agent and principal; Section 3 extends this to an overlapping generations economy with a

continuum of agents with heterogeneous ability and shows how to compute stationary distributions

of income in a number of example economies; Section 4 provides an implementation of the efficient

allocation as well as a complementary restricted-instruments exercise, and Section 5 concludes.
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Details of the recursive techniques, numerical implementation, and the welfare notions employed

are relegated to the appendix.

2 Dynamic principal-agent model

For ease of exposition, I will first proceed in partial equilibrium and characterize the optimal contract

between a risk-averse agent operating a risky technology and a risk-neutral principal who may trade

at exogenously given prices. In the following section I will show how the problem of a benevolent

planner in an overlapping generations economy may be decomposed into a series of principal-agent

problems of the above form.

2.1 Formal setup

Time is indefinite and continuous. The economy consists of a single risk-averse agent and a risk-

neutral principal, both of whom live forever. At any moment in time the agent may consume a flow

amount c of a single good and take an action l ∈ [l, 1] for some l. The agent has preferences over

stochastic sequences of consumption c = (ct)t≥0 and effort l = (lt)t≥0 given by

U(c, l) = ρ

∫ ∞
0

e−ρtE[u(ct, lt)]dt (1)

where the instantaneous flow utility from consumption and effort is

u(c, l) =
(c1−αlα)1−γ

1− γ
(2)

for some constants γ > 1 and α ∈ (0, 1). I will refer to l = 1 as "retirement" and assume that

the principal may observe when retirement occurs, but is unable to distinguish between all other

actions.

At any point in time the agent is associated with a scalar variable θ referred to as productivity.

An agent of productivity θ inelastically produces a flow of θ units of output per time independently

of her actions. The consumption and output produced by the agent are observable, while the

productivity of the agent begins at the level θ0 and evolves stochastically over time in a manner

depending upon their effort. Specifically, there exists a stochastic process Z = (Zt)t≥0 defined on

a filtered probability space (Ω,F , (Ft)t≥0, P ) distributed according to standard Brownian motion,

such that if the agent chooses effort levels according to a stochastic process (lt)t≥0 satisfying lt ∈ L
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for all t ≥ 0, then productivity follows the law of motion,

dθt = µ(lt)1lt 6=0θtdt+ σ1lt 6=0θtdZt (3)

where σ > 0 and µ : L → R is given by µ(l) := µ − [µ − µ](1 − l) for some µ > µ > 0. As (3)

indicates, the productivity of the agent stops evolving upon retirement. Finally, the principal is

risk-neutral and discounts at the rate of time preferences of the agent and so his preferences over

output and consumption are

UP (c, l) =

∫ ∞
0

e−ρtE[θt − ct]dt. (4)

The actions taken by both the agent and principal at any date may be an arbitrary function of

the output observed up until that time. The following definition formalizes this mathematically.

Definition 2.1. An allocation chosen by the principal consists of a pair of F-adapted processes5

(c, lP ) = (ct, l
P
t )t≥0, while an agent’s strategy consists of a single F-adapted process e = (lt)t≥0. For

any allocation (ct, l
P
t )t≥0 and agent strategy (lt)t≥0, the continuation utility of the agent is given by

the stochastic process W ≡W c,l defined by

Wt := ρ

∫ ∞
t

e−ρ[s−t]E[u(cs, ls)| Ft]ds (5)

for all t ≥ 0 almost surely.

Since the effort levels taken by the agent are private information, the principal must restrict

his attention to allocations that are incentive compatible. An allocation is incentive compatible if

the agent wishes to adhere to the effort recommendations of the principal after every history. To

formalize this notion, note that the utility of the agent under a given allocation when adhering to

an arbitrary strategy amounts to evaluating the allocation under a change of measure associated

with his own strategy. That is, the allocation of the principal specifies consumption as a function of

every finite history of output, and when choosing a strategy, the agent understands how his actions

change the probability of each history and weights them accordingly. For any strategy e = (lt)t≥0 I

will write P l for this induced measure6 and El the associated expectation. The utility of an agent

confronted with an allocation (ct, l
P
t )t≥0 when adhering to a strategy (lt)t≥0 is then

U(c, l) := ρ

∫ ∞
0

e−ρtEl [u(ct, lt)] dt. (6)

5A sequence (xt)t≥0 is F- adapted if and only if there exist (x̃t)t≥0 such that x̃t : C([0, t])→ R for each t ≥ 0 and

xt = x̃t((Zs)0≤s≤t) almost surely, for all t ≥ 0, where for each t ≥ 0 x̃t is measurable w.r.t. the σ-algebra generated

by evaluation maps up until time t.
6The formal construction of these measures is given in Definition A.2 in the appendix.
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The formal definition of incentive compatibility is then the following.

Definition 2.2. An allocation (ct, l
P
t )t≥0 is incentive compatible if U(c, lP ) ≥ U(c, l) for all strate-

gies l. The set of all incentive compatible allocations will be denoted AIC .

The principal’s problem is then the following. It is indexed by the initial productivity θ of the

agent and the minimal level of promised utility W necessary for her participation.

Definition 2.3. Given outside option W and productivity θ the problem of the principal is

V (W, θ) = max
(c,l)∈AIC

∫ ∞
0

e−ρtE[θt − ct]dt.

W = ρ

∫ ∞
0

e−ρtE[u(ct, lt)]dt

dθt = µ(lt)θtdt+ σ(lt)θtdZt, θ0 = θ.

Since the increments of Brownian motion are independent, the principal’s problem is naturally

recursive in the variables W and θ. However, the incentive compatibility constraints in Definition

2.2 implicitly involve a double infinity of constraints: there are infinitely many possible output paths

and for each path, the agent has a continuum of actions from which to choose. However, using the

techniques of Sannikov (2008) one may show that incentive compatibility is equivalent to requiring

that the elasticity of utility to output weakly exceed a minimal level. To make this precise, note

that in the deterministic case we have Ẇt = ρ(Wt − u(ct, lt)). Using the martingale techniques of

Sannikov (2008), one may show that the evolution of promised utility is the above deterministic

term plus a stochastic integral with respect to the noise. The proof is standard and so omitted.

Proposition 2.1. Given any allocation (ct, l
P
t )t≥0 and agent strategy (lt)t≥0, there exists an (F-

predictable) process S = Sl
P ,C such that the continuation utility Wt may be written

Wt = W0 + ρ

∫ t

0
(Ws − u(cs, ls))ds+

∫ t

0
SsdZ

l
s (7)

for all t ≥ 0 almost surely, where Z lt is distributed as standard Brownian motion.

The content of Proposition 2.1 is that the stochastic increments to continuation utility may be

viewed as the increments of the noise process multiplied by the sensitivity of utility to output. This

representation allows the following continuous-time analogue of the one-shot deviation principle.

Proposition 2.2. An allocation (ct, l
P
t )t≥0 is incentive compatible if and only if the sensitivity

process S given in Proposition 2.1 satisfies

Stµ(lPt ) + ρσu(ct, l
P
t ) ≥ ρσStµ(l) + u(ct, l) (8)

10



for all l ∈ [l, 1] and t ≥ 0. The optimal choice of St for the planner is then St = σE(lt)(1 −

α)(c1−αlα)1−γ when l > 0 and St ≡ 0 when l = 1, where

E(l) :=
ρα

(1− α)(µ− µ)l
.

Proposition 2.2 shows that incentive compatibility is equivalent to the elasticity of utility to

output being sufficiently large to outweigh the benefits of shirking. It is sometimes referred to as a

"skin-in-the-game" constraint. The expression for volatility may be interpreted as the ratio of the

benefits of shirking to the effect of a deviation on output, all as a fraction of flow utility. It shows

that incentives must be more high-powered (promised utility more responsive to output shocks)

when deviations are hard to detect or the benefits of deviation are large. Proposition 2.2 allows us

to recast the problem of the principal as an optimal control problem with state (θ,W ). Further, the

log-linearity of the evolution of productivity, together with the homotheticity of preferences, allows

for the following reduction to a single state variable.

Lemma 2.3. For all W and θ we have V (W, θ) = V (Wθγ−1, 1)θ and the policy functions of the

planner are functions of Wθγ−1.

Proof. The key observation here is that incentive compatibility is unaffected if we scale consumption

in every history by the same scalar. Therefore, for any U, θ and µ > 0, the values of the two programs

max
(c,l)∈AIC

∫ ∞
0

e−ρtE[θt − ct]dt µ max
(c,l)∈AIC

∫ ∞
0

e−ρtE[θt − ct]dt

W =

∫ ∞
0

e−ρtE[u(ct, lt)]dt Wµγ−1 =

∫ ∞
0

e−ρtE[u(ct, lt)]dt

dθt = µ(lt)θtdt+ σ(lt)θtdZt dθt = µ(lt)θtdt+ σ(lt)θtdZt

θ0 = µθ θ0 = θ

coincide, as can be seen by replacing θt with µθt and ct with µct. The program on the left is

V (W,µθ) and that on the right is µV (Wµγ−1, θ).

In the agency model of Sannikov (2008), output depends only on current actions and the promised

utility is sufficient to act as a state variable. This is no longer true here since actions have persistent

effects on flow output. However, Lemma 2.3 shows that the principal’s choices depend only on

promised utility per unit of output, and suggests the following simplification.

Definition 2.4. Given promised utility U and productivity θ, define normalized promised utility

u by u := [(1− γ)U ]
1

1−γ θ−1, where 1− γ = (1− γ)(1−α), and the normalized payoff function v by

v(u) := V
(
u1−γ/(1− γ), 1

)
.
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Lemma 2.3 shows that the optimal choices of the planner are functions only of normalized

promised utility. Similar observations are made in Ai et al. (2016) and He (2008), where the agency

problem involves hidden diversion of resources rather than hidden effort. Prior to formulating

the problem in a manner suitable to computation, I will first determine from first principles the

payoff to the principal when u is either very low or very high. To this end it is instructive to

characterize the value and policy functions associated with the (suboptimal) allocations in which

the principal recommends a given effort level for the entirety of an agent’s life but is unconstrained

in his consumption choices. I will denote these value functions by vr(u; l) for l ∈ [l, 1] and refer to

them as restricted-action value functions.

Lemma 2.4. For each l ∈ [l, 1] the restricted value and consumption functions are given by

vr(u; l) =
1

ρ− µ(l)
+ v(l)u cr(u; l) = c(l)u

for some v(l) increasing in leisure. Therefore, we have the following limiting behavior near zero

lim
u→0

v(u) =
1

ρ− µ(l)
. (9)

Appendix A.3 shows that the policy functions in Lemma 2.4 admit closed-form solutions, al-

though the exact expressions are not crucial for understanding what follows. The important point

is that v(l) is increasing in leisure, which captures the intuitive fact that it is more expensive to

provide one with the incentive to exert high effort. This helps provide some insight into how opti-

mal effort recommendations vary with normalized promised utility and therefore build intuition for

the implied dynamics of risk-bearing. The coefficients of both constant terms and the negative of

the linear term in the value function are increasing in the effort recommended to the agent, which

captures the fact that higher actions imply a higher growth rate of output but are also more costly.

In addition, the limiting value of v given in Lemma 2.4 shows that the restricted value function

associated with the highest action approximates the value of v near zero, so that the welfare loss

from adhering to the restricted-action allocation (rather than the true efficient allocation) falls to

zero as productivity rises.

Combining the above with standard results from continuous-time dynamic programming gives

the following. The proof amounts to first deriving a PDE for V (U, θ) and using the homogeneity in

Lemma 2.3 to simplify, and is relegated to the appendix.
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Proposition 2.5. The normalized value function of the principal solves an ODE of the form

0 = max
c≥0
l∈[l,1]

H(u, v(u), v′(u), v′′(u))

subject to the boundary and smooth-pasting conditions v(0) = ρ/(ρ − µ(l)), v(u) = vret(u) and

v′(u) = v′ret(u), where vret(u) = z − u is the profit per unit of θ for retiring the agent.

The ODE in Proposition 2.5 does not possess a closed-form solution. The numerical methods

employed for its computation are outlined in the appendix. Despite the absence of analytical

solutions, the sharp characterization of the restricted-action allocations in Lemma 2.4 allows for an

intuitive understanding of the joint dynamics of consumption, productivity, and the incidence of risk

in the efficient allocation. Since both ρ/(ρ−µ(l)) and v(l) are decreasing in leisure, Topkis’ theorem

implies the policy function lr(u) associated with the restricted problem vr(u) := maxl∈[l,1] vr(u; l)

is decreasing in u. In other words, the principal will recommend high effort to individuals with

low normalized promised utility and vice versa. Since such individuals have greater incentives to

shirk, incentive compatibility requires that they also bear more risk. This implies that agents bear

high risk when their productivity is high relative to their promised utility. In the restricted-action

case, promised utility typically falls over time, while productivity typically grows. It follows that

those agents with the highest levels of promised utility are typically those with the highest levels of

productivity, and hence low levels of normalized promised utility, and it is the unlucky agents with

low promised utility who are retired.

