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1 Introduction

What led to macroeconomic stability in the United States after the Great Inflation of the

1970s? A large literature has regarded the Great Inflation as a consequence of self-fulfilling

expectations in indeterminate equilibrium, which lasted until determinacy was restored by

changes in the Fed’s policy under the chairmanship of Paul Volcker and his successors.1

In particular, the literature has established the view that the U.S. economy’s shift from

indeterminacy to determinacy was achieved by the Fed’s change from a passive to an active

policy response to inflation.2 Clarida et al. (2000) demonstrate this view by estimating

a monetary policy rule of the sort proposed by Taylor (1993) during two periods, before

and after Volcker’s appointment as Fed Chairman, and combining the estimated rule with

a calibrated New Keynesian (henceforth NK) model to analyze determinacy.3 Lubik and

Schorfheide (2004) confirm the view by estimating a Taylor-type rule and an NK model

jointly during similar periods using a full-information Bayesian approach that allows for

indeterminacy and sunspot fluctuations.4

This paper revisits the literature’s view by estimating a generalized NK (henceforth GNK)

model jointly with a Taylor-type rule.5 This model differs from canonical NK (henceforth

CNK) models used in the literature mainly in that, following micro evidence, some prices

remain unchanged in each period even under non-zero trend inflation.6 Consequently, instead

1Following the literature, this paper explains the U.S. macroeconomic stability from the perspective of

monetary policy. Other explanations emphasize a decline in the volatility of shocks to the U.S. economy

(e.g., Sims and Zha (2006), Justiniano and Primiceri (2008)) or the development of inventory management

(e.g., Kahn et al. (2002)).
2A policy response to inflation is called active if it satisfies the Taylor principle, which claims that the

nominal interest rate should be raised by more than the increase in inflation. Otherwise, it is called passive.
3Mavroeidis (2010) points to a weak-identification issue in the GMM estimation of the Taylor-type rule

by Clarida et al. (2000), and emphasizes the need to make use of identifying assumptions that can be derived

from the full structure of their model.
4See also Boivin and Giannoni (2006), Kimura and Kurozumi (2010), and Lubik and Matthes (2016)

among others for the monetary-policy explanation of U.S. macroeconomic stability after the Great Inflation.
5For a literature review on GNK models, see, e.g., Ascari and Sbordone (2014).
6For the micro evidence on price-setting during and after the Great Inflation, see, e.g., Klenow and

Kryvtsov (2008), Nakamura and Steinsson (2008), and Nakamura et al. (2018).
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of a canonical one, a generalized NK Phillips curve appears in the GNK model, with the

distinct features that its coefficients depend on the level of trend inflation and that it includes

additional forward-looking terms through which inflation responds to expected changes in

future demand and discount rates on future profits under non-zero trend inflation. These

features cause the GNK model to be more susceptible to indeterminacy than CNK models,

as indicated by Hornstein and Wolman (2005), Kiley (2007), Ascari and Ropele (2009), and

Coibion and Gorodnichenko (2011).7 Indeed, even an active policy response to inflation that

generates determinacy in CNK models can induce indeterminacy in the GNK model.8

Our estimation is performed using a full-information Bayesian approach based on Lubik

and Schorfheide (2004).9 In their approach, however, when a model is estimated over both de-

terminacy and indeterminacy regions of the model’s parameter space, its likelihood function

is possibly discontinuous at the boundary of each region. As a consequence, the Random-

Walk Metropolis-Hastings (henceforth RWMH) algorithm—which has been the most widely

used in Bayesian estimation—can get stuck near a local mode and fail to find the entire

posterior distribution for the model’s parameters. To deal with this difficulty, our paper

adopts the sequential Monte Carlo (henceforth SMC) algorithm developed by Herbst and

Schorfheide (2014, 2015). As they illustrate, the SMC algorithm can produce more reliable

estimates of model parameters than the RWMH algorithm when the parameters’ posterior

distribution is multimodal. This is particularly the case when the likelihood function of a

model to be estimated exhibits discontinuity as in our paper.

7See also Kobayashi and Muto (2012), Kurozumi (2014, 2016), and Kurozumi and Van Zandweghe (2016,

2017).
8The GNK model extends the model of Coibion and Gorodnichenko (2011) that assumes firm-specific

labor. In Appendix A, we also consider another type of GNK model, which extends, in a similar fashion,

the model of Ascari and Ropele (2009) that supposes homogeneous labor. The different specifications of

labor yield distinct implications for the GNK Phillips curve. For instance, our model has no effect of relative

price distortion on the Phillips curve, whereas there is such an effect in the other model. For this point,

see Kurozumi and Van Zandweghe (2017). The present paper estimates the two types of GNK models and

shows that our model empirically outperforms the other.
9The full-information Bayesian approach of Lubik and Schorfheide (2004) has been used in previous

studies, such as Benati and Surico (2009), Bhattarai et al. (2012, 2016), Doko Tchatoka et al. (2017), and

Hirose (2007, 2008, 2013, forthcoming).
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Our empirical analysis makes three main contributions to the literature. First of all, the

GNK model empirically outperforms CNK models during both periods before and after the

Volcker disinflation of 1979–1982. This paper considers two types of CNK models. One type

is a CNK counterpart to the GNK model and assumes that prices that remain unchanged

in the GNK model are updated by indexing to trend inflation as in Yun (1996).10 The GNK

model and its CNK counterpart are both augmented with backward-looking rule-of-thumb

price-setters as in Galí and Gertler (1999) to take into account the possibility of intrinsic

inertia in inflation.11 The other type of CNK model instead incorporates price indexation

to past and trend inflation as in Smets and Wouters (2007) and has been extensively used

in empirical studies. The superior empirical performance of the GNK model relative to

the two CNK models indicates that the GNK model’s features that are more consistent

with the micro evidence on price-setting also contribute to a better fit of the model to

U.S. macroeconomic time series, and thus the GNK model is more suitable for the analysis

of what led to U.S. macroeconomic stability after the Great Inflation.

Second, the U.S. economy was likely in the indeterminacy region of the GNK model’s

parameter space before 1979, while it likely entered the determinacy region after 1982, in

line with the result obtained in the literature. However, even during the pre-1979 period, the

estimated response to inflation was active in the Taylor-type rule, which adjusts the interest

rate for contemporaneous values of inflation, the output gap, and output growth in the

presence of interest-rate smoothing.12 This finding is consistent with the theoretical result

of previous studies, including Ascari and Ropele (2009) and Coibion and Gorodnichenko

(2011), that an active policy response to inflation—the Taylor principle—is not a sufficient

condition for determinacy of equilibrium in GNK models. Our finding contrasts sharply

10This implies that the GNK model and its CNK counterpart coincide only when trend inflation is zero, so

that the GNK model does not literally generalize the CNK counterpart. Therefore, this paper also considers

an NK model that nests both the GNK model and the CNK counterpart, and shows that the GNK model

empirically outperforms the nested model as well.
11Note that embedding such price-setters in the GNK model is consistent with the micro evidence that

some prices remain unchanged in each period.
12Orphanides (2004) obtains active responses to expected future inflation in both periods before and after

Volcker’s appointment as Fed Chairman by estimating a Taylor-type rule with real-time data on the Federal

Reserve Board’s Greenbook forecast. See also Coibion and Gorodnichenko (2011).
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with the literature’s view that the policy response to inflation was passive during the Great

Inflation and that the subsequent change to an active response led to the U.S. economy’s

shift from indeterminacy to determinacy.13

Last but not least, the increase in the policy response to inflation from the pre-1979

to the post-1982 estimate alone does not suffice for explaining the U.S. economy’s shift to

determinacy, unless it is accompanied by either the estimated decline in trend inflation or

the estimated change in policy responses to the output gap and output growth. This finding

reveals that a lower rate of trend inflation (or equivalently a lower inflation target), a more

dampened response to the output gap, and a more aggressive response to output growth

play a key role in accounting for the U.S. economy’s shift, along with a more active response

to inflation. Therefore, our finding extends the literature by emphasizing the importance of

the changes in other aspects of monetary policy in addition to its response to inflation.

This paper is an extension of Lubik and Schorfheide (2004) and a complementary study

to Coibion and Gorodnichenko (2011). Our paper strengthens the analysis of Lubik and

Schorfheide by adopting the SMC algorithm in their full-information Bayesian approach

and estimating the GNK model (jointly with the Taylor-type rule) as well as the CNK

models, which are similar to their model. While Lubik and Schorfheide estimate their model

separately for the determinacy and indeterminacy regions of the model’s parameter space,

the SMC algorithm enables us to conduct our estimation for both of the regions in one step.

