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1 Introduction
It is well known that the structure of �nancial networks is important in assessing

systemic risk (Allen and Gale (2000), Freixas et al. (2000), Lux (2017)). Network

structure is also important in other areas of �nance, such as market e�ciency or

payments processing (see Glassermann and Young (2015) for a review). In spite

of its importance, the analysis of networks is made di�cult by a lack of data for

essential markets. For many crucial �nancial networks, a researcher only has

the assets and liabilities of individual agents in a �nancial network. �e bilateral

arrangements betwen individuals are missing.

One strategy for dealing with the lack of network data is to back out a network

structure from balance-sheet information and banks’ optimizing decisions. Unfor-

tunately, this is complicated by the lack of appropriate numerical tools. Network

problems are complex. For example, consider the decision surrounding interbank

loans where the links between nodes are whether to lend to a speci�c bank and

how much to lend. �is problem must consider many possibilities that are both

discrete (the decision to open a costly link and make a loan between two particular

banks) and continuous (the amount of lending through this link). If a network has

more than 20 nodes, a numerical solution to a mixed continuous-discrete problem

is well-known to be very hard to solve exactly, and with more than 100 nodes, it

is hard to �nd even an approximate solution tp yhr problem.

In this paper, we propose a set of heuristics for constrained network formation

that are adapted from a rich literature in the analysis of transportation costs.

We suitably modify these heuristics so that they can �t or simulate �nancial

networks with characteristics that we observe in the real world. Our application

incorporates cost measures that could be estimated structurally in our fairly

simple framework.

We start from a basic �xed-cost of a link that is consistent with the observation

that interbank activity is based on relationships (Cocco et al. (2009)). Establishing

and maintening a lending-borrowing relationship (that is, a link) is expensive.

�e monitoring costs associated with this link are paid by both borrower and

lender, although usually the lender pays more up-front. Our model assigns to

each bank a �xed cost that is independent of contract size but decreases for

every additional link formed by a bank. �e interpretation of this is that as a

bank develops risk controls within its institution, these controls are subject to

increasing returns to scale. �is is also consistent with the observation of Cocco

et al. (2009) and others that banks with large reserve imbalances typically engage

in many relationships. It is in line with the idea that banks with more links will

diversify their large portfolios. In other words, additional links are expensive

due to information processing, risk management, and credit-worthiness checks,

but such costs decrease as the bank establishes more links and its infrastructure
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grows. Establishing more links promotes further diversi�cation, and is helpful

where it might not be possible to �nd a single counterparty to satisfy all their

liquidity or borrowing needs. Moreover, our model allows us to distinguish costs

that are borne by the lender, or the borrower, or split between the two parties.

�e model determines the optimal network con�guration, where optimality

is de�ned with respect to a single parameter geometrically decreasing �xed cost.

�e optimization problem is NP-hard and the search space has frictions and

multiple local and global optima. To solve it, borrowing from transportation

theory, we introduce the North-West-Corner-Rule (NWCR) and one variation,

relying on simulated annealing, which allows reliable solutions to be found within

reasonable time and does not require function approximation by Markov-Chain

Monte-Carlo as in Anand et al. (2015).

Our numerical experiments show that the proposed approach reproduces

several stylized facts of interbank networks: sparsity, core-periphery and disas-

sortative structures. By starting from a realistic marginal distribution of assets

and liabilities, the core-periphery of Craig and von Peter (2014) emerges as a

natural property of the system, and the distribution of contract sizes exhibits a

smaller right tail. �is indicates the less extreme lender-borrower relationships

that we generally observe. Due to its simplicity, we can further explore what

happens when the borrowers or the lenders pay the cost of a link, and we consider

a shared-cost version.

�e problem of reconstructing a network that satis�es a given set of assets and

liabilities of the individual banks has prompted a stream of research (see Squartini

et al. (2018) Gao et al. (2018), Hueser (2015) for reviews on these methods applied

to �nancial networks). Upper and Worm (2004) suggested employing maximum

entropy methods as they are easy to compute. Howeve,r maximum entropy, while

satisfying the balance-sheet constraint, does not replicate characteristics such

as sparsity and a core-periphery structure that are observed in networks where

more complete data are avaiable. In such a structure, core members are strongly

connected to each other, whereas periphery members establish just a few links

with core members but none with other periphery members (Borga�i and Evere�

(2000)). Alternative methods based on copulas, bootstrap, and iterative algorithms

have been subsequently developed and compared. Among these alternatives,

Anand et al. (2018) consider 25 di�erent �nancial markets spread out among 13

regulatory jurisdictions for which the complete network data are available. �e

�xed-cost model developed by Anand et al. (2015) tends to simulate networks

that outperform all other simulations with respect to the Hamming distance

and accuracy score between the simulated and actual networks. �is model

constructed a sparse network that managed to avoid the inclusion of links that

are not present in the actual network. �e simulations very rarely exhibited a

core-periphery structure, and used an algorithm that performed slowly, o�en
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converging to a local optimum (see Figure 1 in Anand et al. (2015)).

Where bilateral data exist, a few works so far have focused on di�erent �nan-

cial markets. �ese include Borga�i and Evere� (2000) for the Austrian interbank

market; Li et al. (2018) for the Chinese loan network with core-periphery structure,

Silva et al. (2016) for the Brazilian core-periphery market structure; Finger et al.

(2013) for the e-MID overnight money market; Iori et al. (2015), Temizsoy et al.

