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The increase in wage inequality over the last three decades is a well-documented pattern

in the US data. While most of the literature has focused on the widening gap between

college-educated and high-school-educated workers, the data also show a significant increase

in wage inequality among observationally identical workers, in particular for highly skilled

workers (Lemieux (2006a)). More recently, empirical work has documented the key role

played by firms characteristics and quality in the rise in wage inequality (Song et al. (2019)

and Barth et al. (2016)). While the empirical literature has shown progress documenting

the role of firm and worker fixed effects, currently there is no theoretical framework that

allows us to coherently address these different patterns presented in the data.

In this paper, we build a novel and tractable model that allows us to decom- pose the

increase in US wage inequality over the past 30 years into its four main components and

identify the contribution of each to the increase. The first component is the inequality

between groups with different skill - the between-group component of wage-inequality dis-

cussed in papers addressing the college wage premium.1 Second, we look into the wage

dispersion among equally skilled workers - usually called within-group or residual wage in-

equality. Third, we look at the wage inequality among workers employed at the same firm -

usually called within-firm wage inequality. Finally, we focus on the wage inequality driven

by different employers - between-firm wage inequality.

We calibrate the models parameters to match the US economy for the years 1985 and

2015 and then use the calibrated model to evaluate how changes in the economy’s funda-

mentals affected each one of these components. We focus on three different mechanisms: 1)

changes in the output of education-firm pairs; 2) changes in market composition in terms of

the educational attainment distribution; and 3) changes in labor market frictions. Moreover,

we use our model’s rank-preserving property - i.e., that a firm’s rank in the firm productivity

distribution is the same as its rank in the wage-posting distribution - and some additional

parametric assumptions to recover firms’ size and productivity distributions from the wage

data. As a result, our methodology allows us to disentangle the impact of changes in output

in terms of its key components: labor and firm productivities.

Our counterfactual exercises show that the key driver of the increase in overall wage

dispersion between 1985 and 2015 is the change in the distribution of output per education-

firm pairs between these two years. This measure shows the output flow generated by the

match between a worker with a given educational level and a firm with a given productivity

level. We show that the increase in overall, within-, and between-group wage inequality

1Different skill levels in our model map into different educational attainment levels in the data as well as
in our empirical exercises.
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would have been significantly higher than that observed in 2015 if the only change in

the model’s parameters was due to changes in the underlying distributions of output by

education-firm pairs. In fact, changes in market composition - in particular the overall

increase in average educational attainment in the labor force - partially mitigated the effect

of the changes in the education-firm output distributions. Finally, changes in labor market

frictions by themselves are able to explain between 40 percent to 60 percent of the increase

in overall, within-, and between-group wage inequality.

Moreover, we disentangle the impact of changes in output in terms of its key components:

labor and firm productivities. We show that changes in labor productivity explain the bulk

of the impact of the changes in output distribution on overall, within-, and between- group

wage inequality. Hence, changes in the firm-productivity distribution play a minor role in

the increase in wage inequality. Furthermore, our decomposition of overall wage inequality

in terms of within- and between-firm components shows that the increase in the between-

firm component is responsible for the majority of the increase in overall wage inequality (67

percent). Consequently, our counterfactual exercises jointly with the within- and between-

firm variance decomposition show that the increase in overall wage inequality through the

between-firm component is explained by a combination of the sorting of high-skill workers

in high-productivity firms and a large increase in high-skill workers’ labor productivity over

the period.

We also believe the model is an important contribution by itself. We build a tractable

model with frictional labor markets in which firms with different productivities compete

for workers with different skills who are allowed to search on the job. Both worker skill

and the firm productivity affect a match’s output. The model’s steady-state equilibrium

presents patterns in line with those found by the empirical literature. We show that, in

equilibrium, given some parametric assumptions that are in line with what we find em-

pirically, high-productivity firms are larger, employing more workers and paying higher

wages at all skill levels. Moreover, high-productivity firms hire proportionately more high-

skill workers than their low-productivity competitors. Furthermore, high-productivity firms

weakly hire a wider range of skills than their low-productivity peers. On the workers’ side,

high-skill workers face a better wage offer distribution and earn, on average, higher wages

than their low-skill peers. We show that these equilibrium features are in line with the

observed patterns in Quarterly Workforce Indicators (QWI). Another important feature

of our model is its rank-preserving property, i.e., the fact that we have a one-to-one re-

lationship between a firm’s rank in the firm-productivity distribution and its rank in the

wage-posting distribution. This modeling feature imposes enough structure to allow us to
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estimate the output distribution relying solely on wage data, without the need for employer-

employee matched data. As a result, the model can be quite useful in situations in which

employer-employee matched data are not available, for example, when estimating models

for developing economies.

Our empirical results also highlight that the increase in within-group dispersion that oc-

curred between 1985 and 2015 has been concentrated among high-education groups (college

grads and post-graduates). Our counterfactual exercises show that, because of the growth

in high-skill labor productivity, matching with a high-productivity firm became increas-

ingly more important for high-skill workers. Consequently, the increase in within-group

wage inequality concentrated at the top of the educational attainment distribution can be

explained by some high-skill workers being lucky to land a job at a high-productivity firm,

while others are unlucky and work for low-productivity firms, generating low output due

to skill-firm complementarities. As pointed out by Uren and Virag (2011), the fact that

luck is a leading cause of within-group inequality may be a feature that helps the model

fit the empirical evidence. The empirical evidence shows that the increase in within-group

dispersion has often been transitory (see Gottschalk and Moffitt (1994) and Kambourov

and Manovskii (2009), among others). This transient pattern is at odds with an explana-

tion based on unobserved skills, since unobserved skills are usually either constant or move

slowly over time.2

Our paper contributes to the literature on skill heterogeneity and wage inequality in

several ways. We present and calibrate an extended on-the-job search model that allows

us to evaluate the importance of labor frictions, labor and firm productivity, and market

composition in explaining the increase in overall wage dispersion. Moreover, we are also

able to evaluate the impact of these variables on the within- and between-group and within-

and between-firm components of wage dispersion. To our knowledge, this is the first time

that this quantitative exercise has been presented, in particular using a model that allows

us to pin down both decompositions. In this sense, our model adds to the discussion on

within- and between-group inequality presented by Lemieux (2006a,b, 2008) and Acemoglu

and Autor (2011), as well as the models presented by Uren and Virag (2011) and Albrecht

and Vroman (2002). In the same vein, we are able to address the factors that contributed

to the increase in between-firm wage inequality, highlighted by Barth et al. (2016) and Song

et al. (2019). Finally, we are also able to discuss the different patterns of job mobility be-

2The literature also considers that changes in the price of unobserved skills due to skill-biased technology
changes are usually persistent, reinforcing the idea that increases in within-group wage inequality should be
long-lasting.
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tween skill levels, as discussed by Dolado, Jansen, and Jimeno (2009), while also addressing

and extending the discussion on the relationship between firm size, productivity, and skill

distribution presented by Eeckhout and Pinheiro (2014).

Section 1 presents the model and equilibrium properties. Section II discusses the data as

well as our calibration for the labor market frictions and educational- attainment distribu-

tion, along with the non-parametric and parametric calibration of the output per skill-firm

pairs. Section 3 presents the benchmark results for our non-parametric and parametric ap-

proaches. Section 4 presents counterfactual exercises for our non-parametric and parametric

calibrations. Section 5 concludes the paper. All proofs, as well as additional evidence and

explanations, are presented in the online appendix.

1 Model

Consider an economy with a measure 1 of firms. We assume that firms differ in their

productivity level x. In particular, we assume that a firm’s productivity follows a continuous

distribution Γ(x) with support [x, x] and no mass points. Firms are risk neutral, infinitely

lived, and discount the future at rate r > 0.

There is a measure M of workers in the economy. Workers are heterogeneous in their

skill levels. Worker skill is observable. There are I skills in the economy, ranked from the

lowest to the highest (1 < 2 < ... < I − 1 < I). The measure of workers of skill i in the

economy is mi. As a result, we have
∑I
i=1mi = M . All workers are risk neutral, discount

the future at rate r > 0 and exit the market at rate d > 0, regardless of their skill level.

