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1 Introduction

The appropriate taxation of capital income has long been a contentious issue in both policy debates
and the academic literature. Economists have typically addressed this topic through the lens of
models that treat capital as a homogeneous entity and view capital income as the returns to savings.
Since no distinction is made between different sources of capital income, these models give little
guidance to the policymaker as to how (or whether) they ought to discriminate between dividend
income, capital gains, or other forms of capital income.

In this paper I present a simple model that highlights the economic forces that may justify the
differential treatment of capital income. I consider a perpetual youth environment in which agents
may either run their own business (be an entrepreneur) or work for another agent’s business (be a
worker). Entrepreneurship is subject to two agency frictions: physical capital is subject to (privately
observed) stochastic depreciation shocks and may be diverted to (privately observed) consumption;
and entrepreneurs may abscond with a fixed fraction of delegated capital. An allocation must specify
the occupation of every agent and the amount of capital and labor delegated to each business, all
as a function of the history of observable outcomes. The ability of entrepreneurs to divert capital
to private consumption implies that consumption must depend upon business performance, while
the ability of entrepreneurs to abscond with a fraction of their assets limits the amount of capital
that may be delegated to them. I characterize a class of (constrained) efficient allocations in which
aggregate quantities and cross-sectional distributions of firm size and income are constant over
time. In doing so I do not restrict attention to a fixed set of policy instruments, but allow the
government to choose any allocation that respects the incentive-constraints imposed by asymmetric
information. The associated distributions of consumption and firm size are characterized in closed-
form and exhibit fat (Pareto) tails with thickness determined jointly by the nature of the incentive
problem and the technological fundamentals.

I then provide two separate implementations of these allocations that differ in the degree of risk-
sharing (i.e. the presence of insurance markets) in the private sector. In the first, agents may write
contracts with a competitive sector of risk-neutral intermediaries and their insurance opportunities
are inhibited only by the above agency frictions. In this setting, arguments similar to those in
Prescott and Townsend (1984) show that efficient allocations require only lump-sum payments to
newborn individuals or linear taxes on the profits of intermediaries. Although a natural benchmark,
since it assumes the government is no more capable of overcoming the informational asymmetries
than private agents, the assumption of such contracting opportunities may be inappropriate if such
markets are absent in the real world. For this reason I consider a second implementation in which
agents are assumed capable only of saving in a risk-free bond in zero net supply and the government
uses fiscal policy to provide social insurance. With this market structure a motive for differential
asset taxation emerges. I show that the stationary efficient allocations may be implemented with
linear taxes on risk-free savings and (reported) business profits. The decentralization is therefore
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quite simple and also illustrates a (to the best of my knowledge) novel observation: when risk-
sharing is impeded by a hidden consumption friction, the optimal tax on profits is the highest level
consistent with incentive-compatibility and depends solely upon the extent of the agency problem.

In order to analyze optimal taxation in the presence of dynamic agency, the benchmark case
largely omits any kind of ex-ante heterogeneity among agents. The presence of adverse selection
in addition to moral hazard would greatly complicate the analysis without necessarily providing
additional insight. However, extending the analysis to incorporate observable heterogeneity in in-
dividual productivity poses no difficulty; the efficient allocation may again be implemented with
linear taxes on savings and profits if the government has the ability to levy type-specific taxes.
In this case agents with higher productivity face higher savings taxes, but the prescription for the
profits tax is unchanged: it remains the highest level consistent with incentive-compatibility and is
again independent of individual productivity. Thus although all taxes are independent of time and
wealth, the model does provide a kind of justification for progressive savings taxes as higher types
(who dominate the right tail in the stationary distribution) face higher savings taxes.

The tractability of the model also allows for a sharp characterization of the long-run distribu-
tions of consumption and firm size. I show that in this model the stationary distributions of both
consumption and firm size admit closed-form densities of the "double-Pareto" form,1 replicating
the qualitative features of their empirical counterparts. Furthermore, the degree of inequality in
the upper tail may be expressed in closed-form representation and so allows for simple compara-
tive statics. The thickness of the upper tail depends upon the mean and volatility of consumption
growth in the efficient allocation. Due to the nature of the agency problem and the implied need to
have consumption depend upon the history of firm performance, consumption volatility (and hence
inequality) is increasing in the marginal product of capital. Therefore, changes in technology and
demographics that increase this latter quantity (such as changes in factor intensities or the number
of workers per entrepreneur) will also increase inequality in the efficient allocation. Although much
is known about the determinants of inequality in economies with exogenously incomplete markets,2

these comparative statics concerning efficient allocations are new.

Related literature. An extensive literature, surveyed in Chari and Kehoe (1999), has analyzed
optimal capital and labor taxation in environments in which agents face no idiosyncratic risk and
the government is assumed to have access only to linear taxes on various forms of income. Within
this so-called "Ramsey" tradition, all forms of non-labor income are typically grouped together,
with no distinction made between risky or non-risky investments. Recent contributions in this vein
such as Panousi and Reis (2017) and Evans extend this analysis to economies in which agents are
subject to idiosyncratic risk, but do not consider the possibility (and benefits of) taxing different
forms of capital income differently.

1Continuous piecewise polynomials on the positive halfline.
2See, e.g., Benhabib and Bisin (2018) for a survey.
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The analysis in this paper is closer in spirit to the mechanism design approach of the New
Dynamic Public Finance literature emanating from Golosov et al. (2003). Rather than seeking the
optimal government policy lying with a pre-specified parametric class, this literature considers all
allocations that satisfy incentive-constraints arising from informational asymmetries. However, the
majority of this literature has focused on the implications of private-information in labor produc-
tivity and has not explicitly accounted for entrepreneurial activity. Therefore, it provides little
guidance for the environment in this paper, in which multiple assets with different risk and re-
turn coexist. This omission is particularly striking given the observed variation in the taxation of
different forms of capital income observed in practice (see, e.g., Gordon and Slemrod (1988) and
Auerbach (2002)).

Three notable exceptions are Albanesi (2007), Shourideh (2012) and Phelan (2019). Albanesi
(2007) considers a two-period model in which initial wealth is exogenous and common across agents
and the returns to entrepreneurial activity depend upon unobserved (and privately-costly) effort.
She finds that the optimal intertemporal wedge differs from the case with unobserved labor pro-
ductivity and may assume either sign, and, as in this paper, considers multiple decentralizations of
the efficient allocation. However, the two-period setup precludes an analysis of the efficient long-
run distribution of wealth. More closely related with the current paper is Shourideh (2012), who
also analyzes an agency model in which entrepreneurs may divert assets to private consumption. I
reformulate the agency problem in continuous-time and adopt a welfare notion and life-cycle struc-
ture that leads to simpler characterizations of both efficient allocations and their implied taxes.3

The modeling of the agency problem also qualitatively changes the nature of efficient intertemporal
distortions. In contrast to the findings of both Albanesi (2007) and Shourideh (2012), I show that
the inverse Euler equation of Rogerson (1985) and Golosov et al. (2003) continues to hold in the
presence of production risk for a wide range of parameter values.

Finally, Phelan (2019) considers an environment in which the productivity (or human capital)
of entrepreneurs grows randomly over time and depends on unobserved effort. The focus of Phelan
(2019) is the characterization of efficient allocations in an environment with a novel agency problem
involving human capital (rather than physical capital) and the implied effect on the efficient bearing
of risk. Although Phelan (2019) and this paper both characterize efficiency in dynamic environments
with agency frictions, the modeling assumptions, scope and results are quite different. Rather that
analysing a novel agency problem, this paper instead shows how a variation on a previously explored
agency problem leads to both increased tractability and novel results for the decentralization of the
efficient allocation in a general equilibrium model. From a methodological point of view, I draw
upon the continuous-time contracting literature (due to tractability gained), and in particular the
martingale techniques pioneered in Sannikov (2008), for the recursive analysis. The method by

3I also allow entrepreneurs to abscond with a fraction of assets under their control, a restriction that turns out to
be necessary for the problem to be well-defined.
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which the principal-agent analysis is embedded within a macroeconomic setting follows Phelan
(2019), which in turn is an extension of the techniques of Farhi and Werning (2007).

The outline of this paper is as follows: Section 2 analyzes a principal-agent model in which both
the productivity of the agent and the interest rate are exogenous; Section 3 then embeds this into
a macroeconomic model and characterizes stationary constrained-efficient allocations when produc-
tivity is endogenously determined by aggregate physical and labor resource constraints; Section 4
decentralizes these stationary efficient allocations in a general equilibrium model with exogenously
incomplete markets and linear taxes on (risk-free) savings and profits, plots a numerical example
and provides some comparative statics; and Section 5 concludes. Technical proofs and a discrete-
time version of the environment that relates the findings of the main text to those of the related
literature are outlined in the appendix.

2 Principal-agent model

This section characterizes the optimal risk-sharing arrangement between a risk-averse agent (she)
and a risk-neutral principal (he) in an environment where the agent may operate a risky production
technology, her consumption is private information, and she may abscond with a fraction of the
physical assets under her control. Labor is absent from production, and both the marginal product of
capital and interest rate are exogenous. This problem will later be embedded into a macroeconomic
model in which flow payoffs to the principal are endogenously determined by aggregate resource
constraints for both labor and capital.

2.1 Formal setup

The environment is a variation of that considered in Di Tella and Sannikov (2016).4 Time is
continuous and indefinite. The economy consists of a single risk-averse agent and a risk-neutral
principal, both of whom live forever. The preferences of the agent over stochastic sequences of
consumption c := (ct)t≥0 are represented by the utility function

UA(c) := ρ

∫ ∞
0

e−ρtE[ln ct]dt.

The agent has the ability to operate a constant-returns-to-scale technology subject to random shocks
to the capital stock. Only the agent may operate the production function and so the principal must
delegate capital to the agent in order for production to take place. When the capital delegated
follows the process K := (Kt)t≥0, output net of depreciation and borrowing costs Y := (Yt)t≥0

evolves according to
dYt = [Π− r − τI ]Ktdt+ σKtdBt (1)

4The problem considered here is simpler in one respect because savings are observable. However, as Di Tella and
Sannikov (2016) observe, the principal’s problem often gives infinite profits in the absence of hidden savings. Rather
than allowing for hidden savings I instead assume that the agent may abscond with delegated capital and thereafter
trade only a risk-free bond.
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where (Bt)t≥0 is distributed according to standard Brownian motion and defined on a complete
filtered probability space (Ω,F , (Ft)t≥0, P ). The constant Π in (1) may be interpreted as the
marginal product of capital (net of depreciation) and will be made endogenous in Section 3, while
r is the rate at which the principal discounts and τI is a tax on investment. The principal is
risk-neutral and so their preferences over allocations (K, c) := (Kt, ct)t≥0 are represented by the
function

UP (K, c) :=

∫ ∞
0

e−rtE[dYt − ctdt].

The agent has the ability to divert a fraction of output to private consumption. If the agent diverts
a fraction at per unit of time then observed output evolves according to the law

dYt = [Π− r − τI − at]Ktdt+ σKtdBt. (2)

The agent may only consume a fraction φ of the diverted output atKt, where φ ∈ (0, 1) is an
exogenous constant. The parameter φ may be thought of as a measure of the severity of the agency
problem and will play an important role in the decentralization. The specification in (2) may be
interpreted as the continuous-time limit of the following discrete-time environments: the principal
delegates resources to the agent, investment is publicly observed, but the capital stock is subject to
idiosyncratic shocks that are privately observed.5 In addition to the unobservability of consumption
described above, I will also assume that the agent may, at any time, take a fraction ι of the capital
delegated to her and abscond, and after doing so may only trade the same risk-free bond to which
the principal has access.

An allocation in this environment must specify the consumption of the agent, the amount of
capital delegated by the principal to the agent, and the fraction of capital the principal recommends
the agent divert to private consumption, after every history of output. To be formal, let the
underlying probability space be (C[0,∞),Ft, P ), where F := (Ft)t≥0 is the σ-algebra generated by
the evaluation maps6 (xt)t≥0 and P is Wiener measure.

Definition 2.1. An allocation chosen by the planner is a pair (K, c, ã) of F-adapted processes on
C[0,∞). An agent’s strategy is a single F-adapted process a defined on C[0,∞).

When the agent varies a, she alters the law of motion of output and so changes the measure
used to evaluate (Kt, ct, ã)t≥0. Denote the measure associated with a by P a and the corresponding
expectation operator by Ea and note that the utility from adhering to such a strategy is

UA(K, c, ã; a) := ρ

∫ ∞
0

e−ρtEa[ln(ct + φatKt)]dt.

Finally, associated with each allocation (K, c, ã) and strategy a is the process W ≡W (K, c, ã, a) =

(Wt)t≥0 for continuation utility defined by

Wt := ρ

∫ ∞
t

e−ρ(s−t)Ea[ ln(ct + φatKt)| Ft]ds. (3)

5Further discussion on the relation with discrete-time models is given in Appendix A.
6Defined by xt(ω) := ω(t) for all ω ∈ C[0,∞) and t ≥ 0.
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The following lemma requires only elementary algebra and so the proof is omitted.

Lemma 2.1. When the agent absconds with K units of capital the utility from having access to a
bond market with return rate r is given by W = ln(ρK) + ρ−1(r − ρ).

Lemma 2.1 implies that when an agent may abscond with a fraction ι of the delegated capital
and promised utility is given by (Wt)t≥0, capital assignment (kt)t≥0 is subject to the additional
constraint for all t ≥ 0 a.s.

ιkt ≤ ω expWt (4)

where I have abbreviated ω := ρ−1 exp (1− r/ρ). An allocation is incentive-compatible if the agent
wishes to follow the recommendations of the principal after every history of output. The formal
definition is as follows.

Definition 2.2. An allocation (K, c, ã) is incentive-compatible if

UA(K, c, ã; a) ≥ UA(K, c, ã; ã) for all a ∈ A (5)

and if the no-absconding constraint Kt ≤ ω exp (Wt + 1− r/ρ) holds for all t ≥ 0 almost surely.
The set of incentive-compatible allocations is denoted AIC .

Since φ < 1, output is destroyed whenever the agent diverts assets to private consumption. To
characterize efficient allocations, it is therefore without loss of generality to restrict attention to
allocations with ã = 0 for all t ≥ 0 almost surely. For ease of notation I will henceforth omit ã from
the description of an allocation. Finally, in order to rule out allocations in which the principal runs
a Ponzi-like scheme, I will impose the requirement that the present discounted value of transfers
and production be finite, or ∫ ∞

0
e−rt

∣∣E[(Π− r − τI)Kt + ct]
∣∣dt <∞. (6)

An allocation is incentive-feasible if it is both incentive-compatible and satisfies (6). The set of
incentive-feasible allocations is denoted AIF . I may now define the principal’s problem formally.

Definition 2.3. Given the utility from the agent’s outside option W , the marginal product of
capital Π, and the interest rate r, the problem of the principal is given by

V (W ) = max
(K,c)∈AIF

∫ ∞
0

e−rtE[(Π− r − τI)Kt − ct]dt

W =

∫ ∞
0

ρe−ρtE[ln ct]dt.