(2015) for the e-MID Interbank market; and Van Lelyveld and In’T Veld (2014) for

the core-periphery structure in the Netherlands. �ese empirical investigations

establish a few stylized facts of interbank lending, such as a typical core-periphery

structure, network sparsity, and disassortativeness.

�e agent-based modeling literature has focused on replicating some of these

characteristics, as in the work of Gurgone et al. (2018) and Liu et al. (2018) and

within dynamic modeling frameworks, as in Zhang et al. (2018), Guleva et al.

(2017), Xu et al. (2016), and Capponi and Chen (2015). Lux (2015) introduces

a simple dynamic agent-based model that, starting from a heterogeneous bank

size distribution and relying on a reinforcement learning algorithm based on

trust, allows the system to naturally evolve toward a core-periphery structure

where core banks assume the role of mediators between the liquidity needs of

many smaller banks. Blasques et al. (2018) propose a dynamic network model of

interbank lending for the Dutch interbank market, pointing out that credit-risk

uncertainty and peer monitoring are driving factors for the sparse core-periphery

structure.

�e paper is structured as follows. Section 2 introduces state-of-the-art meth-

ods and our proposed model with decreasing marginal �xed costs. Section 3

focuses on the optimization model and introduces the new NWCR obtained by

combining heuristics, such as simulated annealing, with the classical NWCR

from transportation theory. Section 4 describes the properties of networks under

decreasing marginal �xed costs. Finally, Section 5 draws the main conclusions

and the outlook for further research.

2 Reconstructing Networks

2.1 Existing Methods
�e problem of reconstructing banking networks based on limited information

has a�racted some a�ention in the literature, in particular for the case where, for

N banks, their (total) assets, Ai , and liabilities, Lj , with i, j = 1, … , N are known,

but not who is lending to whom, let alone the exact amounts, zij . All we do know

is that the volumes are not negative and that budget constraints must hold; and

if the banks’ identities are known (and indices i and j correspond), self-lending
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might be excluded:

N
∑
j=1
zij = Ai ,

N
∑
i=1
zij = Lj , zij ≥ 0, (zii = 0) . (1)

�e basic problem in this situation is that there are (potentially: in�nitely) many

networks ℤ = [zij] that meet these criteria. Network reconstruction methods

can therefore not assume that there is a unique solution but require additional

assumptions. �ese can simplify or exacerbate the computational requirements,

and they o�en lead to di�erent network properties more or less close to stylized

facts for real networks.
1

A popular group of such reconstruction methods is based on the maximum

entropy (ME) principle. In simple terms, the idea is to create a fully connected

network (with or without the constraint zii = 0) where the contract size zij
between lender i and borrower j is proportional to the size of Ai and Lj relative to

their market shares. Initiated by Upper and Worm (2004), this method is simple

and fast, but by construction misses some stylized facts of real-world networks.

Among other things, real banking networks are far from fully connected, but

tend to have a low density. Also, a lender to two borrowers could easily have the

larger exposure to the smaller of the two, a portfolio of a real-world lender i twice

the size of another lender l is not twice l’s portfolio. Subsequent methods try to

incorporate this: Drehmann and Tarashev (2013), for example, suggest re-scaling

ME networks based on stochastic principles while retaining 100 percent density.

Other approaches explicitly control for the density: Cimini et al. (2015), e.g.,

incorporate a density parameter in their �tness model, while Musmeci et al.

(2013) combine the density-driven link selection with ME. Hałaj and Kok (2013),

on the other hand, suggest an iterative sampling technique that starts with an

empty network, z(0)ij , and where in each iteration, t , a random pair (i, j) of a lender

i and a borrower j is drawn and their contract size is increased according to

z(t)ij = z(t−1)ij + min(A
(t−1)
i , u ⋅ L(t−1)j ), where u is a uniform random number and

A(t−1)
i and L(t−1)j are not yet allocated assets and liabilities, respectively. �is is

repeated until all assets and liabilities are assigned. �e resulting network typically

exhibits low density, but not, e.g., a core-periphery structure.

Anand et al. (2015) consider sparsity as an explicit objective: links are costly

and banks therefore have an inherent motive to keep the number of links as low

as possible. �ey argue that any active link causes �xed costs irrespective of the

actual contract size. If the variable costs, proportional to contract size, are the

same between all parties (e.g., the interbank o�ered rate), it should not a�ect

1
Anand et al. (2018) provide a horse race between popular existing methods, and for some of

them, their appendix provides some information and results.
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the choice (and number) of partners (and, from an optimization perspective, can

be neglected); additional or avoidable �xed costs, however, should, and keeping

the number of links at a minimum is advantageous. Reconstructing a network

can therefore be considered a minimization problem for the overall cost of the

network, F (ℤ):

min
ℤ

F (ℤ) (2)

where

F (ℤ) = c ⋅
N
∑
i=1

N
∑
j=1

1ij (3)

1ij =

{
1 if zij > 0
0 otherwise

(4)

under budget and non-negativity constraints (1). c is the constant �xed costs

per link, and 1ij is a binary indicator as to whether or not bank i lends to bank j.
�is is equivalent to �nding the network with the lowest average degree, i.e., the

lowest number of edges, under given constraints.

Since this is a directed network with edges (links) running from lenders (assets)

to borrowers (liabilities), the out-degree, dAi , of bank i is the number of banks i is

lending to, while j’s in-degree, dLj , is the number of banks j is borrowing from:

dAi =
N
∑
j=1

1ij , dLj =
N
∑
i=1

1ij .