This contrasts with the environments of Phelan and Townsend (1991) and Sannikov (2008), in

which productivity is fixed over time and effort affects flow output rather than its growth. In such

models agents are typically retired at high levels of utility because it is too costly to motivate them.

Although it remains true here that the cost of motivating the agent increases with utility, there is

also a simple but novel offsetting effect: agents in this model have high utility precisely because they

experienced high productivity growth. The cost of motivating the agent may have grown, but since

effort affects the growth rate of productivity, so too has the benefit, and Lemma 2.3 shows that the

principal cares solely about the ratio of these costs to benefits. The desire to smooth consumption

implies that promised utility typically remains stable or falls over time, whereas productivity grows

exponentially on average. Normalized promised utility therefore typically falls over time and so

richer and older agents usually bear more risk. The characterizations of restricted-action allocations

in Lemma 2.4 allow us to make this intuition more precise.
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Figure 1: True and restricted value functions

Since none of the above restricted-action value functions are strictly optimal, the true value

function must be calculated numerically. Figure 1 plots the true value function alongside the

restricted-action value functions associated with a range of intermediate actions, for log utility and

the parameters (α = 0.3, ρ = .15, r = .15, σ = 0.15, µ = 0.12, µ = 0, l = 0.2). The steepest dotted

line corresponds to the highest level of effort and the flattest to the lowest level. Obviously the true

value function must lie above the restricted-action value functions pointwise. Further, as suggested

by the above discussion, the true value function is well-approximated by the restricted-action value

function associated with the highest action for low values of normalized utility. The above graphs do

not give any insight into the pathwise properties of efficient allocations, such as how the incidence

of risk evolves in response to productivity shocks. For this we first determine the law of motion of

normalized promised utility.

Lemma 2.6. Normalized utility follows the diffusion process dut = µu(u)dt + σu(u)dBt, where µu
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Figure 2: Leisure function

and σu are given by

µu(u; c, l) = ρ

(
1− (c(u)1−αl(u)α)1−γ

1− γ

)
+
σ2E(l(u))2

2

(
c(u)1−αl(u)α

)1−γ
γ − µ(l(u))

σu(u; c, lt) = σ
(
E(l(u))

(
c(u)1−αl(u)α

)1−γ − 1
)

In the restricted-actions case, both c and l are constant and so the law of consumption simply

coincides with the law of utθt,

µc = ρ

(
1− (c(l)1−αlα)1−γ

1− γ

)
+
σ2E(l)2

2

(
c(l)1−αlα

)1−γ
γ

σc = σE(l)
(
c(l)1−αlα

)1−γ
.

High realizations of productivity will imply a fall in normalized promised utility in the restricted

action allocation if and only if

ρ < ρ/E(l) +
σ2

2
(2γ − 1)(γ − 1). (10)

The requirement (10) in Lemma 2.6 appears quite modest. For instance, for a sufficiently large

degree of risk aversion, it is satisfied for all values of leisure, regardless of the parameters that

determine the function E.
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Before proceeding to the macroeconomic setting with a continuum of agents, it is instructive to

compare the above optimal contract with those derived in similar environments with hidden actions,

and with the law of motion of income that obtains in economies with exogenously incomplete

markets. This will also serve as a prelude to why thick right tails of consumption and firm size

emerge in this environment and highlight the novel forces present in this model. Shourideh (2013)

and Phelan (2019) both conduct optimal taxation exercises in economies with idiosyncratic capital

risk and hidden consumption. In these models, productivity is fixed over time and risk-sharing

is impeded by the ability of entrepreneurs to divert delegated capital to private consumption. To

preserve incentives for investment, the risk borne by entrepreneurs must scale with the benefits

of diverting capital to private consumption. Homotheticity implies that the delegated capital,

consumption and labor, assigned to each entrepreneur are all proportional to one another. As a

result, individuals with low marginal utility of consumption also control high amounts of capital,

with the net effect on incentives to deviate ambiguous. It turns out that these exactly counteract

one another, and that the elasticity of consumption with respect to output is common across agents,

and in particular, does not vanish for agents in the right tail.

Since the technology adopted above is identical to that in Jones and Kim (2014), it is also worth

contrasting the lessons drawn from this optimal contracting environment with their exogenously

incomplete-markets model. In their model entrepreneurs are unable to save and so make a single

choice of effort at any moment. Homotheticity ensures that all entrepreneurs select the same

level of effort regardless of their productivity. In contrast, the above shows that agents with high

productivity exert higher levels of effort in the efficient allocation. This is driven by the fact that

relative to a low-productivity individual with the same promised utility, the actions of a high-

productivity type have greater marginal benefit. In the perpetual youth environment that follows

in Section 3, the stationary distributions of both productivity and consumption exhibit thick right

Pareto tails. The mechanism in the model that generates this is the same as that noted by Jones

and Kim (2014), exponential growth for an exponential period of time leads to a Pareto distribution.

This does not depend upon the specific nature of the cross-sectional distribution of shocks and is

even true when growth rates are deterministic: if d lnU(t) = µUdt for some µU > 0 and the agent

dies at rate ρD, then the stationary distribution satisfies

P (U ≥ x) = P (T ≥ µ−1
U (x/U0)) = (x/U0)−ρD/µU .
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Numerous authors7 in both the mathematics and economics literatures have demonstrated that

a fat tail emerges whenever growth rates (rather than levels) are random. The crucial property

necessary for the emergence of a fat tail is that the law of motion of the state variable be subject

to proportional shocks. As the above numerical example demonstrates, the true law of motion of

promised utility is everywhere bounded between two linear functions, which hints at the emergence

of a thick right tail in consumption and promised utility. Although I cannot show this formally, this

observation is borne out in all numerical simulations.

Before proceeding to the general equilibrium context, recall that the flow output of the agent in

the above was simply assumed to be θ. If flow output is scaled by a constant c then the principal

behaves as if confronted with an agent of productivity cθ. This has the following simple (but

important) consequence.

Lemma 2.7 (Homogeneity in productivity). For any scale parameter c > 0 denote the normalized

value function associated with this level of productivity by v(u; c). Then for all c, u ≥ 0 we have

v(u; c) = cv(u/c; 1).

Lemma 2.7 will prove useful in the general equilibrium setting when the productivity of entrepreneurs

depends upon an endogenously determined shadow price of labor. In what follows I will write

v(·) ≡ v(·; 1) for the normalized payoff function associated with unitary productivity.

3 Efficient stationary allocations

The preceding section analyzed the optimal contract between a single risk-averse agent and a risk-

neutral principal. This section builds on this analysis by showing how the problem of a benevolent

planner in an overlapping-generations economy may be decomposed into a series of one-on-one

principal-agent problems identical in form to those considered above. This allows me to derive

the effects of private information on the long-run distribution of consumption. I first describe the

environment and specify the welfare notion. The preferences and technology will be identical to

those considered in the previous section. General equilibrium concerns affect both the level of

promised utility that may be given to a generation and the productivity of entrepreneurs, because

the latter depends on the number of agents working for their business.
7See, for instance, Benhabib et al. (2011) and the references therein.
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3.1 Environment

Time is again continuous and indefinite. At any instant there is a continuum of agents alive in the

economy with subjective discount factor ρS who die at rate ρD. A flow of ρD agents are born every

unit of time so that the total population is fixed at unity. The utility function of all agents continues

to be of the form given in (1) and (2) with the discount rate now ρ := ρS +ρD. Every agent alive at

the initial date is indexed by a single variable v ∈ V ⊆ R identified with promised utility. To each

v-agent there is an associated process Zv = (Zvt )t≥0 distributed according to standard Brownian

motion and referred to as the noise process for agent v. These processes are independent of one

another, and so by a law of large numbers for a continuum of agents,8 the ex-post distribution across

agents will coincide with the ex-ante distribution faced by a single agent. The noise processes of

agents of subsequent generations will be indexed by agents’ dates of birth rather than their promised

utility and so agents are only distinguished by date of birth and possibly type.

Agents may either run their own firm or work for someone else. All agents have a common, fixed

level of productivity θ0 = θ at birth. The productivity (θt)t≥0 evolves according to the same law of

motion given in the partial equilibrium setting

dθvt = µ(lt)1lt 6=0θ
v
t dt+ σ1lt 6=0θ

v
t dZ

v
t

where (lt)t≥0 denotes the leisure enjoyed by the agent at any time t. In the partial equilibrium

analysis the flow output of an agent simply coincided with her productivity θt. In contrast, in this

section the output of an entrepreneur is a function of both her productivity and the total effective

labor assigned to her. All agents inelastically supply a flow L of labor per unit of time, irrespective

of the effort employed to improve their productivity. If an entrepreneur of productivity θ is assigned

L units of effective worker labor, then the flow output produced is given by

F (θ, L) = Zθ1−βLβ (11)

for some fixed Z > 0. An allocation must specify the consumption, recommended effort exerted

and effective labor assigned to every member of the initial generation throughout her (random) life

as a function of the initial promised utility, type, and history of output, together with analogous

quantities for all subsequent generations as functions of their date of birth and initial type. Implicit

in this definition is the fact that effective worker labor assigned to an agent is non-zero if and only
8Subject to the usual measurability caveats.
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if she is engaged in the risky activity. Because of the presence of the initial generation, allocations

will be indexed by distributions Φ over triples (v, θ, i) of promised utility, productivity, and type.

The formal definition is then the following.

Definition 3.1. Given a distribution Φ over promised utility, productivity and types, an allocation

consists of consumption, leisure, and labor assignments{(
cv,θ,it , lv,θ,iE,t , l

v,θ,i
W,t , L

v,θ,i
t

)
t≥0

∣∣∣∣ (v, θ, i) ∈ supp(Φ)

}
{(

cT,it , lT,iE,t, l
T,i
W,t, L

T,i
t

)
t≥T≥0

∣∣∣∣ i = E,W

}
.

for initial and subsequent generations.

In the above 1− lW,t refers to effort supplied as a worker and 1− lE,t refers to effort supplied as

an entrepreneur, with the understanding that only one of these may be non-zero. To ease notation I

will write lt where no ambiguity will arise. For agents not yet alive at the initial date, the superscript

refers to birth date and the subscript to calendar time. I will write A for an arbitrary allocation

and denote the set of all allocations by A. Also, for any T ≥ 0 I will write AT for the set of all

stochastic processes associated with agents born at time T . Note that aggregate consumption Ct,

labor Lt, and output Yt at any date comprise contributions from the initial generations and from

subsequent generations. Formal definitions are contained in the appendix. The (physical) resource

constraints are then the following.

Definition 3.2. An allocation satisfies the goods resource constraints if Ct ≤ Yt for all t ≥ 0

and satisfies the labor resource constraints if Llt ≤ L for all t ≥ 0. An allocation will be termed

resource feasible if it satisfies both of the resource constraints. The set of all resource feasible

allocations will be denoted ARF .

Finally, I will suppose that the weight placed on an agent born at time T is α(T ) = e−ρST . This

may be interpreted as a generalized utilitarian objective over generations, since it implies that the

planner values the utility of an agent at any given date the same regardless of the agent’s date of

birth. It also ensures that social preferences assume a simple form suitable for recursive analysis.

Lemma A.5 shows that it is equivalent to the objective function

UP (A) =

∫ ∞
0

(
e−ρtU t +

∫ t

0
e−ρ[t−T ]e−ρSTUTt dT

)
dt.
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3.2 Recursive analysis

The previous section specified the physical resource constraints. This section will define the incentive

compatibility and promise-keeping constraints and relate the planner’s problem to the principal-

agent problems of Section 2.

Definition 3.3. Given an initial distribution Φ over promised utility and types, an allocation A

satisfies promise-keeping if U(cv,θ, lv,θ) = v for all (v, θ) in the support of Φ.

Notice that promise-keeping is only relevant for the first generation. Incentive-compatibility

requirements are of two separate types: an agent must be induced to reveal her type at birth (if

not in the first generation) and an entrepreneur must be induced to follow the planner’s effort

recommendations. I will refer to the first type as type-revelation constraints and the second type as

incentive-compatibility constraints. The first captures adverse selection and the secondmoral hazard.