As is well-known, the principal’s problem is recursive in the state variable W . Standard ar-
guments from the continuous-time contracting literature7 ensure that incentive-compatibility is
equivalent to the requirement that promised utility follow a diffusion process with volatility weakly

7See, e.g., Sannikov (2008) andDi Tella and Sannikov (2016) and the references therein.
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exceeding the marginal benefit of diverting output to consumption. Specifically, the requirement
that the allocation (K, c) be incentive-compatible may be replaced by the explicit law of motion

dWt = ρ(Wt − ln ct)dt+ ρφσktc
−1
t dBt. (7)

Note that the drift term in (7) is the law of motion of Wt that would obtain in the absence of any
uncertainty, as can be seen by simply differentiating (3) with respect to time. It will be convenient
to measure promised utility in units of consumption and define ut := expWt. Ito’s lemma implies

dut
ut

=

(
ρ(lnut − lnCt) +

1

2
(ρφσkt/Ct)

2

)
dt+ ρφσ(kt/Ct)dBt. (8)

Notice that the elasticity of ut with respect to output shocks is proportional to the amount of capital
delegated and the marginal utility of consumption, since this product is the marginal utility of
diverting a unit of output. The solution to the principal’s problem admits a simple characterization
whenever it is well-defined.

Proposition 2.2. The value function of the principal is well-defined for sufficiently small Π, in
which case it solves the Hamilton-Jacobi-Bellman equation

rv(u) = max
c,k≥0
k≤ω

[Π− r − τI ]k − c+

(
−ρ ln c/u+

1

2
(ρφσk/c)2

)
uv′(u) +

1

2
(ρφσk/c)2u2v′′(u)

For such Π, both the value function and policy functions are linear in normalized utility. Further,
the inverse Euler equation holds whenever the no-absconding inequality is strict, in which case the
policy functions are given by

c(u) = exp
(
1− r/ρ+ x(Π)2/2

)
u k(u) =

c(u)x(Π)
√
ρφσ

where x(Π) is given by

x(Π) =
1

2R(Π)

[
1−

√
1− 4R(Π)2

]
for R(Π) := [Π− r − τI ]/(

√
ρφσ).

Proof. See Appendix B.

Sufficient conditions for the no-absconding constraint to not hold with equality are given in
Lemma B.1. All the numerical examples in the main text satisfy this condition with ω = 1/ρ, which
by Lemma 2.1 corresponds to the case in which the agent may abscond with the entire capital stock.

Note that the principal is willing to assign more risk to the agent when the marginal product of
capital is high. This hints at the results in Section 4 relating technological parameters with long-
run inequality, as the latter is partly determined by the amount of risk to which each entrepreneur
is exposed. Forces that increase the marginal value to society of an additional entrepreneur will
therefore also tend to increase inequality in the efficient allocation.
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As mentioned in the introduction, a large literature has extended the static model of Mirrlees
(1971) and analyzed constrained-efficient allocations in dynamic environments with privately ob-
served labor productivity shocks. An important result in this literature, established by Rogerson
(1985) in a principal-agent setting and extended to a dynamic Mirrleesian environment byi Golosov
et al. (2003), shows that intertemporal distortions are characterized by an inverse Euler equation.
The characterization of such distortions in much of the literature follows a similar argument: begin-
ning at an (as-yet-unknown) efficient allocation, it cannot be possible to perturb the allocation in
such a way that the payoff to the principal is increased and incentive-compatibility is preserved. A
similar perturbational argument is applicable here. First, note that the homotheticity of preferences
and the log-linearity of the law of motion of wealth together imply that (k, c) satisfies (5) if and
only if (ηk, ηc) satisfies (5) for any deterministic process η. This observation provides us with a
convenient class of incentive-compatible perturbations. Suppose that (k, c) is the efficient allocation
and define a class of functions (ηt(u))t≥0 according to

ηt(u) =

{
exp(u) if t ∈ [t0, t0 + dt]

exp(−ueρ(t1−t0)) if [t1, t1 + dt]

for some positive t0, t1 and dt. The allocation (ηk, ηc) continues to satisfy (5) and the implied
change in utility to the agent is (up to first-order in dt)

∆U = ρe−ρt0udt+ ρe−ρt1 [−ueρ(t1−t0)]dt = ρ[e−ρt0 − e−ρt1eρ(t1−t0)]udt = 0. (9)

Therefore, the choice of ηt preserves promise-keeping and (5). It follows that if the no-absconding
constraint is slack, the choice u = 0 must locally maximize profits. The change in the present
discounted value of profits as one varies u in a neighborhood of the origin is approximately

∆Π ≈ (Π− r)
[
e−rt0kt0 exp(u) + e−rt1E[kt1 ] exp(−ueρ(t1−t0))

]
dt. (10)

Taking the derivative with respect to u and evaluating at zero gives 0 = e−rt0kt0−e−rt1eρ(t1−t0)E[kt1 ]

and hence kt0 = e−r(t1−t0)eρ(t1−t0)E[kt1 ]. Finally, since k/c is independent of history, we have
k0/c0 = kt/ct or

1 = e−(r−ρ)(t2−t1)E
[
u′(c0)

u′(c1)

]
(11)

which is exactly the inverse Euler equation. Note that the assumption that the no-absconding
constraint does not hold with equality is necessary for the above argument because otherwise the
perturbation (c(u), k(u)) will not be incentive-compatible for u > 0. Indeed, the inverse Euler
equation may fail to hold in this case.8 However, note that even when the no-absconding constraint
holds with equality, it remains true that the perturbed allocation is incentive-compatible for u ≥ 0

and so we still have the inequality µc ≤ r − ρ.

8This is easiest to see by solving the Hamilton-Jacobi-Bellman equation in the case where φσ = 0.
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Section 4 shows how a class of stationary efficient allocations may be decentralized in a general
equilibrium model using a particular set of taxes and transfers. Such a characterization is necessarily
specific to the choice of Pareto weights attached to different generations, the set of instruments
available to the government, and the assumed market structure. To isolate the role of agency frictions
independently of general equilibrium effects, it is instructive to first analyze efficient distortions by
comparing the solution to the above principal-agent problems with the allocations that arise when
the agent may invest in either capital or the risk-free bond available to the principal. To motivate
the following analysis, first note that if the return from continually investing in an asset over the
interval [t, t+ ∆] is given by R = Rt,t+∆, then intertemporal optimization implies

u′(ct) = exp(−ρ∆)E[Ru′(ct+∆)|Ft]. (12)

The wedges defined in Definition 2.4 measure the extent to which (12) fails for an arbitrary return.

Definition 2.4. Given the consumption process (ct)t≥0 in the principal-agent problem, for each
asset A with return process (RAt )t≥0 the associated wedge νA is defined implicitly by

u′(c0) = exp(−ρt)E
[
exp(−νRt)RAt u′(ct)

]
.

Denote by νK and νB the wedges associated with risky capital and the risk-free bond, respec-
tively, and note that the associated return processes RK and RB are given by

RKt = exp
([

Π− σ2/2
]
t+ σBt

)
RBt = exp (rt)

for all t ≥ 0. It is easy to verify that these wedges are the unique constants such that the solution
to the problem

max
(ct,kt)t≥0

ρ

∫ ∞
0

e−ρtE[ln ct]dt

dat =
[
(r − νB)(at − kt)− ct + (Π− νK)kt

]
dt+ σktdBt

coincides with the solution to the principal-agent problem. As such, they represent the extent to
which the presence of private information forces the technological returns on each asset to differ
from the returns accruing to the agent. The closed-form expression for consumption allows for a
sharp characterization of the intertemporal wedges.

Lemma 2.3. The intertemporal wedges for risky capital and the risk-free bond are given by

νK = Π− r + ρx(Π)2 −√ρσx(Π) νB = ρx(Π)2.

Further, νB ≥ νK and νB ≥ 0, while the risky wedge νK may assume either sign.

Proof. See Appendix B.3.
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Figure 1: Intertemporal wedges

Figure 1 depicts the intertemporal wedges for both risky capital and the risk-free bond as a
function of the marginal product of capital, for the parameters (ρ, r, φ, σ, δ) = (0.1, 0.1, 1., 0.3, 0.05).
As noted in Lemma 2.3, the wedge on risky capital is everywhere below that on the risk-free bond
and may in fact be negative. However, I will show in Section 4 that these wedges do not translate
immediately into taxes in the decentralization of the efficient allocation. Indeed, although the wedge
on the return on the risky asset everywhere exceeds that of the safe return, it does not follow that
the tax on savings must exceed the tax on profits.

3 Stationary efficient allocations

The previous section characterized the efficient contract between a single risk-averse agent and risk-
neutral principal given an exogenous intertemporal rate and net productivity. This section uses the
efficient contract found above to completely characterize a particular stationary constrained efficient
allocation in an economy with a continuum of agents and endogenous productivity.

3.1 Formal setup

Time is again indefinite and continuous. At any moment there is a continuum of agents of mass L
who do not care for their descendants, discount at rate ρS , and die at rate ρD. Agents may engage
in two activities: the first is identified with entrepreneurial activity (running a business) and the
second with wage labor (working for someone else). These activities are not mutually exclusive and
so agents may perform both simultaneously. All agents are endowed with one unit of time and have
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preferences over sequences (ct)t≥0 represented by

U(c) := ρ

∫ ∞
0

e−ρtE[ln ct]dt

where ρ := ρS + ρD may be interpreted as the effective rate of discount, inclusive of the possibility
of death. Entrepreneurs have access to a risky production technology that produces consumption
using physical capital and labor. Specifically, if an entrepreneur assigns capital and labor to their
technology according to the processes (Kt, Lt)t≥0, then the law of motion of physical capital is

dYt =
(
AKα

t L
1−α
t − δKt

)
dt+ σKtdBt

where B := (Bt)t≥0 is a standard Brownian motion, A > 0 and α ∈ (0, 1) are exogenous constants
and δ the depreciation rate. An allocation is now indexed by an entire initial distribution Φ over
v. The formal definition is the following. Since agents experience no disutility from labor, I will for
brevity (and without loss) omit labor supply from the definition.

Definition 3.1. Given a distribution Φ over promised utility, an allocation A consists of consump-
tion, capital assignments, and labor assignments

A =
{

(cvt , k
v
t , l

v
t )t≥0 ,

(
cTt , k

T
t , l

T
t

)
t≥T≥0

∣∣∣ v ∈ supp(Φ)
}

for the initial generation, and all subsequent generations, respectively.

In contrast with the principal-agent setting of Section 2, incentive-compatibility for an allocation
here requires that promises made to the initial generation be satisfied, as well as that no agent have
an incentive to divert assets to private consumption.

Definition 3.2. Given a distribution Φ over promised utility v, an allocation A satisfies promise-
keeping if U(cv) = v for all v ∈ supp(Φ). An allocation is incentive-compatible if it satisfies
promise-keeping and the incentive-compatibility conditions of the previous section are satisfied.

Denote by Ct(A),Kt(A), Yt(A) and Lt(A) aggregate consumption, existing capital, output, and
labor assigned at date t given the allocation A. Formal definitions are given in Appendix C.1.

Definition 3.3. An allocation A is resource feasible given the capital stock K if K0 = K and

Ct(A) + K̇t(A) ≤ Yt(A)

Lt(A) ≤ L

for all t ≥ 0. The set of such allocations will be denoted ARF . An allocation is incentive feasible
given Φ and K if it is both resource feasible and incentive-compatible given Φ and K. The set of
all such allocations will be denoted AIF (Φ,K).

I will assume that the planner places a Pareto weight α(T ) = e−ρST on the utility of an agent
born at date T ≥ 0. This assumption ensures that the planner values an agent’s utility at any given
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date the same, regardless of the agent’s date of birth. It may be viewed as a kind of generalized
utilitarianism across generations and is equivalent to assuming the following social welfare function:

UP =

∫ ∞
0

(
e−ρtU t +

∫ t

0
e−ρ[t−T ]e−ρSTUTt dT

)
dt

where U t and UTt refers to aggregate flow utility experienced by the initial and T th generations at
date t ≥ 0.9 I may now specify the planning problem.

Definition 3.4. Given an initial distribution Φ and capital stock K, the problem of the planner is

V (Φ,K) = max
A∈AIF (Φ,K)

UP (A).

The problem in Definition 3.4 is intractable for an arbitrary initial distribution, so I will restrict
attention to solutions in which cross-sectional distributions are constant over time. I will characterize
these solutions using the method employed in Farhi and Werning (2007) and consider, in succession,
relaxed and generational planner’s problems. The relaxed planner’s problem has the same objective
and state variable as the above planner’s problem but allows for intertemporal trade at rate ρS .

Definition 3.5. Given an initial capital stock K and distribution Φ over promised utility, the
relaxed planner’s problem is

V R(Φ,K) = max
A∈AIC(Φ)

UP (A)∫ ∞
0

e−ρSt[Ct(A) + K̇t(A)]dt ≤
∫ ∞

0
e−ρStYt(A)dt∫ ∞

0
e−ρStLt(A)dt ≤

∫ ∞
0

e−ρStLdt

K0 = K.

Note that if an allocation solves the relaxed planner’s problem and the associated distribution of
promised utility is constant over time, then this allocation also solves the original planner’s problem
beginning at that distribution. Further, it is easy to see that the subjective rate of discount ρS is
the only intertemporal price for which such stationarity may arise, for all other prices would induce
an increasing or decreasing trend in utility across generations. Therefore, in order to characterize
stationary solutions to the original planner’s problem, it suffices to consider problems of the form
in Definition 3.5, and find the Φ and K such that stationarity arises.

Although the relaxed planner’s problem continues to take an entire distribution as an argument,
it is much simpler than the original planner’s problem as there are only two resource constraints,
rather than two for each instant in time. Lagrange’s theorem then implies that there exists a pair
of multipliers λ := (λR, λL) such that the allocation A that solves the relaxed planner’s problem
maximizes the Lagrangian

Vλ(Φ) = max
A∈AIC

∫ ∞
0

e−ρt
(
Ltdt+

∫ t

0
e−ρST e−ρ(t−T )LTt dT

)
dt

9Again formal definitions are given in Appendix C.1.
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where Lt(λ) and LTt (λ) are the contributions of the initial and T th generations to the Lagrangian

Lt = U t + λR[Y t − ρSKt − Ct + λL[L− Lt]]

LTt = UTt + λR
[
Y T
t − ρSKt − CTt + λL

[
L− LTt

]] (13)

and (Ct, Y t,Kt, Lt) and (CTt , Y
T
t ,K

T
t , L

T
t ) refer to consumption, output, and labor assignments

of initial and T th generations, respectively, at date t ≥ 0.10 Although the state variable remains
an entire distribution, the objective may be maximized pointwise as all interdependence across
agents is captured by the multipliers. One may then treat each generation in isolation and vary the
multipliers until the resource constraints hold in the implied stationary distribution. I will refer to
the problem of dealing with a single generation of newborns as the generational planner’s problem.