�e cost function can be rewri�en as a function of the banks’ (and, ultimately,

the network’s) degrees—from the lenders’ perspective as

F (ℤ) = c ⋅
N
∑
i=1(

N
∑
j=1

1ij) = c ⋅
N
∑
i=1
dAi (3*)

or, from the borrowers’ perspective as

F (ℤ) = c ⋅
N
∑
j=1
dLj ,

or, if costs are incurred by either side and c = cA + cL = c ⋅ � + c ⋅ (1 − �) with

0 ≤ � ≤ 1, then

F (ℤ) = c ⋅ � ⋅
N
∑
i=1
dAi + c ⋅ (1 − �) ⋅

N
∑
j=1
dLj . (3**)
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�e total number of links in the minimum density (MD) network ℤMD is ∑i,j 1ij =
∑i dAi = ∑j dLj and can be considered the lower bound for the actual number of

links in the real (unobserved) network behind the As and Ls.

From an optimization point of view, c is just a scalar, and solving optimiza-

tion problem (2) produces a minimum density network with the lowest possible

degree. Anand et al. (2018) �nd that networks constructed using such meth-

ods compare favorably with those using other popular methods along many

dimensions. Nonetheless, there are still aspects that can be improved. For one,

real-world networks are usually less sparse than the MD solution, and MD net-

works do not have a pronounced core-periphery structure. Also, it might be

a strong assumption that any link causes the same �xed costs. We suggest an

extended model to remedy these issues.

2.2 A Model with Decreasing Marginal Fixed Costs
If the �xed costs of a link are caused by establishing and maintaining a link be-

tween two banks, then it seems reasonable to assume a learning curve: an already

well-connected bank can draw from experience and can spread its overhead over

more contracts, and any additional link will incur lower costs than the previous

(or �rst) one. Assuming that there is a geometric decay in the additional �xed

costs depending on the bank’s already existing links and re�ected by a factor 

with 0 ≤ 
 ≤ 1, then the �rst link will come with costs of c, the second with c ⋅ 
 ,

the third with c ⋅ 
 2
and so on until the last with c ⋅ 
 d−1 where d is this bank’s

degree, i.e., its number of links. In total, this bank’s costs add up to

C(d, 
 ) = c ⋅ (1 + 
 + ⋯ + 
 d−1) = c ⋅
d−1
∑
k=0


 k = c ⋅

{
d for 
 = 1
1−
 d
1−
 < d for 0 ≤ 
 < 1

. (5)

Assume that, akin to (3*), all costs are from the lenders’ perspective so that the

new cost function now reads

F ∗
A(ℤ) = c ⋅

N
∑
i=1
C(dAi , 
A).

In this extended model, the costs of the network still depend on the degree, but no

longer in a linear fashion when the marginal costs are shrinking, 
A < 1. If there

is no decay in �xed costs, 
A = 1, then this model is identical to the minimum

density (MD) model.

In the MD model, it makes no di�erence whether costs are incurred by lenders,

borrowers, or both, and the solution for cost function (3**) is not a�ected by the

choice of � . When marginal costs are decreasing, however, things are di�erent:
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lenders and borrowers can have di�erent (distributions of) degrees, and they

might face di�erent learning curves with separate 
A and 
L.
�e new optimization model with decreasing marginal �xed costs can then

be summarized as follows:

min
ℤ

F ∗(ℤ) = c ⋅ � ⋅
N
∑
i=1
C(dAi , 
A) + c ⋅ (1 − �) ⋅

N
∑
j=1
C(dLi , 
L) (6)

with banks’ cost function (5) and with constraints (1) on budget, non-negative

volumes, and, where applicable, self-lending. �e parameter � controls who incurs

the costs: for � = 1, it is exclusively the lenders, for � = 0, it is the borrowers, and

for values between these extremes, it is a combination.

3 Finding Cost-Optimized Networks

3.1 �e Underlying Optimization Problem
Both the minimum density and the decreasing marginal �xed-cost models present

challenging optimization problems: there are no closed-form analytical solutions,

and numerically they are hard to tackle. �ey are discrete and non-convex with

local optima, rendering hill-climbing methods unreliable. Non-deterministic

methods might be suitable to overcome those local optima. For example, Anand

et al. (2015) employ a Markov-Chain Monte-Carlo (MCMC) approach and �nd

sparse solutions to their test problems. However, a closer look reveals that

convergence is rather slow, and that even for their small test problem with just

six lenders and �ve borrowers, their reported solution turns out to be suboptimal.

Interestingly, they also point out that their problem is equivalent to the Fixed-Cost

Transportation Problem (FCTP), a popular archetypal problem in logistics. �ere,

the situation is that suppliers i = 1, … ,M can produce goods that are sold in

outlets j = 1, … , N . �e assignment problem then is to �nd the quantities xij
that are shipped from producers i to outlets j such that the outlets’ demands are

met (∑i xij = Dj) without exceeding the suppliers’ capacities (∑j xij ≤ Si) while

minimizing the overall costs, ∑i ∑j xij ⋅vij +∑i ∑j 1ij ⋅ f , where vij are proportional

costs per unit of goods (e.g., costs per truck transporting one unit of goods over

the distance between i and j) and f is the �xed costs for this active link (e.g., the

set-up costs for the cooperation between i and j). �antities must not be negative

(xij ≥ 0), and 1ij = 1 indicates an active link (if xij > 0; 1ij = 0 otherwise). For the

special case of ∑i Si = ∑j Dj , the problem is also known as Balanced FCTP.

