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1 Introduction

Stock and Watson (2008, 2012), Montiel Olea, Stock, and Watson (2012), and Mertens and

Ravn (2013) have developed a method for identification in structural vector autoregressions

(SVARs) that uses external instruments or proxy variables.1 These variables are external to

the reduced-form vector autoregression (VAR). They are also assumed to be correlated with

the structural shocks of interest but uncorrelated with the other structural shocks. This

identification approach has proven to be very useful and it has been discussed in the recent

handbook chapters by Ramey (2016) and Stock and Watson (2016). Further discussion and

examples of applications are also provided in the citations in the next paragraph.

In this paper, we derive the joint limiting distribution of parameter estimators in proxy

SVARs and provide econometric theory for residual-based bootstrap algorithms that provide

inference on statistics, such as impulse response functions (IRFs) and forecast error variance

decompositions (FEVDs), estimated from proxy SVARs.2 Our focus on residual-based boot-

straps is due to their popularity in time series econometrics to do statistical inference. In

the proxy SVAR literature, residual-based wild bootstraps are very popular and have been

used to produce confidence intervals for IRFs in, for example, Mertens and Ravn (2013,

2014), Carriero et al. (2015), Gertler and Karadi (2015), Passari and Rey (2015), Miranda-

Agrippino (2016), Rey (2016), Cesa-Bianchi and Sokol (2017), Hachula and Nautz (2018),

Piffer and Podstawski (2018), and Kerssenfischer (2019).

Despite the general popularity of residual-based bootstraps for SVARs, to the best of

our knowledge, no econometric theory exists to guide researchers as to which residual-based

bootstraps are asymptotically valid for proxy SVARs and, hence, can be recommended in

practice. To fill this gap in the literature, this paper makes three contributions. First, we

provide a joint central limit theorem (CLT) for estimators of the VAR coefficients, the (un-

conditional) covariance matrix of the VAR innovations, and the (unconditional) covariance

matrix of the VAR innovations with the proxy variables under mild α-mixing conditions that

cover a large class of uncorrelated, but possibly dependent innovation processes, including

conditional heteroskedasticity. This result allows us to also derive the limiting distributions

of IRFs and FEVDs. Such results extend Theorem 3.1 and Corollary 5.1 achieved under

1“Proxy variable” and “external instrument” are different names for the same variable in this literature.
SVARs identified with these variables have been called “proxy SVARs” or “external instrument SVARs.” To
simplify communication, we use “proxy variable” and “proxy SVAR” going forward. However, it should be
understood that we could equivalently have used “external instrument” or “external instrument SVARs.”

2Throughout the paper, “IRF” refers to structural impulse response functions from orthogonalized eco-
nomic shocks. It does not refer to forecast error impulse response functions as in Lütkepohl (2005, p. 52).
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α-mixing conditions for Cholesky-based identification in SVARs in Brüggemann, Jentsch,

and Trenkler (2016) to the proxy SVAR setup. In particular, conditional heteroskedasticity

has been observed in many economic time series data and results achieved under more gen-

eral conditions imposed on the error processes, such as α-mixing, are required. Conditional

heteroskedasticity has been noted previously in the proxy SVAR literature (Mertens and

Ravn, 2013; Gertler and Karadi, 2015) and our theory allows for statistical inference that is

robust against conditional heteroskedasticity.

Second, we prove that the popular residual-based wild bootstrap is not asymptotically

valid for inference on IRFs and FEVDs. While wild bootstraps can be valid for inference on

estimates of the VAR slope coefficients under conditional heteroskedasticity,3 they are not

valid for inference on estimates of the covariance matrix of the VAR innovations, and the

covariance of the VAR innovations with the proxy variables. This is because wild bootstraps

do not replicate the relevant fourth-order dependence structure of the VAR innovations. Wild

bootstraps even fail when these innovations are independent and identically distributed (iid).

This causes wild bootstraps to be generally invalid also for smooth functions of the covariance

matrices, such as IRFs and FEVDs.

As a corollary to this result, we show that the Rademacher distribution, which takes the

values 1 or −1 with equal probability of one half and is used in many of the papers cited

above, is particularly problematic for producing wild bootstrap multipliers.4 Specifically, it

gives an asymptotic variance of zero for the estimates of the covariance matrix of the VAR

innovations and the covariance between the VAR residuals and the proxy variables. This

is because the bootstrap multipliers effectively drop out of the bootstrap algorithm when

computing the covariance matrices.

In practice, confidence intervals for IRFs and FEVDs that are produced from Rademacher

wild bootstraps can be badly undersized. In Monte Carlo simulations, we show that the

Rademacher wild bootstrap’s 95 percent confidence intervals only include the true initial

impulse response in 20 percent or less of the simulations with a sample size of 400. This is

not a finite sample effect. Instead, these coverage rates shrink as the sample size increases.

Further, our simulations show that the Rademacher wild bootstrap’s low coverage rates can

3This result holds under a martingale difference condition imposed on the error process. See Gonçalves
and Kilian (2004) for univariate AR models and Brüggemann, Jentsch, and Trenkler (2014, 2016) for the
multivariate case.

4We describe the residual-based wild bootstrap algorithm in detail in Section 3.1.1. For exposition, we
note that this bootstrap resamples VAR residuals by multiplying these residuals with a random variable.
The Rademacher distribution is one distribution from which these random multipliers can be drawn.
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persist even as the IRF horizon increases. This appears particularly true when the proxy

variable’s covariance with the structural shock of interest is low. In our simulations, we

also find that these low coverage rates are more persistent for normalized IRFs than for

one standard deviation IRFs. Finally, the Rademacher wild bootstrap’s confidence intervals

appear persistently undersized for FEVDs at long forecast horizons. The asymptotic theory

established in this paper allows us to explain this observed pattern of persistently undersized

confidence intervals for normalized IRFs and FEVDs in contrast to one standard deviation

IRFs.

To replace the residual-based wild bootstrap, our third contribution is to prove that

a modified version of the residual-based moving block bootstrap (MBB) introduced and

studied by Brüggemann, Jentsch, and Trenkler (2016) is asymptotically valid for inference

on statistics, such as IRFs and FEVDs, that are smooth functions of the VAR coefficients,

the covariance matrix of the VAR innovations, and the covariance of the VAR innovations

with the proxy variables. The modification to Brüggemann, Jentsch, and Trenkler’s (2016)

MBB incorporates the proxy variables into the block resampling. Importantly, the MBB is

capable of mimicking the joint fourth-order dependence structure of the VAR innovations

and the proxy variables.

In our Monte Carlo simulations, the MBB generally performs well. However, in small

samples, the MBB’s confidence intervals can become undersized for IRFs at longer horizons.

Also, when the proxy variable’s covariance with the structural shocks of interest is low, the

MBB’s confidence intervals may become mis-sized around humps in FEVDs. Despite this,

the MBB often performs much better and never performs worse than the Rademacher wild

bootstrap in terms of statistical size.

In the proxy SVAR literature, it is common for the proxy variables to have observations

that get censored to zero. In Mertens and Ravn (2013), this occurs in periods where no

tax legislation is passed. In Gertler and Karadi (2015), this occurs in periods with no

Federal Open Market Committee meetings. We note that our CLT can accommodate data

generating processes where the proxy variables have observations that are randomly censored

to zero. The MBB will generally remain asymptotically valid under the mild condition that

the censoring mechanism preserves stationarity. In particular, this is true for the model that

Mertens and Ravn (2013) propose to include censoring of the proxy variable.5

In a related paper (Jentsch and Lunsford, 2019), we demonstrate the practical significance

of using the asymptotically valid MBB instead of the invalid wild bootstrap. We apply the

5See Equation (8) in Mertens and Ravn (2013) and our Equation (21).
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MBB to Mertens and Ravn (2013), who study the effects of tax changes on macroeconomic

aggregates in the US. We use the MBB to produce confidence intervals for their IRFs,

which were originally produced with a Rademacher wild bootstrap. With the MBB, all

of the confidence intervals become much larger, and several of the results thought to be

statistically significant at the 95 percent level were no longer significant even at the 68

percent level. Hence, this application and our Monte Carlo results provide evidence that

the Rademacher wild bootstrap dramatically underestimates the uncertainty surrounding

estimates of IRFs. For further discussion of this application, see Mertens and Ravn (2019).

While this paper studies the residual-based bootstrap methods for inference that are

currently popular in the proxy SVAR literature, other methods for inference exist. Stock

and Watson (2018) use a bootstrap algorithm, but their bootstrap is not residual-based like

the MBB or the wild bootstrap. Rather, it treats the innovations to the VAR and proxy

variables as iid normal and simulates these innovations using the corresponding estimates

of the covariance matrices. These iid simulations imply that their bootstrap is not robust

against conditional heteroskedasticity or, more generally, against the α-mixing conditions

that we study. In an important contribution, Montiel Olea, Stock, and Watson (2018) provide

confidence intervals for IRFs that are robust when the correlation between the proxy variable

and the structural shock of interest is near zero, which is similar to the problem of weak

instruments in linear IV regressions (Staiger and Stock, 1997). However, their confidence

intervals only apply to the case where one proxy variable identifies one structural shock

and cannot be used when multiple proxy variables identify multiple structural shocks as

in Mertens and Ravn (2013) and Jentsch and Lunsford (2019). Further, their confidence

intervals are constructed specifically for normalized IRFs. Unlike the MBB, they do not

provide confidence intervals for one standard deviation IRFs or FEVDs. Finally, Caldara

and Herbst (2019), Jarociński and Karadi (2018) and Arias, Rubio-Ramı́rez, and Waggoner

(2018) provide Bayesian approaches to estimation and inference.

This paper proceeds as follows. Section 2 describes the proxy SVAR methodology and

provides joint asymptotic theory in the form of CLTs. Section 3 describes the bootstrap

algorithms and gives the theorems for the asymptotic invalidity of wild bootstraps and the

asymptotic validity of the MBB. Section 4 studies the bootstrap coverage rates with Monte

Carlo simulations, and Section 5 concludes. Appendix A provides additional details about

proxy SVAR identification, and Appendix B contains the proofs. An online supplemental

appendix has additional Monte Carlo results.
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2 Proxy Structural Vector Autoregressions

2.1 An Overview of Proxy Structural Vector Autoregressions

The proxy SVAR methodology begins with a standard SVAR setup. We observe a data

sample (y−p+1, . . . , y0, y1, . . . , yT ) of sample size T with p pre-sample values from the following

data generating process (DGP) for the K-dimensional time series yt = (y1,t, . . . , yK,t)
′,

yt = A1yt−1 + · · ·+ Apyt−p + ut, t ∈ Z, (1)

where (ut, t ∈ Z) is a K-dimensional white noise sequence. A compact representation is given

by A(L)yt = ut, where A(L) = IK − A1L − · · · − ApLp, Ap 6= 0, IK is the K-dimensional

identity matrix, and L is the lag operator such that Lyt = yt−1. We assume that the lag

order p is known and that det(A(z)) has all roots outside the unit circle so that the DGP is

a stable (invertible and causal) VAR model of order p. In addition, there is a K-dimensional

sequence of structural shocks (εt, t ∈ Z) such that E(εtε
′
t) = IK , which are related to the

VAR innovations, ut, according to

ut = Hεt, (2)

where H is an invertible K ×K matrix. Hence, we have that

E(utu
′
t) = HH ′ = Σu (3)

is positive definite.

Our goal is to identify the effects of r of the structural shocks where r < K. To be precise,

we partition the structural shocks into εt = (ε
(1)′
t , ε

(2)′
t )′, where ε

(1)
t is the r-dimensional vector

that contains the structural shocks of interest and ε
(2)
t is the (K − r)-dimensional vector of

other structural shocks. We then partition H into H = [H(1), H(2)], where H(1) is the K × r
matrix of coefficients that correspond to the structural shocks of interest and H(2) is the

K × (K − r) matrix of coefficients that correspond to the other shocks. Then, our goal is to

identify H(1) and functions of H(1), such as IRFs and FEVDs.

