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1 Introduction

This supplemental appendix provides details and results omitted from the paper for space

considerations. Section 2 details the MCMC algorithm for the BVAR-GFSV model used to

produce the paper’s main results. Section 3 provides priors for this model and spells out the

BVAR-SV and BVAR models and priors used in some results in the paper. Section 4 details

the historical decomposition used with the BVAR-GFSV estimates. Section 5 summarizes

estimates of the correlations of our uncertainty shocks with “known” macroeconomic shocks

for the U.S. Section 6 summarizes a robustness check of extending the estimation sample for

the GDP-only dataset back in time. The supplement concludes with some additional charts

and tables of results mentioned in the paper.

2 MCMC Algorithm for BVAR-GFSV Model

In detailing the algorithm in this appendix, for simplicity we present the more general version

with the time-varying idiosyncratic volatility component and then indicate simplifications

associated with treating the idiosyncratic component as constant. For simplicity, we describe

the computations for a one-factor specification; the second factor is handled with the same

basic approach.

For the convenience of self-containment, we begin by repeating the equations of the

model:

vt = A−1Λ0.5
t εt, εt ∼ iid N(0, I), (1)

lnλi,t = βm,i lnmt + lnhi,t, i = 1, . . . , n, (2)

lnmt =

pm∑
i=1

δm,i lnmt−i + δ′m,yyt−1 + um,t, um,t ∼ iid N(0, φm), (3)

lnhi,t = γi,0 + γi,1 lnhi,t−1 + ei,t, i = 1, . . . , n, (4)

yt =

p∑
i=1

Πiyt−i +

pm∑
i=0

Πm,i lnmt−i + vt. (5)

Our exposition of priors, posteriors, and estimation makes use of the following additional

notation. Let Π denote the collection of the VAR’s coefficients. The vector aj, j = 2, . . . , n,

contains the jth row of the matrix A (for columns 1 through j − 1). We define the vector

γ = {γ1, . . . , γn} as the set of coefficients appearing in the conditional means of the tran-

sition equations for the states h1:T , and δ = {D(L), δ′m} as the set of the coefficients in
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the conditional mean of the transition equation for the states m1:T . The coefficient matrices

Φv and Φu collect the variances of the shocks to the transition equations for the idiosyncratic

states h1:T and the common uncertainty factor m1:T ; for identification, the value of Φu is

fixed. In addition, we group the parameters of the model in (1)-(5), except the vector of

factor loadings β, into Θ = {Π, A, γ, δ,Φv,Φu}. Finally, let s1:T denote the time series of the

mixture states used (as explained below) to draw h1:T .

We use an MCMC algorithm to obtain draws from the joint posterior distribution of

model parameters Θ, loadings β, and latent states h1:T , m1:T , s1:T . Specifically, we sample

in turn from the following two conditional posteriors (for simplicity, we suppress notation

for the dependence of each conditional posterior on the data sample y1:T ): (1) h1:T , β | Θ,

s1:T , m1:T , and (2) Θ, s1:T , m1:T | h1:T , β.

The first step relies on a state space system. Defining the rescaled residuals ṽt = Avt,

taking the log squares of (1), and subtracting out the known (in the conditional posterior)

contributions of the common factors yields the observation equations (c̄ denotes an offset

constant used to avoid potential problems with near-zero values):

ln(ṽ2
j,t + c̄)− βm,j lnmt = lnhj,t + ln ε2j,t, j = 1, . . . , n. (6)

For the idiosyncratic volatility components, the transition and measurement equations of

the state-space system are given by (4) and (6), respectively. The system is linear but not

Gaussian, due to the error terms ln ε2j,t. However, εj,t is a Gaussian process with unit variance;

therefore, we can use the mixture of normals approximation of Kim, Shephard, and Chib

(1998) to obtain an approximate Gaussian system, conditional on the mixture of states s1:T .

To produce a draw from h1:T , β | Θ, s1:T , m1:T , we then proceed as usual by (a) drawing the

time series of the states given the loadings using h1:T | β, Θ, s1:T , m1:T , following Del Negro

and Primiceri’s (2015) implementation of the Kim, Shephard, and Chib (1998) algorithm,

and by then (b) drawing the loadings given the states using β | h1:T , Θ, s1:T , m1:T , using the

conditional posterior detailed below in (16).

In specifications in which the idiosyncratic components h1:T are restricted to be constant

over time, the algorithm simplifies as follows. In this case, the measurement equation (6)

simplifies to

ln(ṽ2
j,t + c̄)− βm,j lnmt = lnhj + ln ε2j,t, j = 1, . . . , n, (7)

and we no longer have a transition equation for the idiosyncratic components. Rather, given

normally distributed priors on the idiosyncratic constants of each variable and the mixture
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states s1:T and their associated means and variances, we draw the idiosyncratic constants

from a conditionally normal posterior using a GLS regression based on (7).

The second step conditions on the idiosyncratic volatilities and factor loadings to pro-

duce draws of the model coefficients Θ, common uncertainty factor m1:T , and the mixture

states s1:T . Draws from the posterior Θ, s1:T | h1:T , β are obtained in three substeps from,

respectively: (a) Θ | m1:T , h1:T , β; (b) m1:T , | Θ, h1:T , β; and (c) s1:T | Θ, m1:T , h1:T , β.

More specifically, for Θ |m1:T , h1:T , β we use the posteriors detailed below, in equations (14),

(15), (17), (18), and (19). For m1:T | Θ, h1:T , β, we use the particle Gibbs step proposed

by Andrieu, Doucet, and Holenstein (2010). For s1:T | Θ, m1:T , h1:T , β, we use the 10-state

mixture approximation of Omori, et al. (2007).