In the banking network problem, the lenders correspond to the suppliers, the

borrowers to the outlets, and contract sizes to the shipped quantities. vij could

be seen as the interest rate; if this is the same for all combinations (vij = v ∀(i, j),
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e.g., in the absence of risk premia, time spreads, etc.), the variable part of the

cost function can be dropped as it always adds up to the same value, leaving

only the part with the �xed costs to be relevant. And it is exactly this part that

makes it a challenging optimization problem; then for a relatively small number

of producers and outlets (or, here, banks), optimal solutions cannot be found in a

reasonable time frame. In a market with N banks, there are up to N 2
potential

links each of which could be active or inactive; this amounts to as many as 2N 2

combinations even before considering how to distribute the quantities. With

the constraint zii = 0 active (a situation hardly relevant in the traditional FCTP),

these numbers are lowered to N(N − 1) = N 2 − N and 2N 2−N
, respectively; either

way, the search space is vast, even for very small markets: for example, for just

N = 10 banks, there would be 2100 > 1.26e+30 and 290 > 1.23e+27 alternatives,

respectively, just for se�ing the links, and before assigning actual quantities zij .
�is is why a number of initialization methods have been developed that create

solutions that are at least feasible and valid with respect to the constraints.

One such method is the North-West-Corner-Rule (NWCR; see, e.g., Hillier

and Liebermann (2010)) for which we suggest a modi�cation to approach our

cost-minimization problem for network reconstruction.

3.2 �e Modi�ed North-West-Corner-Rule
�e original North-West-Corner-Rule uses a tableau where the rows are the

suppliers (here: lenders) and the columns are the outlets (here: borrowers) and

where quantities are iteratively assigned. Using the notation from our problem, it

is initialized by considering all assets and liabilities to be unassigned (A(0)
i = Ai ,

L(0)j = Lj) and all links to be inactive (zij = 0). �en it follows an iterative procedure

where in each iteration, t , one pair of a lender i and a borrower j is selected. In

the �rst iteration, it is the combination of the top-le� corner (“north-west” corner,

hence the name) of the tableau with (i = 1, j = 1). Next, one checks how much

of i’s supply is still unassigned, and how much open demand j has le�. �e

lower of the two is the maximum contract size between the two and chosen

for zij , while i’s available supply and j’s open demands are lowered accordingly:

zij = min(A
(t)
i , L

(t)
j ), A(t)

i = A(t−1)
i − zij , and L(t)j = L(t−1)j − zij . If i’s assets are now

exhausted (A(t)
i = 0), one moves on to the next supplier (i ∶= i + 1; move south in

the tableau); if j has no further demand for liabilities (L(t)j = 0), one moves to the

next borrower (j ∶= j + 1; move east in the tableau). �is �nishes iteration t and

starts iteration t + 1. �ese iteration steps are then repeated until no available

assets and no demand for liabilities are le�, and the south-east corner has been
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reached. �e network ℤMD in Table 1(b) has been created in exactly that fashion.
2

�e NWCR does produce a feasible solution as it is based on the constraints.

However, it does not guarantee an optimal solution for two reasons: (a) costs,

�xed and variable alike, are ignored in the creation process, and (b) the sequence

in which the banks are listed drives the assignments. At the same time, it tends

to produce very sparse networks, which, here, works to our advantage as it

keeps the aggregate �xed costs low. �e second aspect concerning the sequence is

usually considered a downside, as the sorting and the resulting pairs (i, j) are o�en

arbitrary. For the problem at hand, we suggest turning this into a crucial feature

of the optimization: we use it to our advantage and restate the search process

as �nding a permutation of the lenders and borrowers such that the resulting

network from the NWCR has minimum costs. �is turns the optimization problem

into a traveling salesman problem (TSP)—which is NP hard (i.e., with no known

algorithm where the required computation time is no worse than polynomial

in the number of instances), but for which non-deterministic search methods

have been found to have favorable convergence properties. For the problem

at hand, we adopt a Simulated Annealing algorithm, originally suggested by

Kirkpatrick et al. (1983), and �t it to our problem: starting with a random solution,

each iteration produces one new solution (here: a slightly varied permutation of

lenders and borrowers) by mutating the current one. In the case of the TSP, that

can be done by randomly switching two or more randomly chosen elements (e.g,

aBcdEf becomes aEcdBf), or by randomly choosing a segment of the sequence and

reversing its order (e.g., abCDEf becomes abEDCf). If the mutant solution is be�er

than the current one, it replaces it; but a worse solution can also be accepted,

with a certain probability, to overcome local optima: the larger the downhill step

(and the longer the search process has been going on), the lower that probability.

A�er its �nal iteration, the algorithm reports the best of all tested candidates.

B provides pseudo-algorithms for the Simulated Annealing algorithm and the

modi�ed North-West Corner Rule.