The difficulty in identifying H(1) is that ε
(1)
t is unobserved and Equation (3) only provides

(K + 1)K/2 moment restrictions for the K2 elements of H. To provide additional moment

restrictions, Stock and Watson (2008, 2012), Montiel Olea, Stock, and Watson (2012), and

Mertens and Ravn (2013) use the proxy variable approach. They assume that there exists

a sequence of r-dimensional vectors of proxy variables, denoted by (mt, t ∈ Z), taken from

5



outside of the VAR. Without loss of generality, these proxy variables are mean zero, E(mt) =

0. In addition, they are relevant for identifying the structural shocks of interest. That is,

E(mtε
(1)′
t ) = Ψ, (4)

where Ψ is r × r and invertible. They are also exogenous to the other structural shocks:

E(mtε
(2)′
t ) = 0. (5)

The relevance and exogeneity assumptions along with the partition of H imply

E(mtu
′
t) = ΨH(1)′, (6)

which provides additional moment restrictions used for identification. Finally, we assume

that the proxy variables and lags of yt are uncorrelated. That is, E(mty
′
t−j) = 0 for all

j = 1, . . . , p.6

When r = 1, Lunsford (2015) shows that H(1) is identified up to a sign restriction with

H(1) = ±E(utm
′
t){E(mtu

′
t)[E(utu

′
t)]
−1E(utm

′
t)}−1/2. (7)

Here, the sign restriction can be determined by whether the proxy variable is intended to

be positively or negatively correlated with the structural shock of interest. When r > 1,

additional restrictions are needed. We give two examples of zero restrictions in Appendix A.

The first example generalizes (7), and the second example follows Mertens and Ravn (2013).

With H(1) identified, IRFs and FEVDs can be constructed. Since the process yt is stable,

it has a vector moving average (VMA) representation

yt =
∞∑
j=0

Φjut−j, t ∈ Z, (8)

where Φj, j ∈ N0, is a sequence of (exponentially fast decaying) K ×K coefficient matrices

with Φ0 = IK and Φi =
∑i

j=1 Φi−jAj, i = 1, 2, . . . . Further, we define the (Kp×K) matrices

Cj = (Φ′j−1, . . . ,Φ
′
j−p)

′ and the (Kp × Kp) matrix Γ =
∑∞

j=1 CjΣuC
′
j. Then, the impulse

6As discussed in Mertens and Ravn (2013), this is not a restrictive assumption. To ensure it holds, one
can always regress the proxies on the lags of yt and keep the residuals as the new proxies.
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response of yj,t+i to a one standard deviation shock to εk,t is

Θjk,i = e′jΦiHek, (9)

where ej and ek are the jth and kth columns of IK . We limit k ≤ r so that Hek is one of

the identified columns of H(1).

In addition to this one standard deviation IRF, researchers also construct impulse re-

sponses to yj,t+i to a shock to εk,t that is normalized to give a certain response on impact.

For example, it is common in studies of monetary policy shocks to normalize the response

of the federal funds rate to a monetary policy shock to be 0.25 percent or 1.00 percent on

impact. This normalized IRF is given by

Ξjk,i(s;m,n) = sΘjk,i/(e
′
mHen). (10)

We limit n ≤ r so that Hen is one of the identified columns of H(1), and we assume that

e′mHen 6= 0 if estimating normalized IRFs. Note that Ξmn,0(s;m,n) = sΘmn,0/(e
′
mHen) = s.

In words, this normalizes the response of variable m to structural shock n to be s on impact.

Finally, researchers may produce FEVDs, which measure how much the shocks of interest

explain the variation in unexpected changes in yj,t over an h period horizon. FEVDs have

long been used in SVAR analysis to assess which shocks are important for understanding

macroeconomic fluctuations. See Sims (1980) for an early example and the last section of

Ramey (2016) for a recent discussion. The total forecast error of yj,t+h is given by yj,t+h −
Et(yj,t+h) = e′j

∑h−1
i=0 Φiut+h−i, and the forecast error of yj,t+h attributable to structural shock

k is given by e′j
∑h−1

i=0 ΦiHekεk,t+h−i. Then, the fraction of the forecast error variance of yj,t+h

attributable to structural shock k is given by

ωjk,h =

∑h−1
i=0 Θ2

jk,i

MSEj(h)
(11)

where MSEj(h) =
∑h−1

i=0 e
′
jΦiΣuΦ

′
iej is the mean squared error of the forecast of yj,t+h.

2.2 Estimation

To estimate the proxy SVAR and the corresponding IRFs and FEVDs, we focus on estimators

for the VAR coefficients A1, . . . , Ap, the innovation covariance matrix Σu, and the r × K

matrix ΨH(1)′. We introduce the following notation, where the dimensions of the defined
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quantities are given in parentheses:

y = vec(y1, . . . , yT ) (KT × 1), Zt = vec(yt, . . . , yt−p+1) (Kp× 1)

Z = (Z0, . . . , ZT−1) (Kp× T ), β = vec(A1, . . . , Ap) (K2p× 1)

u = vec(u1, . . . , uT ) (KT × 1), ϕ = vec(ΨH(1)′) (Kr × 1),

(12)

where ‘vec’ denotes the column stacking operator.

The parameter β is estimated by β̂ = vec(Â1, . . . , Âp) via multivariate least squares so

that β̂ = (ZZ ′)−1(Z ⊗ IK)y (Lütkepohl, 2005, p. 71). Here, A ⊗ B = (aijB)ij denotes the

Kronecker product of matrices A = (aij) and B = (bij). The standard estimator of Σu is

Σ̂u =
1

T

T∑
t=1

ûtû
′
t, (13)

where ût = yt − Â1yt−1 − · · · − Âpyt−p are the residuals from the estimated VAR(p) model.

We set σ = vech(Σu) and σ̂ = vech(Σ̂u). The ‘vech’ operator stacks the elements on and

below the main diagonal of a square matrix columnwise. Further, let ϕ̂ = vec(Ψ̂H(1)′), where

Ψ̂H(1)′ =
1

T

T∑
t=1

mtû
′
t. (14)

Next, we estimate H(1). For the general case of r ≥ 1, identification may require addi-

tional restrictions to the proxy SVAR model as noted above. The estimator for H(1) will

also depend on these additional restrictions. For the identification methods in Appendix A,

we estimate H(1) by plugging Σ̂u in for E(utu
′
t) = Σu and Ψ̂H(1)′ in for E(mtu

′
t) = ΨH(1)′

in the identification equations. For any other identification schemes where H(1) is a smooth

function of σ and ϕ, we assume that similar plug-in estimators can be used.

Following this approach for r = 1, we have that ΨH(1)′ is (1 × K) and the notation in

(12) implies that ϕ = vec(ΨH(1)′) = (ΨH(1)′)′ = H(1)Ψ′ is (K × 1). Hence, Equation (7)

reads

H(1) = ±E(utm
′
t){E(mtu

′
t)[E(utu

′
t)]
−1E(utm

′
t)}−1/2 = ±ϕ(ϕ′Σ−1

u ϕ)−1/2. (15)

which implies the plug-in estimator

Ĥ(1) = ±Ĥ(1)Ψ′(Ψ̂H(1)′Σ̂−1
u Ĥ(1)Ψ′)−1/2 = ±ϕ̂(ϕ̂′Σ̂−1

u ϕ̂)−1/2 (16)
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and that a sign restriction must be chosen.

Finally, we estimate IRFs and FEVDs with plug-in estimators. We start with Φ̂0 = IK

and Φ̂i =
∑i

j=1 Φ̂i−jÂj, i = 1, 2, . . . . Next, for the general case of r ≥ 1, we use the notation

Ĥek and Ĥen with k, n ≤ r to denote the relevant column of Ĥ(1). Then, we have Θ̂jk,i =

e′jΦ̂iĤek, Ξ̂jk,i(s;m,n) = sΘ̂jk,i/(e
′
mĤen), such that Ξ̂mn,0(s;m,n) = sΘ̂mn,0/(e

′
mĤen) = s,

and ω̂jk,h =
(∑h−1

i=0 Θ̂2
jk,i

)
/M̂SEj(h) with M̂SEj(h) =

∑h−1
i=0 e

′
jΦ̂iΣ̂uΦ̂

′
iej. When r = 1, we

can simplify notation to Θ̂j1,i = e′jΦ̂iĤ
(1) and Ξ̂j1,i(s;m, 1) = sΘ̂j1,i/(e

′
mĤ

(1)).

2.3 Assumptions and Asymptotic Inference

In addition to the setup described in Section 2.1, we make use of the following assumptions:

Assumption 2.1 (Mixing Conditions)

(i) Let xt = (u′t,m
′
t)
′ and assume that the (K+r)-dimensional process (xt, t ∈ Z) is strictly

stationary.

(ii) Let α(n) = supA∈F0
−∞,B∈F∞n |P (A ∩ B) − P (A)P (B)|, n = 1, 2, . . ., denote the α-

mixing coefficients of the process (xt, t ∈ Z), where F0
−∞ = σ(. . . , x−2, x−1, x0), F∞n =

σ(xn, xn+1, . . . ). For some δ > 0, we have

∞∑
n=1

(α(n))δ/(2+δ) <∞ (17)

and that E|xt|4+2δ
4+2δ is bounded, where |A|p = (

∑
i,j |aij|p)1/p for some matrix A = (aij).

(iv) For a, b, c ∈ Z define (K2 ×K2) matrices

τa,b,c = E
(
vec(utu

′
t−a)vec(ut−bu

′
t−c)

′) , (18)

νa,b,c = E
(
vec(mtu

′
t−a)vec(ut−bu

′
t−c)

′) , (19)

ζa,b,c = E
(
vec(mtu

′
t−a)vec(mt−bu

′
t−c)

′) , (20)

use K̃ = K(K + 1)/2 and assume that the (K2m+ K̃ +Kr×K2m+ K̃ +Kr) matrix

Ωm defined in Equation (B.4) exists and is eventually positive definite for sufficiently

large m ∈ N.
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Instead of the common iid assumption for the white noise process (ut, t ∈ Z), the less

restrictive mixing condition in Assumption 2.1 covers a large class of uncorrelated, but

possibly dependent stationary innovation processes, allowing, among other forms of weak

white noise, for example, for conditional heteroskedasticity. In addition, the proxy variables

(mt, t ∈ Z) may show rather general serial dependence that can go far beyond iid-ness or

conditional heteroskedasticity.

We state the following central limit theorem (CLT) for our estimators. It is an extension

of Theorem 3.1 in Brüggemann, Jentsch, and Trenkler (2016) to the proxy SVAR setup.

Theorem 2.1 (Joint CLT for β̂, σ̂ and ϕ̂) Under Assumption 2.1, we have

√
T

 β̂ − β
σ̂ − σ
ϕ̂−ϕ

 D→ N (0, V ), V =

 V (1,1) V (2,1)′ V (3,1)′

V (2,1) V (2,2) V (3,2)′

V (3,1) V (3,2) V (3,3)


where ‘

D→’ denotes convergence in distribution, with

V (1,1) = (Γ−1 ⊗ IK)

(
∞∑

i,j=1

(Ci ⊗ IK)
∞∑

h=−∞

τi,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V (2,1) = LK

(
∞∑
j=1

∞∑
h=−∞

τ0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V (2,2) = LK

(
∞∑

h=−∞

{τ0,h,h −DKσσ
′D′K}

)
L′K ,

V (3,1) =

(
∞∑
j=1

∞∑
h=−∞

ν0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V (3,2) =

(
∞∑

h=−∞

{ν0,h,h −ϕσ′D′K}

)
L′K ,

V (3,3) =
∞∑

h=−∞

{ζ0,h,h −ϕϕ′} .

and LK is the (K(K + 1)/2×K2) elimination matrix such that vech(A) = LKvec(A) for

any (K × K) matrix A and DK is the (K2 ×K(K + 1)/2) duplication matrix such that

vec(A) = DKvech(A) for any symmetric (K ×K) matrix A.

Some of the sub-matrices of V simplify if we impose additional structure on the joint

process of innovations and proxy variables xt = (u′t,m
′
t)
′. The following corollary summarizes

10



the results of imposing either a martingale difference sequence (mds), which covers, for

example, the popular class of GARCH processes to model conditional heteroskedasticity, or

an iid structure. We denote the sub-matrices V (i,j) of V under an mds and an iid structure

by V
(i,j)
mds and V

(i,j)
iid , respectively.

Corollary 2.1 (V under Additional Structure)

(i) If in addition to Assumption 2.1, xt = (u′t,m
′
t)
′ is an mds with E(xt|Ft−1) = 0 a.s.,

where Ft−1 = σ(xt−1, xt−2, . . .), we have V
(i,j)
mds = V (i,j), i, j = 2, 3 and

V
(1,1)
mds = (Γ−1 ⊗ IK)

(
∞∑

i,j=1

(Ci ⊗ IK)τi,0,j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V
(2,1)
mds = LK

(
∞∑
j=1

∞∑
h=0

τ0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V
(3,1)
mds =

(
∞∑
j=1

∞∑
h=0

ν0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′.