Definition 3.6. Given multipliers λ := (λR, λL) the generational planner’s problem is

V G
λ = max

A∈AICG

∫ ∞
0

e−ρt(U t + λR[Y t − ρSKt − Ct + λL[L− Lt]])dt.

The choice of assigning labor to entrepreneurs is purely static and depends solely upon λL.
Conditional on assigning a newborn to be an entrepreneur, the problem of the generational planner
is equivalent to the principal-agent problem analyzed in Section 2 with the marginal product of
capital now a function of λL.

Lemma 3.1. Given multipliers λ := (λR, λL), the generational planner’s problem may be written

V G
λ = ρ−1λRλL + max

W∈R
W + λRV (W,Π(λL))

where Π(λL) := maxl≥0Al
1−α − λLl− δ = λ

1−1/α
L αA[(1− α)A]1/α−1 − δ is the marginal product of

capital and V (W,Π(λL)) denotes the value function of a principal given in Definition 2.3 with the
marginal product of capital Π who discounts at rate ρ and faces investment tax τI = −ρD.

Each λR corresponds to a level of utility promised to newborns and each λL corresponds to a level
of the marginal product of capital. One may then solve for the stationary distributions associated
with each pair of multipliers by using the policy functions found in Section 2. Proposition 3.2 is the
first main result of this paper. It shows that characterizing stationary efficient allocations reduces
to finding an appropriate level of the marginal product of capital.

Proposition 3.2. The stationary level of Π is a solution to the equation

c(Π) =
1

α
(Π + (1− α)δ)k(Π)

where c and k are given in Proposition 2.2 with r = ρ and τI = −ρD, provided the no-absconding
constraint holds as a strict inequality for this Π.

10Detailed definitions are found in Appendix C.1.
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Proof. We wish to find the λL and λR such that the resource constraints are satisfied in the sta-
tionary distributions implied by the solution to the generational planner’s problem. First, note that
by Proposition 2.2 the process (ut)t≥0 has zero drift when the no-absconding constraint holds as a
strict inequality, and so its mean is simply u0. Aggregating over all agents, aggregate capital is

K = Lk(Π(λL))u0. (14)

Using the function Π(·) defined in Lemma 3.1, given the multiplier λL, the flow production from
the firm of a u-type net of depreciation is

AK(u)αL(u)1−α − δK(u) = A(k(Π(λL))u)α(k(Π(λL))l(λL)u)1−α − δk(Π(λL))u

= (Π(λL) + λLl(λL))k(Π(λL))u.

Aggregating over all such agents, the labor resource constraint implies 1 = l(λL)k(Π(λL))u0. Using
l(λL) = [A(1− α)]1/αλ

−1/α
L , the goods resource constraint becomes

c(Π(λL))u0 = (Π(λL) + λLl(λL))k(Π(λL))u0 = (Π(λL) + [A(1− α)]1/αλ
1−1/α
L )k(Π(λL))u0

Simplifying the above resource constraints and using l(λL) = [A(1− α)]1/αλ
−1/α
L gives the desired

equation for Π. The expressions for the multiplier and level of the capital stock then follow by
combining (14) with the static labor assignment function.

The simplicity of the characterization given in Proposition 3.2 is due partly to the homotheticity
of preferences and partly to the welfare criterion adopted in this paper that weights the flow utility
of an agent the same independently of her birth date. Several papers in the literature on dynamic
contracting with private information, such as Atkeson and Lucas (1992) or Phelan (1994), consider
component planner’s problems similar to the above generational planner’s problems, but either
adopt a welfare criterion with zero discounting or they place weight solely upon the first generation.
Such an approach necessitates solving a component planning problem for an arbitrary interest rate
that is then varied until resources are balanced. In contrast, with the welfare criterion of this paper,
it is immediate that the only price for which stationarity may arise is the subjective discount rate
of the agents, as all other prices induce a trend in utility across generations. Together with the
assumption of Logarithmic utility and the implication that consumption then follows a martingale,
this implies that changes in technology have no effect on the trend in consumption and they affect
the efficient allocation only insofar as they alter the marginal product of capital.

The linearity of the policy functions for both capital and consumption also allows for a simple
characterization of the stationary distribution of consumption. In general, the stationary distribu-
tion of a killed geometric Brownian motion will depend on the mean and volatility of the growth
rate and the hazard rate of death. Since death is exogenous and mean consumption growth is zero
by the inverse Euler equation, the stationary distribution is solely determined by the risk borne by
entrepreneurs. When combined with the defining equation for Π given in Proposition 3.2 this in turn
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allows us to determine how changes in technological parameters affect efficient long-run inequality.
By (14) and the expression for capital in Proposition 3.2 the initial level of the consumption of
entrepreneurs is given by

c =
c(Π)K

k(Π)
=
c(Π)

k(Π)

(
αA

Π + δ

) 1
1−α

.

Combining the above with standard results from the theory of diffusion processes gives the following
characterization of the stationary distribution.

Corollary 3.3. The stationary distribution of the consumption of entrepreneurs associated with the
constrained-efficient allocation has density given by

f(C) =

{
D1C

β+−1 if C ≤ c
D2C

β−−1 if C ≥ c

with the exponents β± given by

β± = −1

2
±

√
1

4
+

2ρD
ρx(Π)2

,

where Π = Π(λL) is the profit level given in Proposition 3.2, and D1 and D2 are determined by the
requirement that the density integrate to unity and be continuous.

Before turning to the decentralization it is useful to summarize the main points of the above
characterization. The efficient allocation is completely described by the following requirements: all
newborns attain W units of utility, agents have zero drift in consumption, and volatility is equal
to that implied by the marginal product of capital given in Proposition 3.2. The task of the next
section is to characterize the taxes that ensure these properties arise in a stationary competitive
equilibrium.

4 Decentralization

The preceding sections characterized efficient allocations for consumption and investment, with all
co-ordination implicitly conducted by a benevolent social planner executing the direct mechanism.
In order to allow this analysis to address the motivating questions stated in the introduction, I
now turn to the question of how such allocations may be implemented with trade in decentralized
markets. Such an analysis is necessarily contingent upon the contracts agent are assumed capable of
writing. For this reason I will consider two separate decentralizations that embody opposite extreme
assumptions on the extent to which the private sector may share risk. In the first, contracts are
restricted only by informational asymmetries, whereas in the second, agents are assumed able to
only trade a risk-free bond and are subject to taxes on savings and reported profits. In both cases
all taxes are linear and independent of history.
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4.1 Unrestricted contracts

In this section I will suppose there exists a competitive sector of financial intermediaries with whom
agents may contract. Intermediaries are risk-neutral, infinitely lived and have the ability to commit
to any contract. They compete with one another to provide insurance contracts to newborn agents,
in return for rights to future labor income and government transfers. As in previous sections, all
agents are endowed with the ability to operate a risky production technology subject to private
depreciation shocks, and at any time may abscond with a fraction of the capital stock delegated
to them. The intermediaries are subject to the same informational asymmetries as the planner of
previous sections and so must structure their payments to the agent to be incentive-compatible.

I will suppose that the government may levy taxes on the output of intermediaries, issue gov-
ernment debt, and transfer lump-sum payments to agents at birth. Although this is a restricted set
of instruments, Proposition 4.1 shows that they suffice to decentralize the efficient allocation.

Definition 4.1 (Intermediaries’ problem). Given sequences of wages w = (wt)t≥0, interest rates
r = (rt)t≥0, and taxes (τY t)t≥0 on output, the problem of a financial intermediary facing a newborn
at time t ≥ 0 with outside option u is defined to be

W (u, t;w, r, τY ) = max
(c,K,L)∈AIC(u)

∫ ∞
t

e−
∫ t′
t (rs+ρD)dsE[(1− τY t′)(Π(wt′)− rt′)Kt′ − ct′ ]dt′

where AIC(u) denotes the set of all triples for consumption, capital, and labor allocations that are
incentive-compatible and given the agent’s normalized utility u.

Notice that although intermediaries are infinitely lived and care only about the present discount
value of profits, the death rate ρD appears in their objective, as it determines the probability that
a given agent will be alive to receive the promised consumption and produce the planned output.
The relevant state variable for the intermediary is the utility associated with the agent’s outside
option as this is the level that must be delivered to induce the agent to sign the contract.

The notion of competitive equilibrium in this environment is standard: given the behavior of the
government and the sequences of wages and interest rates, consumers and intermedaries maximize
utility and profits, respectively, and markets clear.

Definition 4.2 (Competitive equilibrium). Given a choice of transfers to newborns (Tt)t≥0 and
taxes (τY t)t≥0 imposed on the output of intermediaries, a competitive equilibrium consists of a
collection of contracts for the initial and future generations such that all agents choose the best
contract available to them, intermediaries maximize profits, and markets clear.

The first decentralization result shows that when agents are unrestricted in the contracts they
may sign, the role of the government is relegated to distributing wealth equally across generations.
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Proposition 4.1. Under the assumptions of Proposition 3.2, the stationary constrained efficient
allocation coincides with the competitive equilibrium in which τY t = 0 for all t ≥ 0 and the govern-
ment owns the capital stock and gives all agents a flow transfer of ρSK every instant. The associated
interest rates and wages are constant at rt = ρS and w = (1− α)AKαL1−α.

Proof. When rt = ρS and τY t = 0 for all t ≥ 0 the problem of the intermediary given in Definition
4.1 is identical to that of the generational planner, and for this interest rate, the government budget
constraint is satisfied at every instant, since ρSK is the interest earned on the aggregate capital
stock (the negative of the government debt).

It remains to show that the intermediaries make zero profits when the marginal product of capital
coincides with the efficient level and must give agents u0 units of lifetime utility. Proposition 3.2
implies that this efficient Π solves c(Π) = (Π/α+ (1/α− 1)δ)k(Π) where c(Π) and k(Π) are the
policy function (per unit of normalized utility) associated with the intermediaries’ problem when
r = ρS . If u0 is normalized utility given to newborns, the fact that consumption has zero drift implies
K = k(Π)u0 and so the profit function of the principal is v(u) = vu where ρvu =

(
[Π− ρS ]k − c

)
u.

Rearranging and using the equation in Proposition 3.2 again gives

v =
1

ρ

(
Π− ρS −

1

α
(Π + (1− α)δ)

)
k(Π).

The discounted value of wages and transfers is ρ−1[wL+ρSK] = ρ−1[(1−α)AKαL1−α+ρSK] while
Π = αAKα−1L1−α − δ. It follows that the discounted value of profits of the intermediary is

1

ρ
([Π + δ](1− 1/α)− ρS)K +

1

ρ
[(1− α)AKαL1−α + ρSK] = 0

as claimed.

Theorem 4.1 is reminiscent of the seminal results of Prescott and Townsend (1984) and Atkeson
and Lucas (1992), who show that competitive equilibria in endowment economies are efficient if all
asymmetric information arises after the signing of contracts. The logic of these papers continues to
go through here except for the fact that the initial wealth of agents depends on government policy.

4.2 Restricted contracts

The decentralization given in Section 4.1 is a natural benchmark as it proceeds from the assumption
that the government is no more capable of overcoming informational asymmetries than the private
sector. However, the assumption of a perfectly competitive sector of financial intermediaries capable
of providing such contracts may be unreasonably strong, as such insurance opportunities may simply
be absent in the real world. Therefore, a benevolent government may wish to provide additional
social insurance using some combination of taxes and transfers. To complement the foregoing
analysis, this section implements the efficient allocation with a market structure that captures the
opposing extreme assumption of no risk-sharing in the private sector. Specifically, I consider an
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environment with idiosyncratic production risk in which agents may trade only a risk-free bond in
zero net supply, and show that the constrained-efficient allocation of the previous section may be
implemented using linear taxes on (reported) profits and risk-free savings.

4.3 Market structure and equilibrium characterization

All agents are endowed by the government with wealth at birth, may save in a risk-free bond, and
contract with a life insurance company to insure against length-of-life risks. Agents in turn rent
capital on behalf of their business at the risk-free rate, are unable to issue shares in the profits
of their business, and pay taxes on output net of depreciation and interest payments (profits). In
order to respect the informational asymmetry between the agents and the government, it must be
the case that the taxes depend only upon observable quantities. Therefore, the profits tax must be
viewed as a tax on reported profits. At any instant, the labor-hiring decision is purely static and so
may be solved independently of all savings and investment decisions and so the problems of agents
facing constant linear prices are given as follows.

Definition 4.3. Given taxes τs and τΠ on risk-free savings and profits, wage w, and the risk-free
rate r, the problem of the agent with a units of assets is

V (a) = max
(ct,kt)t≥0

ρ

∫ ∞
0

e−ρtE[ln ct]dt

dat = [(1− τs)(r + ρD)at − ct + w]dt+ (1− τΠ)ktdRt

where dRt = [Π(w)− r]dt+ σdBt.

Notice that since dRt may be negative, the above problem embodies the assumption that the
agent receives a tax refund if her firm sustains losses. To aid the reader in understanding the market
structure implicit in the above, a discrete-time formulation is contained in Appendix A.2.

Definition 4.3 makes no mention of incentive-compatibility and writes the law of motion of
wealth under the assumption of truthful reporting. Clearly not every choice of profits tax will be
incentive-compatible. I will show that one may choose taxes such that the resulting competitive
equilibrium coincides with the allocation in Section 3, from which incentive-compatibility will be
immediate. Finally, I will also assume that newborn agents inherit ηK, where K is the aggregate
capital stock and η a parameter chosen by the government, and that these transfers are funded by
the interest from government ownership of a fraction ν of the capital stock.

Definition 4.4 (Tax distorted stationary equilibrium). Given taxes τs and τΠ on risk-free sav-
ings and profits of entrepreneurs, respectively, a stationary competitive equilibrium consists of an
aggregate capital stock K, an inheritance level η, a fraction ν of the capital stock owned by the
government, a wage rate w, and a risk-free rate r such that agents maximize; markets for labor,
capital, and goods clear; and the government budget constraint is satisfied.
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As with the agency problem considered earlier, the homotheticity of preferences and homogeneity
of the law of motion of wealth ensure that individual problems admit homogeneous solutions for
any choice of taxes.

Lemma 4.2. The value function of the agents is given by

V (a) = ln ρ+ ln (a+ h) + ρ−1
(
µa − σ2

a/2
)

where µa and σa denote the drift and diffusion in the evolution of assets

µa := µa(w, r) = (1− τs)(r + ρD)− ρ+
(Π(w)− r)2

σ2

σa := σa(w, r) =
Π(w)− r

σ

(15)

and h := h(w, τs, r) = w/[(1− τs)(r + ρD)] is the human wealth of the agent. The policy functions
for consumption and capital are

c(a) = ρ(a+ h) k(a) =
[Π(w)− r]
σ2(1− τΠ)

(a+ h). (16)

Proof. See Appendix D.1.

Notice that the law of motion of wealth is entirely independent of the profits tax. While this
may seem counterintuitive, it simply follows from the linearity of the production technology and
the symmetric treatment of profits and losses, illustrating an effect first highlighted by Domar and
Musgrave (1944).