Exiting workers are replaced by unemployed workers with the same skill level. The cost of

exiting the market is normalized to zero.

Labor markets are frictional and search is random. Labor markets are segmented across

skills.3 In particular, firms can costlessly post vacancies across different markets. As in

Burdett and Mortensen (1998), we assume that a vacancy is attached to a posted wage.

We assume that firms can simultaneously post different wages in different markets. As a

result, we assume a firm actively posts in any given skill’s labor market whenever the output

flow produced by the match is above the worker’s reservation wage. Workers can costlessly

search for a job offer regardless of their employment status. Moreover, search efficiency is

not affected by the worker’s employment status. Consequently, the flow of matches in labor

market i is given byMi(mi, Vi), where Vi is the measure of firms actively posting vacancies

3In a previous version, we consider the case of non-segmented markets, which generates qualitatively
identical results.
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in skill i’s labor market. Defining x(i) as the firm with the lowest productivity among the

ones that hire skill level i in equilibrium, we have that Vi = [1− Γ(x(i))]. Consequently, the

arrival rate of job offers to a skill i worker is given by λ(i) = Mi(mi,Vi)
mi

. Job offers consist

of a wage rate w. Offers must be accepted or rejected on the spot, with no recall.

Once a match between a firm with productivity x and a worker of skill level i is formed,

they produce an output flow of p (x, i). As a result, the output flow created by a match

is not affected by either the size or the composition of the firm’s labor force.4 We assume

that ∂p(x,i)
∂x > 0 and ∂p(x,i)

∂i ≥ 0. Additionally, unless otherwise stated, we also assume that

p (x, i) is supermodular. Finally, a match with a worker of skill i is exogenously destroyed

at the rate δi ∈ (0, 1).

While searching for a job, unemployed workers engage in home production. We assume

that home production by a worker of skill level i produces an output flow rate b(i) with

b′(i) ≥ 0. We also assume that p(x, 1) ≥ b(1), which implies that all firms are active at least

at the lowest rung of the skill ladder.

1.1 Worker’s Problem

Given the environment described above, the expected discounted lifetime income when a

skill-i worker is unemployed, U(i), can be expressed as the solution of the following equation:

(r + d)U(i) = b(i) + λ(i)

∫
max{J(w′, i)− U(i), 0}dFi(w′) (1)

where b(i) is the flow value of home production, d is the rate at which workers exit the

market, λ(i) is the arrival rate of a job offer, and F (·) is the distribution of posted wages

faced by a skill-i worker.

Once a skill-i worker is employed at a firm paying a wage rate w, the value of holding

a job at this company is

(r + d)J(w, i) = w + λ(i)

∫
w

[
J(w′, i)− J(w, i)

]
dFi(w

′) + δi [U(i)− J(w, i)] (2)

where δi is the rate at which matches with skill-i workers are exogenously destroyed. Notice

4As pointed out by Hagedorn, Law, and Manovskii (2017): “This model of the firm, as simplistic as it
is, represents the current state of the art in this literature” As Lentz and Mortensen (2010) (pp. 593-594)
put it: “All the analyses that we know of assume that output of any given job-worker match is independent
of the firm’s other matches. Furthermore, firm output is the sum of all the match outputs. Hence, the
identification challenge reduces to that of identifying worker and firm contributions over matches and a
common match production function. Of course, as the research frontier moves to improve our understanding
of multiworker firms, it is likely and appropriately an assumption that will be challenged.”
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that we already incorporated in the value function the fact that a worker will accept any

offer as long as it is above her current wage. This is the case because of the commitment that

firms make to a flat wage rate and no counteroffers to outside opportunities an employee

may receive.

As J (w, i) is strictly increasing in w whereas U (i) is independent of it, a reservation

wage for a skill-i worker, R (i), exists and is defined by J (R (i) , i) = U (i). Then, from

equations (1) and (2), we obtain that R (i) = b(i), which is driven by the fact that on-the-job

search is as effective as out-of-the-job search.

Finally, let’s consider the measures of employed and unemployed workers in a steady

state equilibrium. Notice that the flows of skill-i workers in and out of employment in the

steady state is given by

d(mi − ui) + δi(mi − ui) = λ(i) [1− Fi(R(i))]ui (3)

where the left-hand side (henceforth LHS) of the above equality represents the inflow of

skill i workers into the unemployment pool, while the right-hand side (henceforth RHS)

represents the outflow.

In order to simplify notation, let’s define κi = λ(i)
d+δi

. Following Jolivet (2009), we call

κi the search friction index for skill i, corresponding to the ratio between the arrival of

positive and adverse shocks faced by a worker. Similarly, define F (x) = 1 − F (x). As a

result, we can rewrite equation (3) as:

ui =
mi

1 + κiF i(R(i))
(4)

1.2 Firm’s Problem

In this subsection, we take the behavior of workers as given and derive the firms’ optimal

response. Firms post wages that maximize their profits, taking as given the distribution of

wages posted by their competitors (Fi(w), i ∈ {1, 2, ..., I}) and the distribution of wages

that employed workers are currently earning at other firms, given by Gi(w), i ∈ {1, 2, ..., I}.
We assume here that all distributions are stationary and well-behaved.

When a firm is choosing its optimal wage level at each skill level, it has to take into

consideration the number of workers it can attract at any given wage and whether it is

optimal to attract a given skill level in the first place. For this reason, before we analyze

the firm’s wage decision, let’s derive the distribution of earned wages Gi(w), ∀i ∈ {1, 2, ..., I}
and the firm’s labor force for each skill level i. In order to do that, let’s start with the firm’s
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decision to hire a given skill level or not. In order to hire a skill-i worker, the firm must

pay a wage that is at least as high as the reservation wage R(i). Consequently, a firm with

productivity level x will only hire skill i if and only if p(x, i) ≥ R(i). Then, substituting

R(i) = b(i), we have that p(x, i) ≥ b(i). Since p(x, i) is strictly increasing on x, x(i), the

lowest productivity-level firm that hires skill level i, is determined by p(x(i), i) = b(i). Given
∂p(x,i)
∂x > 0, for any x > x(i), the demand for skill i is strictly positive. The following lemma

shows that x(i) must be nondecreasing in i.

Lemma 1 x(i) is nondecreasing in i.

In principle, since we do not impose a free-entry condition, we may have x ≥ x(i). In

this case, all firm types will hire skill i. In order to take this possibility into account, we

define x?(i) ≡ max{x, x(i)}.
We now consider the distribution of employed skill-i workers who earn a wage less than

w, Gi(w). This distribution evolves over time according to:

dGi(w,t)(mi−ui(t))
dt = λ(i)[Fi(w, t)− Fi(R(i), t)]ui(t)

−
¶
d+ δi + λ(i)F i(w, t)

©
Gi(w, t)(mi − ui(t))

(5)

The first term on the RHS of (5) describes the inflow at time t of skill-i unemployed workers

into firms offering a wage no greater than w to skill-i workers at time t, whereas the second

term represents the outflow into death, unemployment, and higher-paying jobs, respectively.

Since in the steady state dG(w,t|i )
dt = 0, this distribution can be rewritten as

Gi(w) =
[Fi(w)− Fi(R(i))]î

1 + κiF i(w)
ó
F i(R(i))

(6)

Finally, the steady state measure of skill-i workers earning in the interval [w,w − ε] is

represented by [Gi (w)−Gi (w − ε)] (mi − ui), while the measure of firms offering wages

in the same interval is Γ(x?(i)) [Fi (w)− Fi (w − ε)]. Notice that Γ(x?(i)) represents the

measure of firms actively hiring skill-i workers. Thus, the measure of skill-i workers earning

a wage w and employed at a firm actively hiring skill i can be expressed as

l (w; i) =
(mi − ui)
Γ(x?(i))

lim
ε→0

Gi (w |i)−Gi (w − ε |i)
Fi (w |i)− Fi (w − ε |i)
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Solving it and substituting ui, we obtain the following:

l(w; i) =
κimi

Γ(x?(i))
¶

1 + κiF i(w))
©2 (7)

1.3 The Firm’s Problem and Labor Market Equilibrium

Firms face the problem of picking the wage that maximizes their steady state profits. If

a firm pays a higher wage than its peers, ceteris paribus, workers will more highly value

being employed in this firm relative to other firms. As a result, workers employed in other

firms are more likely to move into the firm in question whenever they receive this firm’s

wage offer. Similarly, when the firm’s own workers receive alternative offers themselves,

they are more likely to reject those offers and stay with the firm. Therefore, with higher

wages facilitating recruitment and retention, the firm employs more workers in the steady

state. While this force pushes overall profits upward, it comes at the cost of earning lower

profits per worker, which pushes overall profits downward. At the optimal wage, the firm

balances these two counteracting forces, maximizing total steady state profits.