(ii) If in addition to Assumption 2.1, xt = (u′t,m
′
t)
′ are iid, we have V

(2,1)
iid = 0, V

(3,1)
iid = 0

and

V
(1,1)
iid = (Γ−1 ⊗ IK)

(
∞∑
i=1

(Ci ⊗ IK)τi,0,i(Ci ⊗ IK)′

)
(Γ−1 ⊗ IK)′ = (Γ−1 ⊗ Σu),

V
(2,2)
iid = LK (τ0,0,0 −DKσσ

′D′K)L′K ,

V
(3,2)
iid = (ν0,0,0 −ϕσ′D′K)L′K ,

V
(3,3)
iid = ζ0,0,0 −ϕϕ′.

We note here that in the cases of α-mixing, mds, and iid, the proxy variables depend via

ut = Hεt on the process (εt). This includes DGPs where the proxy variables are censored to

zero, including the DGP proposed by Mertens and Ravn (2013):

mt = dt(Πε
(1)
t + vt). (21)

Here, (dt, t ∈ Z) is a sequence of scalar dummy variables taking values in {0, 1}, (vt, t ∈ Z)

is an r-dimensional white noise process, and Π is an (r × r) matrix. Further, Mertens and

11



Ravn (2013) assume E(vtε
(1)′
t ) = 0 and E(dtvtε

(1)′
t ) = 0. In particular, this DGP in (21) is

covered by Assumption 2.1 if the joint process ((ε′t, v
′
t, d
′
t)
′, t ∈ Z) is strictly stationary and

fulfills mixing and moment conditions corresponding to Assumption 2.1(ii). If the process

((ε′t, v
′
t, d
′
t)
′, t ∈ Z) is iid, the sequences (mt, t ∈ Z) and (xt, t ∈ Z) will also be iid and part

(ii) of Corollary 2.1 applies.

The limiting variances in Corollary 2.1 and particularly, without any simplifying assump-

tions, those in Theorem 2.1 can be very complicated. Hence, bootstrap methods for inference

are generally desired and very popular in practice. Before we discuss suitable residual-based

bootstrap methods for inference in the next section, we provide explicit limiting results for

IRFs and FEVDs in proxy SVARs for r = 1 based on the Delta method.

Corollary 2.2 (CLTs for IRFs and FEVDs) Let r = 1. Under Assumption 2.1, for

any s ∈ R, j,m ∈ {1, . . . , K} and i, h ∈ {0, 1, 2, . . .}, we have

(i)
√
T (Θ̂•1,i −Θ•1,i)

D→ N
(

0,ΣΘ̂•1,i

)
,

(ii)
√
T (Ξ̂•1,i(s;m, 1)− Ξ•1,i(s;m, 1))

D→ N
(

0,ΣΞ̂•1,i(s;m,1)

)
,

(iii)
√
T (ω̂j1,h − ωj1,h)

D→ N
(
0,Σω̂j1,h

)
,

where the exact formulas for the limiting variances can be found in Equations (B.12), (B.13),

and (B.14), respectively.

Remark 2.1 Equations (B.12) and (B.13) that give ΣΘ̂•1,i
and ΣΞ̂•1,i(s;m,1) are generally sim-

ilar. However, we make three observations to highlight the differences between the asymptotic

variances of one standard deviation IRFs and normalized IRFs. First, compared to ΣΘ̂•1,i
, all

components of ΣΞ̂•1,i(s;m,1) are scaled by (s/(e′mH
(1)))2. This is a natural scaling as s/(e′mH

(1))

is the normalization that researchers get to choose when converting a one standard devia-

tion IRF to a normalized IRF. Second, how the VMA coefficients, Φi, interact with V (2,1),

V (2,2), V (3,1), V (3,2), and V (3,3) changes when computing ΣΘ̂•1,i
versus ΣΞ̂•1,i(s;m,1). Specifi-

cally, Φi is post-multiplied by the matrix (IK −H(1)e′m/(e
′
mH

(1))) when switching from ΣΘ̂•1,i

to ΣΞ̂•1,i(s;m,1). Hence, changing from a one standard deviation IRF to a normalized IRF

changes how the asymptotic variances and covariances of σ and ϕ impact the variance of the

IRF at horizon i. Third, in comparison to ΣΘ̂•1,i
which depends on both σ and ϕ, ΣΞ̂•1,i(s;m,1)

does not depend on σ or its asymptotic variances and covariances, V (2,1), V (2,2), and V (3,2).

This is natural as Equations (9), (10), and (15) imply Ξj1,i(s;m, 1) = se′jΦiϕ/(e
′
mϕ) when

r = 1, which does not depend on σ.
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3 Bootstrap Inference for Proxy SVARs

In this section, we study bootstrap algorithms for inference for proxy SVARs. We focus

on inference for statistics that are functions of estimators of β, σ and ϕ. These statistics

include the estimate H(1) as well as estimates of IRFs and FEVDs.

This section proceeds as follows. In Section 3.1 we describe two residual-based bootstrap

algorithms that have been proposed for inference in the SVAR literature. The first is the

residual-based recursive-design wild bootstrap. The second is the residual-based MBB pro-

posed by Brüggemann, Jentsch, and Trenkler (2016), which we modify to include moving

blocks of the proxy variables. In Section 3.2, we prove the invalidity of the wild bootstrap

and establish the asymptotic validity of the MBB.

3.1 Bootstrap Algorithms

3.1.1 Residual-based Wild Bootstrap

The algorithm for the recursive-design residual-based wild bootstrap is as follows:

1. Independently draw T observations of the scalar random sequence (ηt, t ∈ Z) from a

distribution with E(ηt) = 0, E(η2
t ) = 1, and E(η4

t ) <∞.

2. Use u+
t = ûtηt to produce (u+

1 , . . . , u
+
T ) and m+

t = mtηt to produce (m+
1 , . . . ,m

+
T ).

Here, we use “ + ” to denote bootstrap quantities obtained from the wild bootstrap.

3. Set the initial condition (y+
−p+1, . . . , y

+
0 ) = (y−p+1, . . . , y0). Use the initial condition

along with Â1, . . . , Âp and u+
t to recursively produce (y+

1 , . . . , y
+
T ) with

y+
t = Â1y

+
t−1 + · · ·+ Âpy

+
t−p + u+

t .

4. Estimate Â+
1 , . . . , Â

+
p by least squares from the bootstrap sample (y+

−p+1, . . . , y
+
T ) and

set û+
t = y+

t − Â+
1 yt−1 − · · · − Â+

p yt−p.

5. Use û+
t and m+

t for t = 1, . . . , T to estimate Σ̂+
u = T−1

∑T
t=1 û

+
t û

+′
t and Ψ̂H(1)′

+

=

T−1
∑T

t=1m
+
t û

+′
t .

6. Use Â+
1 , . . . , Â

+
p , Σ̂+

u and Ψ̂H(1)′
+

to produce the bootstrapped statistics of interest.
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Repeat the algorithm a large number of times and collect the bootstrapped statistics of

interest. We produce our confidence intervals with a standard percentile interval by sorting

the bootstrapped statistics of interest and keeping the α/2- and 1 − α/2-percentiles as the

confidence interval, where α is the level of significance. We use these intervals because they

are the most popular in the proxy SVAR literature. Using Hall’s percentile intervals (Hall

(1992) and Lütkepohl (2005, Appendix D)) does not change the asymptotic results below.7

As discussed above, the Rademacher distribution where ηt = 1 with probability 0.5 and

ηt = −1 with probability 0.5 is most common in the proxy SVAR literature. Because of this

popularity, we focus on the Rademacher distribution in this paper. Another option is to

draw (ηt, t ∈ Z) from a standard normal distribution. We provide Monte Carlo results with

the normal distribution in the appendix.

3.1.2 Residual-based Moving Block Bootstrap

The algorithm for the residual-based MBB is as follows. First, to initialize the algorithm, we

choose a block length ` and compute N = [T/`], where [·] rounds up to the nearest integer

so that N` ≥ T . Next, collect the K × ` blocks Ui = (ûi, . . . , ûi+`−1) for i = 1, . . . T − `+ 1

and the r × ` blocks Mi = (mi, . . . ,mi+`−1) for i = 1, . . . T − `+ 1. Then,

1. Independently draw N integers with replacement from the set {1, . . . , T−`+1}, putting

equal probability on each element of the set. Denote these integers as i1, . . . , iN .

2. Collect the blocks (Ui1 , . . . ,UiN ) and (Mi1 , . . . ,MiN ) and drop the last N`−T elements

to produce (ũ∗1, . . . , ũ
∗
T ) and (m̃∗1, . . . , m̃

∗
T ). Here, we use “ ∗ ” to denote bootstrap

quantities obtained from the MBB.

3. Center (ũ∗1, . . . , ũ
∗
T ) according to

u∗j`+s = ũ∗j`+s −
1

T − `+ 1

T−∑̀
r=1

ûs+r−1 (22)

for s = 1, . . . , ` and j = 0, 1, . . . , N − 1 in order to produce (u∗1, . . . , u
∗
T ) to assure that

all u∗t ’s are centered conditionally on the data.

7We provide Monte Carlo results for Hall’s percentile intervals in the online supplemental appendix. As in
Kilian (1999), we find that Hall’s percentile intervals are not systematically better than standard percentile
intervals for inference on IRFs. Rather, the coverage rates from the two intervals are usually similar for
IRFs. For FEVDs, coverage rates from Hall’s intervals are often worse than those from standard percentile
intervals.
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4. Center (m̃∗1, . . . , m̃
∗
T ) similarly to the VAR errors in (22) to produce (m∗1, . . . ,m

∗
T ).8

5. Set the initial condition (y∗−p+1, . . . , y
∗
0) = (y−p+1, . . . , y0). Use the initial condition

along with Â1, . . . , Âp and u∗t to recursively produce (y∗1, . . . , y
∗
T ) with

y∗t = Â1y
∗
t−1 + · · ·+ Âpy

∗
t−p + u∗t .

6. Estimate Â∗1, . . . , Â
∗
p by least squares from the bootstrap sample (y∗−p+1, . . . , y

∗
T ) and

set û∗t = y∗t − Â∗1yt−1 − · · · − Â∗pyt−p.

7. Use û∗t and m∗t for t = 1, . . . , T to estimate Σ̂∗u = T−1
∑T

t=1 û
∗
t û
∗′
t and Ψ̂H(1)′

∗
=

T−1
∑T

t=1m
∗
t û
∗′
t .

8. Use Â∗1, . . . , Â
∗
p, Σ̂∗u and Ψ̂H(1)′

∗
to produce the bootstrapped statistics of interest.

As with the wild bootstrap, repeat the algorithm a large number of times, collect the boot-

strap statistics, and produce confidence intervals with a standard percentile interval.

This algorithm is similar to the residual-based MBB studied in Brüggemann, Jentsch, and

Trenkler (2016). In order to apply it to the proxy SVAR method, we added the re-sampling

and centering of the proxy variables along with the computing of Ψ̂H(1)′
∗
.

We will establish the asymptotic validity of this MBB in the next subsection. However,

there is one potential issue with the MBB in small samples. If a large number of the

observations of mt are censored to zero, as in Mertens and Ravn (2013), for example, then

(m∗1, . . . ,m
∗
t ) might contain only zeros. In contrast, it will never be the case that (m∗1, . . . ,m

∗
t )

contains only zeros with the wild bootstrap method. However, as discussed in Jentsch and

Lunsford (2019), this is not a relevant issue in practice.

3.2 Asymptotic Bootstrap Theory for Proxy SVARs

We next study the asymptotic properties of the bootstrap algorithms described in the pre-

vious subsection. To derive the theory, we make the following additional assumption.

Assumption 3.1 (cumulants) The (K+r)-dimensional process (xt, t ∈ Z) (as defined in

Assumption 2.1) has absolutely summable cumulants up to order eight. More precisely, we

8When the proxy variables have some censoring, we only apply the centering to the non-censored obser-
vations and leave the censored proxy variables with a value of zero.
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have for all j = 2, . . . , 8 and a1, . . . , aj ∈ {1, . . . , K}, a = (a1, . . . , aj) that

∞∑
h2,...,hj=−∞

|cuma(0, h2, . . . , hj)| <∞ (23)

holds, where cuma(0, h2, . . . , hj) denotes the jth joint cumulant of x0,a1 , xh2,a2 , . . . , xhj ,aj ; see,

for example, Brillinger (1981). This condition includes the existence of eight moments of

(xt, t ∈ Z).