Prior to the complete decentralization of the allocation, it is instructive to relate the incentive-
compatibility constraints to the value function of the agent. When considering whether to divert
the depreciation shock to private consumption, the agent compares the marginal utility ρφσku′(c)
of diverting with the marginal utility σ(1 − τΠ)kV ′(a) of faithfully reporting and paying the tax
στΠk. Since ρu′(c) = V ′(a) by the envelope theorem, the incentive-compatibility of the allocation
in Definition 4.3 is equivalent to τΠ ≤ 1 − φ. Since we know that the incentive-constraint does
indeed bind after every history (the elasticity of consumption with respect to output is never zero),
this suggests setting the profits tax to τΠ = 1− φ.

To formalize this claim, recall that the constrained-efficient allocation is characterized by the
following conditions: agents have zero drift in consumption, the volatility of consumption growth is
given by √ρx(Π), and the marginal product of capital in the competitive equilibrium coincides with
that given in Proposition 3.2. The following is the second main result of this paper after Proposition
3.2. It characterizes the taxes that decentralize the efficient allocation found in Section 3.

Proposition 4.3. The stationary constrained-efficient allocation coincides with the stationary
competitive equilibrium allocation in which the taxes on risk-free savings and profits are given by

1− τs =
ρ[1− x(Π)2]

Π−√ρσx(Π) + ρD
1− τΠ = φ,
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respectively, and in which each agent is endowed with a fraction

η =
Π−√ρφσx(Π)

ρ(1− x(Π)2)

of the aggregate capital stock at birth.

Proof. The three market-clearing conditions for labor, capital, and goods are

L = φl(w)K

K = k(w, r)

(
ηK +

wL

(1− τs)(r + ρD)

)
AKαL1−α − δK = ρ

(
ηK +

wL

(1− τs)(r + ρD)

)
.

(17)

We wish to find the η, τs and τΠ such that the solution to the above triple of equations implies that
the capital stock and the drift and volatility in consumption coincide with their efficient counterparts.
First, note that for this to occur, the ratio of capital to consumption in the equilibrium must coincide
with the corresponding ratio in the constrained-efficient allocation, and so

k(Π)

c(Π)
=
k(w, r)

c(w, r)
. (18)

Equating the volatility of consumption in the competitive equilibrium and efficient allocation gives

ρφσk(Π)

c(Π)
= (1− τΠ)σk(w, r). (19)

Since c(w, r) = ρ, combining (18) and (19) implies 1 − τΠ = φ. Next note that in order for the
volatility of the agent’s wealth to coincide with the level in the efficient allocation, we require

(1− τΠ)σk =
Π(w)− r

σ
=
√
ρx(Π)

and so the risk-free rate must satisfy r = αAKα−1L1−α−δ−√ρσx(Π) = Π−√ρσx(Π), as claimed.
The requirement that the drift in consumption vanishes becomes 0 = (1− τs)(r+ ρD)− ρ+ ρx(Π)2,
which rearranges to the desired expression for τs upon substitution of the above interest rate.
Combining the second and third market-clearing conditions and substituting the above expressions
gives AKα−1L1−α − δ = ρ(η + (wL/K)/[(1− τs)(r + ρD)]) or

1

α
(Π + (1− α)δ) = ρη +

(1/α− 1)[Π + δ]

1− x(Π)2

which rearranges to the claimed expression for η. Finally, the government budget constraint is
automatically satisfied by Walras’ law.

It is instructive to verify that the government budget constraint is automatically satisfied by
using the explicit expressions given above. The revenue raised by the profits tax is

τΠ[Π− r]K = (1− φ)
√
ρσx(Π)K
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while the revenue raised from the savings tax is

τs(r + ρD)ηK =
(
Π−√ρσx(Π) + ρD − ρ[1− x(Π)2]

)
ηK.

The interest revenue from the asset holdings of the government is r(1− η)K = (Π−√ρσx(Π))(1−
η)K, while the expenditures of the government consist only of the transfers to newborn agents. The
flow of revenue minus expenditures of the government is therefore[

Π−√ρσx(Π)− ρ[1− x(Π)2]η + (1− φ)
√
ρσx(Π)

]
K = [Π−√ρφσx(Π)− (Π−√ρφσx(Π))]K

which vanishes, as expected. For another plausibility check, consider the behavior of taxes as the
agency problem vanishes. Inspection of the equation for Π in Proposition 3.2 shows that Π ≈ ρS

and x(Π) ≈ 0. The above taxes are then approximately τΠ = 1 − φ ≈ 1 and τs ≈ 0, and the
risk-free rate is approximately r ≈ ρS . The associated fraction of the capital stock owned by the
government and inherited by agents is then η = ρS/ρ, and ν = ρD/ρ, respectively. Therefore,
as agency frictions vanish, the interest rate approaches its complete-markets value, and taxes on
savings and labor income vanish, as expected. The tax on profits approaches 100 percent, but net
revenue collected is negligible because net business profits Π− r also approach zero.

Now recall that Lemma 2.3 in the principal-agent (partial equilibrium) setting of Section 2
established that the wedge on the risk-free asset always exceeds that on the risky asset. It is
important to note that these statements regarding relative magnitudes of wedges do not immediately
imply analogous statements for the relative magnitudes of taxes, since the interest rate in the
incomplete markets setting does not coincide with the interest rate given in the relaxed planner’s
problem. Indeed, inspection of the expressions found in Proposition 4.3 shows that neither the
savings tax nor the profits tax everywhere exceeds the other. As noted in Section 3, the only
intertemporal rate for the relaxed planner consistent with stationarity is the subjective rate of
discount, as all other rates induce a trend in consumption across different cohorts. However, this
introduction of an intertemporal price is only an expositional device to characterize the efficient
allocation and does not represent the return on an asset available to any agent. To illustrate this
point, we can use the expression for the interest rate found in Proposition 4.3 to show the following.

Corollary 4.4. The interest rate in the stationary competitive equilibrium that decentralizes the
efficient allocation is always lower than the subjective rate of discount.

Proof. From the expression found in Proposition 4.3 we have r ≤ ρS if and only if Π−√ρσx(Π) ≤ ρS .
From the definition of x this will be assured as long as [Π− ρS ]/(

√
ρφσ) ≤ x(Π) or

R(Π) ≤ 1

2R(Π)

[
1−

√
1− 4R(Π)2

]
which is always true so long as R(Π) ∈ (0, 1).

Lemma 2.3 shows that the principal always wishes to distort the agent’s return on savings so
that it is below the risk-free rate. However, Corollary 4.4 shows that the latter is in turn below the
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rate available to the generational planner, so the sign of the savings tax is in general ambiguous.
The following shows that the tax on savings may indeed assume either sign, reinforcing the point
that in this general equilibrium environment, wedges are not identical to taxes.

Lemma 4.5. The tax on savings is negative for sufficiently small (but positive) φ.

Proof. For this proof write Π(φ) for the efficient marginal product of capital as a function of φ.
From Proposition 4.3 the savings tax is negative if and only if

√
ρσx(Π) > Π− ρS + ρx(Π)2. (20)

The defining equation for Π implies [Π/α+ (1/α− 1)δ]x(Π) =
√
ρφσ and so simplification gives(

ρφ[Π/α+ (1/α− 1)δ]− ρ2φ2
)
σ2 ≥ [Π− ρS ][Π/α+ (1/α− 1)δ]2.

We know Π(φ) solves
[
1−

√
1− 4R(Π)2

]
[Π/α+ δ(1/α− 1)] = 2R(Π)

√
ρφσ, which reduces to

0 = ρφ2σ2[Π/α+ δ(1/α− 1)]− ρφ2σ2[Π− ρS ]− [Π− ρS ][Π/α+ δ(1/α− 1)]2.

Using this and dividing through by φ, the inequality (20) becomes

φ[(1− φ)[Π(φ)/α+ (1/α− 1)δ] + φ[Π(φ)− ρS − ρ]] > 0

which is satisfied for all sufficiently small (positive) φ by the continuity of Π(φ) in φ.

In light of the simplicity of the expressions for taxes in Proposition 4.3, it is natural to wonder
about the extent to which the result is sensitive to changes in the assumptions and modeling
devices adopted in this paper. Regardless of the tax structure, the envelope theorem implies that
the marginal utility of consumption coincides with the marginal utility of wealth, so 1 − φ is the
only value of the profits tax for which the incentive-constraint binds. This argument is simple
and appears quite general: Proposition D.3 in the appendix shows that Proposition 4.3 extends to
preferences with constant relative risk aversion. However, this immediately leads one to question
why the results presented here differ from those of Albanesi (2007) and Shourideh (2012), who
conduct similar optimal taxation analyses in environments with dynamic agency. The three differ
models differ in a number of ways, and so it is difficult to conduct a point-by-point comparison of
assumptions and conclusions. Nonetheless, one can isolate some salient differences and their role in
affecting the findings.

In Albanesi (2007), the agency problem arises because entrepreneurs incur an additive cost of
exerting effort, independently of the amount of capital or consumption delegated to them. This
differs from the formulation in this paper and implies the above envelope argument is inapplicable,
as the marginal benefit from deviating from the recommended action is no longer proportional to
the marginal utility of consumption. The contrast with Shourideh (2012) is more subtle. Both
Shourideh (2012) and the current paper model the agency problem as arising from the ability of
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the agent to divert capital to private consumption, but differ in the timing of the uncertainty
(continuous versus discrete-time), the demographic structure of the agents (perpetual youth versus
two-period overlapping generations), and the distribution of uncertainty (Gaussian versus gamma-
distributed shocks). Each of these differences appears to play a role. To see why the demographic
structure is important, recall the perturbation argument from Section 2 that leads to the derivation
of the inverse Euler equation. The hypothesized perturbation scaled up current consumption and
delegated capital and scaled down future consumption and delegated capital in a way that left
the agent indifferent. The calculated change in the principal’s payoff then assumed that delegated
capital was just as productive in each period. This is true in the current paper but not in the
two-period overlapping generations model of Shourideh (2012), where the old agents are unable to
produce.11 The choice of modeling the uncertainty via a diffusion process is also important, as it
allows us to restrict attention to infinitesimal diversions of the capital stock to private consumption.
The above envelope argument would not hold if agents must divert capital in discrete amounts,
as incentive-compatibility would then depend upon non-local properties of the utility and value
functions.

One major simplifying assumption adopted in this paper thus far is the absence of any (ex-ante)
heterogeneity in productivity. This decision is made primarily for tractability, as the incorpora-
tion of unobservable ex-ante and ex-post heterogeneity leads to an extremely difficult problem.
However, it is worth noting that the analysis of this paper extends easily to environments with a
particular kind of ex-ante heterogeneity. Suppose for instance that agents are no longer capable of
overseeing production and working simultaneously, and that there are some agents, workers, who
are only capable of the latter. In this case the planner need not worry about “double deviations"
(in which agents misreport type and subsequent deviation), since workers cannot pretend to be
entrepreneurs and entrepreneurs who pretend to be workers are thereafter privy to no private infor-
mation. Incentive-compatibility then simply requires consumption, and the capital delegated follows
the prescriptions of the preceding analysis and that entrepreneurs be given enough utility to reveal
their type. Virtually all of the preceding analysis carries over and so we obtain the following. The
proof is omitted because it follows from logic identical to that given in Proposition 2.2, Proposition
3.2, and Proposition 4.3.

Proposition 4.6. Suppose that a mass LE of agents are entrepreneurs and that a mass LW :=

L−LE are workers. The marginal product of capital in the stationary constrained efficient allocation
is the solution to the equation

c(Π) + LW /LE =
1

α
[Π + (1− α)δ]k(Π) (21)

where c(Π) and k(Π) are given in Proposition 2.2, provided the no-absconding constraint is a strict
inequality for this Π. The efficient allocation can be decentralized with occupation-specific linear

11Appendix A.1 elaborates upon this point by recasting the current model in discrete-time and allowing the life-cycle
structure of productivity to be arbitrary.
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taxes on savings, and taxes on the reported profits of entrepreneurs. The expressions for taxes on
entrepreneurs are identical to those given in Proposition 4.3 (although Π differs), while the taxes on
worker’s savings are given by

1− τsW =
ρ

Π−√ρx(Π) + ρD
. (22)

Similar results carry over to the case of arbitrary observable ex-ante heterogeneity. Reasoning
similar to that in Proposition 4.6 then implies that taxes on profits need not be progressive, as all
agents are subject to the flat rate τΠ = 1−φ. More productive agents will devote a greater fraction
of their wealth to the risky asset and will therefore pay more in profit taxes. However, the envelope
argument preceding Proposition 4.3 remains applicable and so the profits tax is independent of
type. Consequently, in order for the drift in consumption to be zero (and hence the inverse Euler
equation to be satisfied), the savings tax of the more productive agent must be higher. Although all
agents face type-dependent linear taxes, in some sense the model of this paper implies progressivity
of savings taxes, as richer agents will (on average) face higher taxes.

Figure 2 plots savings taxes for workers and entrepreneurs as a function of the agency friction for
the example parameters (δ, LE/LW , α, σ

2, ρ, ρD) = (0.058, 0.88, 0.33, 0.3, 0.145, 0.022). The expo-
nent α, discount factor ρ, depreciation δ and fraction of entrepreneurs LE/(LE+LW ) are taken from
Cagetti and De Nardi (2006), while ρD is chosen such that the average life-span is 45 years (inter-
preted as the working life-span). The volatility term σ2 is the average of the two values considered
by Angeletos (2007). As implied by the expressions in Proposition 4.6, the tax on entrepreneurs’
savings is everywhere above that of the tax on workers’ savings and all agents face a subsidy on
their savings when agency frictions are small.

Finally, note that the expression for tail inequality in Corollary 3.3 continues to hold in the
presence of both workers and entrepreneurs, with the sole effect of the presence of workers being
to alter the efficient level of Π. Figure 3 depicts the Pareto exponent for the same parameters
used in Figure 2. Further, using the expression for the efficient marginal product of capital given
in Proposition 4.6 may derive some simple comparative statics illustrating the effect of changes in
technology and ex-ante inequality (in type) on the efficient degree of consumption inequality and
optimal taxes.

Corollary 4.7. The marginal product of capital Π and the Pareto exponent β− of the upper tail in
the stationary distribution are both increasing in the degree of the agency problem φσ, the number
of workers per entrepreneur LW /LE, and the factor share α.

The analysis in this paper has been of the theoretical determinants of capital taxation in the
presence of dynamic agency. The model in its current form is too stylized to immediately inform
policy. Therefore, I have emphasized the novel qualitative features of the analysis, such as the
invariance of profits taxes to technology and demographics and the fact that savings taxes are
increasing in productivity. However, the back-of-the-envelope calculations in this section do suggest
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Figure 2: Taxes as function of agency friction

agency frictions have a non-negligible impact on both the efficient degree of wealth inequality and
the optimal choice of taxes. Indeed, the savings taxes on entrepreneurs in Figure 2 are well above
their empirical counterparts for most agency frictions, and the range of Pareto exponents depicted
in Figure 3 encompasses the value β− ≈ −1.54 of the US wealth distribution estimated by Gabaix
et al. (2016) from the 2010 wave of the Survey of Consumer Finances.