As we mention before, firms have different levels of productivity x. The distribution of

productivity levels in the economy is given by a continuous Γ (·) with support [x, x]. Firms

can offer different wages for different skill levels. Therefore, the profit function for a firm

that has productivity level x and posts wages {w (i)}Ii=1 is given by

π (x) =
∑

i∈A(x)

[p (x, i)− w (i)] l (w (i) ; i) (8)

where A (x) denotes the set of skills in which a productivity-x firm is actively searching,

i.e., posts a wage above the reservation wage of that skill level. It is easy to see that a firm

with productivity x would post a wage above the reservation wage R (j) of a given skill j if

p (x, j) ≥ R (j). Therefore, we can define

A (x) = {i ∈ {1, ..., N} |p (x, i) ≥ R (i)} (9)

Therefore, the firm’s problem is to pin down the wage schedule {w (i)}i∈A(x) in order to

maximize π (x). Because of the linearity of the profit function in skills, firms can pin down

the wage posted for each skill level separately, i.e., firms can solve

π (x; i) = max
w

(p (x, i)− w) l (w; i) , ∀i ∈ A (x) (10)
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Then, the optimal wage posted by a firm of productivity x for a skill level i ∈ A (x)

is given by w = K (x; i). From the first-order condition, i.e., ∂π(x,w(i);i)
∂w(i) = 0, substituting

equation (7) and manipulating it, we obtain

2κifi(w)(p(x, i)− w)−
î
1 + κiF i(w)

ó
= 0 (11)

which provides us with an implicit equation for w as a function of p (x, i) and F (· |i). At this

stage, we proceed as if the second-order conditions are satisfied. In corollary A.1 – presented

in the appendix – we verify that this condition is met by the equilibrium solution.

Let’s now consider the optimal wage function w(x, i) = K(x, i). The flow profit π (x; i)

that a skill level i generates for a firm of productivity level x offering wage K (x; i) is

(p (x, i)−K (x; i)) l (K (x; i) ; i). Then, a differentiation with respect to x, using the enve-

lope theorem, gives us
∂π (x; i)

∂x
=
∂p (x, i)

∂x
l (K (x; i) ; i) (12)

The boundary condition associated with the differential equation presented in (12) de-

pends on x?(i). We solve the differential equation, while substituting (7) and taking into

account that F i (K (x′; i)) = Γ(x′)

Γ(x?(i))
(see Bontemps, Robin, and Van den Berg (2000),

Proposition 3). Moreover, in the appendix we show in detail, the arguments that allow us

to take into account the boundary condition [p(x?(i), i)−K(x?(i), i)] l(w(x?(i), i)). As a

result, we obtain

π (x; i) =

∫ x

x(i)

∂p (x′, i)

∂x′
κimi

Γ(x?(i))
[
1 + κi

Γ(x′)

Γ(x?(i))

]2dx′ (13)

Finally, once π (x; i) = (p (x, i)−K (x; i)) l (K (x; i) ; i)⇒ K (x; i) = p (x, i)− π(x;i)
l(K(x;i);i) .

Then, substituting π (x; i), we have

K (x; i) = p (x, i)−
∫ x

x(i)

∂p (x′, i)

∂x′

Ç
Γ(x?(i)) + κiΓ(x)

Γ(x?(i)) + κiΓ(x′)

å2

dx′ (14)

Notice that K (x?(i); i) = b(i) = R(i), i.e., the minimum wage optimally posted is equal

to the skill’s reservation wage. We are now ready to present an important initial result.

Lemma 2 (rank-preserving) Consider two firms with productivity levels x and x̃ with

x > x̃ that hire workers of skill level i. The optimal offered wages are strictly increasing in

firm productivity.

9



Lemma 2 delivers us a rank-preserving property, once it shows that there is a one-to-one

relationship between a firm’s productivity x and its posted wages. As a result, given that

γ(x) is a continuous distribution with no mass point, the “rank” that a x-productivity firm

has in the productivity distribution (its quantile position in the distribution) is the same as

the one it has in the wage-posting distribution, once adjusted by the measure of firms that

decide to hire a particular skill i. In particular, we corroborate the previously mentioned

result in Bontemps, Robin, and Van den Berg (2000) that:

Fi(K(x; i)) =
Γ(x)− Γ(x(i))

Γ(x(i))
(15)

This property will be particularly important during our parametric calibration exercise,

presented in Section 2.3.2. Moreover, notice that Fi(K(x(i); i)) = Fi(R(i)) = 0, as expected.

In order to pin down the labor distribution within and across firms, define li(x) ≡
li(K(x, i)). Then, we get the additional results:

Lemma 3 For any two firms with productivity levels x and x′ with x > x′, we must have

that li(x) ≥ li(x′), ∀i ∈ I. Consequently, high-productivity firms hire more at all skill levels.

Then, define the size of a firm with productivity x by S(x) =
∑I(x)
i=1 li(x), where I(x) is

the highest skill level hired by a firm with productivity level x. Then, a simple corollary of

lemmas 1 and 3 follows:

Corollary 1 Firm size is increasing in x.

Now, let’s define the skill distribution at a x-type firm by Φx(i) =
∑i

i′=1
li′ (x)

S(x) . The

following proposition allows us to associate a firm-skill distribution with its productivity

level.

Proposition 1 Assume that, for any two skill levels i and j with i > j, we have κi ≥ κj.

In this case, high-productivity firms hire proportionately more high-skill workers.

First, based on the proof for Proposition 1, we can see that the assumption on κ’s is a

sufficient condition. Moreover, while κ’s are partially endogenous through λ’s – which are

pinned down in equilibrium – important components of κ (m, d, and δ) are exogenously

determined.5 In fact, Cairo and Cajner (2017) show that the differences in κ across educa-

5The model presented in this paper is an example of what Lopes de Melo (2018) calls a “piece-rate”
model. As Lopes de Melo (2018) shows in Sections 3.1 and 3.2, models don’t present sorting in equilibrium,
once reservation strategies and meeting rates are independent of firm type. Consequently, the differences in
κ’s are likely a necessary condition for Proposition 1. Nevertheless, in Lopes de Melo (2018)’s calibration, κ
is also increasing with education.
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tional groups is mostly due to differences in δ. Our empirical results presented in Section

2.4 corroborate their results.

Theorem 1 summarizes all the results presented up to now.

Theorem 1 In equilibrium, compared to their low-productivity counterparts, high-productivity

firms:

1. Hire a wider range of skills;

2. Pay higher wages at all skill levels;

3. Hire more at all skill levels;

4. Are bigger;

5. Hire proportionately more high-skill workers if the κ’s are increasing in skill.

For completeness, in the appendix we present our equilibrium concept. This is a standard

concept, following the same general properties presented in Bontemps, Robin, and Van den

Berg (2000), apart from a few simplifications due to our parameter restrictions.

1.3.1 Wage distributions by skill type

We present how the equilibrium distributions of posted and earned wages vary with skills,

highlighting how job market opportunities and outcomes are impacted by workers’ skills.

We start showing how firms’ wage-posting strategies vary with workers’ skills. In par-

ticular, from the optimal wageposting strategy presented in equation (14), we obtain the

following result.

Lemma 4 (wages increasing in skill) Assume that, for any two skill levels i and j with

i > j, we have κi ≥ κj. Then, for any firm with productivity level x that hires both skill

levels, we must have K(x, i) > K(x, j).