2.1 Coefficient Priors and Posteriors

We specify the following (independent) priors for the parameter blocks of the model:

vec(Π) ∼ N(vec(µ
Π

),ΩΠ), (8)

aj ∼ N(µ
a,j
,Ωa,j), j = 2, . . . , n, (9)

βm,j ∼ N(µ
β
,Ωβ), j = 1, . . . , n, (10)

γj ∼ N(µ
γ
,Ωγ), j = 1, . . . , n, (11)

δ ∼ N(µ
δ
,Ωδ), (12)

φj ∼ IG(dφ · φ, dφ), j = 1, . . . , n. (13)

Under these priors, the parameters Π, A, β, γ, δ, and Φv have the following closed form

conditional posterior distributions:

vec(Π)|A, β,m1:T , h1:T , y1:T ∼ N(vec(µ̄Π), Ω̄Π), (14)

aj|Π, β,m1:T , h1:T , y1:T ∼ N(µ̄a,j, Ω̄a,j), j = 2, . . . , n, (15)

βm,j|Π, A, γ,Φ,m1:T , h1:T , s1:T , y1:T ∼ N(µ̄β, Ω̄β), j = 1, . . . , n, (16)

γj|Π, A, β,Φ,m1:T , h1:T , y1:T ∼ N(µ̄γ, Ω̄γ), j = 1, . . . , n, (17)

δ|Π, A, γ, β,Φ,m1:T , h1:T , y1:T ∼ N(µ̄δ, Ω̄δ), (18)

φj|Π, A, β, γ,m1:T , h1:T , y1:T ∼ IG
(
dφ · φ+ ΣT

t=1ν
2
jt, dφ + T

)
, j = 1, . . . , n.(19)

Expressions for µ̄a,j, µ̄δ, µ̄γ, Ω̄a,j, Ω̄δ, and Ω̄γ are straightforward to obtain using standard

results from the linear regression model. To save space, we omit details for these posteriors;
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general solutions are readily available in other sources (e.g., Cogley and Sargent 2005 for

µ̄a,j).

In the posterior for the factor loadings β, the mean and variance take a GLS-based form,

with dependence on the mixture states used to draw volatility. For the VAR coefficients Π,

with smaller models it is common to rely on a GLS solution for the posterior mean (e.g.,

Carriero, Clark, and Marcellino 2016a). However, with large models it is far faster to exploit

the triangularization — obtaining the same posterior provided by standard system solutions

— developed in Carriero, Clark, and Marcellino (2016b) and estimate the VAR coefficients

on an equation-by-equation basis.

Specifically, using the factorization given below allows us to draw the coefficients of the

matrix Π in separate blocks. Let π(j) denote the j-th column of the matrix Π, and let π(1:j−1)

denote all the previous columns. Then draws of π(j) can be obtained from:

π(j) | π(1:j−1), A, β,m1:T , h1:T , y1:T ∼ N(µ̄π(j) ,Ωπ(j)), (20)

µ̄π(j) = Ωπ(j)

{
ΣT
t=1Xtλ

−1
j,t y

∗′
j,t + Ω−1

π(j)(µπ(j))
}
, (21)

Ω
−1

π(j) = Ω−1
π(j) + ΣT

t=1Xtλ
−1
j,tX

′
t, (22)

where y∗j,t = yj,t− (a∗j,1λ
0.5
1,t ε1,t+ · · ·+a∗j,,j−1λ

0.5
j−1,tεj−1,t), with a∗j,i denoting the generic element

of the matrix A−1 and Ω−1
π(j) and µ

π(j) denoting the prior moments on the j-th equation, given

by the j-th column of µ
Π

and the j-th block on the diagonal of Ω−1
Π .

2.2 Unobservable States

For the unobserved common volatility states mt, given the law of motion in (3) and priors

on the period 0 values, draws from the posteriors can be obtained using the particle Gibbs

sampler of Andrieu, Doucet, and Holenstein (2010). In the particle Gibbs sampler of the

uncertainty factors, we use 50 particles, which appears sufficient for efficiency and mixing.

For the unobserved idiosyncratic volatility states hj,t, j = 1, . . . , n, given the law of

motion for the unobservable states in (4) and priors on the period 0 values, draws from

the posteriors can be obtained using the algorithm of Kim, Shephard, and Chib (1998). As

noted above, in specifications in which the idiosyncratic components h1:T are restricted to

be constant over time, the algorithm simplifies. In this case, given normally distributed

priors on the idiosyncratic constants of each variable and the mixture states s1:T and their

associated means and variances, we draw the idiosyncratic constants from a conditionally
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normal posterior using a GLS regression based on (7).

2.3 Drawing the Loadings

Finally, we note that in drawing the loadings, we make use of the information in the observ-

able ln(ṽ2
j,t), with the following transformation of the observation equations:

ln(ṽ2
j,t + c̄)− lnhj,t = βm,j lnmt + ln ε2j,t, j = 1, . . . , n.

With the conditioning on h1:T and s1:T in the posterior for β, we use this equation, along

with the mixture mean and variance associated with the draw of s1:T , for sampling the factor

loadings with a conditionally normal posterior with mean and variance represented in a GLS

form. The same applies in the specifications in which the idiosyncratic volatilities hj,t are

restricted to be constant over time.