Coibion and Gorodnichenko revisit the literature’s view by using a calibrated GNK model

in an approach analogous to Clarida et al. (2000).14 They offer the alternative view that

the U.S. economy’s shift to determinacy after the Great Inflation is due to their estimated

change in a Taylor-type rule and their calibrated fall in trend inflation.15 An advantage of

our analysis is that we estimate both trend inflation and the Taylor-type rule’s coefficients

13The CNK models confirm the literature’s view; that is, the policy response to inflation was passive and

the U.S. economy was likely in the indeterminacy region before 1979, while the response became active and

the economy likely entered the determinacy region after 1982.
14Arias et al. (forthcoming) extend the analysis of Coibion and Gorodnichenko (2011) by employing a

medium-scale GNK model based on Christiano et al. (2005), which is estimated during a post-1984 period

within the determinacy region of the model’s parameter space.
15In the estimation of the Taylor-type rule by Coibion and Gorodnichenko (2011), its constant term

contains not only trend inflation but also other factors. Thus they calibrate the level of trend inflation.
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as well as other structural model parameters under cross-equation restrictions and show that

our GNK model empirically outperforms the CNK models, giving strong support to our view

on the shift from indeterminacy to determinacy.

The remainder of the paper proceeds as follows. Section 2 presents a GNK model with a

Taylor-type rule. Section 3 explains the estimation strategy and data. Section 4 shows the

results of the empirical analysis. Section 5 concludes.

2 Generalized New Keynesian Model

This paper investigates the source of the U.S. economy’s shift from indeterminacy of equi-

librium to determinacy after the Great Inflation by estimating a GNK model jointly with

a Taylor-type rule. This model differs from CNK models used in previous studies mainly

in that, following micro evidence, each period a fraction of prices remains unchanged even

under non-zero trend inflation.

In the model there are a representative household, a representative final-good firm, a con-

tinuum of intermediate-good firms, and a central bank. The model extends that of Coibion

and Gorodnichenko (2011) by introducing (external) habit formation in the household’s

consumption preferences, backward-looking rule-of-thumb price-setters among intermediate-

good firms as in Galí and Gertler (1999), and interest-rate smoothing in the Taylor-type rule

so that the model has inertia in output, inflation, and the interest rate.16 This extension is

made because our estimation is conducted with a full-information Bayesian approach based

on Lubik and Schorfheide (2004), which may have a bias toward indeterminacy unless the

model can generate sufficient persistence in endogenous variables, as argued by Beyer and

Farmer (2007).

2.1 Households

The representative household consumes final goods C̃t, supplies a set of labor services {lt(i)},

each of which is specific to intermediate-good firm i ∈ [0, 1], and purchases one-period riskless

16Note that incorporating the backward-looking rule-of-thumb price-setters enables us to embed inflation

inertia without contradicting the micro evidence that some prices remain unchanged in each period.
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bonds Bt so as to maximize the utility function

E0

∞∑
t=0

βt exp(zu,t)

[
log(C̃t − hCt−1)− 1

1 + 1/η

∫ 1

0

(lt(i))
1+1/η di

]
subject to the budget constraint

PtC̃t +Bt =

∫ 1

0

PtWt(i)lt(i)di+ rt−1Bt−1 + Tt,

where Et is the rational expectation operator conditional on information available in period

t, β ∈ (0, 1) is the subjective discount factor, h ∈ [0, 1] is the degree of habit persistence in

consumption preferences, η ≥ 0 is the elasticity of labor supply, Pt is the price of final goods,

Wt(i) is the real wage rate paid by intermediate-good firm i, rt is the (gross) interest rate

on bonds and is assumed to coincide with the monetary policy rate, Tt consists of lump-sum

taxes and transfers and firm profits received, and zu,t is a shock to current preferences.17

The first-order conditions for utility maximization with respect to consumption, labor

supply, and bond holdings become

Ξt =
exp(zu,t)

Ct − hCt−1

, (1)

Wt(i) =
(lt(i))

1/η exp(zu,t)

Ξt

, (2)

1 = Et
β Ξt+1

Ξt

rt
πt+1

, (3)

where Ξt is the marginal utility of consumption, Ct is aggregate consumption, and πt =

Pt/Pt−1 is the (gross) inflation rate of the final-good price.

2.2 Firms

The representative final-good firm produces homogeneous goods Yt by combining intermedi-

ate goods {Yt(i)} so as to maximize profit

PtYt −
∫ 1

0

Pt(i)Yt(i) di

17Our GNK model considers firm-specific labor as in Coibion and Gorodnichenko (2011). Appendix A

analyzes another type of GNK model, which supposes homogeneous labor as in Ascari and Ropele (2009),

and shows that such a model empirically underperforms our GNK model. See also footnote 8.
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subject to the CES aggregator

Yt =

[∫ 1

0

(Yt(i))
(θ−1)/θ di

]θ/(θ−1)

,

where Pt(i) is the price of intermediate good i and θ > 1 is the elasticity of substitution

between intermediate goods.

The first-order condition for profit maximization yields the final-good firm’s demand

curve for intermediate good i

Yt(i) = Yt

(
Pt(i)

Pt

)−θ
, (4)

and thus the CES aggregator leads to

Pt =

[∫ 1

0

(Pt(i))
1−θ di

]1/(1−θ)

. (5)

The final-good market clearing condition is given by

Yt = Ct. (6)

Each intermediate-good firm i produces one kind of differentiated good Yt(i) under mo-

nopolistic competition using the production technology

Yt(i) = Atlt(i), (7)

where At denotes the technology level and follows the stochastic process

logAt = log a+ logAt−1 + za,t, (8)

where log a is the steady-state rate of technological change, which turns out to coincide with

the steady-state rate of output growth, and za,t is a (non-stationary) technology shock.

The first-order condition for cost minimization yields firm i’s real marginal cost

mct(i) =
Wt(i)

At
. (9)

Prices of intermediate goods are set on a staggered basis as in Calvo (1983). In each

period, a fraction λ ∈ (0, 1) of firms keeps prices unchanged, while the remaining fraction

1−λ sets prices in the following two ways. As in Galí and Gertler (1999), a fraction ω ∈ [0, 1)

of price-setting firms uses a backward-looking rule of thumb, while the remaining fraction

1− ω optimizes prices.
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The price set by the backward-looking rule of thumb is given by

P r
t = P a

t−1πt−1 or prt =
P r
t

Pt
=

(P a
t−1/Pt−1) πt−1

Pt/Pt−1

=
pat−1πt−1

πt
, (10)

where

P a
t = (P r

t )ω (P o
t )1−ω or pat =

P a
t

Pt
=

(
P r
t

Pt

)ω (
P o
t

Pt

)1−ω

= (prt )
ω (pot )

1−ω , (11)

and P o
t is the price set by optimizing firms in period t. The price P o

t maximizes the relevant

profit function

Et

∞∑
j=0

λjQt,t+j

(
Pt(i)

Pt+j
−mct+j(i)

)
Yt+j

(
Pt(i)

Pt+j

)−θ
,

where Qt,t+j is the stochastic discount factor between period t and period t+ j.

The first-order condition for the optimized price P o
t becomes

Et

∞∑
j=0

(βλ)j
Ξt+j

Ξt

Yt+j
Yt

j∏
k=1

πθt+k

(
pot

j∏
k=1

1

πt+k
− θ

θ − 1
mcot+j

)
= 0, (12)

where the equilibrium condition Qt,t+j = βjΞt+j/Ξt is used and mcot+j denotes period-t + j

real marginal cost of firms that optimize prices in period t. From (1), (2), (4), (6), (7), and

(9), it follows that the marginal cost is given by

mcot+j =

(
pot

j∏
k=1

1

πt+k

)−θ/η(
Yt+j
At+j

)1/η(
Yt+j
At+j

− hYt+j−1

At+j

)
. (13)

Under the staggered price-setting, the final-good price equation (5) can be rewritten as

1 = (1− λ)
[
(1− ω)(pot )

1−θ + ω (prt )
1−θ
]

+ λπθ−1
t . (14)

2.3 Central bank

The central bank conducts monetary policy according to a Taylor-type rule. This rule adjusts

the policy rate rt in response to inflation πt, the output gap xt, and output growth Yt/Yt−1

in the presence of policy-rate smoothing:

log rt = φr log rt−1+(1−φr)
[
log r + φπ(log πt − log π) + φx log xt + φ∆y

(
log

Yt
Yt−1

− log a

)]
+zr,t,

(15)
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where the output gap is defined as

xt =
Yt
Y n
t

, (16)

Y n
t is the natural rate of output, zr,t is a monetary policy shock, r ≥ 1 is the steady-state

(gross) policy rate, π is the steady-state value of πt and represents the (gross) rate of trend

inflation, φr ∈ [0, 1) is the degree of policy-rate smoothing, and φπ, φx, φ∆y are the degrees

of policy responses to inflation, the output gap, and output growth.