Such a condition has been imposed in Gonçalves and Kilian (2007) to prove the con-

sistency of wild and pairwise bootstrap methods for univariate AR(∞) processes and in

Brüggemann, Jentsch, and Trenkler (2016) to prove the consistency of a residual-based mov-

ing block bootstrap for VAR(p) models. In terms of α-mixing conditions, Assumption 3.1 is

implied by
∞∑
n=1

nm−2(αx(n))δ/(2m−2+δ) <∞ (24)

for m = 8 if all moments up to order eight of (xt, t ∈ Z) exist; see Künsch (1989). For ex-

ample, the popular class of generalized autoregressive conditional heteroskedastic (GARCH)

processes is geometrically strong mixing under mild assumptions on the conditional distri-

bution such that the summability condition in Equation (24) always holds.

3.2.1 Inconsistency of the Wild Bootstrap

In this section, we show that the wild bootstrap is generally not consistent for inference

on β̂, σ̂ and ϕ̂ and, consequently, also for statistics that are functions of these estimators.

Define β̂+ = vec(Â+
1 , . . . , Â

+
p ), σ̂+ = vech(Σ̂+

u ), and ϕ̂+ = vec(Ψ̂H(1)′
+

) to be the estimators

from the wild bootstrap that correspond to β, σ and ϕ, respectively. We derive the joint

limiting variance of
√
T ((β̂+ − β̂)′, (σ̂+ − σ̂)′, (ϕ̂+ − ϕ̂)′)′ in the following theorem.

Theorem 3.1 (Residual-based Wild Bootstrap Limiting Variance) Suppose Assump-

tions 2.1 and 3.1 hold and the residual-based wild bootstrap from Section 3.1.1 is used to

compute bootstrap statistics β̂+, σ̂+ and ϕ̂+. Then, we have

T V ar+

 β̂+−β̂
σ̂+−σ̂
ϕ̂+−ϕ̂

→
 V

(1,1)
mds OK2p×K̃ OK2p×Kr

OK̃×K2p τ0,0,0{E(η4
t )− 1} ν ′0,0,0{E(η4

t )− 1}
OKr×K2p ν0,0,0{E(η4

t )− 1} ζ0,0,0{E(η4
t )− 1}

 =: VWB,
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As VWB 6= V for V as defined in Theorem 2.1, a consequence of Theorem 3.1 is that the

residual-based wild bootstrap is generally inconsistent for statistics that are functions of β̂,

σ̂ and ϕ̂. However, as V
(1,1)
WB = V

(1,1)
mds holds, the only exclusion is the case where the statistic

of interest is a (smooth) function of β̂ only under an additional mds assumption; compare

also Corollary 2.1.9 The latter framework was already addressed for the univariate case by

Gonçalves and Kilian (2004) and for the multivariate case by Brüggemann, Jentsch, and

Trenkler (2014). The general asymptotic inconsistency of the residual-based wild bootstrap

for functions of β̂, σ̂ and ϕ̂, such as, for example, structural IRFs, without adding proxy

variables to the VAR setup has already been discussed in Brüggemann, Jentsch, and Trenkler

(2016), who show that the wild bootstrap cannot replicate the fourth moments of the VAR

innovations. Note also that imposing iid-ness for the process (xt, t ∈ Z) does not lead to

wild bootstrap consistency either. Compare Corollary 2.1(ii).

If the bootstrap multipliers (ηt, t ∈ Z) follow a Rademacher distribution, we have E+(η4
t ) =

E(η4
t ) = 1, which immediately leads to the following corollary.

Corollary 3.1 (Residual-based Rademacher Wild Bootstrap Limiting Variance)

Under the assumptions of Theorem 3.1 and if the (iid) bootstrap multipliers (ηt, t ∈ Z) follow

a Rademacher distribution, that is P (ηt = −1) = P (ηt = 1) = 0.5, we get

VWB =

(
V

(1,1)
mds OK2p×K̃+Kr

OK̃+Kr×K2p OK̃+Kr×K̃+Kr

)
. (25)

A comparison of VWB in Equation (25) with V from Theorem 2.1 leads to the conclusion

that a considerable amount of estimation uncertainty caused by estimating Σu and ΨH(1)′

with Σ̂u and Ψ̂H(1)′, respectively, is simply ignored by the wild bootstrap using a Rademacher

distribution for the bootstrap multipliers. Consequently, as can also be seen in the Monte

Carlo simulations conducted in Section 4, the wild bootstrap clearly leads to considerable

undercoverage of corresponding bootstrap confidence intervals for IRFs and FEVDs.

To see why the wild bootstrap asymptotically ignores, for example, the variance of ΨH(1)′,

we temporarily consider a simpler specification than the VAR and assume that ut can be

directly observed. Then, the Rademacher wild bootstrap estimate of ΨH(1)′ from Equation

9The wild bootstrap would also remain valid under mds assumptions in a very special and unrealistic

scenario where V (2,1) and V (3,1) vanish and E(η4
t ) accidently yields V

(i,j)
WB = V (i,j) for i, j = 1, 2.
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(14) is given by

Ψ̂H(1)′
+

= T−1

T∑
t=1

m+
t u

+′
t .

Because u+
t = utηt and m+

t = mtηt and ηt equals 1 or -1, it is the case that

Ψ̂H(1)′
+

= T−1

T∑
t=1

(ηt)
2mtu

′
t = T−1

T∑
t=1

mtu
′
t = Ψ̂H(1)′.

That is, when ut is directly observable, the Rademacher wild bootstrap estimator is simply

the non-bootstrapped sample estimate and Ψ̂H(1)′
+

= Ψ̂H(1)′ holds for every bootstrap

replication. This implies that the uncertainty in the estimation of the covariance ΨH(1)′ is

completely ignored and hence not captured by the Rademacher wild bootstrap.

Going back to the VAR, it is not the case that ut is directly observable. Thus, in the

bootstrap, we use û+
t rather than u+

t to estimate the covariances. Because û+
t is different

for each bootstrap replication, it will not be the case that Ĥ(1)+ = Ĥ(1) holds exactly, but

Ĥ(1)+ = Ĥ(1) + oP+(1) as T → ∞, where P+ denotes the probability measure induced by

the Rademacher wild bootstrap. Hence, although the bootstrapped variance of H(1) will

generally not be zero in finite samples with the Rademacher wild bootstrap, it will converge

to zero as the sample size increases.

3.2.2 Consistency of the Moving Block Bootstrap

Next, we show that the MBB can approximate the limiting distribution of
√
T ((β̂−β)′, (σ̂−

σ)′, (ϕ̂ − ϕ)′)′ derived in Theorem 2.1. We define β̂∗ = vec(Â∗1, . . . , Â
∗
p), σ̂

∗ = vech(Σ̂∗u),

and ϕ̂∗ = vec(Ψ̂H(1)′
∗
) to be the estimators from the MBB that correspond to β, σ and ϕ,

respectively. We get the following theorem.

Theorem 3.2 (Residual-based MBB Consistency) Suppose Assumptions 2.1 and 3.1

hold and the residual-based MBB from Section 3.1.2 is used to compute bootstrap statistics

β̂∗, σ̂∗ and ϕ̂∗. If `→∞ such that `3/T → 0 as T →∞, we have

sup
x∈RK̄

∣∣∣∣P ∗(√T ((β̂∗−β̂)′, (σ̂∗−σ̂)′, (ϕ̂∗−ϕ̂)′
)′
≤x
)
−P

(√
T
(

(β̂−β)′, (σ̂−σ)′, (ϕ̂−ϕ)′
)′
≤x
)∣∣∣∣→0

in probability, where P ∗ denotes the probability measure induced by the residual-based MBB

and K̄ = K2p + (K2 + K)/2 + Kr. The shorthand x ≤ y for some x, y ∈ Rd is used to
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denote xi ≤ yi for all i = 1, . . . , d.

As defined below Equation (8), Θjk,i denotes the one standard deviation IRF of the

the j-th variable to the k-th structural shock of interest that occurred i periods ago for

j = 1, . . . , K and k = 1, . . . , r. sΘjk,i/(e
′
lHen) is the corresponding normalized IRF, and

ωjk,i is the fraction of the forecast error variance of yj,t+i attributable to structural shock k.

To simplify notation we suppress the subscripts in the following and simply use Θ and Θ̂ to

represent a specific (one standard deviation or normalized) impulse response coefficient and

its estimator, respectively. We also use ω and ω̂ to denote a specific forecast error variance

decomposition and its estimator, respectively. One standard deviation IRFs, normalized

IRFs, and FEVDs are continuously differentiable functions of β, σ and ϕ. Hence, the

asymptotic validity of the residual-based MBB scheme to construct confidence intervals for

the IRFs and FEVDs in the proxy SVAR framework is implied by Theorem 3.1 and the

Delta method to get the following corollary.

Corollary 3.2 (Asymptotic Validity of Bootstrap IRFs and FEVDs in proxy SVARs)

Under Assumptions 2.1 and 3.1 and if `→∞ such that `3/T → 0 as T →∞, we have

(i) sup
x∈R

∣∣∣∣P ∗(√T (Θ̂∗ − Θ̂
)′
≤ x

)
− P

(√
T
(

Θ̂−Θ
)′
≤ x

)∣∣∣∣→ 0,

(ii) sup
x∈R

∣∣∣P ∗ (√T (ω̂∗ − ω̂)′ ≤ x
)
− P

(√
T (ω̂ − ω)′ ≤ x

)∣∣∣→ 0

in probability, respectively.

4 Monte Carlo Simulations

To study the wild bootstrap and the MBB, we use Monte Carlo simulations with three

different DGPs: two with iid innovations and one with innovations that follow GARCH(1,1)

processes. In all three DGPs, we simulate yt with the bivariate VAR(2) process

yt =

[
0.44 0.66

−0.11 1.32

]
yt−1 +

[
−0.18 0

−0.18 −0.09

]
yt−2 + ut, E(utu

′
t) =

[
1 0.5

0.5 1

]
. (26)
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Figure 1: The top panels show the IRFs and FEVDs of y1,t generated from Equations (26)
and (27). For normalized IRFs, y1,t is normalized to fall by 1 on impact. The bottom panels
show the corresponding IRFs and FEVDs of y2,t.

To simulate the VAR innovations, ut follows Equation (2) with

H =

[
0.707 0.707

−0.259 0.966

]
. (27)

In the simulations, ε
(1)
t is the structural shock of interest so that the structural IRFs are

produced from the first column of H. This implies that r = 1 so that the proxy variable is

a scalar. To simulate the proxy variable, we use mt = Ψε
(1)
t + vt with vt ∼ N (0, 1). This

corresponds to model (21) without censoring.10

Equation (26) is similar to the DGP in Brüggemann, Jentsch, and Trenkler (2016), and

a shock to ε
(1)
t produces persistent hump-shaped IRFs that are common in macroeconomic

studies. Figure 1 shows the one standard deviation IRFs for each element of yt, denoted by

y1,t and y2,t, out to a horizon of 20. It also shows IRFs normalized so that y1,t falls by 1

10We provide Monte Carlo simulations with censored proxy variables in the online supplemental appendix.
In general, we find that the MBB’s coverage rates are very similar with and without censoring. This
is consistent with Jentsch and Lunsford (2019), who have Monte Carlo simulations with censoring for a
different DGP. We note that for smaller values of Ψ, censoring may cause the MBB’s coverage rates to fall
slightly.
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on impact and the FEVDs for each element of yt. In the simulations below, we will study

coverage rates of confidence intervals for each of these six objects. An important difference

from Brüggemann, Jentsch, and Trenkler (2016) is that our impact matrix in Equation (27)

is not triangular and cannot be estimated with a Cholesky decomposition. Rather, we show

below that the proxy SVAR methodology with the MBB produces good coverage rates,

especially at horizon 0, when the IRFs and FEVDs are only functions of H.

In the iid simulations, each element of εt is an independent standard normal random

variable. Our two DGPs with iid innovations have two different covariances between mt and

ε
(1)
t . In DGP1, we set Ψ = 0.5. In DGP2, we set Ψ = 0.2.

DGP3 is a GARCH(1,1) simulation. The elements ε
(1)
t and ε

(2)
t of εt are independent

and follow ε
(i)
t = g

(i)
t w

(i)
t and (g

(i)
t )2 = γ0 + γ1(ε

(i)
t−1)2 + γ2(g

(i)
t−1)2, for i = 1, 2. Here, w

(i)
t

for i = 1, 2 are independent standard normal random variables, γ1 = 0.05, γ2 = 0.93, and

γ0 = 1− γ1 − γ2. This specification lies between cases G1 and G2 in Brüggemann, Jentsch,

and Trenkler (2016). We also set Ψ = 0.5.