Definition 3.4 (Incentive compatibility). An allocation (cEt , c
W
t , l

E
t , l

W
t )t≥0 for a particular gener-

ation is incentive compatible if for all strategies l,

UE(cE , lE) ≥ max
{
UE(cE , l), UW (cW , 0)

}
.

Since there are two dimensions of private information, incentive compatibility must account

for the possibility of double deviations, in which an agent simultaneously misreports her type and

subsequently deviates from the recommended actions. However, the simple specification of hidden

types in the preferences ensures that the analysis remains tractable, because regardless of one’s

type, preferences over consumption and leisure for agents assigned to the risky activity are common

knowledge. This also ensures that there is no loss in supposing that all entrepreneurs and all workers

are offered the same contracts; so an allocation need only specify the utility to a worker and the

utility of an entrepreneur if engaged in the risky activity. The presence of hidden types therefore

simply imposes the sole additional requirement on the planner that the initial promised utility

of entrepreneurs be sufficiently high to induce truthful revelation. I will write ARF ≡ ARF (Φ)

for the set of resource feasible allocations and AIC ≡ AIC(Φ) for the set of incentive compatible

allocations, viewed as functions of the initial joint distribution of types, productivity and promised

utility. Finally, define

AIF := ARF
⋂
AIC

for the set of all incentive feasible allocations. I can now state the planner’s problem then show how

it may be broken down into more tractable one-on-one principal-agent problems. The arguments
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employed here generalize those employed by Farhi and Werning (2007) in an endowment setting

with no technological interdependence among agents.

Definition 3.5. Given an initial distribution Φ, the planner’s problem is

V (Φ) = max
A∈AIF (Φ)

UP (A).

The planner’s problem appears intractable for an arbitrary distribution of utility, even in the

case of full information and no heterogeneity in types. I will therefore focus on stationary solutions,

in which the implied distributions of productivity and promised utility are constant over time. To

solve these I will first consider the simpler problem of a planner who may trade both goods and

labor intertemporally at the rate of time preference, which I will term the relaxed planner’s problem.

Definition 3.6. Given an initial distribution Φ, the relaxed problem of the planner is

V R(Φ) = max
A∈AIC

∫ ∞
0

(
e−ρtU t +

∫ t

0
e−ρ[t−T ]e−ρTUTt dT

)
dt∫ ∞

0
e−ρt(Ct − Yt)dt ≤ 0∫ ∞

0
e−ρt(Llt − LWt )dt ≤ 0.

Stationary solutions to the relaxed planner’s problem will solve the planner’s problem.

Lemma 3.1. Suppose that for some distribution Φ of initial promised utility, productivity and

activities the allocation A solves the relaxed planner’s problem with intertemporal price ρ and that the

sequence of implied distributions of promised utility, productivity and activities (Φt)t≥0 is constant.

Then A also solves the planner’s problem with initial distribution Φ.

Proof. If A solves the relaxed planner’s problem, then by definition it satisfies the promise-keeping

and incentive compatibility constraints of the original problem. Further, since consumption and

output at any date are solely a function of the distribution, we know that both Ct−Yt and Llt−LWt
are constant over time; so the discounted resource constraint implies the resource constraint.

The relaxed planner’s problem still takes the entire joint distribution of productivity and promised

utility as its argument. However, there are now only two constraints, and so the only interdepen-

dence between the decisions made by the planner regarding agents in different generations or engaged

in different activities may be captured by Lagrange multipliers on resource constraints. Formally,
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by the general theorem of Lagrange, there exist multipliers λ := (λR, λL) such that the optimal

allocation solves

Vλ(Φ) = max
A∈AIC

∫ ∞
0

e−ρt
(
Ut + λR

[
Yt − Ct + λL

(
LWt − Llt

)])
dt (12)

where I have written

Ut = e−ρDtU t +

∫ t

0
e−ρD[t−T ]UTt dT

for the total flow utility experienced at time t. For a given λ, the consumption and labor assign-

ments for the initial generation do not affect the consumption and labor assignments of future

generations. Therefore, solving (12) simply amounts to maximizing the components of the integral

relevant to each generation in isolation. In this way the problem of the planner decomposes into

a series of one-on-one problems similar in form to the principal-agent problems analyzed in the

above partial equilibrium setting. I will refer to the problem of a planner who takes λ as given

and wishes to maximize the weighted average of utility of all agents born at a given instant as a

generational planner problem. These sub-problems are similar to (but distinct from) the component

planning problems introduced in the taste shocks settings of Farhi and Werning (2007) and Atke-

son and Lucas (1992). Notice that the objects of choice in the following are the utilities, output,

consumption, labor supply, and labor demand of agents born at a particular date. Recall that an al-

location for a particular generation is an element of AT and denoted
{

(cT,ψt , lT,ψt , LT,ψt )t≥T

∣∣∣ψ ∈ Ψ
}
.

Definition 3.7. Given λ = (λR, λL), the generational planner is

V G
λ = max

AIFT

∫ ∞
0

e−ρt
(
UTt + λR

[
Y T
t − CTt + λL

(
LW,Tt − LE,Tt

)])
dt.

Now define Π to be the minimum cost of providing a weighted level of utility W to a generation of

newborns when the multiplier on the labor resource constraint is λL,

Π(W,λL) = min
AIFT

∫ ∞
0
e−ρt

[
Ct − Yt + λL

(
Llt − LWt

)]
dt

W = UE [1−G] + UWG

UE ≥ UW

(UE , UW ) =
(
UE
(
cE , lE

)
, UW

(
cW , lW

))
.

where AIFT denotes the set of incentive feasible allocations for a particular generation. Notice that

the only qualitative difference between the above problem and the principal-agent problem analyzed

in Section 2 is the presence of an additional constraint requiring that the utility of an entrepreneur

be sufficiently high to ensure truthful revelation. Then we have the following.
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Proposition 3.2. The solution to the generational planner’s problem with multiplier λ = (λR, λL)

is V G
λ = maxW W + λRΠ(W,λL).

Definition 3.8. For a given pair λ := (λR, λL) of multipliers, denote the associated stationary

distribution over Ω := Z×Θ by Φλ. The stationary form of the goods and labor resource constraints

then reduce to the following pair of equations

0 =

∫
Ω
E
[
cv,θ,ψ − F

(
θv,θ,ψ, Lv,θ,ψ

)]
Φλ(dω)

G =

∫
Ω
E
[
Lv,θ

]
Φλ(dω).

(13)

The following summarizes the relationship between the planner’s problem and the component

planners’ problems and is the culmination of the formal analysis.

Lemma 3.3. If the multiplier λ satisfies (13), then the solution to the relaxed planner’s problem

when the initial distribution of promised utility, productivity and types is Φλ amounts to adhering

to the solutions to the generational planner’s problem.

Proposition 3.3 concludes the discussion of the planner’s problem and the manner in which it is

related to simpler component planners’ problems. I will now combine these decomposition theorems

with the optimal contract characterized earlier in partial equilibrium to infer properties of the long

run distributions of consumption and productivity. This amounts to solving generational planners’

problems and then varying the shadow prices of goods and labor until the resource constraints

holds in the associated stationary distribution. For simplicity, I assume only workers may exert

effort. The fraction of potential entrepreneurs will be denoted 1 −G, where G ∈ (0, 1). Types are

permanent and unobserved but productivity evolves stochastically.

3.3 No workers

First suppose all agents have the ability to be entrepreneurs and worker labor is useless in production.

The multiplier on the labor resource constraint is then zero and the problem facing the generational

planner is

V G
λ = max

U
U + λRΠ(U, θ0). (14)

In this case only the initial level of promised utility must be varied until the resource constraint is

satisfied. The problem of a generational planner confronted with a generation of newborns is then

max
A∈AIC

U=UE(c,l)

U+λR

∫ ∞
0

e−ρtE [Zθt − Ct] dt.
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Conditional on the choice of U this problem is identical to the principal-agent problem analyzed in

the partial equilibrium setting. For each initial U we find the associated stationary distributions of

consumption and production and then vary U until the resource constraint is satisfied. This would

seem to require that we solve for a two-dimensional distribution for each initial level of promised

utility. However, just as the hometheticity of preferences and log-linearity of the law of motion

allowed for a simplification of the principal’s problem, so too do the linear policy functions imply

that when calculating aggregate quantities we need only restrict our attention to a one-dimensional

distribution.

Definition 3.9. Given a stationary distribution Φ over productivity and normalized utility, the

summary measure for any B ⊆ [0,∞) is defined by

m(B) =

∫
B

∫ ∞
0

θΦ(θ, u)dθdu.

The homogeneity of the policy functions ensures that aggregate quantities may be expressed in

terms of this summary measure. For instance, since C(θ, u) = c(u)θ, aggregate consumption is

C(U) =

∫ ∞
0

∫ ∞
0

C(θ, u)Φ(θ, u)dθdu =

∫ ∞
0

∫ ∞
0

c(u)θΦ(θ, u)dθdu =

∫ ∞
0

c(u)m(u)du

while aggregate output is simply
∫∞

0 m(u)du. The following, taken from Ai ?, shows that this

summary measure solves a version of the Kolmogorov forward equation for the single variable u.

Lemma 3.4. If (ut, θt)t≥0 evolves according to (dut, dθt) = (µu(u)dt+σu(u)dZt, µθ(u)θtdt+σθ(u)θtdZt)

for some µ, σu, µ and σθ, then m(u) :=
∫∞

0 θΦ(θ, u)dθ solves the ODE

0 = −(ρD − µθ(u))m(u)− [(µu(u) + σθ(u)σu(u))m(u)]′ +
1

2
[σ2
u(u)m(u)]′′. (15)

A proof is given in Section A.5. The boundary conditions for the ODE (15) are not obvious

a priori but need not be determined to find the stationary distribution. One can interpret (15)

as the stationary distribution of a diffusion process and solve for the stationary distribution of a

Markov chain "close" in distribution to the original process following the method of Kushner and

Dupuis (1992).9 For any initial normalized u, denote the implied density by mu and write the

average productivity and consumption of agents

M(u) :=

∫ ∞
0

mu(u)du

C(u) :=

∫ ∞
0

c(u)mu(u)du.

(16)

9Further details of this procedure are given in the appendix.
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Solving for the efficient allocations in this economy then amounts to solving a single non-linear

equation:

M(u) = C(u). (17)

3.4 Workers and entrepreneurs

I will now relax the assumption of no technological dependence amongst agents and suppose only

a fixed fraction 1 − G < 1 of agents may be entrepreneurs. The output of any entrepreneur now

depends on the total amount of worker labor that has been assigned to her. In contrast with the case

with only entrepreneurs, a generational planner facing a population of newborns must internalize

the effect that the effort levels recommended to entrepreneurs have on the shadow price of labor.

Suppose that the flow output per unit of time of an entrepreneur of productivity θ who has been

assigned L units of labor is now given by (11) for some β ∈ (0, 1). Extending the analysis to a

more general constant-elasticity-of-substitution production poses no difficulty. Notice that at any

moment the optimal assignment of workers to an entrepreneur depends solely upon the shadow

price of labor and the entrepreneur’s productivity. It is the purely static problem

Y (θ, λL) := max
L≥0

Zθ1−βLβ − λLL

with the solution requiring only elementary algebra.

Lemma 3.5. Given the shadow price λL, the labor assigned to an entrepreneur of productivity θ is

L(θ) = [Zβ/λL]
1

1−β θ. (18)

Flow output is Z
1

1−β (β/λL)
β

1−β θ, and flow output net of labor resource costs λLL is given by

Y (θ, λL) = Zλ
− β

1−β
L θ where Z = Z

1
1−β β

β
1−β (1− β).

Workers have no preferences over the entrepreneurs to whom they are assigned so the above

assignment may be made independently of other choices. The key point of Lemma 3.5 is that

changes in the shadow price for labor simply translates into changes in the productivity of every

entrepreneur, with payoffs remaining proportional to θ. It is convenient to define

x := Z
−1
λ

β
1−β
L u

for the promised utility of an agent per unit of productivity, given the shadow value of labor. In

this way the problem may be rewritten

Π(λ) = λRλLG+ max
x≥0

Z
1−γ

λ
−β(1−γ)

1−β
L

x1−γ

1− γ
+ Zλ

− β
1−β

L λR([1−G]v(x)−Gx) (19)
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so that for any pair λ = (λR, λL), the problem of the planner reduces to choosing an initial level

of normalized promised utility x. As with the case without workers, for any such choice there will

be an associated stationary density of normalized utility mx(du) that may be computed using only

the policy functions associated with v (corresponding to unitary productivity). The optimal choice

of x depends on the multipliers λL and λR. For each choice of x we determine excess labor demand

and excess consumption as functions of the multipliers and find conditions under which these both

vanish. The labor resource constraint will be satisfied if and only if

G = [1−G]M(x)(Zβ/λL)
1

1−β (20)

where M(x) is given by (16). To see this, note that

RHS of (20) = (average θ per entrepreneur in stationary distribution)

× (mass of entrepreneurs)

× (labor demand per unit of productivity (18))

LHS of (20) = labor supply by workers.