Therefore, firms with higher productivity offer higher wages at all skill levels, and work-

ers with higher skill levels receive higher wage offers at all different productivity levels.

Notice that this does not mean that there is no overlap between the distributions of offered

wages for different skills, once the wage offered by firms with different productivity levels

to workers with different skill levels may be the same. In fact, as a corollary of Lemma 4,

we know that if two firms offer the same wage to workers of different skill levels, the firm

that offers this particular wage to the higher-skill worker must have lower productivity.

Corollary 2 If a given wage w is offered for both skills i and j, i > j, the firm offering

wage w for skill level i has lower productivity than the firm offering the wage for skill j.
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Similarly, gathering our previous results and our assumptions on b(·) and p(·, ·) and tak-

ing into account the traditional Burdett and Mortensen (1998) arguments (so distributions

are continuous with connected supports), we also have the following corollary:

Corollary 3 If i > j, we have that the support of offered wages is given by [b(i),K(x, i)]

and [b(j),K(x, j)], where b(i) ≥ b(j) and K(x, i) > K(x, j).

Then, considering the distribution of posted wages by firms and how a firm’s productivity

affects its posted wages, we can show the following result:

Proposition 2 If i > j, Fi(w) dominates stochastically in first-order Fj(w).

As a straightforward consequence of first-order stochastic dominance (henceforth, F.O.S.D.),

we have

Corollary 4 The average offered wage increases with skill.

Once we have obtained these results for the distribution of posted wages, we are now able

to present some key characteristics of the distributions of earned wages by skill level. From

equation (6) and Lemma 2’s implication that Fi(R(i)) = 0, we have that the cumulative

distribution and density function of earned wages are given by

Gi(w) =
Fi(w)

1 + κiF i(w)
and gi(w) =


(1+κi)fi(w)

[1+κiF i(w)]
2 if w ∈ [wi, wi]

0 otherwise
(16)

respectively. We are now able to show the following proposition:

Proposition 3 Assume that, for any two skill levels i and j with i > j, we have κi ≥ κj.

In this case, the distribution of earned wages for skill i F.O.S.D. the distribution for skill j.

Corollary 5 Assume that, for any two skill levels i and j with i > j, we have κi ≥ κj.

Then, average earned wages increase with skill level.

In appendix Section A.2, we derive economy-wide wage distributions. Moreover, in the

appendix Section A.3 we show how the model delivers wage variance decompositions both

within- and between-skills as well as within- and between-firms. These decompositions are

then calculated in Sections 3 and 4 using the calibrated parameters and estimated wage,

firm productivity, and output distributions.
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Moreover, in appendix Section A.4 we present empirical evidence based on the Quarterly

Workforce Indicators (QWI). The section presents summary statistics and empirical pat-

terns by firm size that are in line with the results we have obtained from our model. While

the evidence is mostly suggestive, it offers an indication in favor of the model. Our empirical

approach relies on the identification of firm-level properties using our model and only data

from the worker-level observations conditional on skill. Appendix Section A.4 highlights

that the model’s implications are nevertheless consistent with the firm-level observations,

albeit at an aggregate level.

2 Calibration and Data

2.1 Data

We calibrate our steady state model for the US economy at two different points in time

(1985 and 2015). The unit of time considered is one month. To calibrate our parameters,

we use wage and educational data from the Current Population Survey’s Merged Outgoing

Rotation Groups (CPS MORG) for 1985 and 2015. For both years, we use the National

Bureau of Economic Research (NBER) CPS labor extracts.6

We use data from the CPS MORGs of 1985 and 2015 in order to obtain stock consistent

data on flows, following the methodology presented by Frazis et al. (2005). In the estimation

of our matching function, we particularly use the Unemployment-to-Employment (UE)

flows, while in the calibration of the job destruction rates, we use the Employment-to-

Unemployment (EU) flows. Finally, we use Barnichon (2010)’s composite Help-Wanted

Index (HWI), which combines information from the Conference Board’s “print” HWI, the

Conference Board’s “online” HWI, as well as JOLTS.7

2.2 Skill Distribution

We assume that worker heterogeneity in terms of skill is observable and well measured by

educational attainment. This assumption allows us to calibrate our model in terms of skill

endowments directly from the data. The caveat is that our paper is unable to discuss issues

driven by unobserved heterogeneity among workers beyond the patterns generated by labor

6Data reference is U.S. Census Bureau.
7According to a note from Barnichon’s website: “Because of divergence in the online HWI series and the

JOLTS (see Cajner, , and Ratner (2016)), I now rely solely on the JOLTS V (number of non-farm ads) past
2001Q1 (...) The composite HWI index over 1951Q1-2000Q4 was converted in units of job openings rate,
i.e. (number of V)/(size of the Labor Force).”
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frictions.

We consider five educational-attainment groups: Less than High School, High School

Graduates, Some College, College Graduates, and Post-Graduates. Since the 1985 CPS

MORG does not have a variable that pins down the highest degree attained, we follow

Jaeger (1997)’s method and attribute a given educational-attainment category based on

the highest grade of school attended.8 The distributions of workers across the education

groups are then used as our calibration targets (normalized to add up to 1) and are presented

at the end of this section.

2.3 Productivity Distribution

Calibrating firm-level heterogeneity in terms of productivity x is a challenging endeavor.

Due to data restrictions, estimating a firm-level productivity distribution from establishment-

level data is beyond the scope of this paper. To solve this issue, we present the results for

two approaches: non-parametric and parametric, each one with its benefits and caveats.

The benefit of the non-parametric approach is that it allows us to estimate output distri-

butions without imposing restrictions on p(x, i)’s functional form. On the other hand, the

non-parametric approach neither allows us to recover the underlying firms’ productivity

distribution (Γ(x)) nor allows us to evaluate how labor productivity varies across skills and

over time. The benefit of the parametric approach is to allow us to recover the underlying

firm productivity distribution (Γ(x)) and labor productivities up to a normalization. The

drawback of the parametric approach is that we must impose a relatively simple functional

form on p(x, i).

2.3.1 Non-parametric Estimation of p(x, i)

We follow Bontemps, Robin, and Van den Berg (2000) and Launov (2006) to estimate

p(x, i). In particular, we nonparametrically (kernel estimation) estimate the distributions

8We consider as part of the educational-attainment category “less than high school” workers whose
highest grade of school completed was either 11 years or less, as well as workers who attended grade 12 but
did not complete it. Similarly, the educational-attainment category “some college” would comprise workers
whose highest completed grades were 13, 14, and 15 or workers who attended but did not complete grade 16.
Educational-attainment category “college graduates” would comprise workers who completed grade 16 or at
least attended grade 17. Finally, educational-attainment category “post-graduates” would comprise workers
who attended grades 18 and up. In 1992 the BLS switched from a years of schooling measure to a credential-
oriented measure. As a result, for the 2015 CPS MORG, we are able to use the credential oriented measure
recorded in variable grade92 in order to pin down our educational-attainment categories. In particular “Less
than High School” is pinned down by grade92≤ 38, “high school graduate” by grade92= 39, “some college”
by grade92 ∈ {40, 41, 42}, “college graduate” by grade92= 43, and “post-graduate” by grade92≥ 44.
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of earned wages (Gi(w)). Owing to top-coding, we use Launov (2006)’s procedure to obtain

an estimate of the upper tail using a Pareto distribution. After performing adjustments in

order to obtain distributions that are closest to the estimated ones but that still satisfy the

model’s conditions, we use our estimates of the earned wages distribution and the calibrated

parameters of the model in order to pin down output (p(x, i)) and output density functions

(υi(p(x, i))). We assume that all firms hire all skill levels, i.e., x?(i) = x, ∀i. Appendix

Section A.6 describes our methodology in detail.

The estimated cumulative distributions for output (Υi(p)) are presented in Figure 1.

Notice that the 2015 estimated output distributions dominate their 1985 counterparts for

high educational-attainment groups. This is more pronounced for groups 4 (college gradu-

ates) and 5 (post graduates), but is still present in minor degrees for groups 2 (high school

graduates) and 3 (some college). On the contrary, for the lowest levels of educational

attainment, we see some additional mass concentrated at the lowest output levels.