By considering flexible prices (i.e., λ = ω = 0) in the intermediate-good price equation

(12) and the final-good price equation (14) and combining the resulting two equations with

the marginal cost equation (13), we can derive the law of motion for the natural rate of

output (
Y n
t

At

)1+1/η

=
θ − 1

θ
+ h

(
Y n
t

At

)1/η Y n
t−1

At
. (17)

2.4 Equilibrium conditions

The equilibrium conditions consist of (1), (3), (6), (8), (10)–(16), and (17). For the steady

state to be well defined, the following condition is assumed:

λmax(πθ−1, βπθ(1+1/η)) < 1. (18)

Combining the equilibrium conditions, rewriting the resulting conditions in terms of the

detrended variables yt = Yt/At and ynt = Y n
t /At, and log-linearizing the conditions under the

assumption (18) yields

π̂t = γb π̂t−1 + γfEtπ̂t+1 + κ ŷt +
hκλ
a− h

(ŷt − ŷt−1 + za,t) + ψt, (19)

ψt = γψEtψt+1 + κψ(Etŷt+1 − ŷt + Etza,t+1 + θEtπ̂t+1 − r̂t), (20)

ŷt =
h

a+ h
(ŷt−1 − za,t) +

a

a+ h
(Etŷt+1 + Etza,t+1)− a− h

a+ h
(r̂t − Etπ̂t+1 + Etzu,t+1 − zu,t),

(21)

r̂t = φrr̂t−1 + (1− φr)[φππ̂t + φxx̂t + φ∆y(ŷt − ŷt−1 + za,t)] + zr,t, (22)

x̂t = ŷt − ŷnt , (23)

ŷnt =
hη

a(1 + η)− h
(
ŷnt−1 − za,t

)
, (24)
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where hatted variables denote log-deviations from steady-state values, ψt is an auxiliary

variable, and the coefficients in (19) and (20) are given by γb = ω/ϕ, γf = βλπθ(1+1/η)/ϕ,

κ = κλ(1 + 1/η), κλ = (1 − λπθ−1)(1 − βλπθ(1+1/η))(1 − ω)/[ϕ(1 + θ/η)], γψ = βλπθ−1,

κψ = γψ(π1+θ/η−1)(1−λπθ−1)(1−ω)/[ϕ(1+θ/η)], and ϕ = λπθ−1+ω(1−λπθ−1+βλπθ(1+1/η)).

Eq. (19) is the GNK Phillips curve, where all the coefficients γb, γf , κ, and κλ depend on

the level of trend inflation π; (20) is the forward-looking equation for the variable ψt, which

appears in the Phillips curve and thus drives inflation in response to expected changes in

future demand and discount rates on future profits under non-zero trend inflation; (21) is

the spending Euler equation; (22) is the Taylor-type monetary policy rule; and (23) and (24)

are the equations for the output gap and the natural rate of output, respectively.

Each of the three shocks zj,t, j ∈ {u, a, r} is assumed to follow the stationary first-order

autoregressive process

zj,t = ρjzj,t−1 + εj,t, (25)

where ρj ∈ [0, 1) is the autoregressive parameter and εj,t ∼ i.i.d.N(0, σ2
j ) is the innovation

to each shock.

2.5 Canonical New Keynesian models

The GNK model presented above is estimated and used for analyzing the source of the

U.S. economy’s shift from determinacy of equilibrium to indeterminacy after the Great In-

flation. Prior to the analysis, the GNK model is compared with two types of CNK models

in terms of empirical performance.

One type of CNK model is a CNK counterpart to the GNK model. It is based on Galí

and Gertler (1999) and thus called the GG-CNK model. This model can be derived by

altering the GNK model so that firms that keep prices unchanged in the aforementioned

setting update prices using indexation to trend inflation π as in Yun (1996). Consequently,

the GG-CNK model consists of (21)–(25) and the NK Phillips curve

π̂t = γb,cnk π̂t−1 + γf,cnkEtπ̂t+1 + κcnk ŷt +
hκλ,cnk
a− h

(ŷt − ŷt−1 + za,t), (26)

where γb,cnk = ω/ϕ1, γf,cnk = βλ/ϕ1, κcnk = κλ,cnk(1 + 1/η), κλ,cnk = (1 − λ)(1 − βλ)(1 −

ω)/[ϕ1(1 + θ/η)], and ϕ1 = λ + ω(1 − λ + βλ). This implies that the GNK model and

11



its CNK counterpart—the GG-CNK model—coincide only when trend inflation is zero (i.e.,

π = 1). Hence, the GNK model does not literally generalize its CNK counterpart. Therefore,

we also consider an NK model that nests both the GNK and the GG-CNK models, by

altering the GNK model so that firms that keep prices unchanged in the model update

prices using indexation to trend inflation π with the degree α ∈ [0, 1]. This model, referred

to as the nested model, differs from the GNK model only in the coefficients of the GNK

Phillips curve (19) and the auxiliary-variable equation (20), which are given by γb = ω/ϕ,

γf = βλπθ(1+1/η)(1−α)/ϕ, κλ = (1 − λπ(θ−1)(1−α))(1 − βλπθ(1+1/η)(1−α))(1 − ω)/[ϕ(1 + θ/η)],

γψ = βλπ(θ−1)(1−α), κψ = γψ(π(1+θ/η)(1−α) − 1)(1 − λπ(θ−1)(1−α))(1 − ω)/[ϕ(1 + θ/η)], and

ϕ = λπ(θ−1)(1−α) + ω(1 − λπ(θ−1)(1−α) + βλπθ(1+1/η)(1−α)). The nested model includes the

GNK model and the GG-CNK model as the special cases of α = 0 and α = 1, respectively.

The other type of CNK model incorporates price indexation to past and trend inflation

as in Smets and Wouters (2007) and has been extensively used in empirical studies. This

model, called the SW-CNK model, can be derived by altering the GNK model so that

each period a fraction λ of firms updates prices using indexation to recent past inflation

πt−1 and trend inflation π with the relative past-inflation weight ωsw ∈ [0, 1], while the

remaining fraction 1 − λ sets prices optimally. The SW-CNK model differs from the GG-

CNK model only in the coefficients of the NK Phillips curve (26), γb,cnk, γf,cnk, κcnk, and

κλ,cnk, which are given by γb,cnk = ωsw/ϕsw, γf,cnk = β/ϕsw, κcnk = κλ,cnk(1 + 1/η), κλ,cnk =

(1− λ)(1− βλ)/[λϕsw(1 + θ/η)], and ϕsw = 1 + βωsw.

3 Estimation Strategy and Data

This section describes the strategy and data for estimating the GNK model, the two types

of CNK models, and the nested model, which are all presented in the preceding section.

These models are estimated using a full-information Bayesian approach based on Lubik and

Schorfheide (2004). Specifically, each model’s likelihood function is constructed not only

for the determinacy region of the model’s parameter space but also for the indeterminacy

region.18 The likelihood function can then exhibit discontinuity at the boundary of each

18The full-information Bayesian approach of Lubik and Schorfheide (2004) allows for indeterminate equi-

librium by including a sunspot shock and its related arbitrary coefficient matrix in solutions to linear rational

12



region.19 As a consequence, the posterior distribution for parameters in the model is possibly

multimodal, and thus the widely used RWMH algorithm can get stuck near a local mode and

fail to find the entire posterior distribution for the parameters. To deal with this problem, the

SMC algorithm developed by Herbst and Schorfheide (2014, 2015) is adopted to generate

the posterior distribution.20 The SMC algorithm can overcome the problem inherent in

multimodality by building a particle approximation to the posterior distribution gradually

through tempering the likelihood function.

In this section we begin by explaining the method for solving linear rational expectations

(henceforth LRE) models under indeterminacy. We then account for how Bayesian inferences

over both determinacy and indeterminacy regions of the parameter space are made with the

SMC algorithm. Moreover, we present the data and prior distributions used in estimation.