Further simplification then gives the following.

Proposition 3.6. The stationary x is a solution to the equation(
1−G
1− β

)
M(x) = (1−G)C(x) +Gx (21)

with the associated level of u given by u = Z(1− β)x([1/G− 1]M(x))−β.

Proof. From Lemma 3.5 the output of each entrepreneur’s firm is Zθ1−βL(θ)β = Z
1

1−β (β/λL)
β

1−β θ.

Integrating over all entrepreneurs and using (21), output in the stationary distribution is

Y (x) = Z
1

1−β (β/λL)
β

1−β (1−G)M(x) = Zλ
− β

1−β
L

(
1−G
1− β

)
M(x). (22)

Aggregate consumption is simply the sum of consumption from both entrepreneurs and workers, or

Zλ
− β

1−β
L [1−G]C(x) + Zλ

− β
1−β

L Gx = Zλ
− β

1−β
L ([1−G]C(x) +Gx). (23)

Dividing (22) and (23) by Zλ
− β

1−β
L then gives the left- and right-hand sides of (21), respectively.

Rearranging (20) gives λ
− β

1−β
L = ([1/G− 1]M(x))−β(Zβ)

− β
1−β , and so the implied level of normal-

ized promised utility is equal to u = Zxλ
− β

1−β
L = Zx([1/G− 1]M(x))−β(Zβ)

− β
1−β which reduces to

the claimed expression.
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Note that to determine the constrained efficient stationary distribution, the value function need

only be calculated once even though there is a continuum of agents and two resource constraints.

Proposition 3.6 now allows for simple derivations of comparative statics for the initial level of x.

Corollary 3.7. The stationary level of x is decreasing in G, increasing in β, and independent of

Z.

Proof. Define H(x,G) := M(x)(1−β)−1−C(x)−xG(1−G)−1 and note that the stationary x is a

root of H(·, G). The first two claims follow from Topkis’ theorem and the fact that H is decreasing

in G and increasing in β, and the last claim follows from the fact that Z appears nowhere in the

equation defining x.

The third claim in Corollary 3.7 may be viewed as a neutrality result. It shows that (Hicks-

neutral) changes in total factor productivity (constant Z in the above) have no effect on the station-

ary value of x. They therefore have no effect on inequality in the associated stationary distributions

of promised utility and consumption, as these quantities are simply scaled for all agents after every

history by the same proportion.

3.5 Restricted-action allocations

I showed earlier that the restricted value and policy functions associated with the highest action are

good approximations to the true value and policy functions for low levels of normalized promised

utility. Since agents with low normalized utility have high productivity and so typically high con-

sumption, one expects the right tail of the consumption distribution to look similar to that associated

with the restricted-action allocation for the highest effort level. It is therefore instructive to consider

the stationary distribution associated with these restricted policy and value functions as they may

be calculated in closed form. Not only does this allow a clearer characterization of the implied dis-

tributions of wealth and firm size, it will serve as a prelude to the decentralization results of Section

4.2. The only change to the problem (19) facing the generational planner is that v is replaced with

vr(x) := maxl∈[l,1] vr(x; l), and the stationary x is now the solution to the analogue of (21),(
1−G
1− β

)
Mr(x) = (1−G)Cr(x) +Gx, (24)

where Mr and Cr denote aggregate output and consumption in the optimal restricted-action al-

location, given the initial level of normalized utility x. Now recall that Lemma 2.4 shows that

the restricted-action normalized value and policy functions have the explicit solutions vr(u; l) =
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(ρ−µ(l))−1−v(l)u and cr(u; l) = c(l)u. Since C(U, θ) = c(u)uθ and u = [(1−γ)U ]
1

1−γ θ−1, we have

C(Ut, θt) = c(l)utθ = c(l)[(1−γ)Ut]
1

1−γ . Lemma ?? shows that consumption then follows the law of

motion dct = µc(l)ctdt+ σc(l)ctdZt for some constants µc(l) and σc(l). This leads to the following

simple characterization. The proof is given in Section A.5.

Proposition 3.8. The optimal restricted-action allocation is that corresponding to leisure level

lr(x), where x solves
(1− β)−1

ρD − µ(lr(x))
=

c(lr(x))

ρD − µc(lr(x))
+

Gx

1−G
. (25)

For each l ∈ [l, 1] the stationary distribution of consumption associated with the restricted-action

allocation for the leisure level l is double-Pareto with the tail parameters given by

α±(l) = −γ
2
± γ

2

√
1 +

4ρD
ρ(1− x)

(1− 1/γ)(2− 1/γ)

where x = x(l) solve 0 = E(l)2(γ− 1)(γ− 1/2)σ2x2 + ρx− ρ, at least for γ > 1, while for γ = 1 the

expression for tail parameters tends to

α±(l) = −1

2
± 1

2

√
1 +

8ρD
E(l)2σ2

.

The stationary distribution of a firm associated with the restricted-action allocation for the leisure

level l is also double-Pareto, with the tail parameters now given by

β±(l) = µ(l)/σ2 − 1/2±
√

(µ(l)/σ2 − 1/2)2 + 2δ/σ2. (26)

Proposition 3.8 shows that the characterization of the stationary distribution given in Proposi-

tion 3.6 is even simpler in the case of restricted-action allocations. Furthermore, when combined

with the discussion following Proposition 2.5, the characterization gives us insight into the tail of

the (unrestricted) efficient stationary distribution. Intuitively, individuals in the right tail in the

stationary distribution are those who have experienced rapid productivity growth, and hence typi-

cally have low normalized utility. Since v(0) ≈ (ρ − µ(l))−1, the welfare loss to the principal from

adhering to the restricted-action allocation for the lowest leisure (and highest effort) level when

confronted with such agents becomes arbitrarily small as u→ 0. We therefore expect that the tail

of the stationary distribution looks like the tail associated with the lowest leisure level, and this is

precisely what is observed in every simulation.
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4 Implementation

The above analysis has focused on the forces that shape the long run efficient levels of inequality in

an economy with repeated moral hazard, with no discussion of a market structure. All quantities

were implicitly specified by a social planner administering the direct mechanism. In this final section

I will discuss the implications of the analysis for taxes, given assumptions on the market structure.

4.1 Unrestricted contracts

I first consider how efficient allocations may be implemented by a government when agents may

write contracts of arbitrary complexity with private financial intermediaries. In this case, despite

the rich history dependence of the optimal contract, a constant linear tax on the consumption of

entrepreneurs, together with a constant linear subsidy on the consumption of workers, will suffice to

implement the efficient allocation. Suppose that a fraction 1−G of agents are potential entrepreneurs

and that a fraction G may only be workers, with the entrepreneurs obtaining utility ψU from the

entrepreneurial activity when given utility U from consumption and effort. I will also suppose that

intermediaries may borrow and lend at the rate of time preference. I will first define the problem

of an intermediary faced with an agent to whom he has promised a certain amount of utility, given

prices for labor and intertemporal trade. This problem has a similar form to that of the principal

considered in the above partial equilibrium setting. For ease of notation, in what follows I will write

UE((1− τ)c, l) := ρ

∫ ∞
0

e−ρtE[u((1− τt)ct, lt)]dt

for the utility of an entrepreneur alive at the first date from the sequences (ct, lt)t≥0 when facing a

sequence of taxes (τt)t≥0, together with analogous quantities for all future generations and workers.

Definition 4.1 (Intermediaries’ problem). Given sequences of wages w = (wt)t≥0, interest rates

r = (rt)t≥0 and consumption taxes (τEC,t, τ
W
C,t)t≥0 on entrepreneurs and workers, respectively, the

problem of a financial intermediary facing an agent with outside option U and productivity θ is

ΠE(U, θ;w, r, τE) = max
(c,l)∈AIC

∫ ∞
0

e−
∫ t
0 (rs+ρD)dsE

[
Z(β, e)w

− β
1−β

t θt − ct
]
dt.

U = UE((1− τE)c, l)

dθt = µ(lt)θtdt+ σ(lt)θtdZt

θ0 = θ.
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The problem of a financial intermediary facing an agent operating the risk-free technology with

outside option U and productivity θ is defined to be

ΠW (U, θ;w, r, τW ) = max
(c,l)∈AIC

∫ ∞
0

e−
∫ t
0 (rs+ρD)dsE [wtltθ − ct] dt.

U = UW ((1− τW )c, l).

Definition 4.2. Given sequences (τE , τW ) := (τ lt , τ
W
t )t≥0 of linear taxes on the consumption of

entrepreneurs and workers, a competitive equilibrium consists of sequences of wages (wt)t≥0 and

interest rates (rt)t≥0, together with an allocation

A :=
{

(cv,θt , lv,θE,t, l
v,θ
W,t, L

v,θ
t )t≥0

∣∣∣ (v, θ) ∈ Ω
}
,
{

(cT,ψt , lT,ψE,t , l
T,ψ
W,t , L

T,ψ
t )t≥T≥0

}
ψ∈Ψ

and contracts
{

(cv,θE,t, l
v,θ
E,t, c

v,θ
W,t, l

v,θ
W,t)t≥0

∣∣∣ (v, θ) ∈ Ω
}

and (cTE,t, l
T
E,t, c

T
W,t, l

T
W,t, L

T
t )t≥T≥0 such that:

• Given the levels of promised utility

v = UE

(
(1− τE)cv,θE , lv,θE

)
v = UW

(
(1− τW )cv,θW , lv,θW

)
UTE = UE

(
(1− τE)cT,θE , lT,θE

)
UTW = UW

(
(1− τW )cT,θW , lT,θW

)
the contracts chosen by the intermediaries minimize the costs of attaining v, UTE and UTW

given prices w and r. This requires that for all (v, θ) ∈ Ω, the contracts (cv,θE , lv,θE , Lv,θ) and

(cv,θW , lv,θW ) solve ΠE(v, θ;w, r) and ΠW (v, θ;w), respectively, and for all T ≥ 0, the contracts

(cT,E , lT,E , LT ) and (cT,W , lT,W ) solve ΠE(UTE , θ0;w, r) and ΠW (UTW , θ0;w, r), respectively.

• Financial intermediaries make zero discounted expected profits from all contracts written at

or after the initial date: ΠE

(
UTE , θ0;w, r, τE

)
= ΠW

(
UTW , θ0;w, r, τW

)
= 0 for all T ≥ 0.

Further, there is no contract that is not offered but would make positive profits if offered.

• All agents not in the first generation choose the contract that maximizes their utility: for all

T ≥ 0 this requires UE
(

(1− τE)cT,θE , lT,θE

)
≥ UW

(
(1− τW )cT,θW , lT,θW

)
.

• labor markets and goods markets clear every instant.

There is no need to impose the requirement that the government budget balance because of

Walras’ law. In keeping with the focus of this paper on long run inequality, I will restrict attention

to stationary equilibria in which wages, interest rates and the distributions of consumption and

productivity are constant.
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The competitive equilibrium without taxes need not coincide with the utilitarian efficient allo-

cation characterized above. Competition amongst firms to provide insurance to workers will ensure

that the level of promised utility is set at the point at which firms make zero expected discounted

profits, and nothing forces this level to coincide with the constrained efficient level of ex-ante utility

assigned to entrepreneurs. However, the form of the preferences ensures that it is easy to describe

the effects of a constant linear consumption tax on utility. Specifically, if consumption is taxed at

rate τ and (c, l) := (ct, lt)t≥0 denotes the consumption and recommended effort levels specified in

the contract between the firm and the entrepreneur, then the utility of the agent is given by

U((1− τ)c, l) = ρ

∫ ∞
0

e−ρtE[u((1− τ)ct, lt)]dt = (1− τ)1−γU(c, l). (27)

Homotheticity therefore implies that the imposition of a linear tax simply scales the utility ex-

perienced by the entrepreneur state-by-state, leaving incentive compatibility unchanged. From the

perspective of the intermediary, with the introduction of a linear tax on entrepreneurs’ income τ the

profit from contracting with an agent with normalized promised u changes from v(u) to v(u[1−τ ]−1).

The level of normalized utility u(τ) that obtains in the competitive equilibrium is then

u(τ) = (1− τ)x

where x solves v(x) = 0. This implies the following.