Moreover, Figure 2 clearly shows the effect of F.O.S.D. in panel (a), with the larger

increases in average output for college graduates and post-graduates. Differently, there is

a decline in average output for employed workers with less than a high school education.

Panel (b) shows that this increase in average output was accompanied by a large increase in

within-group output inequality for high-education workers. In fact, between 1985 and 2015,

college graduates and post-graduates have seen an increase in the standard deviation of

output flow of 32.18 and 30.21 percent, respectively. Differently, workers with a high school

diploma or some college have seen an increase in the standard deviation of the output flow

in the same period of only 9.53 and 11.66 percent, respectively. In sharp contrast, workers

with less than a high school education have actually seen a drop in output dispersion of

-20.69 percent.

2.3.2 Parametric Estimation of p(x, i)

In this case, we assume a parametric production function p(x, i) that has a functional form

p(x, i) = A(i)x, where A(i) is the labor productivity of the skill i worker and x is the firm’s

productivity.

As in Section 1, we assume that x follows a distribution Γ(x) continuous with no

mass points. Notice that there is a unique underlying productivity distribution Γ(·), even

though our non-parametric distribution delivered us five output distributions Υi(p(x, i)), i ∈
{1, 2, 3, 4, 5}. Given that A(i) is the same for all workers with the same education and the

functional form of p(x, i), we have that each Υi(p(x, i)) is a simple transformation of the

underlying Γ(x). Moreover, this is a monotonic transformation, since both x and A(i) are
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positive terms. Consequently, the transformation between Υi(p(x, i)), i ∈ {1, 2, 3, 4, 5}, and

Γ(x) is rank-preserving.

While both x andA(i) are unobserved, the rank-preserving property of our non-parametric

estimates for output distributions allows us to parametrically estimate Γ(x) and A(i), i ∈
{1, ..., 5}. To illustrate the importance of the rank-preserving property, consider the follow-

ing example. Assume that all firms hire skills i and j (x?(i) = x?(j) = x). Consider two out-

put levels p̃i and p̂j , observed for skills i and j, respectively. In this case, if Υi(p̃i) = Υj(p̂j),

we have that the underlying firm productivity x is the same for p̃i and p̂j . In other words,

if the output levels p̃i and p̂j are at the same quantile of output distributions for skills i

and j, they must share the same firm productivity level x, conditional on x?(i) = x?(j).

We use this rank-preserving property in our parametric estimation of x and A(i)s. In

particular, we assume x(i) = x, ∀i ∈ {1, ..., 5}. Then, we take our nonparametric estimates

of the output levels p̂i, i ∈ {1, ..., 5} and output distributions Υ̂i(p), i ∈ {1, ..., 5} at 500

different quantile points q ∈ [0, 1]. For any quantile q, we have that if Υi(pi) = Υj(pj) = q,

we must have pi
pj

= p(x,i)
p(x,j) = A(i)

A(j) . Consequently, using our kernel density estimations for p̂i

and Υ̂i(·) and using the less than high school category as our baseline (defined as j = 1),

we have that, for each quantile q, we must have

p̂i
p̂1

=
A(i)

A(1)
+ εi (17)

where εi = p̂i
p̂1
− p(x,i)

p(x,1) . As a result, running linear regressions represented by equation (17)

across different quantiles for each skill level i ∈ {2, ..., 5} allows us to pin down estimates

for
‘A(i)
A(1) . We estimate (17) by median regression. The results are presented in Table 1.9

All education groups show an increase in labor productivity relative to high school

dropouts over the period. Moreover, labor productivity growth was concentrated in the

highest-education groups. In particular, while the (relative) labor productivity growth rate

in the period for high school graduates and workers with some college education were 8.7

percent, 8.3 percent, respectively, the labor productivity growth rate for workers with college

degrees and post-graduate education were 14.9 percent and 20.2 percent.

In order to pin down estimates for firms’ productivity levels, define p
i

= p(x?(i), i).

Given the functional form for p(x, i) and the fact that labor productivity is constant across

9Median regressions are more robust to outliers than least squares regression. Moreover, median regres-
sions are semiparametric, avoiding assumptions about the parametric distribution of the error process. For
these reasons, we present the results for the median regression in Table 1. However, results for the O.L.S.
estimates are qualitatively the same.
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Table 1: Est. Labor Productivity – 1985 vs. 2015
(95% confidence intervals in parenthesis)

1985
A2
A1

A3
A1

A4
A1

A5
A1

A1x

1.012 1.034 1.175 1.301 1277.47
(1.009, 1.015) (1.030, 1.038) (1.169, 1.180) (1.281, 1.321) (1269.63, 1285.30)

2015
A2
A1

A3
A1

A4
A1

A5
A1

A1x

1.100 1.120 1.350 1.564 1255.23
(1.087, 1.113) (1.110, 1.130) (1.337, 1.363) (1.548, 1.581) (1248.60, 1261.86)

workers with the same education, we have that pi
p
i

= p(x,i)
p(x?(i),i) = x

x?(i) , ∀i ∈ {1, ..., 5}. Conse-

quently, using our kernel density estimations for p̂i and keeping our maintained assumption

that x(i) = x, ∀i ∈ {1, ..., 5}, we have that, for each quantile q, we must have

p̂i
p̂
i

=
x

x
+ vi (18)

where vi = p̂i
p̂
i

− p(x,i)
p(x,i) . Then, at a given quantile q, we are able to run a linear regression

represented by equation (18) across different educational groups in order to estimate x̂
x .

Repeating the procedure at several different quantile values allows us to estimate both the

support for x
x as well as the distribution Γ̂(·). As before, this methodology allows us to pin

down the firm productivity distribution relative to the minimum productivity firm operating

in the economy.

Our estimates for x̂
x for 1985 and 2015 are presented in Figure 3. Differently from

what we observed in the case of output distributions, we see a change in the productivity

distribution between 1985 and 2015 that is closer to a mean-preserving spread.10

There are two remaining parameters to estimate: A(1) and x. Although we are unable

10This result is in line with the findings in the previous literature using data on public firms for the US
and the UK (see İmrohoroğlu and Tüzel (2014) and Faggio, Salvanes, and Van Reenen (2010), respectively).
However, differently from what was previously found in the literature, the increase in the standard deviation
that we found was somewhat small. In particular, while we observe a minor decline in average productivity
between 1985 and 2015 – from 1.492 to 1.483, a decline of 0.59 percent – we see a modest increase in
dispersion – the standard deviation increases by 3.60 percent in the period. Nevertheless, the reader should
be aware of a couple of caveats to the comparison with the previous literature. First, the results we present
in Figure 3 are all relative to the productivity of the least productive active firm in the economy. So changes
in this productivity lower bound over time may significantly alter the results. Second, the results from the
previous literature were based on a biased sub-sample of firms – public firms – which tend to be significantly
larger and possibly more productive than their private counterparts.
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to separately estimate these parameters, we can easily pin down their product. There are

many ways to estimate ÷A(1)x. In particular, we take into account that our parametric

estimates are given by p̃i = A(i)
A(1)

x
x . Then, we run a regression across all skill groups but less

than high school (again properly lining up observations across quantiles), i.e., p̂i = βp̃i+ui,

where p̂i is our nonparametric estimate. Notice that β̂ = ÷A(1)x, gives us the joint estimate.

We present the estimated values for 1985 and 2015 in table 1. As we can see, our estimates

for 1985 and 2015 are similar, with the point estimate declining by 1.74 percent between

the two years.11 However, since changes in ÷A(1)x represent the net effect of changes in A(1)

and x, we can’t say whether the changes in the underlying parameters were small or just

mostly offset each other.

Keep in mind that, in order to do counterfactuals with respect to either changes in

labor productivity across educational groups (A(i)) or changes in the firms’ productivity

distribution (Γ(x)), we must take a stand in how ÷A(1)x is split between “A(1) and x̂. In

Sections 3.2 and 4.2, we focus on the case in which we normalize A(1) = 1 and attribute all

changes in ÷A(1)x to changes in the underlying firm productivity.