3.1 Rational expectations solutions under indeterminacy

Lubik and Schorfheide (2003) derive a full set of solutions to LRE models by extending

the solution algorithm developed by Sims (2002).21 Any LRE model can be written in the

canonical form

Γ0(ϑ)st = Γ1(ϑ)st−1 + Ψ(ϑ)εt + Π(ϑ)ξt, (27)

where Γ0(ϑ), Γ1(ϑ), Ψ(ϑ), and Π(ϑ) are coefficient matrices that depend on model parameters

ϑ, st is a vector of endogenous variables including those expected at time t, εt is a vector

of fundamental shocks, and ξt is a vector of forecast errors. Specifically, in the GNK model,

expectations models. By estimating the coefficient matrix with a fairly loose prior, a set of particular solu-

tions that are the most consistent with data can be selected from a full set of solutions.
19With a univariate model, Lubik and Schorfheide (2004) illustrate discontinuity of the model’s likelihood

function that is constructed for both determinacy and indeterminacy regions of its parameter space.
20Creal (2007) is the first paper that uses an SMC algorithm in Bayesian estimation of a dynamic stochastic

general equilibrium model.
21Sims (2002) generalizes the solution algorithm of Blanchard and Kahn (1980) and characterizes one

particular solution in the case of indeterminacy. In this solution, the contribution to forecast errors of

fundamental shocks and that of sunspot shocks are orthogonal.
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these vectors are given by

st = [ŷt, π̂t, r̂t, ŷ
n
t , x̂t, ψt, zu,t, za,t, zr,t, Etŷt+1, Etπ̂t+1, Etψt+1]′,

εt = [εu,t, εa,t, εr,t]
′,

ξt = [(ŷt − Et−1ŷt), (π̂t − Et−1π̂t), (ψt − Et−1ψt)]
′.

According to Lubik and Schorfheide (2003), a full set of solutions to the LRE model (27)

is of the form

st = Φx(ϑ)st−1 + Φε(ϑ, M̃)εt + Φζ(ϑ)ζt, (28)

where Φx(ϑ), Φε(ϑ, M̃), and Φζ(ϑ) are coefficient matrices, M̃ is an arbitrary matrix, and ζt

is a reduced-form sunspot shock, which is a non-fundamental disturbance.22 For estimation,

it is assumed that ζt ∼ i.i.d.N(0, σ2
ζ ). In the case of determinacy, the solution (28) is reduced

to

st = ΦD
x (ϑ) st−1 + ΦD

ε (ϑ) εt. (29)

The solution (28) shows two key features under indeterminacy. First, the dynamics of the

LRE model is driven not only by the fundamental shocks εt but also by the sunspot shock

ζt. Second, the solution cannot be unique due to the presence of the arbitrary matrix M̃ ,

that is, the LRE model induces indeterminate solutions. Thus, to specify the law of motion

of the endogenous variables st, the matrix M̃ must be pinned down.

The arbitrary matrix M̃ is inferred from the data used in estimation, following Lubik

and Schorfheide (2004). The prior distribution for M̃ is set so that it is centered around

the matrix M∗(ϑ) given in a particular solution. That is, M̃ is replaced with M∗(ϑ) +

M , and M is estimated with prior mean zero. The matrix M∗(ϑ) is selected so that the

contemporaneous impulse responses of endogenous variables to fundamental shocks (i.e.,

∂st/∂εt) are continuous at the boundary between determinacy and indeterminacy regions of

the parameter space. More specifically, for each set of ϑ, the procedure searches for a vector

22Lubik and Schorfheide (2003) originally express the last term in (28) as Φζ(θ,Mζ)ζt, where Mζ is an

arbitrary matrix and ζt is a vector of sunspot shocks. For identification, Lubik and Schorfheide (2004) impose

the normalization Mζ = 1 with the dimension of the sunspot shock vector being unity. Such a normalized

shock is referred to as a “reduced-form sunspot shock” in that it contains beliefs associated with all the

expectational variables.
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ϑ∗ that lies on the boundary of the determinacy region, and selects M∗(ϑ) that minimizes

the discrepancy between ∂st/∂εt(ϑ,M∗(ϑ)) and ∂st/∂εt(ϑ∗) using a least-squares criterion.

In the search for ϑ∗, the procedure finds ϑ∗ numerically by perturbing the parameter φπ in

the monetary policy rule (22), given the other parameters in ϑ.

3.2 Bayesian inference with a sequential Monte Carlo algorithm

The LRE model is estimated using a full-information Bayesian approach that extends the

model’s likelihood function to the indeterminacy region of the parameter space. Following

Lubik and Schorfheide (2004), the likelihood function for a sample of observations XT =

[X1, ..., XT ]′ is given by

p(XT |ϑ,M) = 1{ϑ ∈ ΘD} pD(XT |ϑ) + 1{ϑ ∈ ΘI} pI(XT |ϑ,M),

where ΘD and ΘI are the determinacy and indeterminacy regions of the parameter space;

1{ϑ ∈ Θi}, i ∈ {D, I} is the indicator function that equals one if ϑ ∈ Θi and zero otherwise;

and pD(XT |ϑ) and pI(XT |ϑ,M) are the likelihood functions of the state-space models that

consist of observation equations and either the determinacy solution (29) or the indetermi-

nacy solution (28). Then, by Bayes’ theorem, updating a prior distribution p(ϑ,M) with the

sample XT leads to the posterior distribution

p(ϑ,M |XT ) =
p(XT |ϑ,M)p(ϑ,M)

p(XT )
=

p(XT |ϑ,M)p(ϑ,M)∫
p(XT |ϑ,M)p(ϑ,M)dϑ · dM

.

To approximate the posterior distribution, this paper exploits the generic SMC algo-

rithm with likelihood tempering described in Herbst and Schorfheide (2014, 2015). In the

algorithm, a sequence of tempered posteriors are defined as

$n(ϑ) =
[p(XT |ϑ,M)]τnp(ϑ,M)∫

[p(XT |ϑ,M)]τnp(ϑ,M)dϑ · dM
, n = 0, ..., Nτ .

The tempering schedule {τn}Nτn=0 is determined by τn = (n/Nτ )
χ, where χ is a parameter

that controls the shape of the tempering schedule. The SMC algorithm generates parameter

draws ϑ(i)
n ,M

(i)
n and associated importance weights w(i)

n —which are called particles—from the

sequence of posteriors {$n}Nτn=1; that is, at each stage, $n(ϑ) is represented by a swarm of

particles {ϑ(i)
n ,M

(i)
n , w

(i)
n }Ni=1, where N denotes the number of particles.23 For n = 0, ..., Nτ ,

23We make use of parallelization in the evaluation of the importance weights w(i)
n for i = 1, ..., N .
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the algorithm sequentially updates the swarm of particles {ϑ(i)
n ,M

(i)
n , w

(i)
n }Ni=1 through im-

portance sampling.24 Posterior inferences about parameters to be estimated are made based

on the particles {ϑ(i)
Nτ
,M

(i)
Nτ
, w

(i)
Nτ
}Ni=1 from the final importance sampling. The SMC-based

approximation of the marginal data density is given by

p(XT ) =
Nτ∏
n=1

(
1

N

N∑
i=1

w̃(i)
n w

(i)
n−1

)
,

where w̃(i)
n is the incremental weight defined as w̃(i)

n = [p(XT |ϑ(i)
n−1,M

(i)
n−1)]τn−τn−1 .

In the subsequent empirical analysis, the SMC algorithm uses N = 10, 000 particles and

Nτ = 200 stages. The parameter that controls the tempering schedule is set at χ = 2

following Herbst and Schorfheide (2014, 2015).

3.3 Data

Our estimation is performed using three U.S. time series on the quarterly frequency: the

per-capita real GDP growth rate (100∆ log Yt), the inflation rate of the GDP implicit price

deflator (100 log πt), and the federal funds rate (100 log rt). The observation equations that

relate the data to model variables are given by
100∆ log Yt

100 log πt

100 log rt

 =


ā

π̄

r̄

+


ŷt − ŷt−1 + za,t

π̂t

r̂t

 ,
where ā = 100(a− 1), π̄ = 100(π − 1), and r̄ = 100(r − 1).