Proposition 4.1. Denote by UE and UW the levels of utility associated with a newborn entrepreneur

and worker, respectively, in the efficient allocation characterized above. Then the efficient allocation

may be implemented as a competitive equilibrium with interest rate r = ρ, constant linear taxes τE

and τW , where τE satisfies u(τE) = [(1− γ)UE ]
1

1−γ , and τW satisfies

ΠW

(
UTW , θ0;λL, τ

W
)

= 0,

where λL is the multiplier on the labor resource constraint found in the planning problem.

In light of the decentralization results of Prescott and Townsend (1984), Atkeson and Lucas

(1992), and Golosov and Tsyvinski (2007), the fact that the desire of the taxation authority is

reduced when agents are unrestricted in the contracts they may write with intermediaries is not

surprising. However, it is worth noting that Proposition 4.1 shows that even when one introduces ex-

ante heterogeneity, the redistributive role of the government does not necessarily imply progressivity

of taxation.
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4.2 Stock market equilibrium

Proposition 4.1 serves as a natural benchmark as it assumes the government is no more capable

of providing insurance than the private sector. However, the assumption of a competitive sector

of financial intermediaries able to commit to (history-dependent) contracts for the entirety of an

agent’s life may be unreasonably strong. Not only are these contracts highly history dependent

and executed over long periods of time, they implicitly assume that the intermediary is capable of

perfectly observing the asset positions of the agent at all times. For this reason I now complement

the above by fixing a simpler market structure and characterizing the optimal taxation policy of

the government within a particular parametric class. Specifically, I will assume that agents may

only save in a risk-free bond and sell shares of their firm in competitive spot markets, and that the

government may only levy linear taxes on all forms of income and wealth.

The state variable for the agent now consists of firm productivity θt and wealth at. The latter

is the sum of risk-free savings bt and ownership of the asset ptxt, where xt is the fraction of the firm

owned by the agent and pt the total price of the firm, so

at := bt + ptxt. (28)

Wealth now depends upon the endogenously determined price of the firm. Since the stock market

is assumed to be competitive, I will assume that this price always equals the expected discounted

value of firm profits, given the outside investors’ expectations regarding the effort of the owner. The

equilibrium notion outlined below will then impose the consistency requirement that these beliefs

are correct, so that the outside investors break even in expectation. When the agent adheres to the

strategy l̂ = (l̂t)t≥0 this present-discounted value is equal to

pt =

∫ ∞
t

e−r(s−t)(1− τd)El̂[θs]ds.

If l̂t is constant over time, the Gordon growth formula implies the explicit expression

pt =
(1− τd)θt
r − µ(l̂)

for all t ≥ 0 almost surely. When effort expectations are constant and the government levies

constant taxes (τs, τd, τcg, τa) on savings, profits, capital gains and wealth, the law of motion of

wealth becomes

dat =
[
(1− τs)r − τa − ct +

(
τsr + (1− τcg)µ(l)− µ(l̂)

)
ιt

]
atdt+ σ(1− τcg)ιtatdZt (29)
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where ct and ιt denote the fraction of the agent’s wealth consumed and invested in her business,

respectively.10 Note the distinction in (29) between l̂ and l: the former refers to the level of effort

expected by investors, while the latter refers to the true effort exerted by the agent. The two must

coincide in equilibrium but only the latter is affected by the agent directly. Note also that the tax

on firm profits τd appears nowhere in the law of motion (29) since the sole effect of this tax is to

reduce the value of the firm (and hence the lifetime income of the agent).

Definition 4.3. Given an interest rate r, linear taxes τ = (τs, τd, τcg, τa) and expectations of effort

exerted (l̂t)t≥0, the problem of an agent with firm size θ and assets a is

V (a, θ) = max
c,l,ι

∫ ∞
0

ρe−ρtE[u(ct, lt)]dt

dat = [(1− τs)r − τa − ct]atdt+ ιtatdRt(lt)

dθt = µ(lt)θtdt+ σθtdZt

(a0, θ0) = (a, θ)

where dRt(lt) = (τsr + (1− τcg)µ(l)− µ(l̂))dt+ σ(1− τcg)dZt.

The notion of a competitive equilibrium is essentially standard: agents optimize, markets clear,

and expectations are consistent with individual incentives.

Definition 4.4 (Stock market equilibrium with linear taxes). Given an interest rate r and linear

taxes τ , a competitive stock market equilibrium consists of effort expectations l̂, value functions V

and policy functions (c, l, ι) = (ct, lt, ι)t≥0 for consumption, leisure and investment, such that the

following hold:

• The functions (c, l, ι) solve the consumer problem in Definition 4.3 given expectations l̂.

• The outside investors break even in expectation, or lt = l̂ for all t ≥ 0 almost surely.

A stationary competitive stock market equilibrium is one in which the cross-sectional distributions

of wealth and firm size are constant over time.

The first observation here is that if l̂ does not depend upon θ then the latter variable drops out

of the individual agent problem and it becomes a standard portfolio problem of Merton-Samuelson

type. The proof is simple algebra and so relegated to the appendix.
10To aid the reader, a discrete-time formulation of the law of motion is contained in Section B.1.
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Lemma 4.2. With linear taxes and constant expectations of effort, the policy functions for con-

sumption and investment in the consumer problem are of the form c(a) = ca and ι(a) = ιa for some

constants c and ι, and the choice of leisure l is constant over time. The pair (c, l) solves the pair

c

ρ
=

(1− τcg)µ(l)− µ(l̂) + τsr

σ2(1− τcg)γE(l)

ρ− c
1− γ

= (1− τs)r − τa − c+
1

2

[(1− τcg)µ(l)− µ(l̂) + τsr]
2

σ2(1− τcg)2γ

(30)

and ι is given by

ι =
(1− τcg)µ(l)− µ(l̂) + τsr

σ2(1− τcg)2γ
.

If we impose the requirement l = l, the ensuing system (30) completely determines the equilib-

rium c and l, given the taxes τcg, τs and τa, with r = ρ for the same reasons as those given in the

discussion of the characterization of the planner’s problem in Section 3. Note that since the allo-

cations with linear taxes imply constant effort by the agent, given the planner’s objective function

they are by definition weakly dominated by the restricted-action allocations characterized in Lemma

2.4. Further, since the policy functions for consumption and investment are linear in wealth, they

share the property of the restricted-action allocations that they are characterized by constant mean

and volatility of growth rates. It follows that if we can find linear taxes such that the mean and

volatility of consumption growth in the competitive equilibria coincide with their counterparts in

the restricted-action allocations, then we will have found the optimal linear taxes.

Proposition 4.3. The optimal allocation possible with linear taxes may be implemented with a tax

τd on dividends, common taxes on capital income τc = τs = τcg, and a tax τa on wealth, where

(w, τc, τa) are solutions to the system of equations

0 = σ2E(l)2(γ − 1/2)(γ − 1)w2 + ργ2
(
w − γ2

)
τa =

σ2

γ2

(
E(l)w − ργ2

γ(ρ− µ(l)) + σ2E(l)w

)
E(l)w.

τc =
σ2E(l)w

γ(ρ− µ(l)) + σ2E(l)w

and l is the optimal solution lr(u) associated with the restricted problem vr(u) := maxl∈[l,1] v(u; l).

The tax on dividends τd is simply set at the level at which agents are indifferent between being an

entrepreneur or a worker.

The system in Proposition 4.3 may be simplified when utility is logarithmic. In this case the
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first equation in Proposition 4.3 implies w = 1 and so taxes become

τc =
σ2E(l)

ρ− µ(l) + σ2E(l)
τa = σ2E(l)

(
E(l)− ρ

ρ− µ(l) + σ2E(l)

)
.

To determine the total taxes paid, note that the law of motion of wealth in Definition 4.3 becomes

dat = [(1− τc)ρ(1− ι)− τa − c+ ι(ρ− µ(l) + (1− τc)µ(l))]atdt+ σ(1− τc)ιatdZt. (31)

In this case the investment function reduces to ι = τc(ρ− µ(l))[σ2(1− τc)2γ]−1. Finally, using

τc
1− τc

=
σ2E(l)

ρ− µ(l) + σ2E(l)− σ2E(l)
=

σ2E(l)

ρ− µ(l)

we see that the expected taxes paid on interest, wealth, and capital gains are

ρτc(1− ι) + τa + τcµ(l)ι = ρτc + τa + τc(µ(l)− ρ)ι = ρτc + τa −
τ2
c

(1− τc)2

(ρ− µ(l))2

σ2

= σ2E(l)2 − σ2E(l)2 = 0.

It follows that the dividends tax is the only tax that raises revenue for the government, while the

taxes on capital income and wealth are only necessary because of the presence of the agency problem.

Intuitively, the capital income tax is chosen so that effort is set at the constrained efficient level,

while the wealth tax is present to ensure that the drift in consumption is set at the constrained

efficient level.

5 Conclusion

This paper develops theory and numerical techniques to determine the constrained efficient levels

of inequality in an economy with moral hazard and stochastic growth in human capital. There

were two principal findings from the analysis. First, the presence of endogenous human capital

accumulation has important implications for the efficient bearing of risk and hence the degree of

inequality in the implied stationary distribution. In dynamic agency models with fixed productivity

and a (standard) wealth effect in preferences, it becomes too expensive to motivate agents with high

realizations of output and consumption, and so they are eventually retired. In contrast, in the model

in this paper agents become richer precisely because they experienced rapid productivity growth,

and so the benefits of further effort rise along with the costs. In Proposition 2.6 I provide sufficient

conditions for this second force to overwhelm the first, and in Proposition 3.8, I characterize the

upper tail of the stationary distribution.

35



Second, I provided two decentralizations (one complete and one partial with simple instruments)

of the efficient allocations that differ in the degree of risk-sharing present in financial markets. In

the first, agents may write long term contracts with financial intermediaries restricted only by

informational frictions. In this case Proposition 4.1 shows that the government may achieve its

redistributive goals simply with a linear tax on firm profits. In the second, I suppose that agents

may only trade shares or save in a bond, and characterize the optimal linear taxes of the government.

In this case Proposition 4.3 uncovers a novel role for taxes in this environment: a tax on (personal)

capital income alters the incentives of agents to retain ownership of their firm, and hence to exert

continued effort to improve productivity. The optimal linear taxation policy therefore calls for three

distinct kinds of capital income taxes — corporate profits, personal, and wealth — serving three

distinct purposes. The tax on corporate profits serves redistributive purposes, the tax on personal

savings ensures that effort is set at the efficient level, while the wealth tax ensures that the drift in

consumption is at the efficient level.
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A Recursive analysis

In this section I will elaborate on the characterization of incentive compatibility given in the main text. I

will then derive the Hamilton-Jacobi-Bellman equations for both the true value function and restricted value

functions, show that the latter have closed-form solutions, and derive the Kolmogorov forward equation

for the summary measure. Throughout this section I will take the underlying filtered probability space to

be (Ω, (Ft)t≥0, P ), where Ω = C([0,∞)), P is Wiener measure and F is the σ-algebra generated by the

evaluation maps.

A.1 Incentive compatibility

Definition A.1 (Shifted process). For each effort strategy (lt)t≥0 (equivalently, choice of deterministic

functions (l̃t)t≥0 defined on C([0, t])) the process Zl := (Zlt)t≥0 is defined pointwise

Zlt(ω) := ω(t)− σ−1

∫ t

0

µ(l̃s((ω(s′))0≤s′≤s))ds

for each ω ∈ Ω := C([0,∞). Note that dZlt := dZt − σ−1µ(l̃t)dt.

In the main text I noted that a change in an agent’s strategy may be viewed as a change in the measure

she uses to evaluate the probability of the occurrence of certain paths of output. This is made formal in the

following.

Definition A.2 (Effort process and induced measure). An effort process for the agent is a progressively

measurable process e = (lt)t≥0 on (Ω,F , P ). This is equivalent to the existence of functions (l̃t)t≥0 such

that l̃t : C([0, t]) → R for each t ≥ 0 and lt = l̃t((Zs)0≤s≤t) almost surely, for all t ≥ 0, where the (l̃t)t≥0

are measurable with respect to the filtration on Ω generated by the evaluation maps. The measure on

Ω := C([0, t]) implied by the process e is then defined by declaring

P l(ω ∈ Ω | ω(ti) ∈ Bi, i = 1, . . . , N) = P

(
ω ∈ Ω

∣∣∣∣ ∫ ti

0

l̃s((ω(s′))0≤s′≤s)ds+ σω(ti) ∈ Bi, i = 1, . . . , N

)
for any points t1, . . . , tN ∈ [0, t] and Borel measurable sets B1, . . . , BN ⊆ R.

Definition A.2 appears complicated but simply asserts that P l is the probability measure used by the

agent to evaluate the probability of occurrences of different output levels. Note that by the Girsanov theorem,

Zl is a Brownian motion on (Ω,F , P l).