Given all the presented estimates in this section, we are able to create parametric coun-

terparts for p(x, i), for i ∈ {1, ..., 5}. In the appendix, we present figures highlighting how

much the parametric estimates deviate from the nonparametric ones. While the devia-

tions tend to be overall small, they are larger for 1985 estimates. Moreover, compared to

nonparametric estimates, the parametric estimates tend to underestimate low-skill workers’

output and overestimate high-skill workers’ output.

Finally, even though our assumption on p(x, i)’s functional form is restrictive, it is

more general than initially perceived. For example, it encompasses Cobb-Douglas output

functions such as p(x, i) = A(i)βxα by simply redefining Ã(i) = A(i)β and x̃ = xα.12

2.4 Labor Frictions

As mentioned in Section 1, we pin down the job arrival rate for a skill i worker through

the estimation of a matching function. In particular, we assume λ(i) = Mi(mi,Vi)
mi

. In order

to estimate the matching functionMi(mi, Vi), we follow Jolivet (2009) and Petrongolo and

Pissarides (2001). In particular, we assume thatMi(mi, Vi) has the following Cobb-Douglas

11Although it is worthwhile to point out that the confidence interval is somewhat wider in 2015.
12In a previous version, we assumed a Cobb-Douglas functional form for p(x, i) and used the estimates

of the productivity distribution for public companies from İmrohoroğlu and Tüzel (2014). This approach
had some caveats in addition to those for the current parametric calibration, relying on the estimates from
a selected sample of firms in order to obtain the productivity distribution and imposing additional ad hoc
conditions in order to pin down the exponents α and β. Nevertheless, the results were qualitatively similar.
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functional form:

Mi(mi, Vi) = Ai(Ei + Ui)
βiV 1−βi

i (19)

which implies that employed workers (Ei) and unemployed workers (Ui) are not only as

effective while searching for a job, but also create congestion externalities for each other

(as pointed out by Petrongolo and Pissarides (2001) in their Section 5). Moreover, we are

clearly assuming constant returns to scale in the matching function.

Given this assumption, we can define the number of new matches for workers coming

out of unemployment (MUi) as MUi = Ui
Ui+Ei

Mi(Ui + Ei, Vi). Replacing Mi(Ui + Ei, Vi)’s

functional form, rearranging it, and including a time trend as suggested in Jolivet (2009),

we obtain the following specification13:

ln
MUi

Ui
= lnAi + (1− βi) ln

Å
V

Ui + Ei

ã
+ φt+ εt (20)

where t is a time trend. Notice that we are assuming that Vi = V , ∀i ∈ {1, ..., 5}, which

is in line with the maintained assumption that x(i) = x, ∀i ∈ {1, ..., 5} and that all firms

exercise the same search effort across all submarkets. These assumptions are necessary, since

we don’t have information on vacancy creation across educational group submarkets. In

this sense, we use the same information on vacancy creation based on the Composite Help-

Wanted Index provided by Barnichon (2010) for all submarkets. Results for the matching

function estimates, as well as the adjustments in order to pin down the job finding rates in

each submarket and ultimately λi (following Tasci (2012) and Shimer (2012), respectively),

are detailed in appendix Section A.7.

We calibrate the death rate d in order to match the average overall death probability

rate at the median age of 37 throughout the entire period (1985-2015). Moreover, for each

time year (1985 and 2015) we calibrate the job destruction rate δi such that δi + d match

the average EU transition rate in the data for each educational group.

Results for the adjusted job finding rates (λi), job destruction rates (δi), and death rates

(d) are presented in Table 2. Similarly to Cairo and Cajner (2017), we observe that λ(i)’s

are relatively similar, while job destruction rates (δi) are quite different across groups.

As a result, search friction indexes (κi) are strictly increasing in skill. Moreover, notice

that adjusted job finding rates declined significantly between 1985 and 2015, while job

13Following Jolivet (2009), we consider the following econometric model:

Mi(mi, Vi) = Ai(Ei + Ui)
βiV 1−βi

i eφt+εi
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Table 2: Parameters

A: 1985

i = 1 i = 2 i = 3 i = 4 i = 5
mi 0.1843 0.4039 0.1998 0.1234 0.0886
b(i) 0.2220 0.3398 0.4359 0.5201 0.5965

λ(i) 0.5168 0.4955 0.5747 0.5574 0.5359
δi 0.0584 0.0287 0.0233 0.0125 0.0093
d .000115 .000115 .000115 .000115 .000115

κi 8.83 17.20 24.53 44.33 56.85

B: 2015

i = 1 i = 2 i = 3 i = 4 i = 5
mi 0.0936 0.2665 0.2917 0.2258 0.1223
b(i) 0.1513 0.2267 0.2871 0.3396 0.3868

λ(i) 0.4561 0.4102 0.4381 0.3993 0.4040
δi 0.0528 0.0279 0.0220 0.0117 0.0093
d .000115 .000115 .000115 .000115 .000115

κi 8.63 14.62 19.79 33.90 42.80

destruction rates weakly declined. As a result search friction indexes declined, in particular

for high-skill workers.

Finally, the parameters for b(i) are pinned down such that the lowest productivity firm

makes zero profits by hiring any of the skills. We present the calibrated parameters in Table

2.

3 Benchmark Estimates: 1985 and 2015

3.1 Non-parametric Approach

We now present our results for the non-parametric calibrations for 1985 and 2015. In terms

of changes in the wages per worker as a function of educational attainment, results are as

expected. The model shows that average real wages have increased significantly for college

graduates and post-graduates – by 12.10 and 14.13 percent, respectively. Differently, the

model shows that real wages have barely changed for workers with a high school education

and some college in the same period, with changes of -0.49 percent and 0.01 percent, respec-

tively. In a remarkable contrast, the model shows a decline of 13 percent in real average

wages for workers with less than a high school education. In terms of the within-group
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Table 3: Variance Decomposition - Nonparametric
(Calculations using values in $1000 2015 USD)

Skills - Magnitudes

Overall
Within-
group

Between-
group

1985 - Model 5.79 4.68 1.10
(100%) (81%) (19%)

1985 - Data 5.84 4.81 1.03
(100%) (82%) (18%)

2015 - Model 10.60 8.01 2.59
(100%) (76%) (24%)

2015 - Data 11.37 9.08 2.30
(100%) (80%) (20%)

% Change 1985-2015 : Model 78% 72% 101%
% Change 1985-2015 : Data 95% 89% 124%

standard deviation, the model shows an increase in the standard deviation of earned real

wages of 16.25 and 18.77 percent between 1985 and 2015 for college graduates and post-

graduates, respectively. In contrast, high school graduates and workers with some college

have seen an increase in standard deviation of real wages by only 6.56 and 12.27 percentage

points, respectively. Moreover, high school dropouts have actually seen a drop in real wage

dispersion by -16.87 percent. In order to facilitate comparing benchmark results with the

results from the counterfactual exercises, Figure 4 shows model-generated average wages

and standard deviations in panels (a) and (b), respectively.

In terms of how much of the overall variation observed in the data our non-parametric

calibration captures, Table A.4 in the appendix compares the average wage and within-group

standard deviation for the model and data in 1985 and 2015. As presented in appendix’s

Table A.4, the model does a decent job of capturing the wage variation in both time pe-

riods and across the educational groups – particularly for the low educational attainment

groups.14 While this good match should be expected, since the nonparametric calibra-

tion uses the entire wage distribution in order to obtain estimates for p(x, i) and γ(x), the

benchmark model with the nonparametric calibration seems a good starting point to our

counterfactual exercises.

Table 3 presents the overall wage variance in the data and in the model for both years,

along with the breakdown in terms of its within- and between-group components. The per-

14Moreover, results do not seem to depend fundamentally on the imputation method used to obtain the
censored upper tail. In an online appendix, we follow Dustmann, Ludsteck, and Schönberg (2009) and use
different methods to impute censored wages. All methods deliver results that are qualitatively the same.
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centages presented between parentheses underneath each number correspond to the fraction

of the overall variance that is explained by each component. Table 3 shows a large increase in

wage dispersion between 1985 and 2015. Moreover, the overall breakdown between within-

and between-group components stayed reasonably stable over time, with both components

growing at a pace similar to that of the overall variance. However, this breakdown is heav-

ily influenced by the tail estimates of censored observations, so caution is necessary when

interpreting the results.