To examine the U.S. economy’s shift from indeterminacy to determinacy, that is, U.S. macroe-

conomic stability after the Great Inflation of the 1970s, the estimation is conducted for two

periods: the pre-1979 period from 1966:Q1 to 1979:Q2 and the post-1982 period from 1982:Q4

to 2008:Q4.25 Following Lubik and Schorfheide (2004), the Volcker disinflation period from

1979:Q3 to 1982:Q3 is excluded.

24This process includes one step of a single-block RWMH algorithm.
25Because the post-1982 period ends before the nominal interest rate reached its effective lower bound,

the non-linearity arising from the lower bound is not a critical issue for our estimation strategy.
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3.4 Fixed parameters and prior distributions

Before the estimation, the elasticity of labor supply and the elasticity of substitution between

intermediate goods are fixed at η = 1 and θ = 9.32 to avoid an identification issue. The

former value is a standard one in the macroeconomic literature, while the latter is the

estimate of Ascari and Sbordone (2014). All the other parameters are estimated; their prior

distributions are shown in Table 1.26

The prior mean of the steady-state (quarterly) rates of output growth, inflation, and

nominal interest ā, π̄, r̄ is set at their respective averages over the period from 1966:Q1 to

2008:Q4. The prior distributions for the structural and policy parameters—h (spending habit

persistence), ω (fraction of backward-looking rule-of-thumb price-setters) or ωsw (relative

weight on past inflation in price indexation), λ (probability of no price change or price-

setting by indexation), φr (policy-rate smoothing), φπ (policy response to inflation), φx

(policy response to the output gap), φ∆y (policy response to output growth)—are based on

Smets and Wouters (2007).27 For the GNK model, these distributions generate the prior

probability of equilibrium determinacy of 0.482, which is almost even, thus indicating that

there is a priori no substantial bias toward determinacy or indeterminacy.28 In the same

vein, for the SW-CNK model, the GG-CNK model, and the nested model, the prior mean

of φπ is set at 1.125, 1.1, and 1.245, so that the prior probability of determinacy is 0.481,

0.485, and 0.484, respectively.

Regarding the structural shocks, the prior distributions for the autoregressive parameters

ρi, i ∈ {u, a, r} are beta distributions with mean of 0.5 and standard deviation of 0.2, while

those for the standard deviations of the shock innovations σi, i ∈ {u, a, r} are inverse gamma

distributions with mean of 0.63 and standard deviation of 0.33. As for the indeterminacy

solution, the priors for the coefficients Mi, i ∈ {u, a, r} are normal distributions with mean

zero and standard deviation of unity, while that for the standard deviation of the sunspot

26For the subjective discount factor β, the steady-state condition β = πa/r is used in estimation.
27For α (degree of price indexation to trend inflation in the nested model), the prior is the uniform

distribution between zero and unity.
28The prior probability of equilibrium determinacy can be computed as the prior distributions’ probability

mass assigned to the determinacy region of the parameter space.
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shock σζ is the same as those for the standard deviations of the structural shock innovations.29

4 Results of Empirical Analysis

This section presents the results of the empirical analysis. First, we discuss the estimation

results. Then, we address the paper’s main question of what led to the U.S. economy’s shift

from indeterminacy of equilibrium to determinacy after the Great Inflation.

4.1 Estimation results

This subsection begins by comparing the empirical performance among the GNK model,

the two types of CNK models, and the nested model. Tables 2 and 3 report the posterior

estimates of these four models in the pre-1979 and the post-1982 periods, respectively. The

second to last row of each table presents the log marginal data densities log p(XT ) and shows

that the value for the GNK model (i.e., −128.05) is the largest in the pre-1979 period, while

that for the SW-CNK model (i.e., −64.43) is the greatest in the post-1982 period. Besides,

in both periods, the GG-CNK model has the smallest values, and the values for the nested

model are intermediate between those for the GNK model and for the GG-CNK model. Thus

we focus on the GNK model and the SW-CNK model in the subsequent analysis.

In light of the empirical result of Cogley and Sbordone (2008) that there is no need for

backward-looking components in an NK Phillips curve when drift in trend inflation is taken

into account, we estimate the GNK and the SW-CNK models with no inertia in inflation

(i.e., ω = 0 in the GNK model and ωsw = 0 in the SW-CNK model). Table 4 shows the

posterior estimates of the GNK and the SW-CNK models with no inflation inertia in the

pre-1979 and the post-1982 periods. The log marginal data densities log p(XT ) shown in

the second to last row of the table indicate two findings. First, the GNK and the SW-CNK

models without inflation inertia exhibit higher densities than those with it in both periods:

for the GNK (SW-CNK) model, −121.23 > −128.05 (−124.62 > −130.43) in the pre-1979

29We also considered an alternative prior for the indeterminacy solution that is centered at the orthogonal-

ity solution proposed by Sims (2002), which is mentioned in footnote 21. We then obtained similar posterior

estimates to those which are shown below and confirmed the robustness of our main results.
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period and −53.66 > −65.98 (−56.87 > −64.43) in the post-1982 period. Second, the GNK

model with ω = 0 has larger densities than the SW-CNK model with ωsw = 0 in both

periods. Therefore, the GNK model with no inertia of inflation is more suitable than any

other models considered for the analysis of what led to U.S. macroeconomic stability after the

Great Inflation, which has been examined using CNK models in previous literature. In other

words, the feature of the GNK model that some prices remain unchanged in each quarter

is not only more consistent with micro evidence on price-setting, but also contributes to a

better fit of the model to the U.S. macroeconomic time series.

The posterior probability of equilibrium determinacy P{ϑ ∈ ΘD|XT} is reported in the

last row of Table 4.30 For both the GNK model with ω = 0 and the SW-CNK model with

ωsw = 0, the probability of determinacy is almost zero in the pre-1979 period, whereas

it is unity in the post-1982 period. Hence, both models share the estimation result that

the U.S. economy was likely in the indeterminacy region of the parameter space before

1979, while the economy likely entered the determinacy region after 1982, in line with the

result obtained in previous literature. However, there is an important difference between the

estimation results of the two models. In the CNK model, the policy response to inflation

φπ was passive (i.e., less than unity: 0.44 < 1) in the pre-1979 period and then became

active (i.e., greater than unity: 2.85 > 1) in the post-1982 period. This result is consistent

with that obtained in the literature, and thus the CNK model confirms the literature’s view

that ascribes the U.S. economy’s shift from indeterminacy to determinacy after the Great

Inflation to the Fed’s change from a passive to an active policy response to inflation. On the

other hand, the GNK model shows that the policy response to inflation was already active

(i.e., 1.25 > 1) during the pre-1979 period, in sharp contrast with the literature’s view.31

This finding is consistent with the theoretical result of previous studies, including Ascari

and Ropele (2009) and Coibion and Gorodnichenko (2011), that an active policy response to

inflation—the Taylor principle—is not a sufficient condition for determinacy of equilibrium in

GNK models.32 Because the GNK model outperforms the CNK model during both periods

30The posterior probability of equilibrium determinacy can be calculated as the posterior distribution’s

probability mass assigned to the determinacy region of the parameter space.
31The posterior probability of the policy response to inflation φπ being active is 0.58.
32 For an estimated Taylor-type rule, Orphanides (2004) obtains an active response to expected future
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in terms of the fit to the data, our finding is more compelling than the literature’s view.

In the GNK model with ω = 0, the second and sixth columns of Table 4 show that four

of the estimated parameters changed substantially between the pre-1979 and the post-1982

periods.33 First, trend inflation fell by more than half from π̄ = 1.44 to π̄ = 0.69 in quarterly

terms. Second, the policy response to inflation more than doubled from φπ = 1.25 in the pre-

1979 period to φπ = 3.00 in the post-1982 period. Third, the policy response to the output

gap decreased by more than half from φx = 0.29 to φx = 0.10. Fourth, the policy response

to output growth increased by more than three times from φ∆y = 0.14 to φ∆y = 0.54. These

four changes suggest that the Fed in the post-1982 period was inclined not only to conduct

a disinflation policy by lowering its implicit inflation target to a moderate level and raising

the policy response to inflation, but also to disregard the output gap and put more emphasis

on output growth as an indicator of real economic activity. The last finding is compatible

with the argument of Orphanides (2001), who suggests that monetary policy should put

less emphasis on the output gap because such a gap involves great uncertainty about the

measurement of unobservable potential output.