Definition A.3 (Time zero utility). For any allocation (c, lP ) chosen by the planner and agent strategy e,

define a stochastic process V c,l := (V c,lt )t≥0 by

Vt := ρ

∫ ∞
0

El[u(ct, lt)| Ft]dt. (32)

One may interpret V c,lt as the time zero utility based on time t information.
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The law of iterated expectations ensures that for any allocation (c, lP ) and strategy e the process V c,l

is a martingale on (Ω,F , P l). Now, for the given underlying Brownian motion Z := (Zt)t≥0 define θ to be

a strong solution to the SDE dθt = σθtdZt and note that if (lt)t≥0 is of the form lt = l̃t((Zs)0≤s≤t) almost

surely then we have

dθt = σθtdZt = σθt

(
σ−1µ(l̃(θ·))dt+ dZt − σ−1µ(l̃(θ·))dt

)
= µ(l̃(θ·))θtdt+ σθtdZ

l
t

where the process Zl is defined in Definition A.1. It follows that (θ, Zl, P l) is always a weak solution to

dXt = µ(l̃(X·))Xtdt+ σXtdWt (33)

and that choosing a strategy l̃ amounts to choosing the distribution of the process given in (33). The

Brownian motion (Wt)t≥0 is the noise process associated with the strategy e.

Proof of Proposition 2.1. The basic idea of the proof is that for any strategy e := (lt)t≥0, if we define a

random variable X by

X := ρ

∫ ∞
0

e−ρt
(c1−αt lαt )1−γ

1− γ
dt (34)

then the process V l := (V lt )t≥0 defined in (32) is a martingale on (Ω,F , P l) by the law of iterated expec-

tations. The strengthening of the martingale representation theorem given in Lemma 3.1 of Cvitanić et al.

(2008) then asserts existence of Y = Y e
P ,C such that V et = ρσ

∫ t
0
YsdZ

l
s for all t ≥ 0 almost surely, which

gives the result upon rearrangement.

Remark A.1. The strengthening of the martingale representation proved in Cvitanić et al. (2008) and

invoked above is necessary because F is the filtration generated by the evaluation maps ω and so is not

necessarily equal to the natural filtration associated with Zl, which is the assumption of the usual martingale

representation theorem.

Proof of Proposition 2.2. For any strategy l and t ≥ 0, define a random variable V̂ lt := ρ
∫ t

0
e−ρsu(cs, ls)ds+

e−ρtWt where Wt represents the continuation utility if the agent adheres to lP after t. From the definition

of dZl given in Proposition 2.1 we have dZl
P

t = dZlt − σ−1[µ(lPt )− µ(lt)] and so by the expression (7),

dV̂ lt = ρe−ρtu(ct, lt)dt+ d
(
e−ρtWt

)
= ρu(ct, lt)dt− ρWtdt+

[
ρ(Wt − u(ct, l

P
t ))dt+ StdZ

lP

t

]
= e−ρt

(
ρ[u(ct, lt)− u(ct, l

P
t )] + σ−1St[µ(lt)− µ(lPt )]dt

)
+ e−ρtStdZ

l
t.

Using El
[∫ t

0
e−ρsSsdZ

l
s

]
= 0 for all t ≥ 0 and effort process e, it follows that

El
[
V̂ lt

]
= V̂ l0 + ρEl

[∫ t

0

e−ρs
(
σ−1Ssµ(ls) + ρu(cs, ls)− [σ−1Ssµ(lPs ) + ρu(cs, l

P
s )]
)
ds

]
. (35)

Since the expected utility of the agent is exactly El
[
limt→∞ V̂ lt

]
, an effort process e is incentive compatible

if and only if it maximizes the integral in (35) almost surely for all t ≥ 0, which gives the result.
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A.2 Hamilton-Jacobi-Bellman equation

Recall some notation from the main text. The utility function is given by u(c, l) =
(
c1−αlα

)1−γ
/(1− γ) for

some α ∈ (0, 1) and γ > 0, and I will define γ by (1− γ)(1− α) = 1− γ and assume γ, γ > 1. Note that

u(c, l) =

(
c1−αlα

)1−γ
1− γ

u2(c, l) = αl−1
(
c1−αlα

)1−γ
µ(l) = µ−

[
µ− µ

]
l µ′(l) = −

[
µ− µ

]
so the elasticity of utility with respect to output when l < 1 is St = σE(lt)(1− α)(c1−αlα)1−γ , where

E(l) :=
ρα

(1− α)(µ− µ)l
.

The joint law of promised utility and productivity is then

dθt =
(
µ− [µ− µ]l

)
θtdt+ σθtdZt

dUt = ρ
(

1−
(
c1−αlα

)1−γ)
Utdt+ σE(l)(1− γ)

(
c1−αlα

)1−γ
UtdZt

(36)

where I have changed variables to c = c[(1 − γ)Ut]
1

1−γ . Given the joint law of motion (36), the associated

Hamilton-Jacobi-Bellman equation is

ρV (U, θ) = max
C≥0
l≥0

θ − C + ρ
(

1−
(
c1−αlα

)1−γ)
U
∂V

∂U
+
σ2E(l)2

2
(1− γ)2

(
c1−αlα

)2−2γ
U2
t

∂2V

∂U2

+
(
µ−

[
µ− µ

]
l
)
θ
∂V

∂θ
+
σ2θ2

2

∂2V

∂θ2
+ E(l)(1− γ)

(
c1−αlα

)1−γ
σ2Uθ

∂2V

∂U∂θ
.

(37)

Using the change of variables in Definition 2.4.

Proposition A.1. The solution to the Hamilton-Jacobi-Bellman equation is of the form V (U, θ) = v(u)θ

for some function v solving

ρv(u) = max
c≥0
l≥0

1− cu+ ρ

(
1− (c1−αlα)1−γ

1− γ

)
uv′(u) +

σ2E(l)2

2

(
c1−αlα

)1−γ
γuv′(u)

+
(
µ−

[
µ− µ

]
l
)
[v(u)− v′(u)u] +

σ2

2

(
1− E(l)

(
c1−αlα

)1−γ)2

u2v′′(u).

Proof. Under the change-of-variables u := [(1− γ)U ]
1

1−γ θ−1, the relevant algebra is

u = [(1− γ)U ]
1

1−γ θ−1 U =
(uθ)1−γ

1− γ
∂u

∂U
=

1

1− α
[(1− γ)U ]

γ
1−γ θ−1 =

uγθγ−1

1− α
∂u

∂θ
= −u

θ
.

Again defining v(u)θ = V (U, θ) gives

∂V

∂U
=
∂u

∂U
v′(u)θ =

θγuγ

1− α
v′(u)

∂V

∂θ
= v(u)− v′(u)u
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and

∂2V

∂θ2
=

∂

∂θ
[v(u)− v′(u)u] =

∂u

∂θ
[v′(u)− v′(u)− v′′(u)u] =

v′′(u)u2

θ
∂2V

∂U2
=

θγ

1− α
∂

∂U
[uγv′(u)] =

θγ

1− α
∂u

∂U
[γuγ−1v′(u) + uγv′′(u)] =

(uθ)2γ−2

(1− α)2
[γuv′(u) + u2v′′(u)]θ

∂2V

∂U∂θ
=

∂

∂U
[v(u)− v′(u)u] =

∂u

∂U
[−v′′(u)u] = −v

′′(u)u1+γ

1− α
θγ−1.

Since c(u) = c(u)u (and C(U, θ) = c(u)θ) for all u ≥ 0 we have

U −
(
C1−αlα

)1−γ
1− γ

=
(
1− (c1−αlα)1−γ)U (38)

for the drift, and

ρσα

[µ− µ]l

(
C1−αlα

)1−γ
=

ρσα

[µ− µ]l
(1− γ)

(
c1−αlα

)1−γ
U

for the diffusion. Substitution then gives

ρv(u)θ = max
c≥0
l≥0

(1− cu)θ + ρ
(

1−
(
c1−αlα

)1−γ)
U
θγuγ

1− α
v′(u)

+
(ρσα)2

[µ− µ]2l2
(1− γ)2

(
c1−αlα

)2−2γ
U2 (uθ)2γ−2

(1− α)2
[γuv′(u) + u2v′′(u)]θ

+
(
µ−

[
µ− µ

]
l
)
θ[v(u)− v′(u)u] +

σ2θ

2
v′′(u)u2 − ρα(1− γ)

[µ− µ]l

(
c1−αlα

)1−γ
σ2Uθ

v′′(u)u1+γ

1− α
θγ−1

ρv(u) = max
c≥0
l≥0

(1− cu) + ρ

(
1−

(
c1−αlα

)1−γ
1− γ

)
uv′(u) +

(ρσα)2
(
c1−αlα

)2−2γ

(1− α)2[µ− µ]2l2
[γuv′(u) + u2v′′(u)]

+
(
µ−

[
µ− µ

]
l
)
[v(u)− v′(u)u] +

σ2

2
v′′(u)u2 − ρα

(1− α)[µ− µ]l

(
c1−αlα

)1−γ
σ2u2v′′(u)

(39)

as claimed upon factorization.

A.3 Restricted value and policy functions

Proceeding from Proposition A.1 gives the following, which is a slightly more general statement than Propo-

sition 2.4.

Proposition A.2. The restricted-action value and policy functions are given by

v(u; l) =
1

ρ− µ(l)
− (2γ − 1)

ρ(2γ − x)
c(u; l) c(u; l) = x

1
1−γ l−

α
1−αu

where x = x(l) solves the quadratic 0 = E(l)2(γ − 1)(γ − 1/2)σ2x2 + ρx− ρ. Further, v(l) is decreasing in l.

Proof. Using Proposition A.1 and substituting the form v ≡ v(l)u+ v(l) gives

ρv(l)u+ ρv(l) = max
c≥0

1− cu+ ρ

(
1− (c1−αlα)1−γ

1− γ

)
v(l)u+

γσ2

2
E(l)2

(
c1−αlα

)2−2γ
v(l)u

+
(
µ−

[
µ− µ

]
l
)
v(l).
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Equating linear and constant parts gives v(l) = 1/(ρ− µ+
[
µ− µ

]
l) and v(l) solves

ρv(l) = max
c≥0

−c+ ρ

(
1− (c1−αlα)1−γ

1− γ

)
v(l) +

σ2E(l)2

2

(
c1−αlα

)2−2γ
γv(l).

Combining this with the associated first-order condition gives

ρv(l) = −c+ ρ

(
1− (c1−αlα)1−γ

1− γ

)
v(l) +

σ2D2

2(1− α)2l2
(
c1−αlα

)2−2γ
γv(l)

0 = −c− ρ(c1−αlα)1−γv(l) + (2− 2γ)
σ2E(l)2

2

(
c1−αlα

)2−2γ
γv(l).

Combining, eliminating c and dividing by v(l) gives the following quadratic in x := (c1−αlα)1−γ

−ρx+ (2− 2γ)
σ2E(l)2

2
γx2 = −ρ+ ρ

(
1− x
1− γ

)
+
σ2E(l)2

2
γx2.

Rearranging gives

(1− 2γ)
σ2E(l)2

2
γx2 =

ργ

1− γ
− ργx

1− γ

multiplying by 1 − γ simplifies to the claimed quadratic. The implied expression for consumption is then

c = x
1

1−γ l−
α

1−α and the coefficient of normalized utility solves (using the quadratic for x again)

ρv(l) = −c+ ρ

(
1− x
1− γ

)
v(l) +

σ2E(l)2x2

2
γv(l)

c/v(l) = ρ

(
1− x
1− γ

)
− ρ+

γ

2

ρ(1− x)

(γ − 1)(γ − 1/2)

c/v(l) = −ρ(1− x)

2γ − 1
− ρ

which rearranges to the desired expression. To show that v(l) is increasing in l, note that it is the fixed point

of the equation ρv = T (v) where

T (v) = max
c≥0

−c+ ρ

(
(c1−αlα)1−γ − 1

γ − 1

)
v +

σ2E(l)2

2

(
c1−αlα

)2−2γ
γv.

The right-hand side is clearly increasing in l whenever v is negative since it is the pointwise maxima of

functions increasing in l. The fixed point will then be increasing in l provided the right-hand side is convex

in v. This is indeed the case, since it is the pointwise maximum of linear functions.