Mimicking the real-world crystallization and annealing process, a “temper-

ature” parameter gears the search process: if the temperature is too generous

(high), any mutant is accepted and the search turns into a random walk; if it is

converging to zero (i.e., even the slightest deterioration is unlikely to be accepted),

then it turns into a hill-climber. With a well-chosen temperature and cooling

plan, however, the process creates a trajectory through the search domain that

can overcome local optima (thanks to accepting some of the downhill steps), but

with a tendency to converge to the optimum (thanks to ignoring very damaging

2
In some respects, it is similar to the method suggested by Hałaj and Kok (2013), but without

the random term in determining the actual quantity, always assigning the highest possible amount,

and without randomness when selecting the pairs.
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steps, but with a dominating preference for uphill steps). Typically, the tempera-

ture parameter is therefore calibrated with a reasonably generous value in the

beginning, but gradually lowered toward zero, to shi� the search process from an

explorative to an exploitative behavior.
3

4 Properties ofNetworks underDecreasingMarginal
Fixed Costs

4.1 A Simple Illustrative Example
Assume there are six banks that are all lenders with assets [Ai] = [50, 15, 12, 11, 8, 4]
and another six banks that are all borrowers with [Lj] = [51, 14, 13, 10, 9, 3]. No

bank is both lender and borrower; the self-lending constraint can be ignored.

Banks are sorted by size in descending order to facilitate interpretation. Table 1

shows three di�erent networks, all of which satisfy the budget and non-negativity

constraints and produce the required assets and liabilities. �e scalar c is assumed

to be 1 here and in all subsequent experiments.

�e network ℤME in Subtable 1(a) has been created with the maximum entropy

(ME) approach. Note that all columns (portfolios of borrowers) are proportional to

each other, re�ecting the relative size of the banks’ liabilities; the same is true for

all rows (portfolios of lenders): bank E is twice the size of F, zEj = 2⋅zF j ∀j = 1, … , N .

By construction, this is a fully connected network with 36 (out of a possible 36)

active links, resulting in a density of 100 percent, and where each lender is linked

to any borrower and vice versa. Any bank, lender and borrower, therefore, has a

degree of 6. With �xed constant costs of 1 per link, this adds up to total network

costs of 36. If costs are incurred by lenders and their decay factor is 
A = 0.7,

the marginal costs for additional links go down, and each lender’s costs are

reduced from 36 to 2.94, causing overall network costs of 17.65 (imprecision due

to rounding).

Network ℤMD in Subtable 1(b) is one possible solution when the network is

being reconstructed under minimum density (MD).
4

Any bank i with positive

assets needs to have at least one link. If there is another bank j with liabilities

Lj = Ai , then both can do with just this one link, otherwise, either i or j needs at

least one additional link, depending on whose position is larger. In this example,

(at least) three of these additional links are required. It can be seen that a density

3
For general presentation of non-deterministic search methods for economic optimization

problems, see, e.g., Gilli et al. (2019).

4
�is solution has been found with the NWCR method presented in Section 3.2 and alphabetical

ordering (here identical to decreasing size) of the banks. Note that several solutions exist which

all have the same optimal overall degree of 9.
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Table 1: Reconstructed networks for a simple example with six lenders (A–F)

and six borrowers (K-P), respectively. dAi is the (out-) degree of lender i, CA
i are

i’s total costs, depending on decay factor 
A. Costs are incurred by lenders only

(� = 1).

(a) ℤME : Reconstructed under maximum entropy.

liabilities
K L M N O P dAi CAi CAi
51 14 13 10 9 3 
A = 1 
A = 0.7

A 50 25.5 7 6.5 5 4.5 1.5 6 6 2.94

B 15 7.65 2.1 1.95 1.5 1.35 0.45 6 6 2.94

as
se
ts C 12 6.12 1.68 1.56 1.2 1.08 0.36 6 6 2.94

D 11 5.61 1.54 1.43 1.1 0.99 0.33 6 6 2.94

E 8 4.08 1.12 1.04 0.8 0.72 0.24 6 6 2.94

F 4 2.04 0.56 0.52 0.4 0.36 0.12 6 6 2.94

dLj 6 6 6 6 6 6 36

∑i CAi 36 17.65

(b) ℤMD : Reconstructed under minimum density.

liabilities
K L M N O P dAi CAi CAi
51 14 13 10 9 3 
A = 1 
A = 0.7

A 50 50 . . . . . 1 1 1.0

B 15 1 14 . . . . 2 2 1.7

as
se
ts C 12 . . 12 . . . 1 1 1.0

D 11 . . 1 10 . . 2 2 1.7

E 8 . . . . 8 . 1 1 1.0

F 4 . . . . 1 3 2 2 1.7

dLj 2 1 2 1 2 1 9

∑i CAi 9 8.1

(c) ℤDC : Reconstructed under Decreasing Marginal Fixed Costs for 
A = 0.7.

liabilities
K L M N O P dAi CAi CAi
51 14 13 10 9 3 
A = 1 
A = 0.7

A 50 1 14 13 10 9 3 6 6 2.94

B 15 15 . . . . . 1 1 1.00

as
se
ts C 12 12 . . . . . 1 1 1.00

D 11 11 . . . . . 1 1 1.00

E 8 8 . . . . . 1 1 1.00

F 4 4 . . . . . 1 1 1.00

dLj 6 1 1 1 1 1 11

∑i CAi 11 7.94
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of 25 percent (9 active out of 36 possible links) su�ces to generate a valid solution.

In this particular solution, lenders can do with just one or at most two links,

reducing their respective costs to 1 and 2 when there are constant �xed costs,

adding up to overall costs of 9, which is optimal under constant �xed costs: for

this market, there exists no solution with fewer than nine links.

When additional �xed costs decrease with 
A = 0.7, the lender’s costs are 1

(when dAi = 1) and 1+0.7 = 1.7 (when dAi = 2), respectively. In this case, the overall

costs for the MD network are now just 8.1—which is no longer optimal: under

decreasing marginal �xed costs, there exist solutions that have more links, yet

lower overall costs, thanks to exploiting reductions in the additional �xed costs.