3.2 Parametric Approach

We now present our results for the parametric calibrations for 1985 and 2015. In terms

of changes in the wages per worker as a function of educational attainment, the model’s

results are not as close as the nonparametric calibration to what was observed in the data.

However, while the model is quite parsimonious in terms of the number of parameters, it

is still able to capture around 40 percent to 60 percent of the within-skill wage dispersion

observed in the data, measured by the standard deviation of earned wages. Appendi table

A.5 presents further details on the comparison results.

In terms of the variance decomposition within and between educational groups, we see

in Table 4 that the parametric model does a much better job detecting the between-group

variation than the within-group variation observed in the data. This result is not surprising,

given that we proxy skill heterogeneity by educational attainment, which is a coarse proxy,

leaving a significant level of within-group heterogeneity unexplained. Given this caveat, we

can see that a combination of firm heterogeneity and labor frictions is able to explain about

20 to 25 percent of the within-group heterogeneity observed in the data.

As previously discussed in Section 2.3.2, the parametric calibration allows us to identify

the firms based on the model’s rank-preserving properties. As a result, we can present a

model-based variance decomposition in terms of its within- and between-firm components,

using equations 31 and 32 presented in the appendix. Results are presented in table 5. In

the presented case, we normalize A(1) = 1 in both years. Our results indicate that the bulk

of the total variance observed for real earned wages comes from the between-firm component

(83 percent in 1985 and 77 percent in 2015). Moreover, while the within-firm component

has grown faster than the between-firm component in the period 1985-2015, the increase in

the between-firm component is responsible for most of the increase in overall variance (67

percent). This result is in line with what has been found in the empirical literature (see

Song et al. (2019) and Barth et al. (2016)).

Moreover, we are able to pin down the firm size distribution. We are particularly
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Table 4: Variance Decomposition - Parametric
(Calculations using values in $1000 2015 USD)

Skills - Magnitudes

Overall
Within-
group

Between-
group

1985 - Model 1.87 1.18 0.69
(100%) (63%) (37%)

1985 - Data 5.84 4.81 1.03
(100%) (82%) (18%)

2015 - Model 2.86 1.77 1.09
(100%) (62%) (38%)

2015 - Data 11.37 9.08 2.30
(100%) (80%) (20%)

% Change 1985-2015 : Model 53% 50% 58%
% Change 1985-2015 : Data 95% 89% 124%

Table 5: Variance Decomposition - Firms
(Calculations using values in $1000 2015 USD)

Overall
Within-

firm
Between-

firm

1985 - Model 1.87 0.33 1.55
(100%) (17%) (83%)

2015 - Model 2.86 0.65 2.21
(100%) (23%) (77%)

% Change 1985-2015 : Model 53% 101% 43%

interested in seeing how the distribution has changed over time. Figure A.9 in the appendix

shows that large firms have become significantly larger, while small and mid-size firms have

declined in size. Even more important, the large firms that have seen positive growth in

their labor force are concentrated in the top decile of the size distribution. This result is in

line with the empirical pattern observed in appendix Figure A.4 based on the BDS data.

4 Counterfactual Experiments

4.1 Non-parametric Approach

In this section, we present our counterfactual exercises. Our model has three sets of param-

eters. First are the parameters for labor market frictions, defined by the matching function

parameters A〉 and βi, the job destruction rate δi, and death rate d, for i ∈ {1, 2, ..., 5}.
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Table 6: Std. Deviation of Earned Wages
(Calculations using values in $1000 2015 USD)

>HS HS SC Col Col+
1985 Benchmark 1.20 1.62 1.81 2.83 4.29
2015 Benchmark 1.00 1.58 2.03 3.45 5.09

Difference -0.20 -0.05 0.23 0.63 0.80

Counterfactuals:
Production 91% -315% 258% 218% 286%
Labor Frictions -15% -59% 319% 155.% 68%
Market Composition -17% 128% -118% -82% -59%

The second set incldes parameters for market composition, defined by the educational-

attainment distributions, characterized by mi, i ∈ {1, 2, ..., 5}. Finally, parameters for the

output per skill-firm p(x, i) distributions, which, in the case of the nonparametric approach,

are obtained through the nonparametric estimation using data on earned wages. In our

counterfactual exercises, we calculate how much of the increase in wage inequality – both

overall as well as within- and between-skill groups – can be explained by changes in each one

of the set of parameters separately. In order to do that, we start from the 1985 benchmark

calibration inputs and consider that only one of the three sets of parameters (labor market

frictions, market composition, and output distributions) is changed to its 2015 counterpart.

We then compare the obtained wage distribution against the 1985 and 2015 benchmark

results.

Table 6 and Figure 5 summarize the results. Table 6 shows the model-based standard

deviation of earned wages for each educational group in 1985 and in 2015 and their difference.

The table also shows how much of this difference can be explained by each counterfactual

channel. Notice that the production counterfactual explains more than 100 percent of the

difference for all but workers with less than a high school education. This result shows that

changes in output not only explain the bulk of the result, but also that, if labor frictions and

market composition had been kept at their 1985 levels, within-group inequality should be

even higher for most education groups. Panel (b) in Figure 5 gives a visual perspective for

the result. Similarly, Figure 5’s panel (a) shows that between-group wage inequality should

be even higher without the changes in labor market friction and market composition.

In terms of the counterfactuals for labor market frictions and market composition, Table

6 and Figure 5 paint a more nuanced picture, as the effect varies significantly across groups.

First, workers without a high school diploma seem to have benefited from both changes.
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In fact, the labor friction indexes (κi) for workers with less than a high school education

are significantly higher for both counterfactuals (labor frictions and market composition)

than the 2015 counterpart.15 As a result, both average wages and the standard deviation

of real wages are higher for workers without a high school diploma in these counterfactual

exercises, compared to the 2015 benchmark. Differently, for all other education groups but

high school graduates, the market composition counterfactual shows lower average wages

and standard deviations than both of the 1985 and 2015 counterparts. The leading reason

for this decline – in particular for workers with at least some college education – is the

increase in the measure of workers in each educational group, reducing market tightness.

Differently, in the case of the labor friction counterfactual, high educational-attainment

groups see higher average wages and standard deviation of average wages than in the 1985

benchmark. In this case, the increase in efficiency, through higher Ai and lower βi, implies

higher labor friction indexes (κi) than their 2015 benchmark counterparts.

Table 7 shows not only the difference in overall variance across the different time periods

and counterfactuals, but also how the overall wage inequality is decomposed in terms of

within- and between-group components. As in Table 6, the percentages in the counterfactual

rows show how much of the difference between the 1985 and 2015 values is observed in each

counterfactual scenario. As one can see, just the changes in output distributions more than

explain the overall increase in wage dispersion, generating an overshooting. In the opposite

direction, the changes in market composition by themselves would in fact imply a decline in

wage dispersion in the same period. Finally, the labor frictions counterfactual shows that

the changes in labor market frictions by themselves are able to explain about half of the

increase in wage inequality.

4.2 Parametric Approach

In this section we use the parametric approach to disentangle the impact of changes in output

production in terms of its two components: labor productivity (A(i)) and firm productivity

(x). As we have shown in Section 4.1, changes in the output flow by themselves were able

to induce a large increase in wage dispersion, both within and between education groups.