A.4 Laws of motion

The proof of Proposition A.1 shows that normalized utility follows a diffusion process of the form dut =

µu(u; c, l)utdt+ σu(ut; c, l)utdZt

µu(u; c, l) = ρ

(
1− (c(u)1−αl(u)α)1−γ

1− γ

)
+
σ2E(l(u))2

2

(
c(u)1−αl(u)α

)1−γ
γ − µ(l(u))

σu(u; c, lt) = σ
(
E(l(u))

(
c(u)1−αl(u)α

)1−γ − 1
)
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which is exactly the first claim of Proposition 2.6. Now note that if dUt = µUUtdt+ σUUtdZt then

Ut = U0 exp
([
µU − σ2

U/2
]
t+ σUdZt

)
.

It follows that [(1− γ)Ut]
1

1−γ = [(1− γ)U0]
1

1−γ exp
(

(1− γ)−1
[
µU − σ2

U/2
]
t+ σU

(1−γ)dZt

)
and so

d[(1− γ)Ut]
1

1−γ =

(
µU

1− γ
+

γσ2
U/2

(1− γ)2

)
[(1− γ)Ut]

1
1−γ dt+

σU
1− γ

[(1− γ)Ut]
1

1−γ dZt.

Therefore, The law of motion for zt := [(1− γ)Ut]
1

1−γ is dzt = µzztdt+ σzztdZt, where

µz =
ρ

1− γ

(
1−

(
c1−αlα

)1−γ)
+
γ

2

(
ρασ

(1− α)[µ− µ]l

)2(
c1−αlα

)2−2γ

σz =
ρασ

(1− α)[µ− µ]l

(
c1−αlα

)1−γ
which gives the second claim of Proposition 2.6. The volatility of normalized utility is then (E(l)x(l)− 1)σ,

where x = x(l) =
(
c(l)1−αlα

)1−γ solves the quadratic given in Proposition A.2. High shocks will imply a

fall in normalized promised utility if and only if x(l) < 1/E(l). This will be true if and only if

ρ <
σ2

2
(2γ − 1)(γ − 1) + (1/α− 1)[µ− µ]l

which is the final claim of Proposition 2.6.

A.5 Stationary distribution proofs

In general the Kolmogorov forward equation will inform us of the evolution over time of the two-dimensional

density of both promised utility and productivity. However, as shown in Ai ?, the homogeneity of the policy

functions and the log-linear law of motion of productivity ensure that we need only solve for the density of

a single variable, referred to as the summary measure.

Proof of Lemma 3.4. The process (θt, ut)t≥0 is a multi-dimensional diffusion process driven by the same

Brownian motion, and so away from the initial point u0, the joint density Φ satisfies the Kolmogorov

forward equation

∂

∂t
[Φ(θ, u, t)] = −ρDΦ(θ, u, t)− µu(u)

∂

∂θ
[θΦ(θ, u, t)]− ∂

∂u
[µu(u)Φ(θ, u, t)]

+
σθ(u)2

2

∂2

∂θ2
[θ2Φ(θ, u, t)] +

∂2

∂θ∂u
[θσθ(u)σu(u)Φ(θ, u, t)] +

1

2

∂2

∂u2
[σ2
u(u)Φ(θ, u, t)].

Note that for any smooth function f vanishing at zero with sufficiently rapid decay at ∞, integration by

parts gives
∫∞

0
θf ′(θ)dθ = [θf(θ)]∞θ=0 −

∫∞
0
f(θ)dθ = −

∫∞
0
f(θ)dθ and

∫∞
0
θf ′′(θ)dθ = −

∫∞
0
f ′(θ)dθ = 0.

Recalling the definition m(u, t) :=
∫∞

0
θΦ(θ, u, t)dθ and interchanging orders of integration, it follows that
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for all (u, t) we have the following simplifications

µ(u)

∫ ∞
0

θ
∂

∂θ
[θΦ(θ, u, t)]dθ = −µ(u)m(u, t)

−
∫ ∞

0

∂

∂u
[µu(u)θΦ(θ, u, t)]dθ = − ∂

∂u
[µu(u)m(u, t)]

σ2
θ(u)

2

∫ ∞
0

θ
∂2

∂θ2
[θ2Φ(θ, u, t)]dθ = 0∫ ∞

0

θ
∂2

∂θ∂u
[θσu(u)Φ(θ, u, t)]dθ = − ∂

∂u
[σu(u)m(u, t)]∫ ∞

0

θ
∂2

∂u2
[σ2
u(u)Φ(θ, u, t)]dθ =

∂2

∂u2
[σ2
u(u)m(u, t)].

Interchanging the order of integration, the multi-dimensional forward equation implies

∂

∂t

∫ ∞
0

θΦ(θ, u, t)dθ = −ρD
∫ ∞

0

θΦ(θ, u, t)dθ − µu(u)

∫ ∞
0

θ
∂

∂θ
[θΦ(θ, u, t)]dθ

− ∂

∂u

∫ ∞
0

θµu(u)Φ(θ, u, t)dθ +
σθ(u)2

2

∫ ∞
0

θ
∂2

∂θ2
[θ2Φ(θ, u, t)]dθ

+ σθ(u)

∫ ∞
0

θ
∂2

∂θ∂u
[θσu(u)Φ(θ, u, t)]dθ +

1

2

∫ ∞
0

θ
∂2

∂u2
[σu(u)2Φ(θ, u, t)]dθ

which is equivalent to

∂m

∂t
= −(ρD − µu(u))m(u, t)− ∂

∂u
[(µu(u) + σθ(u)σu(u))m(u, t)] +

1

2

∂2

∂u2
[σ2
u(u)m(u, t)].

Setting the partial derivative with respect to time to zero then gives (15).

The boundary conditions for the ODE in (15) are not obvious a priori, but we do not need to know

them to find the stationary distribution. I will employ the finite-state Markov chain method of Kushner and

Dupuis (1992) and find the stationary distribution of a finite-state Markov chain that is ‘close’ in distribution

with the underlying continuous-time process.

For convenience I record the following lemma that shows that killed diffusion processes are distributed

according to a double-Pareto distribution. The proof is standard and therefore omitted. I then specialize to

the restricted-action versions of consumption and productivity.

Lemma A.3. The stationary distribution of a stochastic process evolving according to dXt = µXXtdt +

σXXtdZt that dies at rate δX and is injected at some point X > 0 is given by

f(x) =

 Axα+−1 if x ≤ X

Bxα−−1 if x ≥ X
(40)

where

α± = µX/σ
2
X ±

√
(µX/σX)2 + 2δX/σ2

X , (41)

the constants A and B are chosen such that the density is continuous and integrates to unity, and I have

written µX = µX − σ2
X/2 for brevity.

47



Proposition 3.8 shows that by combining Lemma A.3 with the explicit policy functions for consumption

given in Lemma 2.4 we get closed-form representations for the stationary distributions associated with the

restricted-action allocations.

Proof of Proposition 3.8. From Lemma 2.6 the law of consumption is dct = µcctdt+ σcctdZt, where

µc =
ρ(1− x)

1− γ
+
γE2σ2x2

2
σc = σEx

where (γ − 1)(γ − 1/2)E2σ2x2 = ρ(1− x). It follows that

µc −
σ2
c

2
=
ρ(1− x)

1− γ
+

(γ − 1)E2σ2x2

2
=
ρ(1− x)

1− γ
+
ρ(1− x)

2γ − 1
=

ρ(1− x)γ

(1− γ)(2γ − 1)
= −E

2σ2x2γ

2
.

Using Lemma A.3 the tails are then

α± =
µX
σ2
X

±

√(
µX
σ2
X

)2

+
2δX
σ2
X

= −γ
2
±
√
γ2

4
+

2ρD
σ2E2x2

which simplifies as claimed using the defining quadratic for x.

Proposition 3.8 implies the following uniform bounds on consumption inequality since x→ 0 as l→ 0.

Corollary A.4 (Consumption bounds). For all γ ≥ 1 and l ∈ (0, 1) we have

α−(l) ≤ −γ
2

(
1 +

√
1 +

4ρD
ρ

(2− 1/γ)(1− 1/γ)

)
with equality in the limit as l→ 0.

A.6 Planner preferences

Defining Ω := V ×Θ, aggregate consumption and output at any date t ≥ 0 are then,

Ct := e−ρDtCt +

∫ t

0

e−ρD[t−T ]CTt dT

Ct :=

∫
Ω

E[cv,θt ]Φ(dω), CTt :=

∫
Ψ

E
[
cT,ψt

]
G(dψ)

Yt := e−ρDtY t +

∫ t

0

e−ρD[t−T ]Y Tt dT

Y t :=

∫
Ω

E[F (θv,θt , Lv,θt )]Φ(dω), Y Tt :=

∫
Ψ

E[F (θT,ψt , LT,ψt )]G(dψ)

while aggregate labor assigned to entrepreneurs and labor supplied by workers is

LEt := e−ρDtLlt +

∫ t

0

e−ρD[t−T ]LE,Tt dT

LEt :=

∫
Ω

E[Lv,θt ]Φ(dω), LE,Tt :=

∫
Ψ

e−ρD[t−T ]E
[
LT,ψt

]
G(dψ)

LWt := e−ρDtLWt +

∫ t

0

e−ρD[t−T ]LW,Tt dT

LWt :=

∫
Ω

E[ev,θW,t]Φ(dω), LW,Tt :=

∫
Ψ

e−ρD[t−T ]E
[
eT,ψW,t

]
G(dψ).
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I will also use the notation

U t =

∫
Ω

E
[
u
(
cv,θt , ev,θt

)]
Φ(dω) UTt =

∫
Ψ

E
[
u(cT,ψt , eT,ψt )

]
G(dψ)

for the total flow utility experienced by the first and subsequent generations. Note that each of the above

aggregate quantities is written as the sum of two terms: the first is the contribution to the aggregate level

of the initial generation, and the second is the contribution from all subsequent generations. For instance,

since agents die at rate ρD and death is independent of the noise process, the aggregate consumption of

surviving members of the initial generation at date t is e−ρDt multiplied by the expected consumption of a

single member of this generation.

Lemma A.5. The preferences of the planner over allocations A are represented by the function

UP (A) =

∫ ∞
0

(
e−ρtU t +

∫ t

0

e−ρ[t−T ]e−ρSTUTt dT

)
dt.

Proof. From first principles, the planner’s preferences may be represented

UP =

∫
Ω

∫ ∞
0

e−ρtE[u(cv,θt , ev,θt )]dtΦ(dω) +

∫ ∞
0

e−ρT
∫

Ψ

∫ ∞
T

e−ρ[t−T ]E[u(cT,ψt , eT,ψt )]dtG(dψ)dT

=

∫ ∞
0

e−ρSt
(∫

Ω

e−ρDtE[u(cv,θt , ev,θt )]dtΦ(dω) +

∫
Ψ

∫ t

0

e−ρD[t−T ]E[u(cT,ψt , eT,ψt )]dTG(dψ)

)
dt

where I interchanged the order of integration and used the equalities

e−ρT e−(ρ+ρD)[t−T ] = e−ρT e−ρ[t−T ]e−ρD[t−T ] = e−ρte−ρD[t−T ],

which gives the result upon simplification.

B Implementation

B.1 Discrete-time analogues

In this section I will outline a discrete-time version of implementation with stock market equilibrium for

clarity, spelling out the order of moves by the agent step-by-step. The agent problem in the main text ought

to be viewed as a continuous-time version of the following.

• At t the agent has wealth at and chooses consumption ∆ct.

• She places bt units in a risk-free bond earning after-tax return (1− τs)r and uses the remaining wealth

ιt := at− bt to purchase shares at price pt. If xt is the fraction of the business owned, then her budget

constraint is at = bt + ptxt.

• Between t and t+ ∆ the firm yields output ∆θt. By t+ ∆, it has grown to θt+∆ and the price is pt+∆.
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• Wealth at t+ ∆ comprises holdings of bonds and stocks, plus flow dividends minus consumption,

at+∆ = savings + interest− consumption + dividends + stocks + capital gains

= bt + (1− τs)r∆bt −∆ct + ∆(1− τd)θtxt + ptxt + (1− τcg)(pt+∆ − pt)xt

= at + ∆[(1− τs)rat − ct + [(1− τd)θt/pt − (1− τs)r]ιt] + (pt+∆/pt − 1)(1− τcg)ιt

(42)

where I substituted xt = ιt/pt.

Now note that the approximate law of motion for the price is pt+∆/pt = 1 + µ(l̂(u))∆ + σ
√

∆dX where dX

is mean zero i.i.d. across time and assumes values ±1. Substituting into (42) gives

at+∆ = at + ∆
[
(1− τs)rat − ct + [(1− τd)θt/pt + (1− τcg)µ(l̂(u))− (1− τs)r]ιt

]
+ σ
√

∆(1− τcg)ιtdX.