Simply speaking, if there is a need for one extra link, it is cheaper to have it not

as a second link, but to ride the learning curve and have this extra link with a

lender who already has several links. In fact, one second link (additional costs: 0.7)

can be more expensive than a fourth and ��h link combined (0.73 + 0.74 = 0.58).

Hence, a slightly higher density is not necessarily more expensive if links are

well chosen.

�e optimal network under decreasing marginal �xed costs (DC) ℤDC in

Subtable 1(c) exhibits exactly that. It has a total of 11 links, but they are more

unevenly distributed among the lenders: while most have just one link, the �rst

(and largest) lender has six. With 
A = 0.7, this lender’s �rst contract comes with

unit cost, the second one costs 0.7, the third just 0.49 and so on, down to less

than 0.17 for the sixth. �ese �ve extra links cost a total of 1.94. In ℤMD , on the

other hand, there were three lenders (B, C, and F) who all had one extra link;

each of these cost them 0.7, totaling 2.1 and exceeding A’s �ve additional links. In

other words, the lenders now have out-degrees either at the bare minimum with

just one link, or they are the provider(s) of as many of the required extra links

as possible. Overall, parsimonious networks are still highly desirable; however,

concentration can make additional links acceptable.

�e consequences of decreasing marginal �xed costs manifest themselves in

the distribution of the lenders’ degrees. Revisiting the ME network, the Her�ndahl

index, H , and, for easier comparison, its normalized version, H ∗
, for the out-

degrees are

H(ℤME) =
∑i d2

i

(∑i di)2
= 0.167 =

1
6
=

1
N

H ∗(ℤME) =
H − 1

N

1 − 1
N

= 0.0.

which shows perfect evenness. For the MD network, H = 0.185 (H ∗ = 0.02),

indicating that the out-degrees are still quite even. For the DC network, however,

H = 0.339 (H ∗ = 0.21), highlighting the strong unevenness in the lenders’ number

of links.

Another way of looking at ℤDC is that there are many banks (both lenders

and borrowers) with few links (and, in particular, no links between them), and
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one bank on either side with many links (with links between these two and all

the other ones). �is is typical for core-periphery networks where a small group

of banks (core) has many links to any other banks, while the large group of all

other banks (periphery) is typically linked to some of the cores, but with hardly

any links to other periphery banks.

Note that 
A < 1 will lower the average costs per contract: a lender with just

one link faces costs of 1.0; the lender with 6 links, on the other hand, faces average

costs of just 2.94/6 = 0.49. If lenders pass their costs on to the borrowers, then

a core lender can o�er more a�ractive conditions than one from the periphery.

However, in this model, we only consider where the costs originate and not how

they are redistributed within the system, and we are refraining from additional

interpretations of this aspect.

In short, ℤDC found under the decreasing marginal �xed costs is quite sparse,

but not at its absolute minimum, and it resembles a core-periphery structure. To

test whether this is a typical outcome, we performed a large-scale computational

experiment with arti�cial data, described in the following sections.

4.2 Experimental Setup for Arti�cial Markets and Prelimi-
nary Tests

For the computational experiments, numerous arti�cial markets were generated.

�e main experiments reported in this paper are based on 100 markets, each

consisting of N = 100 banks where assets and liabilities follow a log-normal

distribution. Also, it is assumed that the largest lender is the largest borrower,

implying that self-links can be identi�ed when i = j and the constraint zii = 0
is enforced. �e parameter for shi�ing the costs between assets and liabilities

was chosen from � ∈ {1, 0.5, 0}; the decay factors were selected from 
A, 
L ∈
{0.5, 0.55, ..., 0.85, 0.90, 0.925, 0.95, 0.975, 1.0}, including the combinations when

both sides incur costs (i.e., � = 0.5).

In addition, markets with N ∈ {25, 50, 100, 200} banks have been simulated,

where assets and liabilities were drawn from parametric distributions such as the

log-normal, Pareto, chi-squared, and uniform, and also by bootstrapping from

anonymized empirical data. We found that the main �ndings can be observed

in all of these markets, yet to various degrees: reactions to changes in the decay

parameter(s) were more abrupt in smaller, and smoother in larger, markets, but

with the la�er requiring substantial CPU time in the optimization process and,

perhaps, leaving more room for convergence. Similar variations could be found

when the distributions of assets and liabilities were more or less skewed.

Stochastic optimization methods are not guaranteed to �nd the global opti-

mum, but they have an increased chance of �nding the optimum or a solution
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close to it when granting more iterations and when allowing for restarts and

reporting only the best of repeated a�empts. �is is why all problems for the

main experiments have undergone numerous (typically hundreds of) restarts

with random initial solutions, but also with initial solutions that were found to

be optimal in previous runs (and with the renewed threshold sequence allowing

for more than just a re�ned local search) as well as optimal solutions for similar

problems (identical market, but di�erent se�ings of 
A, 
L, and �).

Also, it should be noted that the suggested procedure of creating a network by

searching a permutation of banks and mapping it via the NWCR into a network

does not guarantee that the reported result is the global optimum. Numerous

preliminary experiments, however, suggest that it is more e�cient than other

methods in the sense that it �nds solutions that are at least as good, but in

substantially less time, in particular for larger problems. It can therefore be

assumed that the reported results typically are close enough to the actual optima

to re�ect important properties. Nonetheless, results will be interpreted cautiously,

also because in these problems, global optima are not necessarily unique, and

even while they share the same minimum costs, their other characteristics might

di�er.