5 Conclusion

The United States tax code currently levies different taxes on different forms of capital income.
This paper has provided a model in which the desirability of this differential asset taxation emerges
naturally from the presence of agency frictions. I consider a dynamic economy with physical capital,
entrepreneurs, workers, and endogenous firm formation, in which the returns on capital are privately
observed and may be diverted to consumption. In this setting, I assume a generalized utilitarian
objective across generations, and allow the government to choose any allocation satisfying the
incentive constraints arising from this asymmetry of information. In spite of the great deal of
freedom this grants the government, I obtain a simple and sharp characterization of the efficient
allocations and the taxes necessary for their implementation.

Specifically, when agents are assumed able to trade a risk-free bond is zero net supply, the
efficient allocations may be implemented with linear, time-independent taxes on (reported) profits
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and savings. The profits tax is the highest value consistent with incentive compatibility, and depends
solely on the severity of the agency friction. In particular, it is independent of ex-ante ability and is
common to all agents. In contrast, the tax on savings is always higher for more productive agents,
but in general may assume either sign. To isolate the role played by agency frictions I have assumed
that ability is permanent and observable. An interesting direction for future work would be to
explore the extent to which the findings of this paper extend to settings in which ability evolves
over time and in which there is a non-trivial margin for entry.
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A Discrete-time formulation

The purpose of this section is to outline a discrete-time environment that approximates the continuous-time
models given in the main text. It is intended to aid the reader and also allow clearer comparison with existing
discrete-time environments with private information.

Time is indefinite and discrete, assuming values in the set {∆, 2∆, 3∆, . . . }. The economy consists of a
single risk-averse agent and a risk-neutral principal, both of whom live forever. The preferences of the agent
over stochastic sequences of consumption c := (∆cn)∞n=0 are represented by the function

UA ((∆cn)∞n=0; ∆) = UA(c; ∆) :=
(
1− e−∆ρ

) ∞∑
n=0

e−n∆ρE[ln cn]. (23)

The appearance of ∆cn rather than cn in (23) is simply a normalization.12 The principal possesses a constant-
returns-to-scale technology that only the agent has the ability to operate. At each time n∆ the principal
chooses how much physical capital will be installed in the technology for the interval [n∆, (n+1)∆]. If Kn is
the amount of capital installed at time n∆ then the amount

[
∆Π +

√
∆xn

]
Kn is produced at time (n+1)∆,

where (xn)∞n=0 is an i.i.d. sequence of mean zero random variables assuming ±x with probability 1/2. The
capital stock is subject to depreciation, with the fraction of the stock Kn remaining at time (n+ 1)∆ equal
to e−∆δ. At time (n+ 1)∆ the principal also chooses additional investment In+1 and so the total amount of
installed capital at time (n+ 1)∆ is

Kn+1 = In+1 + e−∆δKn.

The present discounted value of output minus investment is then
∞∑
n=0

e−(n+1)∆rE[
[
∆Π +

√
∆xn

]
Kn − In+1] =

∞∑
n=0

e−(n+1)∆rE
[[

∆Π +
√

∆xn

]
Kn + e−∆δKn −Kn+1

]
=

∞∑
n=1

e−(n+1)∆rE
[(

∆Π +
√

∆xn + e−∆δ − e∆r
)
Kn

]
where I used K0 = 0. Notice that the nth term in the above summand satisfies(

∆(Π + xn) + e−∆δ − e∆r
)
Kn ≈ ∆(Π− δ − r)Kn +

√
∆xnKn. (24)

12The cost of consuming ∆c every period when the discount rate is e−∆r is
∑∞
n=0 e

−n∆r∆c = ∆c/[1 − e−∆r],
which tends to c/r as ∆ → 0. The utility from this consumption plan is

(
1− e−∆ρ

)∑∞
n=0 e

−n∆ρ ln c = ln c, so
the normalization (23) simply ensures that utility is bounded as ∆ → 0 whenever the present discounted value of
consumption is bounded.
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The principal wishes to maximize the expected present discounted value of output minus consumption
given to the agent. Their preferences over stochastic sequences of capital delegation and consumption
(Kn, cn)∞n=0 are therefore represented by the function

UP (K, c; ∆) :=

∞∑
n=1

e−(n+1)∆rE
[(

∆(Π + xn) + e−∆δ − e∆r
)
Kn −∆Cn

]
.

Using (24) the objective of the planner is approximately

UP (K, c; ∆) ≈
∞∑
n=1

∆e−(n+1)∆rE[(Π− r)Kn − Cn] ≈
∫ ∞

0

e−rt[(Π− r)Kt − Ct]dt

for the principal’s objective, and

UA(c; ∆) =
(
1− e−∆ρ

) ∞∑
n=0

e−n∆ρE[ln cn] ≈ ρ
∫ ∞

0

e−ρtE[ln c]dt

for the agent’s objective. It follows that the objectives of both the planner and the agent in the main text
may be interpreted as limits of their corresponding objectives in this environment.

I will assume that delegated capital is publicly observable but that both output and consumption are
privately observable by the agent. Consumption and delegated capital must therefore be functions only of
the reported output shocks (xn)∞n=0. For each n ≥ 0, write xn := (x0, . . . , xn) for the history of realizations
of the output shocks up to and including date n and denote by Xn the set of all such histories. I will restrict
attention to allocations in which the principal recommends that the agent not divert any delegated capital
to consumption. This is obviously without loss when characterizing efficient allocations.

Definition A.1 (Allocations and strategies). An allocation consists of a stochastic sequence of consumption
and capital delegation (K, c) = (Kn, cn)∞n=0 where for each n ≥ 0 we have Kn+1, cn+1 : Xn → R+. A strategy
of the agent is a sequence of reports X = (Xn)∞n=1 where for each n ≥ 0 we have Xn+1 : Xn → R+.

The utility of an agent confronted with an allocation (K, c) when adhering to a strategy X is given by

UA(c,K;X) :=
(
1− e−∆ρ

) ∞∑
n=0

e−n∆ρE
[
ln
(
cn +

√
∆(Xn − xn)Kn

)]
.

Further, associated with each allocation (K, c) define continuation utility W := (Wn)∞n=0 by

Wn(c) :=
(
1− e−∆ρ

) ∞∑
N=n

e−n∆ρE[ln cN ].

As in the model of the main text, I will assume that the agent may abscond with a fixed fraction of assets,
which implies that Kn ≤ ω expWn(c) for all n almost surely for some exogenous ω.

Definition A.2. An allocation (K, c) is incentive-compatible if UA(c,K; 0) ≥ UA(c,K;X) for all agent
strategies X and if Kn ≤ ω expWn(c) almost surely for all n ≥ 1. The set of all incentive-compatible
allocations will be denoted AIC .

Since the output shocks assume only two values it is without loss to suppose that the reporting strategies
assume only two values (either report the truth or report the other possible shock), since all other deviations
will be detected immediately. As is well-known it suffices to impose temporary incentive-compatibility
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constraints that dissuade one-shot deviations. The principal then announces two possible future values W±

for promised utility. For any allocation C = (Cn)∞n=0 the temporary incentive-compatibility constraints are
then (

1− e−∆ρ
)

lnC + e−∆ρW+ ≥
(
1− e−∆ρ

)
ln
(
C + 2

√
∆xK

)
+ e−∆ρW−(

1− e−∆ρ
)

lnC + e−∆ρW− ≥
(
1− e−∆ρ

)
ln
(
C + 2

√
∆xK

)
+ e−∆ρW+.

(25)

The first constraint in (25) is truth-telling for the high-shock, while the second is truth-telling for the low
shock. Rearrangement of (25) then gives

e−∆ρ
[
W+ −W−

]
≥
(
1− e−∆ρ

)[
ln
(
C + 2

√
∆xK

)
− lnC

]
(
1− e−∆ρ

)[
lnC − ln

(
C − 2

√
∆xK

)]
≥ e−∆ρ

[
W+ −W−

]
It is easy to see that the first constraint must bind and that by the concavity of the natural logariprop the
second is therefore redundant. Promise-keeping and incentive-compatibility then reduce to the following pair
of equations

W =
(
1− e−∆ρ

)
lnC + e−∆ρ

[
W− +W+

]
/2

W+ = W− +
(
e∆ρ − 1

)[
ln
(
C + 2

√
∆xK

)
− lnC

]
.

(26)

Also note that simplification of (26) gives

W± ≈ e∆ρW −
(
e∆ρ − 1

)
lnC ± 1

2

(
e∆ρ − 1

)[
ln
(
C + 2

√
∆xK

)
− lnC

]
. (27)

Using the fact that ln
(
C + 2

√
∆xK

)
− lnC ∼ 2

√
∆xK/C as ∆→ 0, the expressions in (27) may be written

W± −W
∆

≈
(
e∆ρ − 1

∆

)(
W − lnC ±

√
∆xK/C

)
.

which in turn may be written as

dWt ≈ ρ(W − lnC)∆ + ρ
√

∆x[K/C]Xt

where Xt has mean zero, is independent over time and assumes the values ±1, which approximates the law
of motion of promised utility in the continuous-time model.

A.1 Relation with other agency models and the inverse Euler equation

In order to relate the model of the main text with others in the literature, this section will outline a slightly
more general model in which productivity and discount factors may be time-dependent. To this end suppose
that the preferences of the consumer and the principal over sequences (∆cn)∞n=0 are now given by

UA((∆cn)∞n=0; ∆) = (1− β)

∞∑
n=0

βnE[ln cn]

UP (K, c; ∆) = ∆

∞∑
n=1

e−(n+1)∆rE[(Πn − δ − r)Kn − Cn]

(28)

for some sequences (βn)∞n=0 and (Πn)∞n=0, where I have abbreviated β = 1− (
∑∞
n=0 βn)

−1. For convenience
I will normalize β0 = 1. For arbitrary n ≥ 0 define the continuation utility from period n onwards by

Wn := (1− β)

∞∑
N=n

(βN/βn)E[ln cN ]. (29)
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Note that under the specification (29) we have a recursive relation involving continuation utilities

Wn = (1− β)

∞∑
N=n

(βN/βn)E[ln cN ] = (1− β)E[ln cn] + (1− β)

∞∑
N=n+1

(βN/βn)E[ln cN ]

= (1− β)E[ln cn] + (βn+1/βn)(1− β)

∞∑
N=n+1

(βN/βn+1)E[ln cN ]

= (1− β)E[ln cn] + (βn+1/βn)E[Wn+1].

Following standard arguments in the dynamic contracting literature, it suffices to consider temporary
incentive-constraints. For any allocation C = (Cn)∞n=0 the temporary incentive-constraints are then

(1− β) lnCn + (βn+1/βn)W+
n+1(C) ≥ (1− β) ln(Cn + 2xKn) + (βn+1/βn)W−n+1(C)

(1− β) lnCn + (βn+1/βn)W−n+1(C) ≥ (1− β) ln(Cn − 2xKn) + (βn+1/βn)W+
n+1(C).

(30)

It is easy to see that only the first constraint in (30) will bind and so the problem of the principal is then
the following.

Definition A.3. The principal’s problem is given by

V (W ) = ∆ max
C,K

∞∑
n=0

e−∆nrE[(Πn − δ − r)Kn − Cn]

W = (1− β)

∞∑
n=0

βnE[lnCn]

(βn+1/βn)W+
n+1(C) ≥ (1− β) ln(1 + 2xKn/Cn) + (βn+1/βn)W−n+1(C)

where Wn+1(C) denotes the continuation utility associated with the sequence C = (Cn)∞n=0.

The promise-keeping and incentive-compatibility constraints are given by

(1− β) lnCn + (βn+1/βn)W+
n+1 = (1− β) ln(Cn + 2xKn) + (βn+1/βn)W−n+1

Wn = (1− β) lnC +
1

2
(βn+1/βn)

[
W−n+1 +W+

n+1

]
Simplification gives

W+
n+1 = W−n+1 + (βn+1/βn)−1(1− β) ln(1 + 2xKn/Cn)

Wn = (1− β) lnCn +
1

2
(βn+1/βn)

[
W−n+1 +W+

n+1

]
= (1− β) lnCn + (βn+1/βn)W−n+1 +

1

2
(1− β) ln(1 + 2xKn/Cn)

= (1− β) lnCn + (βn+1/βn)W+
n+1 −

1

2
(1− β) ln(1 + 2xKn/Cn).

Solving for W±n+1 then gives

W±n+1 = (βn/βn+1)Wn + (βn/βn+1)(1− β)

(
− lnCn ±

1

2
ln(1 + 2xKn/Cn)

)
. (31)

Note that if Cn = cn expWn and Kn = kn expWn then (31) implies

W±n+1 = (βn/βn+1)

[
βWn + (1− β)

(
− ln cn ±

1

2
ln(1 + 2xkn/cn)

)]
. (32)
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Scaling cn by expu changes Wn+1 by −u(βn/βn+1)(1− β), which implies

∆Wn+2 = (βn+1/βn+2)β∆Wn+1 = −(βn/βn+2)β(1− β)u

∆Wn+3 = (βn+2/βn+3)β∆Wn+2 = −(βn/βn+3)β
2
(1− β)u

...

∆Wn+k = −(βn/βn+k)β
k−1

(1− β)u.

This discussion is summarized in the following.

Lemma A.1 (Homogeneity of the principal’s problem). The value function of the principal is of the form
V (W ) = −Ω expW for some Ω > 0 and the policy functions for consumption and capital are of the form

Kn = kn expWn Cn = cn expWn

for some sequence (k, c) := (kn, cn)∞n=0, while the policy functions for promised utility are

W±n+1 =
βWn

βn+1/βn
−
(

1− β
βn+1/βn

)
ln cn ±

1

2

(
1− β

βn+1/βn

)
ln(1 + 2∆xkn/cn). (33)

Now consider two successive periods, n and n + 1, and define the following perturbation: scale cn and
kn by expu and cn+1 and kn+1 by exp(−uββn/βn+1), for some arbitrary u. To motivate this perturba-
tion, note that by (33) in Lemma A.1, if we scale (cn, kn) by expu and (cn+1, kn+1) by expu then the
change in Wn+1 will be ∆Wn+1 = −(βn/βn+1)

(
1− β

)
u and so the change in Wn+2 will be ∆Wn+2 =

(βn+1/βn+2)
[
β∆Wn+1 − (1− β)u

]
. It follows that ∆Wn+2 = 0 if and only if u = β∆Wn+1/(1 − β) =

−
(
ββn/βn+1

)
u. This implies that the above perturbation only affects quantities in periods n and n+1, with

all other periods unaffected. The associated change in the utility from consumption at date t+ 1 is then

−
(

1− β
βn+1/βn

)
u+ u = −

(
1− β

βn+1/βn

)
u−

(
β

βn+1/βn

)
u = −(βn/βn+1)u.