2.4 Triangularization for Estimation

In this subsection we briefly summarize the VAR triangularization that is needed to handle

a large system with asymmetric priors and time-varying volatilities, such as the model used

here.1 More details can be found in Carriero, Clark, and Marcellino (2016b). With the

triangularization, the estimation algorithm will block the conditional posterior distribution

of the system of VAR coefficients in n different blocks. In the step of the typical Gibbs

sampler that involves drawing the set of VAR coefficients Π, all of the remaining model

coefficients are given. Consider again the reduced-form residuals:
v1,t

v2,t

. . .
vn,t

 =


1 0 . . . 0
a∗2,1 1 . . .
. . . 1 0
a∗n,1 . . . a∗n,n−1 1



λ0.5

1,t 0 . . . 0
0 λ0.5

2,t . . .
. . . . . . 0
0 . . . 0 λ0.5

n,t



ε1,t
ε2,t
. . .
εn,t

 , (23)

1Since the triangularization obtains computational gains of order n2, the cross-sectional dimension of
the system can be extremely large, and indeed Carriero, Clark, and Marcellino (2016b) present results for a
VAR with 125 variables.
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where a∗j,i denotes the generic element of the matrix A−1, which is available under knowledge

of A. The VAR can be written as:

y1,t =
n∑
i=1

p∑
l=1

π
(i)
1,lyi,t−l +

pm∑
l=0

π
(m)
l,1 lnmt−l +

pf∑
l=0

π
(f)
l,1 ln ft−l + λ0.5

1,t ε1,t

y2,t =
n∑
i=1

p∑
l=1

π
(i)
2,lyi,t−l +

pm∑
l=0

π
(m)
l,2 lnmt−l +

pf∑
l=0

π
(f)
l,2 ln ft−l + a∗2,1λ

0.5
1,t ε1,t + λ0.5

2,t ε2,t

. . .

yn,t =
n∑
i=1

p∑
l=1

π
(i)
n,lyi,t−l +

pm∑
l=0

π
(m)
l,N lnmt−l +

pf∑
l=0

π
(f)
l,N ln ft−l + a∗n,1λ

0.5
1,t ε1,t + · · ·

. . .+ a∗n,n−1λ
0.5
n−1,tεn−1,t + λ0.5

n,tεn,t,

with the generic equation for variable j:

yj,t − (a∗j,1λ
0.5
1,t ε1,t + · · ·+ a∗j,,j−1λ

0.5
j−1,tεj−1,t)

=
n∑
i=1

p∑
l=1

π
(i)
j,lyi,t−l +

pm∑
l=0

π
(m)
l,j lnmt−l +

pf∑
l=0

π
(f)
l,j ln ft−l + λj,tεj,t. (24)

Consider estimating these equations in order from j = 1 to j = n. When estimating the

generic equation j, the term of the left-hand side in (24) is known, since it is given by the

difference between the dependent variable of that equation and the estimated residuals of

all the previous j − 1 equations. Therefore we can define:

y∗j,t = yj,t − (a∗j,1λ
0.5
1,t ε1,t + · · ·+ a∗j,,j−1λ

0.5
j−1,tεj−1,t), (25)

and equation (24) becomes a standard generalized linear regression model for the variable

in equation (25) with Gaussian disturbances with mean 0 and variance λj,t.

Accordingly, drawing on results detailed in Carriero, Clark, and Marcellino (2016b), the

posterior distribution of the VAR coefficients can be factorized as:

p(Π|A, β,m1:T , h1:T , y1:T ) = p(π(n)|π(n−1), π(n−2), . . . , π(1), A, β,m1:T , h1:T , y1:T )

×p(π(n−1)|π(n−2), . . . , π(1), A, β,m1:T , h1:T , y1:T )

× ... × p(π(1)|A, β,m1:T , h1:T , y1:T ), (26)

where the vector β collects the loadings of the uncertainty factors andm1:T , h1:T = (h1,T , . . . , hn,T ),

and y1:T denote the history of the states and data up to time T .2 As a result, we are able to

2Note we have implicitly used the fact that the matrix Ω−1
Π is block diagonal, which is the case in

our application, as our prior on the conditional mean coefficients is independent across equations, with a
Minnesota-style form.
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estimate the coefficients of the VAR on an equation-by-equation basis. This greatly speeds

estimation and permits us to consider much larger systems than we would otherwise be able

to consider.

Importantly, although the expression (23) and the following triangular system are based

on a Cholesky-type decomposition of the variance Σt, the decomposition is simply used as an

estimation device, not as a way to identify structural shocks. The ordering of the variables in

the system does not change the joint (conditional) posterior of the reduced-form coefficients,

so changing the order of the variables is inconsequential to the results.3 Moreover, since a

shock to uncertainty is uncorrelated with shocks to the conditional mean of the variables,

the ordering of the variables in the system has no influence on the shape of impulse responses

in our application.

3 Prior settings

3.1 BVAR-GFSV

For the VAR coefficients contained in Π, we use a Minnesota-type prior. With the variables

of interest transformed for stationarity, we set the prior mean of all the VAR coefficients to

0. We make the prior variance-covariance matrix ΩΠ diagonal. The variances are specified

to make the prior on the lnmt terms fairly loose and the prior on the lags of yt take a

Minnesota-type form. Specifically, for the lnmt terms of equation i, the prior variance is

θ2
3σ

2
i . For lag l of variable j in equation i, the prior variance is θ21

l2
for i = j and θ21θ

2
2

l2
σ2
i

σ2
j

otherwise. In line with common settings, we set overall shrinkage θ1 = 0.1 and cross-variable

shrinkage θ2 = 0.5; we set factor coefficient shrinkage θ3 = 10. Finally, consistent with

common settings, the scale parameters σ2
i take the values of residual variances from AR(p)

models fit over the estimation sample.