Comparing the standard deviations of the structural shock innovations in the GNK model

with ω = 0 between the pre-1979 and the post-1982 periods, one may wonder why the esti-

mated standard deviations of innovations to the preference and technology shocks are smaller

in the pre-1979 period than in the post-1982 period, although the economy was much more

volatile in the former period. The reasons are twofold. First, under indeterminacy—which

characterizes the pre-1979 period—the sunspot shock additionally affects the equilibrium

dynamics and causes higher volatilities of endogenous variables. Second, the propagation of

shocks is enhanced by the weaker monetary policy responses to inflation and output growth

under indeterminacy in the pre-1979 period.34 To confirm that the estimated model can

inflation in the pre-1979 period and thus claims that self-fulfilling expectations cannot be the source of

U.S. macroeconomic instability during the Great Inflation. This claim, however, does not necessarily hold for

the GNK model (because an active policy response to inflation is not a sufficient condition for determinacy).
33We conducted the (local) identification analysis proposed by Iskrev (2010) and confirmed that all the

estimated parameters of the GNK model with no inflation inertia (i.e., ω = 0) are identified.
34Technically, the solution under indeterminacy can generate richer dynamics and induce higher volatilities

of endogenous variables, compared with that under determinacy, because fewer roots of the matrix Φx(ϑ) in

(28) are suppressed.
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replicate the higher volatilities of observed variables in the pre-1979 period than in the post-

1982 period, Table 5 reports the variances of output growth, inflation, and the interest rate

implied by the GNK model with ω = 0 as well as those in the data. The variances of the

three observed variables implied by the GNK model in the pre-1979 period are, respectively,

1.72, 0.47, and 0.44, which are all larger than their counterparts in the post-1982 period,

0.64, 0.12, and 0.28.

Before proceeding to the main question of the paper, it is worth noting that the sunspot

shock plays a key role in the GNK model during the Great Inflation, whereas the technology

shock is of importance in the SW-CNK model. Figures 1 and 2 display the impulse responses

of the three observed variables—output growth, inflation, and the interest rate—to each

shock in the GNK model with ω = 0 and the SW-CNK model with ωsw = 0 during the

pre-1979 and the post-1982 periods, respectively.35 While Figure 2 exhibits little substantial

difference between the GNK and the SW-CNK models in the impulse responses during the

post-1982 period, Figure 1 illustrates some crucial differences. In the SW-CNK model, the

technology shock generates not only a negative comovement between inflation and output

growth but also a positive one between inflation and the interest rate. This can account for

the Great Inflation, where high inflation and low economic growth—stagflation—occurred

with an accommodative monetary policy (i.e., the passive monetary policy). The estimated

standard deviation of the technology shock innovation σa, shown in Table 4, indicates the

importance of the shock in the SW-CNK model; that is, the estimate of σa is larger in the

SW-CNK model with ωsw = 0 than in the GNK model with ω = 0. By contrast, in the

GNK model, the technology shock brings about a weak response of inflation and a negative

comovement between inflation and the interest rate, which are both ascribed to the weakly

active monetary policy. Instead of the technology shock, the sunspot shock gives rise to a

strong response of inflation and a positive comovement between inflation and the interest

rate, as well as a negative one between inflation and output growth. Thus, the sunspot shock

plays a key role in explaining the Great Inflation in the GNK model.

35Figure 2 has no panels for impulse responses to the sunspot shock. In both models, the posterior

probability of equilibrium determinacy during the post-1982 period is unity, and thus there is no role of the

sunspot shock in the period.
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4.2 Source of the U.S. economy’s shift from indeterminacy to de-

terminacy

This subsection addresses the paper’s main question of what led to the U.S. economy’s shift

from indeterminacy to determinacy after the Great Inflation. In light of the estimation

results in the preceding subsection, the present analysis examines the source of the shift by

focusing on the changes in trend inflation and policy responses to inflation, the output gap,

and output growth from the pre-1979 to the post-1982 estimates in the GNK model with no

inflation inertia (i.e., ω = 0).

Figure 3 illustrates how the determinacy region of the GNK model’s parameter space for

the annualized trend inflation rate 4π̄ and the policy response to inflation φπ expands with

changes in the other model parameters. In each panel of the figure, the marks “×”, “∗”, and

“o” respectively represent the pairs of (4π̄pre79, φpre79
π ), (4π̄pre79, φpost82

π ), and (4π̄post82, φpost82
π ),

where π̄pre79 and φpre79
π denote the posterior mean estimates of the trend inflation rate and

the policy response to inflation during the pre-1979 period presented in the second column

of Table 4, and π̄post82 and φpost82
π denote those during the post-1982 period presented in the

sixth column of the table.

Panel (a) shows the case in which all the model parameters (except trend inflation and

the policy response to inflation) are fixed at the pre-1979 estimates (presented in the second

column of Table 4). In this panel, the pair of the pre-1979 estimates of trend inflation

and the policy response to inflation (4π̄pre79, φpre79
π )—which is represented by “×”—lies in

the indeterminacy region of the parameter space, in line with the estimation result that

the posterior probability of determinacy during the pre-1979 period is almost zero. The

panel also demonstrates that the pair of the pre-1979 estimate of trend inflation and the

post-1982 estimate of the policy response to inflation (4π̄pre79, φpost82
π )—which is denoted by

“∗”—is also located within the indeterminacy region. This indicates that the increase in

the policy response to inflation from the pre-1979 estimate φpre79
π to the post-1982 estimate

φpost82
π alone does not suffice for explaining the shift from indeterminacy to determinacy.

Moreover, the pair of the post-1982 estimates of trend inflation and the policy response to

inflation (4π̄post82, φpost82
π )—which is represented by “o”—lies inside the determinacy region.

This finding suggests that the shift can be explained by the fall in trend inflation from the
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pre-1979 estimate 4π̄pre79 to the post-1982 estimate 4π̄post82 along with the increase in the

policy response to inflation.

Panel (b) displays the case in which the policy responses to the output gap and output

growth, φx and φ∆y, are set at the post-1982 estimates (presented in the sixth column

of Table 4), keeping the other model parameters fixed at the pre-1979 estimates. As the

difference between panels (a) and (b) shows, the change in the policy responses to the

output gap and output growth from the pre-1979 to the post-1982 estimates significantly

expands the determinacy region. As a consequence, in panel (b), the pair of the pre-1979

estimates of trend inflation and the policy response to inflation (4π̄pre79, φpre79
π ) is located

in the indeterminacy region, whereas the pair of the pre-1979 estimate of trend inflation

and the post-1982 estimate of the policy response to inflation (4π̄pre79, φpost82
π ) lies inside the

determinacy region. This finding indicates that the decrease in the policy response to the

output gap and the increase in the response to output growth, along with the rise in the

response to inflation, can account for the shift from indeterminacy to determinacy, regardless

of the fall in trend inflation.36

Panel (c) presents the case in which all the model parameters are set at the post-1982

estimates. In this panel, the pair of the post-1982 estimates of trend inflation and the policy

response to inflation (4π̄post82, φpost82
π ) is located inside the determinacy region, in line with

the estimation result that the posterior probability of determinacy during the post-1982

period is unity. Panel (c) is not so different from panel (b), suggesting that the change

from the pre-1979 to the post-1982 estimates of all the model parameters other than trend

inflation and the policy responses to inflation, the output gap, and output growth plays a

minor role in accounting for the shift from indeterminacy to determinacy.

These panels demonstrate that the increase in the policy response to inflation from the

pre-1979 to the post-1982 estimate alone does not suffice for explaining the U.S. economy’s

shift from indeterminacy to determinacy after the Great Inflation, unless it is accompanied

by either the estimated fall in trend inflation or the estimated change in policy responses

to the output gap and output growth. Taking into consideration that trend inflation is

36In a GNK model with a Taylor-type rule, the destabilizing role of the policy response to the output gap

is indicated by Ascari and Ropele (2009), while the stabilizing role of the policy response to output growth

is pointed out by Coibion and Gorodnichenko (2011).
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equivalent to the central bank’s inflation target in the model, this finding indicates that the

changes in the Fed’s implicit inflation target and policy responses to real economic activity

have played a key role in the shift to determinacy, in addition to its more active response to

inflation.

5 Conclusion

This paper has revisited a large literature’s view that U.S. macroeconomic stability after

the Great Inflation of the 1970s was achieved by the Fed’s change from a passive to an

active policy response to inflation. The paper has estimated a GNK model jointly with a

Taylor-type rule during two periods, before and after the Volcker disinflation of 1979–1982,

by adopting an SMC algorithm in a full-information Bayesian approach based on Lubik and

Schorfheide (2004). Our estimation results have shown that, in both periods, the GNK

model (with no inertia in inflation) empirically outperforms two types of CNK models used

in previous literature. This indicates that the GNK model is more suitable than the two

CNK models for analyzing the source of the U.S. macroeconomic stability.