The payoff to the principal from periods n and n+ 1 from this perturbation is

F (u) := ([Πn − δ − r]kn − cn) exp(W + u) + e−∆r
(
[Πn+1 − δ − r]kn+1 − cn+1

)
E[exp(W ′ − uβn/βn+1)].

The necessary condition F ′(0) = 0 then becomes

(βn+1/βn)e∆rcn expW =

(
[Πn+1 − δ − r]kn+1 − cn+1

[Πn − δ − r]kn − cn

)
cnE[expW ′]. (34)

If u(x) := lnx then 1/u′(x) = x and so the inverse Euler equation in this case is

(βn+1/βn)e∆rcn expW = cn+1E [expW ′] . (35)

Expression (36) clarifies the difference between the results of this paper and that in Shourideh (2012). The
timing in this agency problem may be summarized as follows:

1. The agent begins period n with utility (or outside option) Wn.

2. The principal assigns Kn units of capital and Cn units of consumption to the agent.

3. Output produced within period is ∆ΠKn.

4. Fraction 1− e−∆δ +
√

∆xnKn of capital depreciates during the period.

33



5. Agent reports xn and consumes Cn plus any diverted capital.

6. Principal assigns utility Wn+1 for next period depending upon reported level of output.

In Shourideh (2012) agents live for two periods and the timing is as follows:

1. Principal assigns Kn units of capital and Cn units of consumption to the agent.

2. Agent consumes Cn plus any capital diverted.

3. Output tomorrow is publicly observed and equal to (∆Π +
√

∆xn)kn where kn is amount of capital
actually invested and xn is random and exogenous.

4. Principal assigns consumption in second period. Agent eats and the world ends.

The above agency problems are obviously similar and so it is instructive to outline why the associated
intertemporal distortions differ. Since Shourideh (2012) adopts a different specification of shocks, it is
difficult to directly compare the two models. However, if one adopts the two-period life-cycle structure of
Shourideh (2012) (and the above timing) but assumes that shocks take only two values with equal probability,
then the resulting model coincides with that given in this section with discount rates and productivities given
by β0 = e−∆ρ, βn = 0,Π0 = Π and Πn = 0 for all n ≥ 1. In contrast, the model of this paper corresponds
to that given in the previous section with βn = e−∆nρ and Πn = Π for all n ≥ 1. Combining (34) and (35)
shows that the inverse Euler equation holds if and only if

cn
cn+1

=
[Πn − δ − r]kn − cn

[Πn+1 − δ − r]kn+1 − cn+1

. (36)

I hope that equation (36) clarifies things for the reader. In my infinite-horizon setting, we have βn = βn

and Πn ≡ Π and hence kn+1 = kn and cn+1 = cn for all n ≥ 0. The equality (36) then obviously holds. In
Shourideh (2012), the agent lives for two periods (say, t = 0, 1) and so k1 = 0 6= k0. The right-hand side of
(36) for n = 0 then becomes

[Π0 − δ − r]kn − cn
[Πn+1 − δ − r]kn+1 − cn+1

=
c0 − [Π0 − δ − r]k0

c1

which is strictly less than the left-hand side of (36).

A.2 Decentralized economy

In this section I outline a discrete-time environment that approximates the incomplete-markets model of
Section 4.2. Suppose again that time assumes the values ∆, 2∆, . . . for some ∆ > 0. At time n∆ the agent
receives interest and principal from savings, receives after-tax profits from his private business, and observes
the amount of the capital stock that depreciated since the time (n− 1)∆. He then discovers whether he will
live or die. If he lives he receives an annuity from the life insurance company, and if he dies, all his wealth
is transferred to a life insurance company.

Morning of the nth period: wake up with an potatoes, eat ∆cn and deposit remainder in a bank that
promises to pay back (1 + ∆r)(an − ∆cn) tomorrow. While at the bank stop by the local life insurance
company and write the following contract: tomorrow if I am still alive you will transfer ∆ρD(an − ∆cn)

potatoes to me; otherwise you may take possession of all my wealth. Afternoon: I arrive at work, rent k
units of potatoes from the bank invest them in my backyard and hire workers at wage w, finding time during
the day to supply labor and so earning a wage myself. Evening: the amount of output produced by my
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workers and net of labor payments is ∆Πk, and the amount of capital that depreciates is (δ +
√

∆σXn)k,
where Xn is i.i.d. and stochastic. Next period wealth is therefore

an+1 = (1 + ∆(r + ρD))(an −∆cn) + ∆w + ∆[Π− r]kn +
√

∆σXnkn

and so the change in wealth satisfies an+1 − an = −∆2(r + ρD)cn + [(r + ρD)an − cn + w + [Π− r]kn]∆ +√
∆σXnkn. As ∆ → 0 this becomes equivalent to the law given in Definition 4.3. Note that the insurance

company pays ∆ρD(an−∆cn) with probability 1−∆ρD and receives an+1 with probability ∆ρD. Expected
profits are therefore

−∆ρD(an −∆cn)(1−∆ρD)−∆ρDE[an+1] = ∆ρD[(an −∆cn)(1−∆ρD)− an
− [−∆2(r + ρD)cn + [(r + ρD)an − cn + w + [Π− r]kn]∆]]

= ∆ρD∆[−cn(1−∆ρD)− ρDan + ∆(r + ρD)cn − (r + ρD)an + cn − w − [Π− r]kn]

= ∆ρD∆[cn∆ρD − ρDan + ∆(r + ρD)cn − (r + ρD)an − w − [Π− r]kn]

which is o(∆) as ∆→ 0. Therefore, the profit over any fixed interval (which behaves like the above multiplied
by 1/∆) also tends to zero with ∆. We have the standard labor market-clearing and goods market-clearing.
The bank makes zero profits, so the return promised to depositors is equal to the return demanded from
entrepreneurs. The total amount of potatoes the agents deposit at the bank in the morning must equal the
total amount rented by entrepreneurs. Therefore, market-clearing in the discrete-time environment is∫ ∞

0

(a−∆c(a))g(da) =

∫ ∞
0

k(a)g(da).

Since the ∆c(a) term is negligible as ∆ → 0, this approximates the market-clearing condition given in the
proof of Proposition 4.3.

B Agency problem

This section contains proofs of all statements pertaining to agency problems in partial equilibrium. Recall
that Proposition 2.2 in the main text covers the logarithmic case for an arbitrary interest rate. Proposition
B.3 deals with the case of general constant relative risk aversion.

B.1 Logarithmic utility

Proof of Proposition 2.2. Recall that the Hamilton-Jacobi-Bellman equation is given by

rv(u) = max
c,k≥0
k≤ω

[Π− r − τI ]k − c+

(
−ρ ln c/u+

1

2
(ρφσk/c)

2

)
uv′(u) +

1

2
(ρφσk/c)2u2v′′(u).

The proof amounts to verifying that the solution to the Hamilton-Jacobi-Bellman equation and associated
policy functions assumes the form v(u) = vu, c(u) = cu and k(u) = ku for some constants v, k and c. To
this end, it is convenient to first change the choice variables from (k, c) to (x, c), where

x :=
√
ρφσkc−1 (37)

is the volatility of utility, and to also write

R(Π) :=
Π− r − τI√

ρφσ
(38)
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so that we seek a solution to the fixed-point equation

rv = max
c,x≥0
xc≤ω

(R(Π)x− 1)c+ ρ

(
− ln c+

x2

2

)
v. (39)

where w = ω
√
ρφσ. I will characterize the solution to (39) by first fixing x arbitrarily and solving the

fixed-point equation associated with a principal who is unable to vary x. The associated restricted value
function v(x) solves

rv(x) = −ρx
2

2
[−v(x)] + max

c≥0
xc≤ω

(R(Π)x− 1)c+ ρ[−v(x)] ln c =: −ρx
2

2
[−v(x)] + T [v](x). (40)

For arbitrary v and x, the first-order condition for the maximization problem for T becomes

c =
ρ[−v]

1− [R(Π)− λ(v, x)]x
(41)

where λ(x) is the Lagrange multiplier on the constraint xc ≤ ω. Substitution then gives

(R(Π)x− 1)c+ ρ[−v] ln c =
ρ[−v](R(Π)x− 1)

1− [R(Π)− λ(v, x)]x
+ ρ[−v] ln(ρ[−v])− ρ[−v] ln (1− [R(Π)− λ(v, x)]x)

where λ(v, x) is determined by the complementary slackness condition that requires is to be either zero or
the value such that the no-absconding constraint binds at the consumption (41), which rearranges to

λ(v, x) = max {R(Π)− 1/x+ ρ[−v]/ω, 0} .

Substitution implies 1−[R(Π)−λ(v, x)]x = 1−R(Π)x+max {R(Π)x− 1 + ρ[−v]x/ω, 0} = max {ρ[−v]x/ω, 1−R(Π)x},
and so T given by the right-hand side of (40) simplifies to

T [v(x)] =
ρ[−v](R(Π)x− 1)

1− [R(Π)− λ(v, x)]x
+ ρ[−v] ln(ρ[−v])− ρ[−v] ln (1− [R(Π)− λ(v, x)]x)

=
ρ[−v](R(Π)x− 1)

max {ρ[−v]x/ω, 1−R(Π)x}
+ ρ[−v] ln(ρ[−v])− ρ[−v] ln (max {ρ[−v]x/ω, 1−R(Π)x}).

For any given volatility x, the payoff to the principal is then a fixed-point of the equation

x2

2
− r

ρ
=

R(Π)x− 1

max {ρ[−v]x/ω, 1−R(Π)x}
+ ln(ρ[−v])− ln (max {ρ[−v]x/ω, 1−R(Π)x}). (42)

Abbreviating J(Π, x) = ρxω−1/[1−R(Π)x], this gives

ln(1−R(Π)x) +
x2

2
− r

ρ
− ln ρ = − [−v]−1

max {J(Π, x), [−v]−1}
− ln max

{
J(Π, x), [−v]−1

}
.

which may be written more succinctly as

ln(1−R(Π)x) +
x2

2
− r

ρ
− ln ρ =

{
−1 + ln[−v] if J(Π, x)[−v] < 1

−(J(Π, x)[−v])−1 − ln J(Π, x) if J(Π, x)[−v] > 1.
(43)

The right-hand side of (43) is increasing in [−v] and diverges to negative infinity as v → 0. A solution
therefore exists if and only if ln(1−R(Π)x) + x2/2− r/ρ− ln ρ < − ln J(Π, x) or

xω−1 exp
(
x2/2− r/ρ

)
< 1. (44)
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Notice that λ(v, x) = 0 if and only if J(Π, x)[−v] < 1. To this end, denote v∗(x) = −1/J(Π, x) and note
the no-absconding constraint will therefore be strict if and only if the right-hand side of (43) exceeds the
left-hand side at v = v∗(x), or ρx2/2 + ρ− r + ρ ln(x/ω) < 0 in which case the value function becomes

v(x) =
1

ρ
(R(Π)x− 1) exp

(
x2

2
+
ρ− r
ρ

)
. (45)

If (45) is violated and (44) is satisfied, then the value function is

ln(1−R(Π)x) +
x2

2
− r

ρ
− ln ρ = − 1

J(Π, x)[−v]
− ln J(Π, x)

−ρx
2

2
+ r − ρ lnxω−1 =

1−R(Π)x

[−v]xω−1 .

In this case we have
v =

(R(Π)x− 1)ω/x

r − ρx2/2− ρ ln (x/ω)

and the principal’s problem may be written

max
x≥0

v(x,Π)

x exp(x2/2− r/ρ) ≤ ω
(46)

where for any given x we have

v(x,Π) =
1

ρ
(R(Π)x− 1)

{
exp

(
1− r/ρ+ x2/2

)
if 1− r/ρ+ x2/2 + ln (x/ω) < 0

(ω/x)[r/ρ− x2/2− ln(x/ω)]−1 if 0 < 1− r/ρ+ x2/2 + ln (x/ω) < 1.
(47)

This problem will be well-defined if and only if R(Π)x− 1 < 0 for all x satisfying x2/2 + ln (x/ω) < r/ρ, a
condition equivalent to the inequality

1 > ωR(Π) exp

(
r/ρ− 1

2R(Π)2

)
. (48)

Translated into original variables (48) is [Π − r]ω exp
(
r/ρ− ρφ2σ2/(2[Π− r]2)

)
< 1, which is obviously

satisfied for all sufficiently small Π. Finally, if the no-absconding inequality is strict then the multiplier λ
must then vanish. By (41) consumption is given by

c =
ρ[−v]

1−R(Π)x
= exp

(
1− r/ρ+ x2/2

)
. (49)

In the case of logarithmic utility, the inverse Euler equation is equivalent to the drift in consumption equalling
r − ρ. By (49) the drift in consumption is given by

µc = ρ(− ln c+ x2/2) = r − ρ− ρx2/2 + ρx2/2

as claimed. In the event that the no-absconding constraint is strict the optimal choice of x in (47) may be
found by solving the first-order condition 0 = (d/dx)(R(Π)x−1) exp

(
x2/2

)
= [R(Π)x2−x+R(Π)] exp

(
x2/2

)
,

which has solution

x(Π) =
1

2R(Π)

[
1−

√
1− 4R(Π)2

]
.

This implies that consumption and capital policy functions are given by

c(Π) = exp
(
1− r/ρ+ x(Π)2/2

)
k(Π) =

c(Π)x(Π)
√
ρφσ

.

Substituting into (47) gives the claimed value function.
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The following gives sufficient conditions for the no-absconding constraint to not bind in the r = ρ case
(the only case relevant to the examples in the main text).

Lemma B.1. The no-absconding constraint will hold as a strict inequality if (48) and

x(Π)2/2 + ln(x(Π)/[
√
ρφσ]) < lnω (50)

hold strictly.

Lemma B.1 shows that the no-absconding constraint holds for an open set of values of ω. All the examples
in the paper hold when ω = 1/ρ (which corresponds to the ability to abscond with the whole capital stock).

B.2 General constant relative risk aversion

I now consider the case of general constant relative risk aversion with parameter γ > 1. The main point of
this section is to establish that the results regarding optimal taxation and intertemporal distortions do not
depend in a significant way on the choice of utility function. For simplicity I will only state this for r = ρ, as
this is the only case relevant to the stationary efficient allocations considered in this paper. Furthermore, to
avoid the main thrust of the paper becoming obscured by complicated algebra, I will not provide the most
general treatment of this case and instead provide sufficient conditions that may be checked ex-post.

Lemma B.2. When the agent absconds with K units of capital, the utility from having access to a bond
market with return rate r is given by W = (ρ+ [ρ− r](1/γ − 1))

−γ
K1−γ/(1− γ).

Set u := [(1 − γ)W ]
1

1−γ so that if V (W ) = v(u) then we have u′(W ) = [(1 − γ)U ]
γ

1−γ = uγ , V ′(W ) =

uγv′(u) and V ′′(W ) = u2γ−1[γv′(u)+uv′′(u)]. Standard arguments imply that the Hamilton-Jacobi-Bellman
equation for the principal simplifies to

rv(u) = max
c,k≥0

k≤ωu

(
[Π− r]k − c

)
u+

(
ρ(1− c1−γ)

1− γ
+
γ(ρφσ)2

2
(kc−γ)2

)
uv′(u) +

(ρφσ)2

2
(kc−γ)2u2v′′(u).