Regarding priors attached to the volatility-related components of the model, for the

3This statement refers to drawing from the conditional posterior of the conditional mean parameters,
when Σt belongs to the conditioning set. One needs also to keep in mind that the joint distribution of the
system might be affected by the ordering of the variables in the system due to an entirely different reason:
the diagonalization typically used for the error variance Σt in stochastic volatility models. Since priors are
elicited separately for A and Λt, the implied prior of Σt will change if one changes the equation ordering, and
therefore different orderings would result in different prior specifications and then potentially different joint
posteriors. This problem is not a feature of our triangular algorithm, but rather it is inherent to all models
using the diagonalization of Σt. As noted by Sims and Zha (2006) and Primiceri (2005), this problem will
be mitigated in the case (as the one considered in this paper) in which the covariances A do not vary with
time, because the likelihood information will soon dominate the prior.
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rows aj of the matrix A, we follow Cogley and Sargent (2005) and make the prior fairly

uninformative, with prior means of 0 and variances of 10 for all coefficients.

For the loading βi,m, i = 1, . . . , n, on the uncertainty factor lnmt, we use a prior mean

of 1 and a standard deviation of 0.5. The prior is meant to be consistent with average

volatility approximating aggregate uncertainty. In the two-factor model, for the loading βi,f ,

i = 1, . . . , n, on the uncertainty factor ln ft, we assign a lower prior mean and larger standard

deviation, of 0.5 and 1.0, respectively. For the coefficients of the processes of the factors, we

use priors consistent with some persistence in volatility. For the coefficients on lags 1 and

2 of lnmt and ln ft, we use means of 0.9 and 0.0, respectively, with standard deviations of

0.2. For the coefficients on yt−1, we use means of 0 and standard deviations of 0.4. For the

period 0 values of lnmt and ln ft, we set the means at 0 and in each draw use the variances

implied by the AR representations of the factors and the draws of the coefficients and error

variance matrix.

For the idiosyncratic volatility component, in the model for the 3-economy macroeco-

nomic dataset in which it is constant at hi, the prior mean is lnσ2
i , where σ2

i is the residual

variance of an AR(p) model over the estimation sample, and the prior standard deviation

is 2. In the model for the 19-country GDP dataset in which the idiosyncratic component is

time-varying as in (4), the prior mean is (lnσ2
i , 0.0), where σ2

i is the residual variance of an

AR(p) model over the estimation sample. In this specification, for the variance of innovations

to the log idiosyncratic volatilities, we use a mean of 0.03 and 15 degrees of freedom.

3.2 BVAR-SV

The conventional BVAR with stochastic volatility, referred to as a BVAR-SV specification,

takes the following form, for the n× 1 data vector yt:

yt =

p∑
i=1

Πiyt−i + vt,

vt = A−1Λ0.5
t εt, εt ∼ N(0, In), Λt ≡ diag(λ1,t, . . . , λn,t), (27)

ln(λi,t) = γ0,i + γ1,i ln(λi,t−1) + νi,t, i = 1, . . . , n,

νt ≡ (ν1,t, ν2,t, . . . , νn,t)
′ ∼ N(0,Φ),

where A is a lower triangular matrix with ones on the diagonal and non-zero coefficients below

the diagonal, and the diagonal matrix Λt contains the time-varying variances of conditionally

Gaussian shocks. This model implies that the reduced-form variance-covariance matrix of
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innovations to the VAR is var(vt) ≡ Σt = A−1ΛtA
−1′. Note that, as in Primiceri’s (2005)

implementation, innovations to log volatility are allowed to be correlated across variables; Φ

is not restricted to be diagonal. Estimates derived from the BVAR-SV model are based on

samples of 5,000 retained draws, obtained by sampling a total of 30,000 draws, discarding

the first 5,000, and retaining every 5th draw of the post-burn sample.4

We set the priors for the BVAR-SV model to generally align with those of the baseline

model with factor volatility detailed above. For the VAR coefficients contained in Π, we

use a Minnesota-type prior. With the variables of interest transformed for stationarity, we

set the prior mean of all the VAR coefficients to 0. We make the prior variance-covariance

matrix ΩΠ diagonal. For lag l of variable j in equation i, the prior variance is θ21
l2

for i = j

and θ21θ
2
2

l2
σ2
i

σ2
j

otherwise. In line with common settings for large models, we set overall shrinkage

θ1 = 0.1 and cross-variable shrinkage θ2 = 0.5. Consistent with common settings, the scale

parameters σ2
i take the values of residual variances from AR(p) models fit over the estimation

sample.

For each row aj of the matrix A, we follow Cogley and Sargent (2005) and make the

prior fairly uninformative, with prior means of 0 and variances of 10 for all coefficients.

The variance of 10 is large enough for this prior to be considered uninformative. For the

coefficients (γi,0, γi,1) (intercept, slope) of the log volatility process of equation i, i = 1, . . . , n,

the prior mean is (0.05 × lnσ2
i , 0.95), where σ2

i is the residual variance of an AR(p) model

over the estimation sample; this prior implies the mean level of volatility is lnσ2
i . The prior

standard deviations (assuming 0 covariance) are (20.5, 0.3). For the variance matrix Φ of

innovations to log volatility, we use an inverse Wishart prior with mean of 0.03 × In and

n+2 degrees of freedom. For the period 0 values of lnλt, we set the prior mean and variance

at ln σ2
i and 2.0, respectively.