According to the estimated GNK model, the U.S. economy was likely in the equilibrium-

indeterminacy region of the model’s parameter space before 1979, while it likely entered the

determinacy region after 1982, in line with the result obtained in the literature. However,

the policy response to (current) inflation was active even during the pre-1979 period, in

addition to the post-1982 period, which contrasts sharply with the literature’s view that the

response to inflation was passive during the Great Inflation and that the subsequent change

to an active response led to the U.S. economy’s shift from indeterminacy to determinacy.

This paper has demonstrated that the increase in the policy response to inflation from the

pre-1979 to the post-1982 estimate alone does not suffice for explaining the shift, unless it

is accompanied by the change from the pre-1979 to the post-1982 estimates of either trend

inflation or the policy responses to the output gap and output growth. This finding extends

the literature on the role of monetary policy in achieving U.S. macroeconomic stability after

the Great Inflation, by emphasizing the importance of the changes in the Fed’s implicit

inflation target and responses to real economic activity.
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Appendix

A Another GNK Model (with Homogeneous Labor)

The GNK model employed in this paper considers firm-specific labor, as in Coibion and

Gorodnichenko (2011). In this section we analyze another type of GNKmodel, which assumes

homogeneous labor as in Ascari and Ropele (2009), and compare it with our GNK model in

terms of empirical performance.

A.1 Households

In the GNK model with homogeneous labor, the representative household supplies such labor

services lt. The utility function is of the form

E0

∞∑
t=0

βt exp(zu,t)

[
log(C̃t − hCt−1)− 1

1 + 1/η
l
1+1/η
t

]
,

and the budget constraint is given by

PtC̃t +Bt = PtWtlt + rt−1Bt−1 + Tt,

where Wt is the real wage rate of homogeneous labor.

The first-order conditions for utility maximization with respect to consumption and bond

holdings are the same as those in our GNK model (i.e., (1) and (3)), while that with respect

to labor supply is given by

Wt =
l
1/η
t exp(zu,t)

Ξt

. (30)

A.2 Firms

As for firms, there is no change in the setting of final-good firms, whereas all intermediate-

good firms’ first-order conditions for cost minimization lead to identical real marginal cost

mct(i) =
Wt

At
= mct. (31)

Moreover, the first-order condition for the optimized price P o
t becomes

Et

∞∑
j=0

(βλ)j
Ξt+j

Ξt

Yt+j
Yt

j∏
k=1

πθt+k

(
pot

j∏
k=1

1

πt+k
− θ

θ − 1
mct+j

)
= 0. (32)
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The labor market clearing condition, along with the demand curve (4), yields

lt =

∫ 1

0

lt(i)di =
Yt
At

∆t, (33)

where ∆t denotes relative price distortion and is given by

∆t =

∫ 1

0

(
Pt(i)

Pt

)−θ
di. (34)

Using (1), (6), (30), and (33), the real marginal cost (31) becomes

mct =

(
Yt
At

)1
η
(
Yt
At
− hYt−1

At

)
∆

1
η

t . (35)

Under the Calvo-style staggered price-setting, the relative price distortion equation (34)

can be rewritten as

∆t = λπθt∆t−1 + (1− λ)
[
(1− ω)(pot )

−θ + ω (prt )
−θ
]
. (36)

A.3 Equilibrium conditions

There are no changes in the settings of the central bank and the natural rate of output, and

thus the equilibrium conditions consist of (1), (3), (6), (8), (10), (11), (14), (16), (17), (32),

(35), and (36). For the steady state to be well defined, the following condition is assumed:

λmax(πθ−1, πθ) < 1. (37)

Combining the equilibrium conditions, rewriting the resulting conditions in terms of the

detrended variables yt = Yt/At and ynt = Y n
t /At, and log-linearizing the conditions under the

assumption (37) yields (21)–(24) as well as

π̂t = γb,hπ̂t−1 + γf,hEtπ̂t+1 + κhŷt +
hκλ,h
a− h

(ŷt − ŷt−1 + za,t) +
κλ,h
η

∆̂t + ψt, (38)

∆̂t = λπθ∆̂t−1 +
θλπθ−1(π − 1)

1− λπθ−1
π̂t, (39)

ψt = γψ,hEtψt+1 + κψ,h(Etŷt+1 − ŷt + Etza,t+1 + θEtπ̂t+1 − r̂t), (40)

where the coefficients are given by γb,h = ω/ϕh, γf,h = βλπθ/ϕh, κh = κλ,h(1 + 1/η), κλ,h =

(1− λπθ−1)(1− βλπθ)(1− ω)/ϕh, γψ,h = βλπθ−1, κψ,h = γψ,h(π − 1)(1− λπθ−1)(1− ω)/ϕh,

and ϕh = λπθ−1 + ω(1− λπθ−1 + βλπθ).

The GNK model with homogeneous labor differs from our GNK model (with firm-specific

labor) in that the GNK Phillips curve (19) depends additionally on the relative price distor-

tion ∆̂t.
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A.4 Empirical performance

The GNK model with homogeneous labor is also estimated using the same estimation strat-

egy and data as described in the paper. Table 6 reports the posterior estimates of the GNK

model with homogeneous labor in the pre-1979 and the post-1982 periods. The second to

last row of the table presents the log marginal data densities log p(XT ) and shows that

the model without inertia of inflation has a larger value than that with it in both periods:

−126.13 > −130.31 in the pre-1979 period and −55.89 > −62.80 in the post-1982 period.

Thus, there is no need for inflation inertia in the GNK model with homogeneous labor, in

line with our GNK model. Turning to the comparison of the two types of GNK models

(with no inflation inertia, i.e., ω = 0), our GNK model has larger values of the log marginal

data density than the other in both periods: −121.23 > −126.13 in the pre-1979 period

and −53.66 > −55.89 in the post-1982 period. Therefore, our GNK model empirically

outperforms the GNK model with homogeneous labor.
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Table 1: Prior distributions for parameters of the GNK model, the two types of CNK models,
and the nested model

Parameter Distribution Mean St. dev.
ā Normal 0.370 0.150
π̄ Normal 0.985 0.750
r̄ Gamma 1.597 0.250
h Beta 0.700 0.100
ω/ωsw Beta 0.500 0.150
λ Beta 0.500 0.050
φr Beta 0.750 0.100
φπ Gamma 1.5/1.125/1.1/1.245 0.750
φx Gamma 0.125 0.100
φ∆y Gamma 0.125 0.100
α Uniform 0.500 0.289
ρu Beta 0.500 0.200
ρa Beta 0.500 0.200
ρr Beta 0.500 0.200
σu Inverse gamma 0.627 0.328
σa Inverse gamma 0.627 0.328
σr Inverse gamma 0.627 0.328
σζ Inverse gamma 0.627 0.328
Mu Normal 0.000 1.000
Ma Normal 0.000 1.000
Mr Normal 0.000 1.000

Notes: The prior mean of the policy response to inflation φπ is set at 1.5 for the GNKmodel, 1.125 for the SW-
CNK model, 1.1 for the GG-CNK model, and 1.245 for the nested model. The prior probability of equilibrium
determinacy is then 0.482 for the GNK model, 0.481 for the SW-CNK model, 0.485 for the GG-CNK model,
and 0.484 for the nested model. Inverse gamma distributions are of the form p(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2

,
where ν = 4 and s = 0.5.
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Table 5: Variances of observed variables in the data and implied by the GNK model with
no inflation inertia

Output growth Inflation Interest rate
Pre-1979 period:

Data 1.031 0.299 0.284
GNK model: ω = 0 1.717 0.473 0.436

Post-1982 period:
Data 0.420 0.068 0.0391
GNK model: ω = 0 0.638 0.120 0.275

Note: This table shows the variances of the three observed variables—output growth, inflation, and the
interest rate—in the data and those implied by the GNK model with no inflation inertia (i.e., ω = 0) using
the posterior mean estimates of parameters.
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ā
0.
48