It is easy to see that as in the Logarithmic case, the above Bellman equation will admit a linear solution
with linear policy functions if a solution exists at all. However, the characterization of the value function
with general relative risk aversion is more delicate here and as such it is convenient to define a number of
auxiliary quantities prior to the characterization. Once again change variables from (k, c) to (x, c) where
x :=

√
ρφσk/cγ is proportional to the marginal utility of diverting a unit of capital to consumption. Using

this and the shorthand R(Π) := [Π− ρS ]/(
√
ρφσ), the Hamilton-Jacobi-Bellman equation becomes

ρv = max
cx≥0
xcγ≤ω

R(Π)xcγ − c+ ρ

(
1− c1−γ

1− γ
+
γx2

2

)
v (51)

where ω := ω/[
√
ρφσ]. Finally, define v to be the value function of a principal subject to both the techno-

logical and incentive-constraints given above, but who in addition must satisfy the no-absconding constraint
with equality. This function must satisfy the equation

ρv = max
cx≥0
xcγ=ω

R(Π)xcγ − c+ ρ

(
1− c1−γ

1− γ
+
γx2

2

)
v. (52)

Obviously then v ≤ v as the constraint set of the latter is strictly larger than for the former. The following
assumption collects together the technical conditions necessary for the extension of the results in the main
text.
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Assumption B.1. Suppose that the cubic

0 = (γ − 1)(γ − 1/2)x3 + (3γ − 1)
x2R(Π)

2γ
− x+

R(Π)

γ
(53)

has a positive solution, and that

ρv <
[
(3γ − 1)x2/2 + 1

] γ
1−γ

(
R(Π)

xγ

) 1
1−γ

x[1− (γ − 1)(γ − 1/2)x2]
γ

1−γ < ω

(54)

where x denotes the lower of the two positive solutions to (53).

I can now state the following analogue of Proposition 2.2.

Proposition B.3. If the conditions in Assumption (B.1) are satisfied, then the inverse Euler equation
holds and consumption and capital coefficients are given by

c =
[
1− (γ − 1/2)(γ − 1)x2

] 1
1−γ

k =
x
√
ρφσ

[
1− (γ − 1/2)(γ − 1)x2

] γ
1−γ

(55)

where again x denotes the lower of the two positive solutions to (53). In this case consumption evolves
according to a diffusion process of the form dct = µCctdt+ σCctdZt, where µC and σC are given by

µC =
ρ

2
(1− γ)x2 σC =

√
ρx.

Proof. Denoting the Lagrange multiplier for the right-hand side of (51) (for an arbitrary v) by λ(v), the
Hamilton-Jacobi-Bellman equation reduces to the system of equations

ργ

1− γ
[−v] = [R(Π)− λ(v)]xcγ − c+

ρc1−γ

1− γ
[−v]− ργx2

2
[−v] + λ(v)ω

x =
[R(Π)− λ(v)]cγ

ργ[−v]

c =
[R(Π)− λ(v)]2c2γ

ρ[−v]
+ ρc1−γ [−v].

(56)

We search for a solution to the above system with λ(v) and check ex-post that this is valid. Eliminating x
from the system gives a system of two equations in two unknowns:

ργ

1− γ
[−v] =

R(Π)2c2γ

2ργ[−v]
− c+

ρc1−γ

1− γ
[−v]

c =
R(Π)2c2γ

ρ[−v]
+ ρc1−γ [−v].

(57)

Substituting the second into the first gives

ργ

1− γ
[−v] =

1

2γ
(c− ρc1−γ [−v])− c+

ρc1−γ

1− γ
[−v]

ργ2[−v] = (γ − 1)(γ − 1/2)c+ (3γ/2− 1/2)ρc1−γ [−v].
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Eliminating the c term from the first equation in (57) then gives

−ργ[−v](γ − 1/2) =
R(Π)2c2γ

2ργ[−v]
(γ − 1)(γ − 1/2)− ρc1−γ [−v](γ − 1/2)− (γ − 1)(γ − 1/2)c

−ργ(γ − 1/2) =
R(Π)2c2γ

2ργ[−v]2
(γ − 1)(γ − 1/2)− ρc1−γ(γ − 1/2) + ρ[−γ2 + (3γ/2− 1/2)c1−γ ]

ργ/2 =
R(Π)2c2γ

2ργ[−v]2
(γ − 1)(γ − 1/2) + ρ(3γ/2− 1/2− γ + 1/2)c1−γ

and so the system (57) may be written

1− c1−γ = (γ − 1)(γ − 1/2)
R(Π)2c2γ

ρ2γ2[−v]2

c

[−v]
=
R(Π)2c2γ

ρ[−v]2
+ ρc1−γ .

(58)

The first equation in (58) implies

[−v] =
[(γ − 1)(γ − 1/2)]1/2

ργ(1− c1−γ)1/2
R(Π)cγ . (59)

Substituting into the second equation in (58) then gives the following equivalent equations

ργc1−γ(1− c1−γ)1/2

[(γ − 1)(γ − 1/2)]1/2R(Π)
=

R(Π)2ρ2γ2(1− c1−γ)c2γ

ρ(γ − 1)(γ − 1/2)R(Π)2c2γ
+ ρc1−γ

γc1−γ(1− c1−γ)1/2

[(γ − 1)(γ − 1/2)]1/2
=

(
γ2(1− c1−γ)

(γ − 1)(γ − 1/2)
+ c1−γ

)
R(Π)

γ[1− (γ − 1)(γ − 1/2)x2]x =
(
γ2x2 + 1− (γ − 1)(γ − 1/2)x2

)
R(Π)

which simplifies to the cubic (53). Finally, using (γ − 1)(γ − 1/2)x2 = 1 − c1−γ and equation (59), the
coefficient of the value function satisfies

[−v] =
R(Π)

ρxγ

[
1− (γ − 1)(γ − 1/2)x2

] γ
1−γ = ρ−1

[
(3γ − 1)x2/2 + 1

] γ
1−γ

(
R(Π)

xγ

) 1
1−γ

. (60)

It follows that the conditions (54) are equivalent to the conditions v > v and xcγ < ω, respectively, which
shows that these requirements imply the policy functions in the statement of the proposition.

Finally, note that the inverse Euler equation in this setting is equivalent to 0 = µc + (γ − 1)σ2
c/2 where

µc and σc denote the mean and volatility of the growth of consumption. In terms of the above choice of
variables, we have

µc =
ρ(1− c1−γ)

1− γ
+
γ(ρφσ)2

2
(kc−γ)2 σc = ρφσkc−γ .

Substituting the expressions for c and k gives

µc =
ρ

1− γ
(γ − 1/2)(γ − 1)x2 +

ργx2

2
σc =

√
ρx

which gives the claimed expressions and also implies

µc + (γ − 1)
σ2
c

2
= −ρ(γ − 1/2)x2 +

ργx2

2
+ (γ − 1)

ρx2

2
= ρ(−(γ − 1/2) + γ/2 + (γ − 1)/2)x2 = 0

as desired.
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B.3 Wedges

Recall that for a consumption process (ct)t≥0 and asset A with return process (RAt )t≥0 the associated wedge
νA is defined implicitly by

u′(c0) = exp(−ρt)E
[
exp(−νRt)RAt u′(ct)

]
. (61)

Note that the associated return processes RK and RB are given by

RKt = exp
([

Π− σ2/2
]
t+ σBt

)
RBt = exp (ρt)

for all t ≥ 0 and denote by νK and νB the associated wedges. Proposition B.3 implies that consumption
evolves according to a diffusion process of the form dct = µCctdt+ σCctdZt, where µC and σC are given by

µC =
ρ

2
(1− γ)x2 σC =

√
ρx.

Consumption then has the explicit representation

ct = c0 exp
(
−ργx(Π)2t/2 +

√
ρx(Π)Bt

)
. (62)

This closed-form expression for consumption allows for a sharp characterization of the intertemporal wedges,
leading to the following generalization of Lemma 2.3.

Lemma B.4. The wedges on risky and risk-free capital are given by

νK = Π− ρS + ργ2x(Π)2 −√ργσx(Π) νB = ργ2x(Π)2.

Furthermore, νB ≥ νK .

Proof. Substituting RK into (61) and rearranging gives

c−γ0 = exp(−[ρ+ νK ]t)E
[
exp

([
Π− σ2/2

]
t+ σBt

)
c−γt
]

1 = exp(−[ρ+ νK ]t)E
[
exp

([
Π− σ2/2

]
t+ σBt

)
exp

(
ργ2x(Π)2t/2−√ργx(Π)Bt

)]
exp(νKt) = exp

([
Π− ρ− σ2/2 + ργ2x(Π)2/2

]
t
)
E[exp ([σ − γ√ρx(Π)]Bt)].

Using E[exp(zBt)] = exp(z2t/2) and taking logs of both sides gives

νK = Π− ρ+ ργ2x(Π)2 −√ργσx(Π).

Similarly, substituting RB into (61) and rearranging gives

c−γ0 = exp(−[ρ+ νB ]t)E
[
exp (ρt)c−γt

]
exp(νBt) = E

[
exp

(
ργ2x(Π)2t/2−√ργx(Π)Bt

)]
= exp

(
ργ2x(Π)2t

)
and so νB = ργ2x(Π)2. It remains to show νB ≥ νK , or equivalently, Π − ρ ≤ √ργσx(Π). In the earlier
notation this requires R(Π) ≤ x(Π)γ/φ where x(Π) is defined as the lower of the two positive roots of the
polynomial

P (x) = (γ − 1)(γ − 1/2)x3 + (3γ − 1)
x2R(Π)

2γ
− x+

R(Π)

γ

under the maintained assumption that such roots exist. Obviously it will suffice to show this in the case
φ = 1. Substituting x = R(Π)/γ into the above gives

P (R(Π)/γ) = (γ − 1)(γ − 1/2)[R(Π)/γ]3 + (3γ − 1)
[R(Π)/γ]2R(Π)

2γ
− [R(Π)/γ] +R(Π)/γ

= (γ − 1)(γ − 1/2)[R(Π)/γ]3 + (3γ − 1)
[R(Π)/γ]3

2
= ((γ − 1)(γ − 1/2) + 3γ/2− 1/2)[R(Π)/γ]3

=
(
γ2 − 3γ/2 + 1/2 + 3γ/2− 1/2

)
[R(Π)/γ]3 =

R(Π)3

γ
> 0.
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It will suffice to show that R(Π)/γ ≤ z where z is the larger of the two roots to 0 = P ′(x) = 3(γ − 1)(γ −
1/2)x2 + (3γ − 1)xR(Π)/γ − 1, or

z =
1

6(γ − 1)(γ − 1/2)

[
−(3γ − 1)R(Π)/γ +

√
(3γ − 1)2R(Π)2/γ2 + 12(γ − 1)(γ − 1/2)

]
.

This requires

R(Π) ≤ γ

6(γ − 1)(γ − 1/2)

[
−(3γ − 1)R(Π)/γ +

√
(3γ − 1)2R(Π)2/γ2 + 12(γ − 1)(γ − 1/2)

]
1 ≤ 1

6(γ − 1)(γ − 1/2)

[
−(3γ − 1) +

√
(3γ − 1)2 + 12γ2(γ − 1)(γ − 1/2)/R(Π)2

]
which is equivalent to

6(γ − 1)(γ − 1/2) + (3γ − 1) ≤
√

(3γ − 1)2 + 12γ2(γ − 1)(γ − 1/2)/R(Π)2

[6(γ − 1)(γ − 1/2)]2 + 12(γ − 1)(γ − 1/2)(3γ − 1) ≤ 12γ2(γ − 1)(γ − 1/2)/R(Π)2

3(γ − 1)(γ − 1/2) + (3γ − 1) ≤ γ2/R(Π)2

and hence
R(Π)2 ≤ 2γ2

6γ2 − 3γ + 1
. (63)

I want to show that this follows from the assumption P (z) ≤ 0. To this end note that the defining equality
for z gives

P ′(z) = 0 = 3(γ − 1)(γ − 1/2)z2 + (3− 1/γ)R(Π)z − 1

3(γ − 1)(γ − 1/2)z2 = 1− (3− 1/γ)R(Π)z.

Using this repeatedly implies

3P (z) = 3(γ − 1)(γ − 1/2)z3 +
3

2
(3− 1/γ)R(Π)z2 − 3z +

3R(Π)

γ

= −(3− 1/γ)R(Π)z2 +
3

2
(3− 1/γ)R(Π)z2 − 2z +

3R(Π)

γ

=
1

2
(3− 1/γ)R(Π)

[1− (3− 1/γ)R(Π)z]

3(γ − 1)(γ − 1/2)
− 2z +

3R(Π)

γ
.

The requirement P (z) ≤ 0 is then equivalent to

(3γ − 1)

3(γ − 1)(γ − 1/2)
+ 6 ≤

(
4γ

R
+

(3γ − 1)(3− 1/γ)R

3(γ − 1)(γ − 1/2)

)
z. (64)

It will suffice to show that (64) implies (63). To this end I will show that the strictly weaker inequality

(3γ − 1)

3(γ − 1)(γ − 1/2)
+ 6 ≤ 4γz

R
+

(3γ − 1)(3− 1/γ)R

3(γ − 1)(γ − 1/2)
z′ (65)

also implies (63), where (3γ − 1)Rz′ = γ. Inequality (65) rearranges to

3R

2
≤ γz =

γ

6(γ − 1)(γ − 1/2)

[
−(3− 1/γ)R+

√
(3− 1/γ)2R2 + 12(γ − 1)(γ − 1/2)

]
9(γ − 1)(γ − 1/2) + (3γ − 1) ≤

√
(3γ − 1)2 + 12γ2(γ − 1)(γ − 1/2)/R2

R2 ≤ γ2

27(γ − 1)(γ − 1/2)/4 + 3(3γ − 1)/2
.
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This will imply (63) if γ2/[27(γ − 1)(γ − 1/2)/4 + 3(3γ − 1)/2] ≤ γ2/(3γ2 − 3γ/2 + 1/2) or

3γ2 − 3γ/2 + 1/2 ≤ 27(γ − 1)(γ − 1/2)/4 + 3(3γ − 1)/2

24γ2 − 12γ + 4 ≤ 54γ2 − 81γ + 27 + 12(3γ − 1)

which rearranges to 0 ≤ 30γ2 − 33γ + 11, which is always true.

C Stationary allocations

C.1 Aggregate resource constraints

Aggregate consumption, labor, and output at any date are comprised of contributions from the initial
generation and subsequent generations. I will write them in this fashion for clarity.