For each DGP, we produce confidence intervals for IRFs with the residual-based MBB

and the residual-based Rademacher wild bootstrap. We run the Monte Carlo simulations

with effective sample sizes of 400 and 2000. For the residual-based MBB, we use block

lengths of 22 and 34 for the sample sizes 400 and 2000, respectively.11 Note that fixing a

block length of ` = 1 gives an iid bootstrap design that extends Runkle (1987) to the proxy

SVAR case. This is sufficient for inference for DGP1 and DGP2 as both rely on iid VAR

innovations and proxy variables. Further, this iid bootstrap gains on the MBB in terms of

efficiency for DGP1 and DGP2, leading to slightly better results compared to what is shown

below for these DGPs. In contrast, ` > 1 is necessary to capture the nonlinear dependence

caused by the GARCH processes in DGP3, and an iid bootstrap would be asymptotically

invalid. We use the MBB for all three DGPs to highlight that it generally performs well and

is never worse than the Rademacher wild bootstrap for both iid and GARCH innovations.

Thus, the MBB can be viewed as robust for inference when researchers are unsure if their

VAR innovations are truly iid or may have some nonlinear dependence.

For each simulation, we draw εt and compute ut of sample size T + 1000, where T is the

relevant effective sample size. In DGP1 and DGP2, we use y0 = y−1 = 0 and ut to recursively

generate yt for t = 1, . . . , T + 1000. In DGP3, we use y0 = y−1 = 0, (g
(i)
0 )2 = 1 for i = 1, 2,

and (ε
(i)
0 )2 = 1 for i = 1, 2 to recursively generate εt and yt for t = 1, . . . , T + 1000. We then

11From Theorem 3.2, we need ` → ∞ and `3/T → 0 as T → ∞. Following Jentsch and Lunsford (2016,
2019), we use the rule ` = κT 1/4 with κ = 5.03, which normalizes ` = 20 when T = 250.
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drop the first 998 observations of yt to get a sample of length T plus two pre-sample values.

For each DGP, we produce 1000 simulations and use 2000 bootstrap replications. Then, we

compute the coverage rate of a confidence interval to be the fraction of simulations where

the true IRF or FEVD lies within the confidence interval. We show coverage rates for 95

percent confidence intervals. Coverage rates for 68 percent confidence intervals are in the

online supplemental appendix.

4.1 Results for DGP1

Figure 2 shows the confidence interval coverage rates from the MBB and the Rademacher

wild bootstrap for the one standard deviation IRFs under DGP1. All panels of Figure 2 show

that the coverage rates of the MBB are close to the intended levels on impact, displayed as

horizon 0. In contrast, the coverage rates for the wild bootstrap are much too small on

impact. They are 0.2 or less for T = 400. For T = 2000, these rates shrink to less than 0.08.

Because the IRF at horizon 0 is just H(1), which is a function of σ and ϕ but not β, this

shrinking of the coverage rates is consistent with Corollary 3.1.

For IRF horizons 1 through 20, Figure 2 shows that the MBB’s confidence intervals

gradually become undersized. However, this is much less of a problem with large sample

sizes. Conversely, the coverage rates of the wild bootstrap’s confidence intervals gradually

rise and become similar to those of the MBB. Under each of our DGPs, the wild bootstrap

is asymptotically valid for inference on the VAR slope coefficients, β. Hence, Figure 2 shows

that the uncertainty about the covariances, σ and ϕ, dies out as the IRF horizon increases

under DGP1 and the uncertainty about the slope coefficients becomes more relevant. Jentsch

and Lunsford (2019) also discuss this. Kilian and Lütkepohl (2017, p. 341) raise a similar

point for IRFs that are functions of β and σ, such as in Cholesky-identified SVARs.

While some papers in the proxy SVAR literature use one standard deviation IRFs (Gertler

and Karadi, 2015), others use normalized IRFs (Mertens and Ravn, 2013). Figure 3 shows

the confidence interval coverage rates from the MBB and the Rademacher wild bootstrap for

normalized IRFs under DGP1. We reiterate that y1,t is normalized to fall by 1 on impact. We

make this normalization within every bootstrap loop, causing the coverage rates for y1,t to be

1 at horizon 0 for both the MBB and the wild bootstrap. For y2,t, the MBB is appropriately

sized on impact. However, the wild bootstrap is very undersized on impact for y2,t, and the

coverage rates of its confidence intervals shrink when the sample size increases.

For horizons 1 through 20 with T = 400, the coverage rates for the MBB fall. However,
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Figure 2: Coverage rates of 95 percent confidence intervals for one standard deviation IRFs
under DGP1. The solid horizontal line shows the 0.95 target level.
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Figure 3: Coverage rates of 95 percent confidence intervals for normalized IRFs under DGP1.
The solid horizontal line shows the 0.95 target level.
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Figure 4: Ratios of the asymptotic variances of bootstrapped one standard deviation IRFs,
normalized IRFs, and FEVDs using the Rademacher wild bootstrap to the true asymptotic
variances of one standard deviation IRFs, normalized IRFs, and FEVDs under DGP1.

this fall is less noticeable at earlier horizons than for one standard deviation IRFs. For

T = 2000, the MBB performs well. In contrast, the wild bootstrap’s confidence intervals are

undersized at both sample sizes. Further, unlike with the one standard deviation IRFs, the

wild bootstrap’s coverage rates do not converge with those of the MBB by horizon 20.

To better understand the wild bootstrap’s differing coverage rates for one standard de-

viation IRFs and normalized IRFs, we use the results in Corollaries 2.2 and 3.1 to compute

the asymptotic variances of bootstrapped one standard deviation IRFs and normalized IRFs

that are produced by the Rademacher wild bootstrap, denoted by ΣΘ̂+
•1,i

and ΣΞ̂+
•1,i(s;m,1),

respectively, under DGP1. The top panel of Figure 4 shows the ratios of the (1,1) elements

of ΣΘ̂+
•1,i

and ΣΞ̂+
•1,i(s;m,1) to the (1,1) elements of the true asymptotic variances, ΣΘ̂•1,i

and

ΣΞ̂•1,i(s;m,1), at each horizon. The bottom panel displays the ratios of the (2,2) elements of

these matrices.12 Figure 4 shows that the Rademacher wild bootstrap implies zero asymp-

totic variance for one standard deviation IRFs and for the normalized IRF of y2,t at horizon

12Corollary 3.2 implies ΣΘ̂∗
•1,i

= ΣΘ̂•1,i
and ΣΞ̂∗

•1,i(s;m,1) = ΣΞ̂•1,i(s;m,1) for the MBB. Hence, these same

ratios for the MBB would all be 1, indicating its bootstrap consistency, and we do not display them.
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zero.13 This is consistent with the Rademacher wild bootstrap’s very small coverage rates

at horizon zero in Figures 2 and 3. As the horizon increases, the ratios in Figure 4 typically

increase. This result is consistent with the uncertainty about the covariances dying out as

the IRF horizon increases, discussed by Jentsch and Lunsford (2019) and Kilian and Lütke-

pohl (2017, p. 341). However, the ratios in Figure 4 are typically smaller for the normalized

IRF than for the one standard deviation IRF. Hence, the reason that the Rademacher wild

bootstrap’s coverage rates do not converge with the MBB’s for the normalized IRFs, while

they do for the one standard deviation IRFs, is that the asymptotic variance implied by the

Rademacher wild bootstrap is persistently smaller for the normalized IRF as a fraction of

the true asymptotic variance. As discussed in Remark 2.1, switching from a one standard

deviation IRF to a normalized IRF changes how the VMA coefficients interact with the

variances and covariances of σ and ϕ. For DGP1, this implies that uncertainty about these

covariances dies out more slowly for normalized IRFs than for one standard deviation IRFs.

Figure 4 also shows the ratios of the asymptotic variances of the FEVDs implied by the

Rademacher wild bootstrap to the true asymptotic variances, with the top panel showing

Σω̂+
11,h
/Σω̂11,h

and the bottom panel showing Σω̂+
21,h
/Σω̂21,h

. Consistent with the one standard

deviation IRFs, the Rademacher wild bootstrap implies zero asymptotic variance for the

FEVDs at horizon 0. Further, the ratios for the FEVDs are typically lower than for the

one standard deviation IRFs and become lower than the ratios for the normalized IRFs at

long horizons. Because the FEVDs are functions of cumulative sums, uncertainty about the

covariances, σ and ϕ, remains even as the horizon increases and causes the asymtptotic

variances implied by the wild bootstrap to be persistently too small. Figure 4 shows an

exception to these general patterns for y1,t for horizons 2 through 4. Comparing this exception

to Figure 1, we see that the FEVD has a hump-shaped trough for y1,t at these horizons,

causing the wild bootstrap’s underestimation of the asymptotic variance to be less severe.

Figure 5 shows the confidence interval coverage rates from the MBB and the Rademacher

wild bootstrap for the FEVDs under DGP1. All panels of Figure 5 show that the coverage

rates of the MBB are generally close to the intended levels, but may be slightly too small

with smaller sample sizes. In contrast, all panels of Figure 5 show that the coverage rates

of the wild bootstrap are much too small. Similar to the IRFs, the coverage rates for the

wild bootstrap are smallest at horizon 0 when the FEVDs are only functions of σ and ϕ and

13The normalized IRF for y1,t at i = 0 has an asymptotic variance of 0 because it is always normalized
equal to -1. This also gives it an asymptotic variance of 0 under the wild bootstrap. Hence, the ratio here
is 0/0, which we do not display in Figure 4.
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Figure 5: Coverage rates of 95 percent confidence intervals for FEVDs under DGP1. The
solid horizontal line shows the 0.95 target level.

shrink when the sample size increases. Consistent with the ratios of the asymptotic variances

in Figure 4, the coverage rates of the wild bootstrap generally rise with the horizon, but do

not converge to the MBB at a horizon of 20.

4.2 Results for DGP2

In proxy SVARs, IRFs and FEVDs are functions of β, σ and ϕ. Hence, coverage rates of

confidence intervals from bootstrap algorithms can depend on all three parameters. This

is different than in other bootstrap analysis, such as Brüggemann, Jentsch, and Trenkler

(2016) and Kilian and Lütkepohl (2017, ch. 12), where IRFs and FEVDs are only functions

of β and σ. To highlight the importance of changes to ϕ, we study DGP2. It is the same

as DGP1 in all respects, except that the covariance between mt and ε
(1)
t , Ψ, is reduced from

0.5 to 0.2, also reducing ϕ.

Figure 6 shows the confidence interval coverage rates from the MBB and the Rademacher

wild bootstrap for the one standard deviation IRFs under DGP2. Relative to DGP1, the

proxy variable provides less of a signal for the structural shock of interest. Despite this

weaker signal, the MBB provides very similar coverage rates when compared to DGP1 in
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Figure 2. On impact, the coverage rates are close to the intended levels. With T = 400, the

coverage rates gradually decline to about 0.78 at a horizon of 20 under DGP1 and DGP2.

Under both DGP1 and DGP2, the MBB stays close to the intended levels with T = 2000.

In contrast to DGP1, the wild bootstrap coverage rates do not fully converge with the

MBB converge rates under DGP2. With T = 400, the coverage rates only rise to about

0.70 at a horizon of 20 under DGP2, while they rise to about 0.78 under DGP1. While the

coverage rates for T = 2000 rise to slightly higher levels, they remain 0.07 to 0.09 lower than

the MBB. This shows that although the uncertainty about the covariances, σ and ϕ, dies

out as the IRF horizon increases, it can be quite persistent when the covariance of mt and

ε
(1)
t is relatively low. In this case, the estimate of H(1) will be more uncertain because the

proxy variable is giving less information about the structural shock of interest. However, the

Rademacher wild bootstrap asymptotically ignores the uncertainty around the estimate of

H(1), causing its coverage rates to become even more undersized.

Figure 7 shows the confidence interval coverage rates from the MBB and the Rademacher

wild bootstrap for normalized IRFs under DGP2. As with the normalized IRFs under DGP1,

the coverage rates for y1,t are 1 at horizon 0 for both the MBB and the wild bootstrap. Aside

from this, the MBB’s coverage rates are very close to the target level at low horizons. For

T = 400, the MBB’s coverage rates fall slightly at longer horizons.

In Figure 7, the wild bootstrap’s coverage rates stay persistently undersized out to horizon

20, and these rates do not rise above 0.68 when T = 400. This suggests that for conventional

sample sizes, it is possible that 95 percent confidence intervals from a wild bootstrap will

not even give 68 percent coverage for normalized IRFs. This is consistent with the findings

of Jentsch and Lunsford (2019). In that paper, we study the effects of tax changes that were

originally studied by Mertens and Ravn (2013). We show that many of the results thought to

be statistically significant at the 95 percent level were no longer significant at the 68 percent

level when using the MBB instead of the wild bootstrap.