3.3 BVAR

The homoskedastic BVAR used in the two-step approach to impulse response assessment

takes the following form:

yt =

p∑
i=1

Πiyt−i + vt, vt ∼ i.i.d. N(0,Σ). (28)

4To speed computation, we estimate the model with the triangularization approach developed in Carriero,
Clark, and Marcellino (2016b).
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Regarding the priors on the homoskedastic BVAR’s coefficients, we set them to be the

same as with the BVAR-GFSV and BVAR-SV models, with the same Minnesota-type prior.

For the innovation variance matrix Σ, we use n+ 2 degrees of freedom and a prior mean of

a diagonal matrix with elements equal to 0.8 times the values of the residual variances from

AR(p) models fit over the estimation sample.

4 Historical Decomposition with BVAR-GFSV Model

This section details the computation of the paper’s estimated historical decomposition. As

a starting point, consider a simple one-factor model with lag orders of 1:{
yt = Πyt−1 + Γ1 lnmt + Γ2 lnmt−1 + vt

lnmt = δyt−1 + γ lnmt−1 + ut
, (29)

where vt and ut are independent, with variances Σt and Φu, respectively. So we can replace

vt above with Σ0.5
t εt, where Σ0.5

t is a short-cut notation for the Cholesky decomposition of Σt

and εt is N(0, In). The one-step-ahead forecast errors are yt+1−Etyt+1 = Σ0.5
t+1εt+1 + Γ1ut+1.

Now let Σ̂t+s|t denote the future error variance matrix that would prevail in the absence of

future shocks to uncertainty. This would be constructed from forecasts of future uncertainty

accounting for movements in y driven by ε shocks and the path of idiosyncratic volatility

terms (incorporating shocks to these terms). The following decomposition can be obtained

by adding and subtracting Σ̂t+1|t terms in the forecast error:

yt+1 − Etyt+1 = Γ1ut+1 + Σ̂0.5
t+1|tεt+1 + (Σ0.5

t+1 − Σ̂0.5
t+1|t)εt+1. (30)

In this decomposition, the first term gives the direct contribution of the uncertainty shock,

the second term gives the direct contribution of the structural shocks to the VAR, and the

third term gives the interaction component. The third term can be simply measured as a

residual contribution, as the data less the direct contributions from the uncertainty shock

and the structural shocks to the VAR. We apply this basic decomposition to our more general

model to obtain historical decompositions.

One potential complication with this approach is that, in the interaction components,

there is not a good way to separate the roles of aggregate uncertainty and idiosyncratic

volatility, because Σt is the product of terms containing innovations to aggregate uncertainty

and innovations to idiosyncratic components. Since the terms are multiplicative and not

additive, there isn’t a clear way to isolate the role of aggregate uncertainty from the role
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of idiosyncratic components. Moreover, any attempt to do so would be dependent on the

ordering of the variables within the VAR because the effect of uncertainty on the conditional

variance of yt is influenced by the matrix A−1, and hence the ordering of the variables within

the VAR matters. Because of these complications, and because the interaction effects are

empirically much less pronounced than the direct effects, we chose to leave the interaction

component as is, without attempting to separate the roles of aggregate uncertainty and

idiosyncratic volatility in the interaction component.

5 Correlations of Uncertainty Estimates with Known

Macro Shocks

This section reports correlations of our estimated global macroeconomic uncertainty shocks

with some well-known and available macro shocks for the U.S. (estimates for other countries

do not seem to be widely available). Specifically, we consider productivity shocks (Fernald’s

updates of Basu, Fernald, and Kimball 2006), oil supply shocks (Hamilton 2003 and Kilian

2008), monetary policy shocks (Gurkaynak, et al. 2005 and Coibion, et al. 2017), fiscal policy

shocks (Ramey 2011 and Mertens and Ravn 2012), shocks to credit conditions (the excess

bond premium of Gilchrist and Zakrajsek 2012), and economic news shocks (Barsky and

Sims 2011).5

As indicated by the results in Appendix Table 3, our international uncertainty shocks are

not very correlated with “known” macroeconomic shocks in the U.S. At least in this sense,

to the extent shocks in the U.S. bear on the international business cycle, our estimated

uncertainty shocks seem to truly represent a second-order “variance” phenomenon, rather

than a first-order “level” shock. While it would be interesting to also assess the correlation of

our uncertainty shocks with macroeconomic shocks for other countries or the global economy,

we are not aware of standard sources of shocks like those that exist for U.S. data.

5The productivity shocks correspond to growth rates of utilization-adjusted TFP. The oil price shock
measure of Hamilton (2003) is the net-oil price increase series. The monetary policy shocks of Coibion, et al.
(2017) update the estimates of Romer and Romer (2004). We constructed the excess bond premium shock
as in the VAR analysis in section IV.B of Gilchrist and Zakrajsek (2012).
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6 Results for GDP Growth in 19 Countries over Longer

Sample

Although one might be concerned with the stability of a VAR in data on GDP growth across

countries extending back to 1960, as an additional robustness check we have examined the

international factor structure of uncertainty and its effects on GDP for a sample of 1960:Q4

through 2016:Q3. According to the basic measures of a factor structure, results are very

similar for the alternative 1960-2016 and the baseline 1985-2016 samples. In the longer

sample, as in the baseline, the measures of factor structure suggest one strong factor in

the international volatility of the business cycle as captured by GDP, with the first factor

accounting for an average of about 74 percent of the variation in volatility and the second

accounting for 13 percent, and the Ahn-Horenstein ratio peaking at one factor.

In BVAR-GFSV estimates over the 1960-2016 sample, the influence of the Great Moder-

ation appears to pose some challenges in estimating macroeconomic uncertainty as it relates

to the business cycle. With a one-factor specification, the estimated factor contains a sizable

Great Moderation component, declining steadily from the early 1960s through the mid-1980s.