3
[0
.2
71

,0
.6
65

]
0.
38

0
[0
.1
79

,0
.6
08

]
0.
42

5
[0
.2
85

,0
.5
58

]
0.
42

5
[0
.2
90

,0
.5
63

]
π̄

1.
41

3
[1
.1
12

,1
.5
74

]
1.
49
3

[1
.2
10

,1
.8
40

]
0.
68

4
[0
.5
73

,0
.8
03

]
0.
67

9
[0
.5
80

,0
.7
77

]
r̄

1.
65

5
[1
.3
93

,1
.8
67

]
1.
70
2

[1
.4
40

,1
.9
76

]
1.
43

4
[1
.1
73

,1
.6
92

]
1.
43

4
[1
.1
63

,1
.7
01

]
h

0.
52

1
[0
.4
18

,0
.6
08

]
0.
49
6

[0
.3
86

,0
.6
14

]
0.
45

8
[0
.3
66

,0
.5
43

]
0.
45

3
[0
.3
61

,0
.5
38

]
ω

0.
17

5
[0
.0
99

,0
.2
95

]
0

–
0.
16

4
[0
.0
73

,0
.2
56

]
0

–
λ

0.
49

1
[0
.4
41

,0
.5
72

]
0.
55
5

[0
.4
86

,0
.6
36

]
0.
53

1
[0
.4
57

,0
.6
04

]
0.
57

5
[0
.5
14

,0
.6
46

]
φ
r

0.
57

9
[0
.4
86

,0
.7
16

]
0.
65
7

[0
.4
88

,0
.8
01

]
0.
71

0
[0
.6
24

,0
.7
89

]
0.
70

3
[0
.6
22

,0
.7
88

]
φ
π

1.
05

8
[0
.2
82

,2
.1
55

]
0.
92
9

[0
.0
99

,2
.1
11

]
3.
57

9
[2
.5
98

,4
.5
40

]
3.
84

3
[2
.8
00

,4
.8
78

]
φ
x

0.
11

8
[0
.0
05

,0
.2
33

]
0.
18
8

[0
.0
02

,0
.3
53

]
0.
12

4
[0
.0
02

,0
.2
56

]
0.
13

0
[0
.0
00

,0
.2
55

]
φ

∆
y

0.
08

9
[0
.0
01

,0
.2
10

]
0.
13
9

[0
.0
15

,0
.2
49

]
0.
45

4
[0
.2
06

,0
.6
75

]
0.
39

1
[0
.1
61

,0
.6
16

]
ρ
u

0.
52

3
[0
.3
12

,0
.8
08

]
0.
59
4

[0
.2
46

,0
.8
80

]
0.
92

5
[0
.8
96

,0
.9
56

]
0.
93

3
[0
.9
04

,0
.9
62

]
ρ
a

0.
11

9
[0
.0
24

,0
.2
36

]
0.
23
0

[0
.0
57

,0
.3
95

]
0.
09

8
[0
.0
22

,0
.1
61

]
0.
14

5
[0
.0
72

,0
.2
16

]
ρ
r

0.
42

8
[0
.2
94

,0
.5
44

]
0.
36
1

[0
.2
22

,0
.5
21

]
0.
50

4
[0
.3
96

,0
.6
06

]
0.
44

8
[0
.3
51

,0
.5
47

]
σ
u

0.
79

3
[0
.3
02

,1
.3
62

]
0.
65
2

[0
.2
54

,1
.1
35

]
2.
20

0
[1
.4
86

,2
.9
14

]
2.
28

7
[1
.4
24

,3
.1
56

]
σ
a

1.
68

5
[1
.3
03

,2
.0
93

]
1.
62
4

[1
.2
40

,2
.0
20

]
0.
95

9
[0
.7
96

,1
.1
11

]
0.
92

3
[0
.7
88

,1
.0
72

]
σ
r

0.
30

1
[0
.2
18

,0
.4
15

]
0.
30
7

[0
.2
19

,0
.4
30

]
0.
24

9
[0
.1
95

,0
.3
04

]
0.
26

5
[0
.2
06

,0
.3
28

]
σ
ζ

0.
44

9
[0
.2
78

,0
.6
91

]
0.
41
0

[0
.2
57

,0
.5
77

]
–

–
–

–
M

u
0.
19

3
[−

1.
01

6,
1.
14

3]
0.
23

9
[−

0.
55

6,
1.
07

6]
–

–
–

–
M

a
−

0.
12

2
[−

1.
27

5,
0.
87

6]
−

0.
02

2
[−

0.
89

4,
0.
59

1]
–

–
–

–
M

r
−

1.
26

5
[−

3.
00

5,
0.
33

1]
−

1.
34

9
[−

3.
31

6,
0.
79

5]
–

–
–

–
lo

g
p(
X
T

)
−

13
0.

31
4

−
12

6.
12

8
−

62
.8

02
−

55
.8

88
P{
θ
∈

Θ
D
|X

T
}

0.
37

5
0.
22

9
1.
00

0
1.
00

0

N
ot
es
:
T
hi
s
ta
bl
e
sh
ow

s
th
e
po

st
er
io
r
m
ea
n
an

d
90

pe
rc
en
t
hi
gh

es
t
po

st
er
io
r
de
ns
it
y
in
te
rv
al
s
ba

se
d
on

10
,0
00

pa
rt
ic
le
s
fr
om

th
e
fin

al
im

po
rt
an

ce
sa
m
pl
in
g

in
th
e
SM

C
al
go
ri
th
m
.
In

th
e
ta
bl
e,

lo
g
p
(X

T
)
re
pr
es
en
ts

th
e
SM

C
-b
as
ed

ap
pr
ox
im

at
io
n
of

lo
g
m
ar
gi
na

l
da

ta
de
ns
it
y
an

d
P{
ϑ
∈

Θ
D
|X

T
}
de
no

te
s
th
e

po
st
er
io
r
pr
ob

ab
ili
ty

of
eq
ui
lib

ri
um

de
te
rm

in
ac
y.

T
he

pr
io
r
m
ea
n
of

th
e
po

lic
y
re
sp
on

se
to

in
fla

ti
on

φ
π
is

se
t
at

1.
1
7
5
fo
r
bo

th
m
od

el
s
w
it
h
in
fla

ti
on

in
er
ti
a
(i
.e
.,
ω
6=

0
)
an

d
w
it
ho

ut
it

(i
.e
.,
ω

=
0
).

T
he

pr
io
r
pr
ob

ab
ili
ti
es

of
eq
ui
lib

ri
um

de
te
rm

in
ac
y
ar
e
th
en

0.
4
8
9
fo
r
th
e
m
od

el
w
it
h
ω
6=

0
an

d
0.

4
8
8

fo
r
th
e
m
od

el
w
it
h
ω

=
0

38



Figure 1: Impulse responses during the pre-1979 period in the GNK and the SW-CNK
models with no inflation inertia

(a) Preference shock εu,t
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(b) Technology shock εa,t
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(c) Monetary policy shock εr,t
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(d) Sunspot shock ζt
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Note: This figure shows the impulse responses of output growth, inflation, and the interest rate in terms
of deviations from steady-state values, to a one-standard-deviation innovation to each of the preference,
technology, monetary policy, and sunspot shocks, using the posterior mean estimates of parameters in the
GNK model with ω = 0 and the SW-CNK model with ωsw = 0 during the pre-1979 period.
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Figure 2: Impulse responses during the post-1982 period in the GNK and the SW-CNK
models with no inflation inertia

(a) Preference shock εu,t
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(b) Technology shock εa,t
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(c) Monetary policy shock εr,t
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Note: This figure shows the impulse responses of output growth, inflation, and the interest rate in terms
of deviations from steady-state values, to a one-standard-deviation innovation to each of the preference,
technology, and monetary policy shocks, using the posterior mean estimates of parameters in the GNK
model with ω = 0 and the SW-CNK model with ωsw = 0 during the post-1982 period.
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Figure 3: Equilibrium-determinacy region of the GNK model’s parameter space

(a) Pre-1979 estimates of all model parameters
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(c) Post-1982 estimates of all model parameters
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Notes: For the annualized trend inflation rate 4π̄ and the policy response to inflation φπ, the figure illustrates
the equilibrium-determinacy region of the GNK model’s parameter space. In each panel, the marks “×”, “∗”,
and “◦” respectively represent the pairs of (4π̄pre79, φpre79π ), (4π̄pre79, φpost82π ), and (4π̄post82, φpost82π ), where
π̄pre79 (π̄post82) and φpre79π (φpost82π ) denote the mean estimates of the trend inflation rate and the policy
response to inflation in the pre-1979 (post-1982) period.
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