To better understand the results in Figures 6 and 7, the top panel of Figure 8 shows

the ratios of the (1,1) elements of ΣΘ̂+
•1,i

and ΣΞ̂+
•1,i(s;m,1) to the (1,1) elements of ΣΘ̂•1,i

and

ΣΞ̂•1,i(s;m,1) at each horizon under DGP2. The bottom panel displays the ratios of the (2,2)

elements of these matrices. Compared to Figure 4, Figure 8 shows that the Rademacher

wild bootstrap captures even less of the true asymptotic variance under DGP2 than under

DGP1. In particular, the ratios for the normalized IRFs in Figure 8 do not rise to half of

the levels in Figure 4. Hence, the wild bootstrap’s persistently low coverage rates in Figure

7 are not due to small sample sizes. Rather, under DGP2 when the correlation between the
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Figure 6: Coverage rates of 95 percent confidence intervals for one standard deviation IRFs
under DGP2. The solid horizontal line shows the 0.95 target level.
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Figure 7: Coverage rates of 95 percent confidence intervals for normalized IRFs under DGP2.
The solid horizontal line shows the 0.95 target level.
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Figure 8: Ratios of the asymptotic variances of bootstrapped one standard deviation IRFs,
normalized IRFs, and FEVDs using the Rademacher wild bootstrap to the true asymptotic
variances of one standard deviation IRFs, normalized IRFs, and FEVDs under DGP2.

proxy variable and the structural shock of interest is low, the Rademacher wild bootstrap’s

implied asymptotic variance for normalized IRFs is much too low, even at long horizons.

Figure 9 shows the confidence interval coverage rates from the MBB and the Rademacher

wild bootstrap for the FEVDs under DGP2. While the MBB’s coverage rates for IRFs were

quite similar for DGP1 and DGP2, we see that the coverage rates for FEVDs deteriorate

slightly under DGP2 relative to DGP1 when T = 400. This is particularly true for y1,t at

horizons 2 through 4. Comparing this to Figure 1, we see that the FEVD is hump-shaped

for y1,t at these horizons, and it appears that the confidence intervals for the MBB struggle

to correctly capture the uncertainty around this hump. However, this is just a small sample

result and the MBB does much better when T = 2000.

Figure 9 shows that the wild bootstrap generally performs worse under DGP2 than under

DGP1 in Figure 5. This is consistent with the wild bootstrap’s worse performance for the

IRFs under DGP2 relative to DGP1. In particular, the coverage rates for y2,t never rise

to be even half of the intended levels in Figure 9. This is consistent with the ratios of the

asymptotic variances Σω̂+
11,h
/Σω̂11,h

and Σω̂+
21,h
/Σω̂21,h

in the top and bottom panels of Figure 8,
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Figure 9: Coverage rates of 95 percent confidence intervals for FEVDs under DGP2. The
solid horizontal line shows the 0.95 target level.

respectively. These ratios show that the asymptotic variances implied by the wild bootstrap

for FEVDs do not capture even 10 percent of the true asymptotic variances of the FEVDs,

except for y1,t at horizons 2 through 4.

Overall, we find that changing Ψ, and hence ϕ, causes material changes to the perfor-

mance of the bootstrap algorithms. For lower covariances between the proxy variables and

the structural shocks of interest, the MBB’s coverage rates for IRFs do not appear to change

much. However, its coverage rates around humps in FEVDs may deteriorate. In contrast, the

wild bootstrap’s performance can noticeably worsen. The asymptotic variances implied by

the wild bootstrap can shrink relative to the true asymptotic variances, causing its confidence

intervals to become more persistently undersized.

4.3 Results for DGP3

We conclude our Monte Carlo analysis by studying DGP3, which has conditional het-

eroskedasticity in both the VAR innovations and the proxy variables. Robustness against

conditional heteroskedasticity has been a motivating factor for using wild bootstraps in the

proxy SVAR literature (Mertens and Ravn, 2013; Gertler and Karadi, 2015). However, as
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we proved, this is only true for the VAR slope coefficients under an mds assumption, and

not for the covariances of the VAR innovations and the proxy variables. Rather, the MBB

is asymptotically valid for all three sets of parameters under conditional heteroskedasticity.

Figure 10 shows the confidence interval coverage rates from the MBB and the Rademacher

wild bootstrap for the one standard deviation IRFs under DGP3. The coverage rates for

the MBB are generally undersized. In contrast to DGP1 and DGP2, the coverage rates

may even be undersized on impact. This is consistent with the findings of Brüggemann,

Jentsch, and Trenkler (2016), who show that the MBB’s coverage can be undersized in small

samples for Cholesky-identified SVARs. However, Figure 10 shows a noticeable improvement

in coverage rates from T = 400 to T = 2000. Further, despite its low coverage, the MBB

usually performs much better and never worse than the wild bootstrap in terms of statistical

size under DGP3. As with the previous DGPs, the wild bootstrap’s coverage rates can be

much too small, especially at low horizons.

Figure 11 shows the confidence interval coverage rates from the MBB and the Rademacher

wild bootstrap for normalized IRFs under DGP3. The MBB’s coverage rates are good at low

horizons, in contrast to its coverage rates for one standard deviation IRFs. While the MBB

does become undersized at long horizons for T = 400, it performs well for T = 2000. In

contrast, the wild bootstrap is very undersized at low horizons and persistently undersized at

long horizons, consistent with its coverage of the normalized IRFs under DGP1 and DGP2.

Figure 12 shows the confidence interval coverage rates from the MBB and the Rademacher

wild bootstrap for the FEVDs under DGP3. The MBB’s coverage rates are consistently too

low at every horizon with rates as low as 0.79. These rates change little from T = 400

to T = 2000. Despite these low coverage rates, the MBB consistently dominates the wild

bootstrap in terms of statistical size under DGP3. As with the previous DGPs, the wild

bootstrap is persistently very undersized.

5 Conclusions

Recent research has shown how to use external instruments or proxy variables to identify

the effects of structural shocks in SVARs. Residual-based bootstrap methods, especially the

residual-based wild bootstrap, have been popular for providing inference for IRFs from these

proxy SVARs. In this paper, we make three contributions to improve the understanding

of these residual-based bootstrap methods. First, we provide a joint CLT for the VAR

coefficients, the covariance matrix of the VAR innovations, and the covariance matrix of the
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Figure 10: Coverage rates of 95 percent confidence intervals for one standard deviation IRFs
under DGP3. The solid horizontal line shows the 0.95 target level.
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Figure 11: Coverage rates of 95 percent confidence intervals for normalized IRFs under
DGP3. The solid horizontal line shows the 0.95 target level.
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Figure 12: Coverage rates of 95 percent confidence intervals for FEVDs under DGP3. The
solid horizontal line shows the 0.95 target level.

VAR innovations with the proxy variables under mild α-mixing conditions that cover a large

class of uncorrelated, but possibly dependent innovation processes, including conditional

heteroskedasticity. We extend this result to also derive the limiting distributions of IRFs

and FEVDs. Second, we prove that the residual-based wild bootstrap is not asymptotically

valid for inference on IRFs and FEVDs. This is true even when the VAR innovations

and proxy variables are iid. As a corollary to this result, we show that the commonly used

Rademacher distribution is particularly problematic because its asymptotics imply that there

is no uncertainty surrounding the estimates of the VAR innovation covariance matrix and

the covariance matrix of the VAR innovations with the proxy variables. This will cause

the Rademacher wild bootstrap to produce confidence intervals that are very undersized.

Our Monte Carlo simulations show that these confidence intervals can remain undersized

at long forecast horizons, which is consistent with our limiting distributions for IRFs and

FEVDs. To replace the residual-based wild bootstrap, our third contribution is to prove that

a residual-based MBB is asymptotically valid for inference on IRFs and FEVDs from proxy

SVARs. Our Monte Carlo simulations show that the MBB generally produces confidence

intervals that are appropriately sized.
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A Identification When r > 1

We show two methods to identify H(1) when r > 1. These methods use zero restrictions in

the form of assuming that certain square matrices are lower triangular. The first method is

a generalization of Equation (7). First, note that Equations (3) and (6) imply

E(mtu
′
t)[E(utu

′
t)]
−1E(utm

′
t) = ΨΨ′. (A.1)

We assume that Ψ is lower triangular so that a Cholsky decomposition can identify Ψ.

Similar to Equation (7), sign restrictions are also needed in the diagonal elements of the Ψ.

Then, Equations (6) and (A.1) and the lower triangular assumption on Ψ imply

H(1) = E(utm
′
t)chol{E(mtu

′
t)[E(utu

′
t)]
−1E(utm

′
t)}−1, (A.2)

where chol is the upper triangular Cholesky function so that chol(ΨΨ′) = Ψ′.

The second method to identify H(1) when r > 1 comes from Mertens and Ravn (2013).

First, partition ut and further partition H such that Equation (2) can be rewritten as
u

(1)
t

(r × 1)

u
(2)
t

(K − r × 1)

 =


H(1,1) H(1,2)

(r × r) (r ×K − r)
H(2,1) H(2,2)

(K − r × r) (K − r ×K − r)




ε
(1)
t

(r × 1)

ε
(2)
t

(K − r × 1)

 , (A.3)

where H(1,1) and H(2,2) are additionally assumed to be non-singular. Rearranging yields

u
(1)
t = H(1,2)H(2,2)−1u

(2)
t + S(1)ε

(1)
t (A.4)

and

u
(2)
t = H(2,1)H(1,1)−1u

(1)
t + S(2)ε

(2)
t , (A.5)

where S(1) =(Ir−H(1,2)H(2,2)−1H(2,1)H(1,1)−1)H(1,1) and S(2) =(IK−r−H(2,1)H(1,1)−1H(1,2)H(2,2)−1)H(2,2).

Then, Equations (4), (5), and (A.3) imply E(mtu
(1)′
t ) = ΨH(1,1)′ and E(mtu

(2)′
t ) = ΨH(2,1)′,

which jointly yield

H(2,1)H(1,1)−1 =
(

[E(mtu
(1)′
t )]−1E(mtu

(2)′
t )
)′
. (A.6)

From Equation (A.5), this is IV identification for the regression of u
(2)
t on u

(1)
t , using mt as
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instruments. Identification of H(1) then proceeds as follows. The definition of S(1) implies

S(1)S(1)′

= (Ir −H(1,2)H(2,2)−1H(2,1)H(1,1)−1)H(1,1)H(1,1)′(Ir −H(1,2)H(2,2)−1H(2,1)H(1,1)−1)′
(A.7)

and

H(1,1) = (Ir −H(1,2)H(2,2)−1H(2,1)H(1,1)−1)−1S(1). (A.8)

Next, impose that S(1) is lower triangular, again imposing sign restrictions on the diagonal

elements. Then, use S(1) to identify H(1,1) from Equation (A.8), and then use H(1,1) to

identify H(2,1) in Equation (A.6). Finally, H(1) = [H(1,1)′, H(2,1)′]′. See Mertens and Ravn

(2013) for a discussion on how to interpret the assumption that S(1) is lower triangular.

All that is left to implement this approach is to identify H(1,1)H(1,1)′ and H(1,2)H(2,2)−1,

which can be done as follows. First, for the purposes of notation, define E(u
(1)
t u

(1)′
t ) = Σ

(1,1)
u ,

E(u
(2)
t u

(1)′
t ) = Σ

(2,1)
u , and E(u

(2)
t u

(2)′
t ) = Σ

(2,2)
u . Second, Equations (3) and (A.3) imply

Σ(1,1)
u = H(1,1)H(1,1)′ +H(1,2)H(1,2)′, (A.9)

Σ(2,1)
u = H(2,1)H(1,1)′ +H(2,2)H(1,2)′, (A.10)

Σ(2,2)
u = H(2,1)H(2,1)′ +H(2,2)H(2,2)′. (A.11)

Using Equations (A.9) and (A.10), it is the case that

Σ(2,1)
u −H(2,1)H(1,1)−1Σ(1,1)

u = (H(2,2) −H(2,1)H(1,1)−1H(1,2))H(1,2)′. (A.12)

Third, define

Z = (H(2,2) −H(2,1)H(1,1)−1H(1,2))(H(2,2) −H(2,1)H(1,1)−1H(1,2))′. (A.13)

In the appendix of Jentsch and Lunsford (2019), we show that Z is also given by

Z = Σ(2,2)
u −H(2,1)H(1,1)−1Σ(2,1)′

u − Σ(2,1)
u (H(2,1)H(1,1)−1)′

+H(2,1)H(1,1)−1Σ(1,1)
u (H(2,1)H(1,1)−1)′.