All implementations were done in Matlab version 2018b.

4.3 Findings for Arti�cial Markets
�e toy example in Table 1 illustrated that overall costs are lower when �xed

costs for links are subject to decay: taking the minimum density solution already

lowers costs whenever there are banks that require more than one link. �ey

bene�t from the reduced costs, and it might be bene�cial to have more links

with a highly connected bank than two links with a bank that has only a few

connections. �is means that, on a macro level, the overall number of links and

the density of the network will go up. On a micro level, poorly connected banks

will have even fewer links (perhaps just one) and become (even more) peripheral,

while the highly connected ones (typically also those with large balance sheets)

will have even more links.

�ese e�ects are con�rmed by the experiments with the 100 arti�cial markets

with N = 100 banks each. Figure 1 looks at the overall e�ects when costs are

incurred by the lenders (� = 1). As can be seen from Sub�gure 1(a), the stronger

the decay in marginal �xed costs (i.e., the lower 
A), the lower the overall cost

of the network; this is particularly noticeable when compared to the minimum

density network (i.e., when 
A = 1). Note that, for lower 
A, the costs converge

to 100: the market consists of N = 100 banks, and every bank needs to have at

least one link. �e �rst link has unit costs of c = 1, while the additional ones

will be (substantially) cheaper; their contribution to the overall network costs
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Figure 1: Aggregate results for 100 markets consisting of N = 100 banks each

with log-normally distributed assets and liabilities when all costs are incurred by

lenders (� = 1).

(a) Average overall costs. (b) Average network density.

(c) Normalized Her�ndahl index of banks’

degrees.

(d) Lending and borrowing depth.

(e) Pearson symmetry. (f) Core size.

(g) Cluster MIT.
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become less noticeable. By construction, every bank has a positive budget and

therefore requires at least one link. At the same time, optimal networks tend to

have overall more links, which is equivalent to a higher density; cf. panel 1(b).

Larger markets allow a more subtle analysis of the results. Panel 1(c) shows

that lenders di�er more in how many links they have (i.e., the lenders’ out-degree),

but for the same reason as in the small example: larger banks with many links

already in place are the preferred partners for borrowers’ additional (or even �rst)

links, as this lowers the additional costs. Borrowers’ numbers of links are also

slightly more uneven, but the e�ect is much less pronounced than on the lenders’

side (or in the toy example where alternatives were very limited). With more

overall links now in the networks, borrowers now get their liabilities from either

a single or two (or, occasionally, more) lenders. In particular, these additional

lenders tend to be large ones with many outlinks. Note that very strong decay

might so�en that e�ect somewhat: when 
A is (very) low and the number of

links is already high, the marginal �xed costs will be virtually negligible, as

will be the marginal decrease in the absolute (dollar) values. Hence, the second

most connected lender is e�ectively as favorable as the lender with the highest

degree, and lenders with slightly lower assets can also gain core status. �is is

underlined by two additional statistics: comparing the active links and the rank

(with respect to size) of the lender and borrower involved, it is generally true that

larger lenders cooperate with smaller borrowers and vice versa. �e larger the

decay in marginal �xed costs, the more obvious this pa�ern becomes, and the

negative rank correlations become substantially more pronounced; see panel 1(e).

At the same time, more banks can be considered core (panel 1(f)).

When costs are entirely incurred by borrowers, � = 0, then sides are swapped,

and they encounter all the e�ects just seen for lenders, and vice versa.

When both sides contribute to the network costs, with � = 0.5, and �xed costs

for a lender’s and a borrower’s �rst link on either side are �c = (1 − �)c = 1
2c,

respectively, e�ects are mixed, largely in�uenced by the respective decay factors.

Figure 2 summarizes the main results.

Figure 3 provides the adjacency matrices and network structures for one of

the sample markets. Lenders are along the vertical axis (sorted by size; largest

on top), borrowers along the horizontal axis (also sorted by size, largest on the

le�). A dot indicates an existing link (zij > 0, 1ij = 1). �e top le� network is

for the minimum density case; top right and bo�om le� are for the case where

costs decay with a factor of 
A = 
L = 0.7 and are incurred by lenders (� = 1) and

borrowers (� = 0) only, respectively; bo�om right is the case where both incur

costs (� = 0.5). A core-periphery structure emerges in particular in the last of

these cases: large banks (low indices) tend to be highly linked (albeit not among

themselves, which here is a side-e�ect of the NWCR assignment rule), while small

banks have few links, which are mostly to large banks.
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Figure 2: Aggregate results for 100 markets consisting of N = 100 banks each with

log-normally distributed assets and liabilities when both lenders and borrowers

contribute to the network costs (� = 0.5).
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Figure 3: Adjacency matrices and network structures for one of the arti�cial

markets under di�erent cost regimes.
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5 Conclusion
�is paper introduces a model with decreasing marginal �xed costs in order to re-

create banking networks with realistic characteristics. We argue that establishing

a link between a borrower and a lender is costly, yet with decreasing marginal

costs: banks face a learning curve, and the process for se�ing up an additional

link is cheaper than establishing the �rst link. �is makes large banks a�ractive

partners. A large lender has the assets to be the sole partner for many small

borrowers, both as borrower and as lender. �e larger partner therefore is well-

linked and bene�ts from the learning curve. �e model is stated as an optimization

problem for the social planner, which turns out to be numerically challenging. To

approach this problem, we introduce a new algorithm.