A shock to that factor has mixed effects across countries, with GDP declining as expected

in some countries but rising in others. We obtain estimates more in line with conventional

wisdom on uncertainty’s effects with a two-factor BVAR-GFSV specification.6 In this case,

the estimated first factor continues to have a sizable Great Moderation component in it, and

a shock to that factor has essentially no effects on the levels of macroeconomic variables.

The second factor looks more like a measure of business cycle-relevant uncertainty; in fact,

it is very similar to the estimate from the baseline one-factor model for the 1985-2016 sam-

ple. A shock to the second factor reduces GDP across countries, with impulse responses

qualitatively similar to those from the baseline one-factor model for the 1985-2016 sample.

6These two-factor estimates display no evident MCMC convergence problems. In addition, we considered
two-factor estimates in which a tight prior is used to effectively eliminate a second factor from the VAR’s
conditional mean. In this case, the estimated first factor becomes the uncertainty measure with significant
macroeconomic effects, and the second factor picks up the Great Moderation’s influence on volatility.

12



7 References

Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein (2010), “Particle Markov

Chain Monte Carlo Methods,” Journal of the Royal Statistical Society, Series B 72,

269-342. DOI:10.1111/j.1467-9868.2009.00736.x

Barsky, Robert B., and Eric R. Sims (2011), “News Shocks and Business Cycles,” Journal

of Monetary Economics 58, 273-289. 10.1016/j.jmoneco.2011.03.001

Basu, Susanto, John G. Fernald, and Miles S. Kimball (2006), “Are Technology Improve-

ments Contractionary?” American Economic Review 96, 1418-1448. DOI:10.1257/aer.

96.5.1418

Carriero, Andrea, Todd E. Clark, and Massimiliano Marcellino (2016a), “Common Drifting

Volatility in Large Bayesian VARs,” Journal of Business and Economic Statistics 34,

375-390. DOI:10.1080/07350015.2015.1040116

Carriero, Andrea, Todd E. Clark, and Massimiliano Marcellino (2016b), “Large Vector Au-

toregressions with Stochastic Volatility and Flexible Priors,” Journal of Econometrics,

forthcoming. DOI:10.1016/j.jeconom.2019.04.024

Cogley, Timothy, and Thomas J. Sargent (2005), “Drifts and Volatilities: Monetary Policies

and Outcomes in the Post-WWII U.S.,” Review of Economic Dynamics 8, 262-302.

DOI:10.1016/j.red.2004.10.009

Coibion, Olivier, Yuriy Gorodnichenko, Lorenz Kueng, and John Silvia (2017), “Innocent

Bystanders? Monetary Policy and Inequality in the U.S.,” Journal of Monetary Eco-

nomics 88, 70-89. DOI:10.1016/j.jmoneco.2017.05.005

Del Negro, Marco, and Giorgio E. Primiceri (2015), “Time Varying Structural Vector Au-

toregressions and Monetary Policy: A Corrigendum,” Review of Economic Studies 82,

1342-1345. DOI:10.1093/restud/rdv024

Gilchrist, Simon, and Egon Zakrajsek (2012), “Credit Spreads and Business Cycle Fluctua-

tions,” American Economic Review 102, 1692-1720. DOI:10.1257/aer.102.4.1692

Gurkaynak, Refet S., Brian Sack, and Eric T. Swanson (2005), “Do Actions Speak Louder

Than Words? The Response of Asset Prices to Monetary Policy Actions and State-

ments,” International Journal of Central Banking 1, 55-93.

Hamilton, James D. (2003), “What Is an Oil Shock?” Journal of Econometrics 113, 363-398.

DOI:10.1016/S0304-4076(02)00207-5

Kilian, Lutz (2008), “Exogenous Oil Supply Shocks: How Big Are They and How Much Do

13

DOI: 10.1111/j.1467-9868.2009.00736.x
10.1016/j.jmoneco.2011.03.001
DOI: 10.1257/aer.96.5.1418
DOI: 10.1257/aer.96.5.1418
DOI: 10.1080/07350015.2015.1040116
DOI: 10.1016/j.jeconom.2019.04.024
DOI: 10.1016/j.red.2004.10.009
DOI: 10.1016/j.jmoneco.2017.05.005
DOI: 10.1093/restud/rdv024
DOI: 10.1257/aer.102.4.1692
DOI: 10.1016/S0304-4076(02)00207-5


They Matter for the U.S. Economy?” Review of Economics and Statistics 90, 216-240.

DOI:10.1162/rest.90.2.216

Kim, Sangjoon, Neil Shephard, and Siddhartha Chib (1998), “Stochastic Volatility: Likeli-

hood Inference and Comparison with ARCH Models,” Review of Economic Studies 65,

361-393. DOI:10.1111/1467-937X.00050

Mertens, Karel, and Morten O. Ravn (2012), “Empirical Evidence on the Aggregate Effects

of Anticipated and Unanticipated U.S. Tax Policy Shocks,” American Economic Journal:

Economic Policy 4, 145-181. DOI:10.1257/pol.4.2.145

Omori, Yasuhiro, Siddhartha Chib, Neil Shephard, and Juichi Nakajima (2007), “Stochastic

Volatility with Leverage: Fast and Efficient Likelihood Inference,” Journal of Economet-

rics 140, 425-449. DOI:10.1016/j.jeconom.2006.07.008

Primiceri, Giorgio E. (2005), “Time-Varying Structural Vector Autoregressions and Mon-

etary Policy,” Review of Economic Studies 72, 821-852. DOI:10.1111/j.1467-937X.