(A.14)
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Hence, Z is identified. We also show that Equations (A.12) and (A.13) imply

H(1,2)H(1,2)′ = (Σ(2,1)
u −H(2,1)H(1,1)−1Σ(1,1)

u )′Z−1(Σ(2,1)
u −H(2,1)H(1,1)−1Σ(1,1)

u ) (A.15)

so that H(1,2)H(1,2)′ is identified. Fifth, Equation (A.9) yields

H(1,1)H(1,1)′ = Σ(1,1)
u −H(1,2)H(1,2)′,

which can then produce

H(2,2)H(2,2)′ = Σ(2,2)
u −H(2,1)H(1,1)−1H(1,1)H(1,1)′(H(2,1)H(1,1)−1)′

from Equation (A.11). Then Equation (A.10) implies

H(1,2)H(2,2)−1 = [Σ(2,1)′
u −H(1,1)H(1,1)′(H(2,1)H(1,1)−1)′](H(2,2)H(2,2)′)−1

To summarize, the IV identification in Equation (A.6) can be used to identify Z, H(1,2)H(1,2)′,

H(1,1)H(1,1)′, H(2,2)H(2,2)′, and H(1,2)H(2,2)−1. Given H(1,1)H(1,1)′ and H(1,2)H(2,2)−1, we can

identify S(1)S(1)′, impose the lower triangularity on S(1), and identify H(1,1) and H(2,1).

B Proofs

B.1 Proof of Theorem 2.1

We define σ̃ = vech(Σ̃u), where Σ̃u = 1
T

∑T
t=1 utu

′
t and ϕ̃ = vec(Ψ̃H(1)′), where Ψ̃H(1)′ =

1
T

∑T
t=1 mtu

′
t. Due to

√
T (σ̂ − σ̃) = oP (1) and

√
T (ϕ̂− ϕ̃) = oP (1) by standard arguments

using ergodicity and E(mty
′
t−j) = 0, j = 1, . . . , p, we can replace σ̂ by σ̃ and ϕ̂ by ϕ̃ in the

following calculations. Furthermore, by using

Zt−1 =


yt−1

...

yt−p

 =
∞∑
j=0


Φjut−1−j

...

Φjut−p−j

 =
∞∑
j=1


Φj−1ut−j

...

Φj−put−j

 =
∞∑
j=1

Cjut−j, (B.1)
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it can be shown that

√
T

 β̂ − β
σ̃ − σ
ϕ̃−ϕ

 =


{

( 1
T
ZZ ′)−1 ⊗ IK

}∑∞
j=1(Cj ⊗ IK) 1√

T

∑T
t=1

{
vec(utu

′
t−j)
}

1√
T

∑T
t=1 LK {vec(utu

′
t)− vec(Σu)}

1√
T

∑T
t=1

{
vec(mtu

′
t)− vec(ΨH(1)′)

}
(B.2)

= Am + (A− Am),

where A denotes the right-hand side of Equation (B.2) and Am is the same expression, but

with
∑∞

j=1 replaced by
∑m

j=1 for some m ∈ N. In the following, we make use of Proposition

6.3.9 of Brockwell and Davis (1991) and it suffices to show

(a) Am
D→ N (0, Vm) as T →∞

(b) Vm → V as m→∞

(c) ∀ δ > 0 : lim
m→∞

lim sup
T→∞

P (|A− Am|1 > δ) = 0.

To prove (a), setting K̃ = K(K + 1)/2, we can write

Am =

 ( 1
T
ZZ ′)−1 ⊗ IK OK2p×K̃ OK2p×Kr

OK̃×K2p IK̃ OK̃×Kr

OKr×K2p OKr×K̃ IKr


 C1 ⊗ IK · · · Cm ⊗ IK OK2p×K̃ OK2p×Kr

OK̃×K2 · · · OK̃×K2 IK̃ OK̃×Kr

OKr×K2 · · · OKr×K2 OKr×K̃ IKr



× 1√
T

T∑
t=1



vec(utu
′
t−1)

...

vec(utu
′
t−m)

LK {vec(utu
′
t)− vec(Σu)}

vec(mtu
′
t)− vec(ΨH(1)′)


= Q̂TRm

1√
T

T∑
t=1

Wt,m

with an obvious notation for the (K2p+ K̃ +Kr×K2p+ K̃ +Kr) matrix Q̂T , the (K2p+

K̃ + Kr ×K2m + K̃ + Kr) matrix Rm, and the K2m + K̃ + Kr-dimensional vector Wt,m.

By Lemma A.2 in Brüggemann, Jentsch, and Trenkler (2016), we have that Q̂T → Q in

probability, where Q = diag(Γ−1 ⊗ IK , IK̃ , IKr). Now, the CLT required for part (a) follows
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from Lemma B.1 with

Vm =

 V
(1,1)
m V

(1,2)
m V

(1,3)
m

V
(2,1)
m V (2,2) V (2,3)

V
(3,1)
m V (3,2) V (3,3)

 = QRmΩmR
′
mQ

′, (B.3)

which leads to V (i,j) = Ω(i,j), i, j ∈ {2, 3} as defined in Equations (B.5), (B.8) and (B.9),

V
(i,1)
m = V

(1,i)′
m , i ∈ {2, 3} and

V (1,1)
m = (Γ−1 ⊗ IK)

(
m∑

i,j=1

(Ci ⊗ IK)
∞∑

h=−∞

τi,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V (2,1)
m = LK

(
m∑
j=1

∞∑
h=−∞

τ0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V (3,1)
m =

(
m∑
j=1

∞∑
h=−∞

ν0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′.

Part (b) follows from Assumption 3.1 and due to
∑∞

i=1 ‖Ci ⊗ IK‖ < ∞. The second and

third parts of A−Am in Equation (B.2) are zero and it suffices to show (c) for the first part,

ignoring the factor Q̂T . Let λ ∈ RK2p and δ > 0, then (c) follows with Markov inequality

and ‖V (1,1)‖ <∞ from

P

(∣∣∣∣∣
∞∑

j=m+1

λ′(Cj ⊗ IK)
1√
T

T∑
t=1

vec(utu
′
t−j)

∣∣∣∣∣ > δ

)

≤ 1

δ2T
E

∣∣∣∣∣
∞∑

j=m+1

λ′(Cj ⊗ IK)
T∑
t=1

vec(utu
′
t−j)

∣∣∣∣∣
2


=
1

δ2

∞∑
i,j=m+1

λ′(Ci ⊗ IK)

{
1

T

T∑
t1,t2=1

E
(
vec(ut1u

′
t1−i) vec(ut2u

′
t2−j)

′)} (Cj ⊗ IK)′λ

=
1

δ2

∞∑
i,j=m+1

λ′(Ci ⊗ IK)

 T−1∑
h=−(T−1)

(
1− |h|

T

)
τi,h,h+j

 (Cj ⊗ IK)′λ

→
T→∞

1

δ2

∞∑
i,j=m+1

λ′(Ci ⊗ IK)
∞∑

h=−∞

τi,h,h+j(Cj ⊗ IK)′λ

→
m→∞

0.
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Lemma B.1 (CLT for innovations) Let Wt,m = (W
(1)′
t,m ,W

(2)′
t,m ,W

(3)′
t,m )′, where

W
(1)
t,m = (vec(utu

′
t−1)′, . . . , vec(utu

′
t−m)′)′

W
(2)
t,m = LK{vec(utu

′
t)− vec(Σu)} = vech(utu

′
t)− vech(Σu)

W
(3)
t,m = vec(mtu

′
t)− vec(ΨH(1)′)

Under Assumption 2.1, for sufficiently large m, we have

1√
T

T∑
t=1

Wt,m
D→ N (0,Ωm),

where Ωm is a (K2m+ K̃ +Kr ×K2m+ K̃ +Kr) block matrix

Ωm =

 Ω
(1,1)
m Ω

(1,2)
m Ω

(1,3)
m

Ω
(2,1)
m Ω(2,2) Ω(2,3)

Ω
(3,1)
m Ω(3,2) Ω(3,3)

 . (B.4)

Here, Ω
(1,1)
m = (

∑∞
h=−∞ τi,h,h+j)i,j=1,...,m is a block matrix with τi,h,h+j defined in Equation

(19) and the (K̃ × K̃), (K̃ ×K2m), (Kr ×K2m), (Kr × K̃) and (Kr ×Kr) matrices

Ω(2,2) = LK

(
∞∑

h=−∞

{τ0,h,h − vec(Σu) vec(Σu)
′}

)
L′K , (B.5)

Ω(2,1)
m = LK

(
∞∑

h=−∞

(τ0,h,h+1, . . . , τ0,h,h+m)

)
, (B.6)

Ω(3,1)
m =

∞∑
h=−∞

(ν0,h,h+1, . . . , ν0,h,h+m) (B.7)

Ω(3,2) =

(
∞∑

h=−∞

{
ν0,h,h − vec(ΨH(1)′) vec(Σu)

′})L′K (B.8)

Ω(3,3) =
∞∑

h=−∞

{
ζ0,h,h − vec(ΨH(1)′) vec(ΨH(1)′)′

}
, (B.9)

respectively.
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Proof.

The result follows analogously to the proof of Lemma A.1 (ii) in Brüggemann, Jentsch, and

Trenkler (2014) extended to the proxy SVAR setup.

B.2 Proof of Corollary 2.2

As r = 1, we can make use of the identification scheme (up to sign restriction) given in

Equations (15) and (16). It becomes apparent that H(1) is a smooth function of Σu and ϕ

as, by assumption, Σu is positive definite and ϕ is not the zero vector. Further, the Φi’s are

smooth functions of A1, . . . , Ap. Hence, using the Delta method similar to (and borrowing

some of the notation from) Lütkepohl (2005, Proposition 3.6), we get for any q ∈ {0, 1, . . .}
that

√
T



vec(Φ̂0)− vec(Φ0)

vec(Φ̂1)− vec(Φ1)
...

vec(Φ̂q)− vec(Φq)

σ̂ − σ
Ĥ(1) −H(1)


D→ N (0,W ) , W =

 W (1,1) W (2,1)′ W (3,1)′

W (2,1) W (2,2) W (3,2)′

W (3,1) W (3,2) W (3,3)

 (B.10)

holds, where

W (1,1) = G0,qV
(1,1)G′0,q

W (2,1) = V (2,1)G′0,q

W (2,2) = V (2,2)

W (3,1) = MσV
(2,1)G′0,q +MϕV

(3,1)G′0,q

W (3,2) = MσV
(2,2) +MϕV

(3,2)

W (3,3) = MσV
(2,2)M ′

σ +MϕV
(3,2)M ′

σ +MσV
(3,2)′M ′

ϕ +MϕV
(3,3)M ′

ϕ

with V (i,j) defined in Theorem 2.1 and G′0,q = [G′0 : G′1 : · · · : G′q] is a (K2p × K2(q + 1))

matrix with block entries14

Gi =
∂vec(Φi)

∂β′
=

i−1∑
s=0

J(A′)i−1−s ⊗ Φs,

14Note that β here corresponds to α in Lütkepohl (2005, Proposition 3.6) as no intercept term is included.
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where J = [IK : 0K : · · · : 0K ] is a (K ×Kp) matrix,

A =



A1 A2 · · · · · · Ap

IK 0K · · · · · · 0K

0K IK 0K · · · 0K
...

. . . . . . . . .
...

0K · · · 0K IK 0K


,

is the companion matrix and, by using standard rules for matrix differentiation from, for

example, Sections A.12 and A.13 in Lütkepohl (2005),

Mσ = ∂vec(H(1))/∂σ′ = ϕ
(
(1/2)(ϕ′Σ−1

u ϕ)−3/2
) (
ϕ′ ⊗ϕ′

) (
(Σ−1

u )′ ⊗ (Σ−1
u )
)
DK

Mϕ = ∂vec(H(1))/∂ϕ′ = −ϕ
(
(1/2)(ϕ′Σ−1

u ϕ)−3/2
) (
ϕ′((Σ−1

u )′ + Σ−1
u )
)

+
(
ϕ′Σ−1

u ϕ
)−1/2

IK .

This is sufficient for using the Delta method and deriving the limiting distributions of one

standard deviation IRFs Θ̂j1,i, normalized IRFs Ξ̂j1,i(s;m, 1) and FEVDs ω̂j1,h as all of them

are smooth functions of Φ̂i, i = 0, . . . , q, Σ̂u and Ĥ(1).