Numerical experiments for arti�cial markets show that the resulting networks

exhibit some typical stylized facts observed in real-world banking networks: they

are quite, but not too, sparse with densities similar to those observed in real-world

networks. A core-periphery structure emerges where a few banks constitute the

core (the large ones) and are connected to many other banks, while periphery

banks have very few links, which are mostly to core banks. Our algorithm has

many potential applications that can be extended to agent-based modeling and

empirical structural estimation. �e fact that our focus has been on a cost structure

facing the system assists in this extension, with some important caveats.

First, the cost structure is aggregated so that it is unclear whether the algo-

rithm can be used to solve problems where the banks or agents are individually

optimizing over their cost structure. Work needs to be done on our model where

the social planner’s problem is related to that of the equilibrium achieved by the

optimizing behavior of the separate agents. Second, while the costs of a link are

important, they are not the only costs associated with �nancial networks. Future

research will extend our model and algorithm to incorporate aspects such as

diversi�cation, explicit limits on contract sizes (e.g., to re�ect regulatory require-

ments), di�erent interest rates, and dynamic aspects such as multiperiod network

formation and adaptation.
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A Multiple Global Optima
Both under the minimum density model and the decreasing marginal �xed-costs

model, solutions are not unique. Typically, there exist several or even many

solutions all of which exhibit the same (globally optimal) network costs and dis-

tribution of lenders’ and borrowers’ degree, yet have di�erent adjacency matrices.

Building on the small illustrative example in Section 4.1, Table 1 illustrates this

for the minimum density model, and Table 2 for the minimum cost model. It

is important to note that descriptive statistics for the network structure (and

adjacency matrix) can therefore vary.

Table 1: Some of the globally optimal solutions, alternative to the solution reported

in Table 1(b), under minimum density for the illustrative example in Section 4.1

with [Ai] = [50, 15, 12, 11, 8, 4] and [Lj] = [51, 14, 13, 10, 9, 3]; more exist. All have

a degree of 9, i.e., a density of
9
36 = 25%.
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. . 9 . . 3

. . . 10 1 .
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50 . . . . .

. . 13 2 . .

. . . . 9 3

1 10 . . . .

. . . 8 . .

. 4 . . . .
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47 3 . . . .

. . 5 10 . .

. . . . 9 3
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. . 8 . . .

4 . . . . .

47 . . . . 3

. 2 13 . . .

. 12 . . . .

. . . 10 1 .

. . . . 8 .

4 . . . . .

36 14 . . . .

15 . . . . .

. . . . 9 3

. . 1 10 . .

. . 8 . . .

. . 4 . . .

36 14 . . . .

15 . . . . .

. . . . 9 3

. . 11 . . .

. . 2 6 . .

. . . 4 . .
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. . . . 9 3
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Table 2: Some of the globally optimal solutions under decreasing marginal �xed

costs with 
A = 0.7 and � = 1, alternative to the solution reported in Table 1(c),

for the illustrative example in Section 4.1; more exist. In all of these cases, the

�rst lender has 6 links, all other lenders just 1, amounting to overall network

costs of 7.94.

28 3 1 10 5 3
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. 11 . . . .
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. . . . 4 .

13 14 9 10 1 3
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B �e search and optimization algorithms

Algorithm 1 Network optimization with Simulated Annealing

1: function NetworkOptimizer(A, L, 
A, 
L, �A)

2: set temperature and nIter

3: sA ← random permutation(1:N ), sL ← random permutation(1:N )

4: f ← ∞, f ∗ ← ∞
5: for t ← 1 to nIter do
6: create mutations of current sequences (s′A, s′L) ← N(sA, sL)
7: ℤ′ ← NWCR(A, L, s′A, s′L)
8: f ′ ← cost(ℤ′

, 
A, 
L, �A)

9: if u ≤ exp((f − f ′)/Temp) then
10: keep mutations, (sA, sL) ← (s′A, s′L), f ← f ′
11: if f < f ∗ then
12: update acting optimum: ℤ∗ ← ℤ′

, f ∗ ← f
13: lower temperature

14: return ℤ∗ ←NWCR(A, L, s∗A, s∗L)

Algorithm 2 Modi�ed North-West-Corner-Rule with provided sequence

1: function NWCR(A, L, sA, sL)
2: ℤ ← 0N×N
3: r ← 1, c ← 1,

4: while (r ≤ N ) and (c ≤ N ) do
5: i ← sA[r], j ← sL[c]
6: zij ← min(Ai , Lj)
7: Ai ← Ai − zij ;
8: if Ai = 0 then r ← r + 1
9: Lj ← Lj − zij ;

10: if Lj = 0 then c ← c + 1
11: return ℤ
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Algorithm 3 Computing a network’s costs

1: function cost(ℤ′
, 
A, 
L, �A)

2: c ← 0
3: if �A > 0 (lenders contribute to costs) then
4: for i ← 1 to N do
5: compute degree of asset bank i, d
6: c ← c + (1 − 
 dA)/(1 − 
A)
7: if (1 − �A) > 0 (borrowers contribute to costs) then
8: for j ← 1 to N do
9: compute degree of asset bank i, d

10: c ← c + (1 − 
 dL )/(1 − 
L)
11: if self-lending prohibited then
12: p ← ∑i zii
13: c ← c + c ⋅ p (punishment for violating constraint)

14: return c
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Anand, Kartik, Iman van Lelyveld, Ádám Banai, �iago Christiano Silva, Soeren

Friedrich, Rodney Garra�, Gregorz Halaj, Ib Hansen, Bradley Howell, Hwayun
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