Taking limits as ∆→ 0 gives the law of motion in the case of linear prices

dat = [(1− τs)rat − ct + ιt((1− τd)θt/pt + (1− τcg)µ(lt)− (1− τs)r)]dt+ σ(1− τcg)ιtdZt. (43)

Furthermore, if l̂(u) ≡ l then by the Gordon growth formula

pt =
(1− τd)θt
r − µ(l̂)

(44)

and so the law of motion of wealth simplifies to

dat =
[
(1− τs)rat − ct +

(
τsr + (1− τcg)µ(l)− µ(l̂)

)
ιt

]
dt+ σ(1− τcg)ιtdZt. (45)

B.2 Agent problems and equilibrium characterization

This section contains proofs of claims pertaining to the implementation of the efficient allocations. Recall

that Lemma 4.2 solves the problem of the individual agent and Proposition 4.3 characterizes the optimal

linear taxes.

Proof of Lemma 4.2. When facing constant taxes and expectations of constant effort l̂, the value function

of the agent solves the Hamilton-Jacobi-Bellman equation

ρV (a) = max
c,l,ι

ρ
((ca)1−αlα)1−γ

1− γ
+ [−τa − c+ (1− τs)r]aV ′(a)

+
[
(1− τcg)µ(l)− µ(l̂t) + τsr

]
ιaV ′(a) +

σ2a2

2
ι2(1− τcg)2V ′′(a).

(46)

Assume a solution to this equation of the form V (a) = V (l̂)a1−γ/(1− γ), so that

aV ′(a) = (1− α)V (l̂)a1−γ a2V ′′(a) = −γ(1− α)V (l̂)a1−γ .

Substitution gives

ρV (l̂)

1− γ
= max

c,l,ι

ρ(c1−αlα)1−γ

1− γ
+ [−τa − c+ (1− τs)r](1− α)V (l̂)

+

([
(1− τcg)µ(l)− µ(l̂) + τsr

]
ι− σ2(1− τcg)2

2
ι2γ

)
(1− α)V (l̂).
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First-order conditions for consumption, leisure, and investment are then

(c1−αlα)1−γ =
c

ρ
V (l̂)

(c1−αlα)1−γ =
l

ρα
[µ− µ]ι(1− α)(1− τcg)V (l̂) =

1

E(l)
(1− τcg)V (l̂)ι

ι =
(1− τcg)µ(l)− µ(l̂) + τsr

σ2(1− τcg)2γ
.

Substituting the third into the second gives the pair

(c1−αlα)1−γ

V (l̂)
=
c

ρ

(c1−αlα)1−γ

V (l̂)
=

(1− τcg)
E(l)

[(1− τcg)µ(l)− µ(l̂) + τsr]

σ2(1− τcg)2γ
,

so that
c

ρ
=

1

E(l)

[(1− τcg)µ(l)− µ(l̂) + τsr]

σ2(1− τcg)γ

We then use the HJB to obtain V (l̂),

ρV (l̂)

1− γ
=
ρ(c1−αlα)1−γ

1− γ
+ [(1− τs)r − τa − c](1− α)V (l̂) +

[(1− τcg)µ(l)− µ(l̂) + τsr]
2

2σ2(1− τcg)2γ
(1− α)V (l̂)

1 =
(c1−αlα)1−γ

V (l̂)
+

(
−τa − c+ (1− τs)r +

1

2

[(1− τcg)µ(l)− µ(l̂) + τsr]
2

σ2(1− τcg)2γ

)
(1− γ)

ρ
.

The solution to the consumer problem reduces to the following three equations in three unknowns (coefficient

of value function, and consumption and effort choices)

(c1−αlα)1−γ

V (l̂)
=
c

ρ

c

ρ
=

1

E(l)

[(1− τcg)µ(l)− µ(l̂) + τsr]

σ2(1− τcg)γ

ρ = c+

(
−τa − c+ (1− τs)r +

1

2

[(1− τcg)µ(l)− µ(l̂) + τsr]
2

σ2(1− τcg)2γ

)
(1− γ).

(47)

The second rearranges to

c

ρ
σ2(1− τcg)γE(l) = [(1− τcg)µ(l)− µ(l̂) + τsr].

The first equation in (47) serves only to determine V (l̂), while the second and third become the system in

the statement of the lemma.

Proof of Proposition 4.3. If we impose the equilibrium requirement l̂ = l the pair of equations in Lemma 4.2

becomes

1 =
τsr − τcgµ(l)

σ2(1− τcg)E(l)
+

(
−τa + (1− τs)r +

[τsr − τcgµ(l)]2

2σ2(1− τcg)2γ

)
(1− γ)

ρ

γc

ρ
=

τsr − τcgµ(l)

σ2(1− τcg)E(l)
.

(48)
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Recall that the drift and diffusion of consumption growth in the restricted-action allocations are given by

µc = σ2E(l)2x(l)2 (1− γ)

2
σc = σE(l)x(l).

We want the drift and diffusion in the above decentralized environment to match these expressions. The

drift and volatility in the competitive equilibrium are given above by

µa = −τa − c+ (1− τs)ρ+ [τsρ− τcgµ(l)]ι = −τa − c+ (1− τs)ρ+
[τsρ− τcgµ(l)]

2

σ2(1− τcg)2γ

σa = σι(1− τcg) =
τsρ− τcgµ(l)

σ(1− τcg)γ
.

(49)

So we have five equations (characterizations of c and l in terms of taxes, drift and diffusion requirements for

efficient allocations, and the definition of x(l)) in six unknowns (c, l, τs, τcg, τa, x),

1 =
τsr − τcgµ(l)

σ2(1− τcg)E(l)
+

(
−τa + (1− τs)r +

1

2

[τsr − τcgµ(l)]2

σ2(1− τcg)2γ

)
(1− γ)

ρ

γc

ρ
=

τsr − τcgµ(l)

σ2(1− τcg)E(l)
.

σ2

2
E(l)2x2(1− γ) = −τa − c+ (1− τs)ρ+

[τsρ− τcgµ(l)]
2

σ2(1− τcg)2γ

E(l)x =
τsρ− τcgµ(l)

σ2(1− τcg)γ

E(l)2x2σ2(γ − 1)(γ − 1/2) = ρ(1− x).

Now impose the requirement τcg = τs =: τ . Then we have five equations in five unknowns:

1 =
τ(ρ− µ(l))

σ2(1− τ)E(l)
+

(
−τa + (1− τ)ρ+

1

2

τ2(ρ− µ(l))2

σ2(1− τ)2γ

)
(1− γ)

ρ

γc

ρ
=

τ(ρ− µ(l))

σ2(1− τ)E(l)
.

σ2E(l)2x2(1− γ)/2 = −τa − c+ (1− τ)ρ+
τ2(ρ− µ(l))2

σ2(1− τ)2γ

E(l)x =
τ(ρ− µ(l))

σ2(1− τ)γ

E(l)2x2σ2(γ − 1)(γ − 1/2) = ρ(1− x).

(50)

Comparing the second with the fourth implies

γc

ρ
=

τ(ρ− µ(l))

σ2(1− τ)E(l)
= γx

and so x = c/ρ. Replace x everywhere with this and eliminate the fourth equation.

1 =
τ(ρ− µ(l))

σ2(1− τ)E(l)
+

(
−τa + (1− τ)ρ+

1

2

τ2(ρ− µ(l))2

σ2(1− τ)2γ

)
(1− γ)

ρ

γc

ρ
=

τ(ρ− µ(l))

σ2(1− τ)E(l)
.

σ2E(l)2(c/ρ)2(1− γ)/2 = −τa − c+ (1− τ)ρ+
τ2(ρ− µ(l))2

σ2(1− τ)2γ

E(l)2c2(σ/ρ)2(γ − 1)(γ − 1/2) = ρ− c.

(51)
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The system (51) then simplifies to

ρ− γc
1− γ

= −τa + (1− τ)ρ+
1

2

τ2(ρ− µ(l))2

σ2(1− τ)2γ

γc =
ρτ(ρ− µ(l))

σ2(1− τ)E(l)

σ2E(l)2(c/ρ)2 (1− γ)

2
= −τa − c+ (1− τ)ρ+

τ2(ρ− µ(l))2

σ2(1− τ)2γ

E(l)2c2(σ/ρ)2 (1− γ)

2
=

c− ρ
2γ − 1

.

(52)

The third and fourth combine to give

2γc

2γ − 1
− ρ

2γ − 1
− τ2(ρ− µ(l))2

σ2(1− τ)2γ
= −τa + (1− τ)ρ.

The system is now
ρ− γc
1− γ

+
1

2γ

τ2(ρ− µ(l))2

σ2(1− τ)2
=

2γc

2γ − 1
− ρ

2γ − 1

γcσE(l)/ρ =
τ(ρ− µ(l))

σ(1− τ)

E(l)2c2(σ/ρ)2 (1− γ)

2
=

c− ρ
2γ − 1

.

(53)

(The other equation gives τa: σ2E(l)2(c/ρ)2 (1−γ)
2 = −τa − c + (1 − τ)ρ + τ2(ρ−µ(l))2

σ2(1−τ)2γ ). One may show that

the first two equations in (53) imply the third, and so we are left with the pair of equations(
2γ − 1

1− γ

)
(ρ− γc) +

(2γ − 1)

2γ

τ2(ρ− µ(l))2

σ2(1− τ)2
= 2γc− ρ

γcσE(l)/ρ =
τ(ρ− µ(l))

σ(1− τ)
.

(54)

We can eliminate c using the last equation, and finally end up with a single equation for τ in terms of l. The

first equation in (54) rearranges to

(ρ− γc)(2γ − 1)γ + (2γ − 1)(1− γ)
τ2(ρ− µ(l))2

2σ2(1− τ)2
= γ(2γc− ρ)(1− γ)

1

ρ
(γ − 1/2)(1− γ)

τ2(ρ− µ(l))2

(1− τ)2
= γ2σ2(c/ρ− 1).

Substitution then gives the single equation for τ in terms of l:

1

ρ
(γ − 1/2)(1− γ)

τ2(ρ− µ(l))2

(1− τ)2
+ γ2σ2 = γ

τ(ρ− µ(l))

E(l)(1− τ)
.

This leads to a quadratic in y := τ/(1− τ) (so that τ = y/(1 + y) and 1− τ = 1/(1 + y)):

0 =
1

ρ
(γ − 1/2)(1− γ)(ρ− µ(l))2y2 − γ (ρ− µ(l))

E(l)
y + γ2σ2 (55)

which clearly has a unique positive solution for y (and hence τ). The expressions in the statement of the

Proposition then follow upon simplification.
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C Numerical schemes

This section outlines how I numerically solve the ordinary differential equations derived in the main text.

Both the value function of the principal and the stationary distribution will be found using the method of

Kushner and Dupuis (1992).

It is well known that the distribution of a variable evolving according to a diffusion process is given by

the Kolmogorov forward (or Fokker-Planck) equation. I refer the reader to Fleming and Soner (2006) for

details. As noted in the main text, I will find the summary measure of normalized promised utility by using

the finite-state Markov chain method described in detail in Kushner and Dupuis (1992). If X = (Xt)t≥0

follows a diffusion process of the form

dXt = µ(Xt)dt+ σ(Xt)dZt (56)

then X may be approximated arbitrarily well by a Markov chain X∆ indexed by a pair ∆ := (∆T ,∆X)

assuming values in the finite set Σ := {x, x+ ∆X , . . . , x−∆X , x} and subject to the transition probabilities

p(x, x+ ∆X) =
∆T

∆2
X

(
σ2(X)

2
+ ∆Xµ(X)+

)
p(x, x−∆X) =

∆T

∆2
X

(
σ2(X)

2
+ ∆Xµ(X)−

)
p(x, x) = 1− p(x, x+ ∆X)− p(x, x−∆X)

where x+ := max{0, x} and x− := max{0,−x}. It is shown on page 325 of Fleming and Soner (2006)

and also in Kushner and Dupuis (1992) that X∆ converges weakly to X as ∆ → 0. Now the trick is to

interpret the summary measure as the stationary distribution of a diffusion process (Mt)t≥0 with drift µM

and diffusion σM given by

µM (u) = µu(u) + σθ(u)σu(u) σM (u) = σu(u), (57)

which dies at the rate ρD − µ(u) and is injected at the point u at rate ρD. Solving for the stationary

distribution of X∆ simply amounts to solving a particular linear system Ax = b, where A is constructed

from the probabilities specified above and b depends upon the initial guess for normalized promised utility.

The operation therefore has negligible computation time.

54


	Introduction
	Dynamic principal-agent model
	Efficient stationary allocations
	Implementation
	Conclusion
	Recursive analysis
	Implementation
	Numerical schemes