2005.00353.x

Ramey, Valerie A. (2011), “Identifying Government Spending Shocks: It’s All in the Timing,”

Quarterly Journal of Economics 126, 1-50. DOI:10.1093/qje/qjq008

Romer, Christina D., and David H. Romer (2004), “A New Measure of Monetary Shocks:

Derivation and Implications,” American Economic Review 94, 1055-1084. DOI:10.1257/

0002828042002651

Sims, Christopher A., and Tao Zha (2006), “Were There Regime Switches in U.S. Monetary

Policy?” American Economic Review 96, 54-81. DOI:10.1257/000282806776157678

14

DOI: 10.1162/rest.90.2.216
DOI: 10.1111/1467-937X.00050
DOI: 10.1257/pol.4.2.145
DOI: 10.1016/j.jeconom.2006.07.008
DOI: 10.1111/j.1467-937X.2005.00353.x
DOI: 10.1111/j.1467-937X.2005.00353.x
DOI: 10.1093/qje/qjq008
DOI: 10.1257/0002828042002651
DOI: 10.1257/0002828042002651
DOI: 10.1257/000282806776157678


Appendix Table 1: Variables in the 3-economy macroeconomic dataset

U.S. variables E.A. variables U.K. variables
real GDP (∆ ln) real GDP (∆ ln) real GDP (∆ ln)
real consumption (∆ ln) real consumption (∆ ln) real consumption (∆ ln)
real government consumption (∆ ln) real government consumption (∆ ln) real government consumption (∆ ln)
real investment (∆ ln) real investment (∆ ln) real investment (∆ ln)
real exports (∆ ln) real exports (∆ ln) real exports (∆ ln)
real imports (∆ ln) real imports (∆ ln) real imports (∆ ln)
real inventories real inventories unit labor costs (∆ ln)
unit labor costs (∆ ln) unit labor costs (∆ ln) industrial confidence
employment (∆ ln) employment (∆ ln) consumer confidence
hours worked (∆ ln) unemployment rate employment (∆ ln)
unemployment rate Eonia rate unemployment rate
Federal funds rate 2-year bond yield producer prices (∆ ln)
2-year bond yield 10-year bond yield retail price index (∆ ln)
10-year bond yield M3 (∆ ln) official bank rate
M2 (∆ ln) GDP deflator (∆ ln) 10-year bond yield
oil price (∆ ln) consumer prices (∆ ln) stock price index (∆ ln)
commodity prices (∆ ln) core consumer prices (∆ ln)
consumer prices (∆ ln) producer prices (∆ ln)
core consumer prices (∆ ln) real housing investment (∆ ln)
producer prices (∆ ln) stock price index (∆ ln)
real housing investment (∆ ln) capacity utilization
stock price index (∆ ln) consumer confidence
capacity utilization industrial confidence
consumer confidence purchasing managers’ index
industrial confidence labor shortages
purchasing managers’ index

Note: For those variables transformed for use in the model, the table indicates the
transformation in parentheses following the variable description.
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Appendix Table 2: Summary statistics on commonality in volatility

19-country GDP dataset 3-economy macroeconomic dataset
Prin. comp. R2 A-H ratio R2 A-H ratio

1 0.786 7.431 0.417 1.621
2 0.106 1.746 0.258 2.452
3 0.061 3.041 0.105 1.789
4 0.020 1.905 0.059 1.193
5 0.010 1.296 0.049 1.275
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Appendix Table 3: Correlations of uncertainty shocks with other shocks

19-country 3-economy
known GDP dataset macro dataset
shock uncert. shock uncert. shock
Productivity: Fernald TFP -0.097 -0.049
(1985:Q1-2016:Q3, 1985:Q4-2013:Q3) (0.279) (0.496)
Oil supply: Hamilton (2003) 0.056 -0.017
(1985:Q1-2016:Q3, 1985:Q4-2013:Q3) (0.561) (0.812)
Oil supply: Kilian (2008) -0.038 0.022
(1985:Q1-2004:Q3, 1985:Q4-2004:Q3) (0.776) (0.834)
Monetary policy: Guykaynak, et al. (2005) -0.070 -0.112
(1990:Q1-2004:Q4, 1990:Q1-2004:Q4) (0.359) (0.284)
Monetary policy: Coibion, et al. (2016) -0.181 -0.046
(1985:Q1-2008:Q4, 1985:Q4-2008:Q4) (0.036) (0.589)
Fiscal policy: Ramey (2011) -0.175 0.050
(1985:Q1-2008:Q4, 1985:Q4-2008:Q4) (0.239) (0.649)
Fiscal policy: Mertens and Ravn (2012) 0.198 0.013
(1985:Q1-2006:Q4, 1985:Q4-2006:Q4) (0.002) (0.845)
Excess bond premium: Gilchrist and Zakrajsek (2012) 0.059 -0.106
(1985:Q1-2016:Q3, 1985:Q4-2013:Q3) (0.609) (0.451)
News: Barsky and Sims (2011) 0.023 0.069
(1985:Q1-2007:Q3, 1985:Q4-2007:Q3) (0.793) (0.551)