C.1.1 Single types

Aggregate consumption, capital assigned and output at any date t ≥ 0 are

Ct :=

∫
R
E[cvt ]Φ(dv), CTt := LE

[
cTt
]

Ct := e−ρDtCt +

∫ t

0

e−ρD[t−T ]CTt dT

Kt := e−ρDt
∫
R
E[Kv

t ]Φ(dv) +

∫ t

0

e−ρD[t−T ]E
[
KT
t

]
dT

Y t :=

∫
R
E[F (Kv

t , L
v
t )− δKv

t ]Φ(dv), Y Tt := E
[
F
(
KT
t , L

T
t

)
− δKT

t

]
Yt := e−ρDtY t +

∫ t

0

e−ρD[t−T ]Y Tt dT

where I have used the notation F (K,L) := AKαL1−α. Aggregate labor assigned to entrepreneurs is

Lt :=

∫
X

E[Lvt ]Φ(dv), LTt := e−ρD[t−T ]E
[
LTt
]

Lt := e−ρDtLt +

∫ t

0

e−ρD[t−T ]LTt dT.

I will also use the following notation for the Pareto-weighted flow utility experienced by each generation

U t =

∫
R
E[u(cvt )]Φ(dv) UTt = LE[u(cTt )].

Now let us go through the details concerning the relationship between the planner’s problem and the
principal-agent problem. Given an initial distribution Φ over promised utility and types, when the planner
discounts at rate ρS , the relaxed problem is defined to be

V R(Φ) = max
A∈AIC(Φ)

∫ ∞
0

(
e−ρtU t +

∫ t

0

e−ρ[t−T ]e−ρSTUTt dT

)
dt∫ ∞

0

e−ρSt[Ct(A)− Yt(A)]dt ≤ 0.∫ ∞
0

e−ρSt[Lt(A)− L]dt ≤ 0.
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Using the pair of multipliers λ := (λR, λL) we form the Lagrangian by combining the above objective with
the weights on the resource constraints

L =

∫ ∞
0

(
e−ρtU t +

∫ t

0

e−ρ[t−T ]e−ρSTUTt dT

)
dt+ λR

∫ ∞
0

e−ρSt[Yt(A)− Ct(A)]dt+ λRλL

∫ ∞
0

e−ρSt[L− Lt(A)]dt

=

∫ ∞
0

(
e−ρtU t +

∫ t

0

e−ρ[t−T ]e−ρSTUTt dT + λRe
−ρSt[Yt(A)− Ct(A)] + λRλLe

−ρSt[L− Lt(A)]

)
dt.

Now we substitute in the expressions for aggregate consumption, output, and labor assigned. This gives

L =

∫ ∞
0

(
e−ρtU t +

∫ t

0

e−ρ[t−T ]e−ρSTUTt dT

)
dt+ λR

∫ ∞
0

e−ρSt[Yt(A)− Ct(A)]dt+ λRλL

∫ ∞
0

e−ρSt[L− Lt(A)]dt

=

∫ ∞
0

(
e−ρtU t +

∫ t

0

e−ρ[t−T ]e−ρSTUTt dT + λRe
−ρSt

[
−e−ρDtCt +

∫ t

0

e−ρD[t−T ]CTt dT + e−ρDtY t +

∫ t

0

e−ρD[t−T ]Y Tt dT

]

+ λRλLe
−ρSt

[
−e−ρDtLt −

∫ t

0

e−ρD[t−T ]LTt dT + L

])
dt

=

∫ ∞
0

(
e−ρt[U t + λR(Ct − Y t + λLLt)] +

∫ t

0

[
e−ρ[t−T ]e−ρSTUTt + λRe

−ρSte−ρD[t−T ]
(
Y Tt − CTt − λLLTt

)]
dT

)
dt+

λRλL
ρS

L.

Using the fact that e−ρ[t−T ]e−ρST = e−ρSte−ρD[t−T ] for all t ≥ T ≥ 0, and switching the order of integration,

L = max
A∈AIC

∫ ∞
0

e−ρtLtdt+

∫ ∞
0

∫ ∞
T

e−ρST e−ρ(t−T )LTt dtdT

where Lt(λ) and LTt (λ) are the contributions of the initial and T th generations to the Lagrangian

Lt = U t + λR[Y t − Ct + λL[L− Lt]]

LTt = UTt + λR
[
Y Tt − CTt + λL

[
L− LTt

]] (66)

and (Ct, Y t, Lt) and (CTt , Y
T
t , L

T
t ) refer to consumption, output, and labor assignments of the initial and

T th generations, respectively, at date t ≥ 0. The above decomposition illustrates that for any given choice
of the multipliers, for each T > 0 the planner solves

VT = max
A∈AIC

∫ ∞
T

e−ρ(t−T )LTt dt. (67)

In other words, the planner behaves exactly as per the principal of Section 2 who discounts at the rate r = ρ.

C.2 Stationary efficient distributions

D Decentralization

Section D.1 states the value functions associated with individual agents and Section D.2 characterizes the
taxes that decentralize the efficient allocation.

D.1 Agent’s problems

Recall that Lemma 4.2 solved the agent’s problem when facing linear taxes on savings and profits.
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Proof of Lemma 4.2. Given taxes on profits τΠ and risk-free savings τs, the Hamilton-Jacobi-Bellman equa-
tion for the agent’s value function is

ρV (a) = max
c,k≥0

ρ ln c+ ((1− τs)(r + ρD)a− c+ (1− τΠ)(Π− r)k + w)V ′(a) +
σ2

2
(1− τΠ)2k2V ′′(a).

Substitution of the assumed form V (a) = ln(a+ h) +D for some constant D into the right-hand side gives

max
c,k≥0

ρ ln c+ (1− τs)(r + ρD)− c/(a+ h) + (1− τΠ)(Π− r)k/(a+ h)− [σ(1− τΠ)]2

2
(k/(a+ h))2.

Optimal consumption is then c(a) = ρa, and optimal capital is

k(a) := k(a+ h) =
(Π− r)(a+ h)

σ2(1− τΠ)
.

The constant D then satisfies

ρD = ρ ln ρ+ (1− τs)r − ρ+
(Π− r)2

σ2
− [σ(1− τΠ)]2

2

(Π− r)2

σ4(1− τΠ)2

which reduces to the desired expression for V .

Notice that Lemma 2.1 is simply a special case of Lemma 4.2 with τs = w = 0 and Π = r. Now, for general
CRRA parameters, the Hamilton-Jacobi-Bellman equation is given by

ρV (a) = max
c,k

c1−γ

1− γ
+ [(1− τs)(r + ρD)a− c+ (1− τΠ)(Π− r)k + w]V ′(a) + (1− τΠ)2σ

2k2

2
V ′′(a).

Lemma D.1. The value function of the agent is V (a) = V a1−γ/(1− γ) for some V , with policy functions

c(a) = c(a+ h) =

(
1

γ
[ρ− (1− γ)(1− τs)(r + ρD)]− (Π− r)2

2γ2σ2
(1− γ)

)
(a+ h)

k(a) = k(a+ h) =
(Π− r)(a+ h)

γσ2(1− τΠ)

where h = w/[(1− τs)(r+ρD)]. The associated law of motion of wealth is da = µa(at+h)dt+σa(at+h)dZt,
where

µa =
(1− τs)(r + ρD)− ρ

γ
+

(Π− r)2

2γ2σ2
(1 + γ) σa =

Π− r
γσ

.

Proof. Upon substituting the assumed form, the Hamilton-Jacobi-Bellman equation becomes

ρV

1− γ
= max

c,k

c1−γ

1− γ
+ V

[
(1− τs)(r + ρD)− c+ (1− τΠ)(Π− r)k

]
− γ(1− τΠ)2V

σ2k
2

2
.

First-order conditions for capital and consumption give

k =
Π− r

γ(1− τΠ)σ2
c = V

−1/γ
.

Substituting into the Hamilton-Jacobi-Bellman equation gives

ρV

1− γ
=
V

1−1/γ

1− γ
+ V [(1− τs)(r + ρD)− c] + V

[
(1− τΠ)(Π− r)k − γ

2
[(1− τΠ)σ]2k

2
]

=
γV

1−1/γ

1− γ
+ V (1− τs)(r + ρD) + V

[
(Π− r)2

γσ2
− γ

2
[(1− τΠ)σ]2

(
Π− r

γ(1− τΠ)σ2

)2
]

ρ

1− γ
=
γV
−1/γ

1− γ
+ (1− τs)(r + ρD) +

(Π− r)2

2γσ2
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which rearranges to

c = V
−1/γ

=
1

γ
[ρ− (1− γ)(1− τs)(r + ρD)]− (Π− r)2

2γ2σ2
(1− γ)

as claimed. The law of motion of wealth is then

dat = [(1− τs)(r + ρD)at + w − ct + (1− τΠ)(Π− r)kt]dt+ (1− τΠ)σktdZt

=
[
(1− τs)(r + ρD)− c+ (1− τΠ)(Π− r)k

]
(at + h)dt+ (1− τΠ)σk(at + h)dZt

=

[
(1− τs)(r + ρD)− 1

γ
[ρ− (1− γ)(1− τs)(r + ρD)] +

(Π− r)2

2γ2σ2
(1− γ) +

(Π− r)2

γσ2

]
(at + h)dt

+
(Π− r)
γσ

(at + h)dZt.

This clearly implies σa = (Π− r)/[γσ], while µa simplifies to

µa = −ρ
γ

+
1

γ
(1− τs)(r + ρD) +

(Π− r)2

γσ2

(
1

2
(1/γ − 1) + 1

)
as claimed.

The value function associated with absconding with the capital stock corresponds to the Π = r case with no
taxes.

Lemma D.2 (Utility from absconding). The value function associated with absconding with the stock of
capital is given by V (K) = (ρ+ [ρ− r](1/γ − 1))

−γ
K1−γ/(1− γ).

D.2 Decentralization with taxes

Recall that the drift and diffusion for wealth are given by

µa =
(1− τs)(r + ρD)− ρ

γ
+

(Π− r)2

2γ2σ2
(1 + γ) σa =

Π− r
γσ

.

Recall that the efficient allocation is again characterized by three properties: the marginal product of
capital coincides with the solution to the stationary form of the goods resource constraint, and the mean
and volatility of the growth in consumption coincide with those in the efficient allocation.

Proposition D.3. The marginal product of capital that obtains in the efficient stationary distribution is
the solution to the equation

c(Π) =
1

α
[Π + (1− α)δ]k(Π) (68)

provided the no-absconding constraint holds as a strict inequality for this Π. In this case the efficient alloca-
tions may be decentralized with linear taxes on savings and profits

1− τs =
ρ[1− x(Π)2γ2]

Π−√ργσx(Π) + ρD
τΠ = 1− φ

and in which each agent is endowed with the fraction

η = (1− (ρ/ρD)(1− γ)x(Π)2/2)

(
Π/α+ (1/α− 1)δ

ρ(1− (1− γ)(1/2− γ)x(Π)2)
− (Π + δ)(1/α− 1)

ρ[1− γ2x(Π)2]

)
of the aggregate capital stock at birth.
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Proof of Proposition D.3. Denote by ψ the fraction of the aggregate capital stock that is owned by private
agents. Note that ψ is related to the inheritance share η via the Gordon growth relation

ψ =
ρDη

ρD − µc
(69)

where µc is the (yet-to-be-characterized) growth rate of consumption. The stationary form of the three
market-clearing conditions for labor, capital and goods may be written

L = φl(w)K

K = k(w, r)(ψK + h(w, r)L)

(Aφl(w)1−α − δ)k(w, r) = c(w, r).

The competitive equilibrium is characterized by this system of three equations and three unknowns, with the
inheritance rate being determined residually from the requirement that net wealth be constant. The labor
resource constraint implies φl(w) = [A(1 − α)/w]1/α, so the wage is simply the marginal product of labor
w = A(1− α)(K/L)α, and so the marginal product of capital is then Π = αA[K/L]α−1 − δ. The total level
of human wealth satisfies

h(w, r)L =
wL

(1− τs)(r + ρD)
=

(Π + δ)(1/α− 1)K

(1− τs)(r + ρD)
. (70)

The bond and goods market-clearing conditions then become

1 =

[
ψ +

(Π + δ)(1/α− 1)

(1− τs)(r + ρD)

]
k(w, r)

1

α
[Π + (1− α)δ]k(w, r) = c(w, r).

(71)

In order for the efficient allocation to be implemented, three conditions must be met: the marginal product
of capital must coincide with the solution to (68), and the mean and volatility of consumption growth must
coincide with those values attained in the efficient allocation. Combining Proposition B.3 with Lemma D.1,
this implies

(1− τs)(r + ρD)− ρ
γ

+
[Π− r]2

2γ2σ2
(1 + γ) =

ρ

2
(1− γ)x(Π)2

σ(1− τΠ)k(w, r) =
√
ρx(Π).

(72)

Using Lemma D.1 and the second condition of (72) we find

r = Π−√ργσx(Π).

Substituting this interest rate into the first condition of (72) then gives

1− τs =
ρ[1− γ2x(Π)2]

Π−√ργσx(Π) + ρD

as claimed. Now, using the explicit forms for the policy functions gives

c =

(
ρ

γ
(1− (1− γ)[1− γ2x(Π)2])− ρx(Π)2

2
(1− γ)

)
= ρ
(
1− (1− γ)(1/2− γ)x(Π)2

)
k =

Π− r
γσ2(1− τΠ)

=

√
ρx(Π)

σ(1− τΠ)
.
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It follows that

1

α
[Π + (1− α)δ] = c(w, r)/k(w, r) =

√
ρσ(1− τΠ)

x(Π)

(
1− (γ − 1)(γ − 1/2)x(Π)2

)
.

Using Proposition B.3 we have

c(Π)/k(Π) =

√
ρφσ

x(Π)

[
1− (γ − 1/2)(γ − 1)x(Π)2

]
.

Equating c(Π)/k(Π) = c(w, r)/k(w, r) (which must hold if the goods resource constraint and goods market-
clearing hold for the same Π) implies τΠ = 1−φ. Finally, using the goods market-clearing condition and the
above expressions for τs, r and c we have

1

α
[Π + (1− α)δ] = c(w, r)

(
ψ +

(Π + δ)(1/α− 1)

(1− τs)(r + ρD)

)
ψ =

Π/α+ (1/α− 1)δ

ρ(1− (1− γ)(1/2− γ)x(Π)2)
− (Π + δ)(1/α− 1)

ρ[1− γ2x(Π)2]
.

Since µc = ρ(1− γ)x(Π)2/2 it follows from (69) that

η = (ρD − µc)ψ = (1− (ρ/ρD)(1− γ)x(Π)2/2)

(
Π/α+ (1/α− 1)δ

ρ(1− (1− γ)(1/2− γ)x(Π)2)
− (Π + δ)(1/α− 1)

ρ[1− γ2x(Π)2]

)
as claimed.

Corollary D.4 relates the interest rate that obtains in the incomplete markets model to the subjective
rate of discount and is the analogue of Corollary 4.4 in the general relative risk aversion case.

Corollary D.4. The interest rate in the stationary competitive equilibrium that decentralizes the efficient
allocation is always lower than the subjective rate of discount.

Proof. Notice that by Proposition D.3, r ≤ ρS is equivalent to

Π−√ργσx(Π) ≤ ρS (73)

which follows from Lemma B.4.
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