(i) For one standard deviation IRFs Θ̂•1,i = Φ̂iĤ
(1), we can make use of the relevant parts of

(B.10) as the basis result for another application of the Delta method. That is, we shall use

√
T

(
vec(Φ̂i)− vec(Φi)

Ĥ(1) −H(1)

)
D→ N

(
0,

(
GiV

(1,1)G′i
(
MσV

(2,1)G′i +MϕV
(3,1)G′i

)′
MσV

(2,1)G′i +MϕV
(3,1)G′i W (3,3)

))
.(B.11)

Together with

∂vec(ΦiH
(1))/∂vec(Φi)

′ = H(1)′ ⊗ IK and ∂vec(ΦiH
(1))/∂vec(H(1))′ = Φi,

Equation (B.11) implies

√
T (Θ̂•1,i −Θ•1,i)

D→ N
(

0,ΣΘ̂•1,i

)
,

where

ΣΘ̂•1,i
=

(
H(1)′ ⊗ IK

)
GiV

(1,1)G′i
(
H(1) ⊗ IK

)
+ Φi

(
MσV

(2,1)G′i +MϕV
(3,1)G′i

) (
H(1) ⊗ IK

)
+
(
H(1)′ ⊗ IK

) (
MσV

(2,1)G′i +MϕV
(3,1)G′i

)′
Φ′i + ΦiW

(3,3)Φ′i. (B.12)
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(ii) For normalized IRFs Ξ̂•1,i(s;m, 1) = sΘ̂•1,i/(e
′
mĤ

(1)) = sΦ̂iĤ
(1)/(e′mĤ

(1)), together with

∂vec(sΦiH
(1)/(e′mH

(1)))

∂vec(Φi)′
= s

(
(H(1)/(e′mH

(1)))′ ⊗ IK
)
,

∂vec(sΦiH
(1)/(e′mH

(1)))

∂vec(H(1))′
= sΦi

(
H(1)

(
− 1

(e′mH
(1))2

)
e′m +

1

(e′mH
(1))

IK

)
Equation (B.11) gives

√
T (Ξ̂•1,i(s;m, 1)− Ξ•1,i(s;m, 1))

D→ N
(

0,ΣΞ̂•1,i(s;m,1)

)
,

where

ΣΞ̂•1,i(s;m,1) =

(
s

e′mH
(1)

)2
[(
H(1)′ ⊗ IK

)
GiV

(1,1)G′i
(
H(1) ⊗ IK

)
(B.13)

+

(
Φi

(
IK −H(1)e′m

(
1

e′mH
(1)

)))(
MσV

(2,1)G′i +MϕV
(3,1)G′i

) (
H(1) ⊗ IK

)
+

(
H(1)′ ⊗ IK

) (
MσV

(2,1)G′i +MϕV
(3,1)G′i

)′(
Φi

(
IK −H(1)e′m

(
1

e′mH
(1)

)))′
+

(
Φi

(
IK −H(1)e′m

(
1

e′mH
(1)

)))
W (3,3)

(
Φi

(
IK −H(1)e′m

(
1

e′mH
(1)

)))′]
.

Further, it is the case that
(
IK −H(1)e′m/(e

′
mH

(1))
)
H(1) = 0. Then, H(1) = ϕ(ϕ′Σ−1

u ϕ)−1/2

from (15) and after imposing a sign restriction implies
(
IK −H(1)e′m/(e

′
mH

(1))
)
Mσ = 0 and(

IK −H(1)e′m/(e
′
mH

(1))
)
Mϕ = (IK −ϕe′m/(e′mϕ)) (ϕ′Σ−1

u ϕ)−1/2. It follows that

ΣΞ̂•1,i(s;m,1) =

(
s

e′mϕ

)2
[

(ϕ′ ⊗ IK)GiV
(1,1)G′i (ϕ⊗ IK)

+

(
Φi

(
IK −ϕe′m

(
1

e′mϕ

)))
V (3,1)G′i (ϕ⊗ IK)

+ (ϕ′ ⊗ IK)GiV
(3,1)′

(
Φi

(
IK −ϕe′m

(
1

e′mϕ

)))′
+

(
Φi

(
IK −ϕe′m

(
1

e′mϕ

)))
V (3,3)

(
Φi

(
IK −ϕe′m

(
1

e′mϕ

)))′]
,
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so that ΣΞ̂•1,i(s;m,1) does not depend on σ, V (2,1), V (2,2) or V (3,2).

(iii) For FEVDs

ω̂j1,h =

∑h−1
i=0 Θ̂2

j1,i∑h−1
i=0 e

′
jΦ̂iΣ̂uΦ̂′iej

=

∑i−1
i=0(e′jΦ̂iĤ

(1))2

M̂SEj(h)
,

together with

Fj1,h(r) :=
∂vec(ωj1,h)

∂vec(Φr)′
= −2

∑h−1
i=0 (e′jΦiH

(1))2

(MSEj(h))2
(e′jΦrΣu ⊗ e′j) + 2

e′jΦrH
(1)

MSEj(h)
(H(1)′ ⊗ e′j)

for r = 0, . . . , h− 1 and

Qj1,h :=
∂vec(ωj1,h)

∂σ′
= −

∑h−1
i=0 (e′jΦiH

(1))2

(MSEj(h))2

h−1∑
i=0

(e′jΦi ⊗ e′jΦi)DK

Nj1,h :=
∂vec(ωj1,h)

∂vec(H(1))′
=

2

MSEj(h)

h−1∑
i=0

(e′jΦiH
(1))(e′jΦi)

Equation (B.10) with q = h− 1 gives

√
T (ω̂j1,h − ωj1,h)

D→ N
(
0,Σω̂j1,h

)
,

where

Σω̂j1,h
= [Fj1,h : Qj1,h : Nj1,h]

 W (1,1) W (2,1)′ W (3,1)′

W (2,1) W (2,2) W (3,2)′

W (3,1) W (3,2) W (3,3)


 F

′
j1,h

Q′j1,h

N ′j1,h

 (B.14)

and Fj1,h = [Fj1,h(0) : Fj1,h(1) : · · · : Fj1,h(h− 1)]. �

B.3 Proof of Theorem 3.1

As u+
t = ûtηt and m+

t = mtηt, by taking conditional expectations, we get

E+
(
vec(u+

t u
+′
t−a)vec(u+

t−bu
+′
t−c)

′) = vec(ûtû
′
t−a)vec(ût−bû

′
t−c)

′E (ηtηt−aηt−bηt−c) , (B.15)
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where

E (ηtηt−aηt−bηt−c) =


E(η4

t ), a = b = c = 0

1, a = 0 6= b = c or b = 0 6= a = c or c = 0 6= a = b

0, otherwise

. (B.16)

Note that analogous representations also hold for E+
(
vec(m+

t u
+′
t−a)vec(ut−bu

+′
t−c)

′) as well as

E+
(
vec(m+

t u
+′
t−a)vec(mt−bu

+′
t−c)

′). Now, by using arguments similar to those used in the proof

of Theorem 3.2 below, we can show that the variance of
√
T ((β̂+− β̂)′, (σ̂+− σ̂)′, (ϕ̂+−ϕ̂)′)′

converges to a quantity corresponding to V as defined in Theorem 2.1, where all τa,b,c, νa,b,c

and ζa,b,c terms have to be replaced by τa,b,cE (ηtηt−aηt−bηt−c) , νa,b,cE (ηtηt−aηt−bηt−c) and

ζa,b,cE (ηtηt−aηt−bηt−c), respectively, leading to the claimed result. �

B.4 Proof of Theorem 3.2

By Polya’s Theorem and by Lemma A.1 in Brüggemann, Jentsch, and Trenkler (2016) simi-

larly to the proof of Theorem 2.1, it suffices to show that
√
T ((β̃∗− β̃)′, (σ̃∗− σ̂)′, (ϕ̂∗− ϕ̃)′)′

converges in distribution w.r.t. measure P ∗ to N (0, V ) as obtained in Theorem 2.1, where

β̃∗−β̃ := ((Z̃∗Z̃∗′)−1Z̃∗⊗IK)ũ∗, σ̃∗ = vech(Σ̃∗u) with Σ̃∗u = 1
T

∑T
t=1 ũ

∗
t ũ
∗′
t , σ̃ = vech(Σ̃u) with

Σ̃u = 1
T

∑T
t=1 utu

′
t, ϕ̃

∗ = vec(Ψ̃H(1)∗′) with Ψ̃H(1)∗′ = 1
T

∑T
t=1 m

∗
t ũ
∗′
t and ϕ̃ = vec(Ψ̃H(1)′)

with Ψ̃H(1)′ = 1
T

∑T
t=1mtu

′
t. Here, pre-sample values ỹ∗−p+1, . . . , ỹ

∗
0 are set to zero and

ỹ∗1, . . . , ỹ
∗
T is generated according to ỹ∗t = A1ỹ

∗
t−1 + · · · + Apỹ

∗
t−p + ũ∗t , where ũ∗1, . . . , ũ

∗
T is

an analogously drawn version of u∗1, . . . , u
∗
T as described in Steps 2 and 3 of the moving block

bootstrap procedure in Section 3.1, but from u1, . . . , uT instead of û1, . . . , ûT . Further, we

use the notation Z̃∗t = vec(ỹ∗t , . . . , ỹ
∗
t−p+1) (Kp× 1), Z̃∗ = (Z̃∗0 , . . . , Z̃

∗
T−1) (Kp× T ), and

ũ∗ = vec(ũ∗1, . . . , ũ
∗
T ) (KT × 1). Similarly to Equation (B.2), we get the representation

√
T

 β̃
∗ − β̃
σ̃∗ − σ̃
ϕ̃∗ − ϕ̃

 =


{

( 1
T
Z̃∗Z̃∗′)−1 ⊗ IK

}
1√
T

∑T−1
j=1 (Cj ⊗ IK)

∑T
t=j+1

{
vec(ũ∗t ũ

∗′
t−j)
}

1√
T

∑T
t=1 LK {vec(ũ∗t ũ

∗′
t )− vec(utu

′
t)}

1√
T

∑T
t=1 {vec(m∗t ũ

∗′
t )− vec(mtu

′
t)}

(B.17)

= A∗m + (A∗ − A∗m),

where A∗ denotes the right-hand side of Equation (B.10) and A∗m is the same expression, but

with
∑T−1

j=1 replaced by
∑m

j=1 for some fixed m ∈ N, m < T . In the following, we make use
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of Proposition 6.3.9 of Brockwell and Davis (1991) and it suffices to show

(a) A∗m
D→ N (0, Vm) in probability as T →∞

(b) Vm → V as m→∞

(c) ∀ δ > 0 : lim
m→∞

lim sup
T→∞

P ∗(|A∗ − A∗m|1 > δ) = 0 in probability.

To prove (a), setting K̃ = K(K + 1)/2, we can write

A∗m =

 ( 1
T
Z̃∗Z̃∗′)−1 ⊗ IK OK2p×K̃ OK2p×Kr

OK̃×K2p IK̃ OK̃×Kr

OKr×K2p OKr×K̃ IKr


 C1 ⊗ IK · · · Cm ⊗ IK OK2p×K̃ OK2p×Kr

OK̃×K2 · · · OK̃×K2 IK̃ OK̃×Kr

OKr×K2 · · · OKr×K2 OKr×K̃ IKr



× 1√
T

T∑
t=1



vec(ũ∗t ũ
∗′
t−1)

...

vec(ũ∗t ũ
∗′
t−m)

LK {vec(ũ∗t ũ
∗′
t )− vec(utu

′
t)}

vec(m∗t ũ
∗′
t )− vec(mtu

′
t)


= Q̃∗TRm

1√
T

T∑
t=1

W̃ ∗
t,m

as ũ∗t := 0 for t < 0 and with an obvious notation for the (K2p+ K̃ ×K2p+ K̃) matrix Q̃∗T

and the (K2m+K̃+Kr)-dimensional vector W̃ ∗
t,m. By Lemma A.2 in Brüggemann, Jentsch,

and Trenkler (2016), we have that Q̃∗T → Q with respect to P ∗. By using a straightforward

extension of Lemma A.3 in Brüggemann, Jentsch, and Trenkler (2016), the CLT required for

part (a) follows with Vm defined in Equation (B.3). Part (b) follows from the summability of

Cj and uniform boundedness of
∑∞

h=−∞ τi,h,h+j for i, j ∈ N, which is implied by the cumulant

condition of Assumption 3.1. As the factor Q̃∗T can be ignored and the second and third

parts of A∗ − A∗m are zero, part (c) follows as in Theorem 4.1 in Brüggemann, Jentsch, and

Trenkler (2016), which concludes the proof. �
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