Notes : The table provides the correlations of the shocks to uncertainty (measured
as the posterior medians of um,t) with selected macroeconomic shocks for the U.S.
Entries in parentheses provide (in column 1) the sample periods of the correlation
estimates, first for the 19-country GDP dataset and then for the 3-economy macroe-
conomic dataset and (in columns 2 and 3) the p-values of t-statistics of the coefficient
obtained by regressing the uncertainty shock on the macroeconomic shock (and a con-
stant). The variances underlying the t-statistics are computed with the prewhitened
quadratic spectral estimator of Andrews and Monahan (1992).
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Figure 1: Impulse responses for international uncertainty shock: BVAR-GFSV estimates for
3-economy macroeconomic dataset, posterior median (black line) and 15%/85% quantiles
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Figure 1: Continued, impulse responses for international uncertainty shock: BVAR-GFSV
estimates for 3-economy macroeconomic dataset, posterior median (black line) and 15%/85%
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Figure 1: Continued, impulse responses for international uncertainty shock: BVAR-GFSV
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Figure 2: Impulse responses for international uncertainty shock in 3-economy macroeconomic
dataset: Comparison of two-step estimates with BVAR-GFSV estimates
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Figure 2: Continued, impulse responses for international uncertainty shock in 3-economy
macroeconomic dataset: Comparison of two-step estimates with BVAR-GFSV estimates

23



Bl
ac

k 
lin

e:
 G

FS
V 

es
tim

at
e.

  R
ed

:  
2-

st
ep

 e
st

im
at

e,
 u

si
ng

 a
ve

ra
ge

 B
VA

R-
SV

 v
ol

at
ilit

y

E.
A

. G
D

P 
de

fla
to

r

0
5

10
15

-0
.1

5

-0
.1

0

-0
.0

5

0.
00

0.
05

0.
10

0.
15

0.
20

E.
A

. c
on

su
m

er
 p

ric
es

0
5

10
15

-0
.2

0

-0
.1

5

-0
.1

0

-0
.0

5

-0
.0

0

0.
05

0.
10

E.
A

. c
or

e 
co

ns
um

er
 p

ric
es

0
5

10
15

-0
.1

0

-0
.0

5

0.
00

0.
05

0.
10

0.
15

0.
20

E.
A

. p
ro

du
ce

r p
ric

es

0
5

10
15

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

-0
.00.
1

E.
A

. r
ea

l h
ou

si
ng

 in
ve

st
m

en
t

0
5

10
15

-1
.2

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

-0
.00.
2

E.
A

. s
to

ck
 p

ric
e 

in
de

x

0
5

10
15

-5-4-3-2-101

E.
A

. c
ap

ac
ity

 u
til

iz
at

io
n

0
5

10
15

-0
.4

-0
.3

-0
.2

-0
.1

-0
.00.
1

0.
2

E.
A

. c
on

su
m

er
 c

on
fid

en
ce

0
5

10
15

-0
.8

-0
.6

-0
.4

-0
.2

-0
.00.
2

0.
4

E.
A

. i
nd

us
tr

ia
l c

on
fid

en
ce

0
5

10
15

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

-0
.00.
2

0.
4

0.
6

E.
A

. p
ur

ch
as

in
g 

m
an

ag
er

s'
 in

de
x

0
5

10
15

-0
.6

-0
.4

-0
.20.
0

0.
2

0.
4

E.
A

. l
ab

or
 s

ho
rt

ag
es

0
5

10
15

-0
.2

0

-0
.1

5

-0
.1

0

-0
.0

5

-0
.0

0

0.
05

0.
10

0.
15

U
.K

. r
ea

l G
D

P

0
5

10
15

-0
.3

5

-0
.2

5

-0
.1

5

-0
.0

5

0.
05

U
.K

. r
ea

l c
on

su
m

pt
io

n

0
5

10
15

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

-0
.00.
1

U
.K

. r
ea

l g
ov

er
nm

en
t c

on
su

m
pt

io
n

0
5

10
15

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

-0
.00.
1

U
.K

. r
ea

l i
nv

es
tm

en
t

0
5

10
15

-1
.2

5
-1

.0
0

-0
.7

5
-0

.5
0

-0
.2

5
0.

00
0.

25
0.

50
0.

75

U
.K

. r
ea

l e
xp

or
ts

0
5

10
15

-1
.5

0

-1
.2

5

-1
.0

0

-0
.7

5

-0
.5

0

-0
.2

5

0.
00

0.
25

U
.K

. r
ea

l i
m

po
rt

s

0
5

10
15

-1
.2

5

-1
.0

0

-0
.7

5

-0
.5

0

-0
.2

5

0.
00

0.
25

0.
50

U
.K

. u
ni

t l
ab

or
 c

os
ts

0
5

10
15

-0
.4

-0
.3

-0
.2

-0
.1

-0
.00.
1

0.
2

0.
3

U
.K

. i
nd

us
tr

ia
l c

on
fid

en
ce

0
5

10
15

-4-3-2-1012

U
.K

. c
on

su
m

er
 c

on
fid

en
ce

0
5

10
15

-1
.4

-1
.0

-0
.6

-0
.20.
2

Figure 2: Continued, impulse responses for international uncertainty shock in 3-economy
macroeconomic dataset: Comparison of two-step estimates with BVAR-GFSV estimates
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Figure 2: Continued, impulse responses for international uncertainty shock in 3-economy
macroeconomic dataset: Comparison of two-step estimates with BVAR-GFSV estimates
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Figure 3: Uncertainty estimates for 19-country GDP dataset in the top panel and for 3-
economy macroeconomic dataset in the bottom panel. In each panel, the blue line provides
an estimate obtained from the first principal component of the BVAR-SV estimates of log
volatility. The solid black line and gray-shaded regions provide the posterior median and
5%/95% quantiles of the BVAR-GFSV estimate of macroeconomic uncertainty (m0.5

t ). The
periods indicated by black vertical lines or regions correspond to the uncertainty events
highlighted in Bloom (2009). Labels for these events are indicated in text horizontally
centered on the event’s start date.
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