15Notice that the drivers of labor friction improvements are different in each counterfactual.The market
composition counterfactual has a higher κi for less than high school workers than the 2015 benchmark due
to a better market tightness and positive time trend. The labor friction counterfactual has a higher κi for
less than high school workers than the 2015 benchmark due to a smaller impact of the time trend, even
though it faces a worse market tightness.
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Table 7: Variance Decomposition - Skills
(Calculations using values in $1000 2015 USD)

V arG(w) Within-group Between-group

1985 5.79 4.68 1.10
2015 10.60 8.01 2.59

Difference 4.81 3.33 1.48

Counterfactuals:
Production 138% 124% 169%
Labor Frictions 53% 59% 40%
Market Composition -6% -4% -10%

In fact, Tables 6 and 7 and Figure 5 show that the observed changes in market composition

attenuated the effect of changes in output flow. In other words, without other changes in

the labor market, inequality driven by changes in output would have been larger than the

observed pattern. Consequently, further decomposing the effect of output flow changes may

allow us to understand a key driver of wage inequality.

Table 8 shows the change in the standard deviation of earned wages between 1985

and 2015, based on our parametric calibration. We consider three different counterfactual

exercises. Production considers that both A(i) and x change to their 2015 levels, following

the output counterfactual in the non-parametric case.16 Labor Productivity considers that

only A(i)’s are at their 2015 levels, with all other parameters at the 1985 levels. Firm

Productivity considers that only Γ(x) is at its 2015 levels, with all other parameters at

1985 levels. Similarly to what we showed in Table 6, we observe that the production

counterfactual generates a wide increase in standard deviation of earned wages across all

educational groups. Different from the nonparametric case, we can decompose the effect of

changes in output flow in terms its components. According to Table 8 and Figure 6’s panel

(b), the vast majority of the effect of output changes on the standard deviation of earned

wages is through changes in labor productivity. The only educational group in which we see

firm productivity having a larger impact is among workers without a high school diploma.

However, this result is artificial owing to our normalization of A(1) = 1 in both periods.

Similarly, Tables 9 and 10 show that the key driving force behind the increase in wage

inequality through changes in output flow are the changes in labor productivity. In fact,

labor productivity is the key driver not only for the increase in the overall wage, but

also for its within and between educational groups and firm components. Changes in firm

16Notice that results here are different from those of the nonparametric approach, since we are still
assuming a parametric functional form for p(x, i).
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Table 8: Std. Deviation of Earned Wages
(Calculations using values in $1000 2015 USD)

>HS HS SC Col Col+

1985 Benchmark 0.71 0.94 1.07 1.42 1.65
2015 Benchmark 0.68 0.95 1.11 1.62 2.02

Difference -0.04 0.02 0.03 0.21 0.38

Counterfactuals:
Production 77% 504% 411% 168% 143%
Labor Productivity 0% 472% 286% 102% 88%
Firm Productivity 77% 30% 115% 57% 45%

productivity explain only a minor share of the difference between 1985 and 2015 benchmark

values. In terms of the differences in average wages across educational groups, Figure 6’s

panel (a) shows that changes in labor productivity across educational groups induced a large

increase in average wages for high-skill workers that may have been somewhat attenuated

by changes in firm productivity.

Table 9: Variance Decomposition - Skills
(Calculations using values in $1000 2015 USD)

V arG(w)
Within-
group

Between-
group

1985 1.87 1.18 0.69
2015 2.86 1.77 1.09

Difference 0.99 0.59 0.40

Counterfactuals:
Production 106% 77% 148%
Labor Productivity 85% 51% 136%
Firm Productivity 15% 19% 9%

In summary, the results from our parametric counterfactual exercises are in line with

Bowlus and Robinson (2012), i.e., it is the fact that high-skill workers became more pro-

ductive (have more human capital than they used to) that drives the increase in wage

inequality. Moreover, our results also imply that while we do observe that between-firm

inequality explains the bulk of the overall increase in wage inequality, changes in firm pro-

ductivity by themselves can only explain a limited fraction of the increase in wage inequality

and dispersion over time.
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Table 10: Variance Decomposition - Firms
(Calculations using values in $1000 2015 USD)

V arG(w)
Within-

firm
Between-

firm

1985 1.87 0.33 1.55
2015 2.86 0.65 2.21

Difference 0.99 0.33 0.66

Counterfactuals:
Production 106% 124% 98%
Labor Productivity 85% 108% 74%
Firm Productivity 15% 10% 18%

5 Conclusion

In this paper, we present a model that allows us to decompose the overall wage dispersion

into dispersion between and within skill groups, as well as within and between firms, while

delivering most of the properties discussed in the empirical literature on organizations as

equilibrium properties. We calibrate the model both parametrically and non-parametrically

using wage data from the CPS MORG for the years 1985 and 2015. Our results show that

changes in the output flow produced by worker-firm pairs induced both an increase in the

average wage and wage dispersion for highly educated workers, while depressing average

wages and reducing dispersion among low-education workers. Moreover, as we disentangle

the changes in output flows in terms of its components – labor and firm productivities –

labor productivity changes explain the vast majority of the effect of output changes on wage

dispersion.

In contrast, changes in market composition – in particular the increase in the fraction

of the labor force with high educational attainment – attenuated the impact of changes in

labor productivity. Finally, changes in labor frictions by themselves were able to explain

about half of the change in overall wage inequality, as well as about half of the within- and

between-group components.

We also present some methodological contributions. Our model depicts an equilibrium

with a rank-preserving property, in which there is a one-to-one relationship between a firm’s

rank in the productivity distribution and its rank in the wage-posting distribution. Con-

sequently, we are able to recover information about the firm from the wage distribution,

subject to parametric assumptions on the production function. We calculated firm size

distributions for both 1985 and 2015 and showed that firms in the top decile of the size dis-
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tribution grew significantly during this period, while most small and mid-size firms shrunk

– a result in line with what we observed in the BDS. Finally, this new method allowed us

to decompose the overall variance of earned wages in their within- and between-firm com-

ponents. We see that most of the increase in the overall variance is due to an increase in

between-firm inequality. This result is in line with what was found by Barth et al. (2016)

and Song et al. (2019). However, our calibration shows that while we do observe that

between-firm inequality explains the bulk of the overall increase in wage inequality, changes

in firm productivity by themselves can only explain a limited fraction of the increase in

wage inequality and dispersion.
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Figure 1: Comparison between Cumulative Distributions of Outputs for Different Skill
Levels – 1985 vs. 2015
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A Appendix - For online Publication

A.1 Market Equilibrium Definition

Definition 1 Consider an economy with heterogeneous workers and firms, in which the

firm-productivity distribution Γ(x) is continuous with no mass points. A market equilibrium

is a set of I triples – one for each skill i submarket – (R(i), x?(i), such that

1. Only firms with productivity greater than x?(i) are active, and the distribution of firm

productivity in the market is given by

Γ(x)− Γ(x?(i))

Γ(x?(i))

2. The distribution of wage offers in submarket i is given by Fi(·). In particular, the

profit-maximizing wage of a productivity-x firm, given other firms’ and workers’ strate-

gies, is given by:

K(x; i) = arg max
w
{π(x; i)|b(i) ≤ w ≤ p(x, i)}

where π(x; i) is defined in equation (10).

3. R(i) is workers’ best response to firms’ aggregate behavior. Given that search efficiency

is unaffected by employment status, R(i) = b(i).

A.2 Economy-wide Wage Distributions

In this section, we present the economy-wide distributions of offered and earned wages. Our

goal is to show how the wage distributions per skill type interact in order to build their

economy-wide counterpart and, consequently, how changes in the composition of the labor

force may affect the economy-wide wage distribution. We start with the distribution of

posted wages followed by the distribution of earned wages.

Aggregated density of posted wages

First, let’s be very precise about the densities for each skill level i:

fi(w̃) =


γ(K−1(w̃,i))

Γ(K−1(wi,i))
∂K(K−1(w̃,i),i)

∂K−1(w̃,i)

if w̃ ∈ [wi, wi]

0 otherwise
(21)

Then, notice that because not all firms offer jobs at all skill levels, we need to weight the
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wage distributions per skill by the measure of firms that actively post wages at that partic-

ular skill level. Once weights are properly included, the aggregated cumulative distribution

of offered wages in the economy is given by

F (w̃) =

∑I
i=1 Γ(K−1(wi, i))Fi(w̃)∑I

i=1 Γ(K−1(wi, i))
(22)

Consequently, the density function associated with this cumulative distribution is given

by

f(w̃) =

∑I
i=1 Γ(K−1(wi, i))fi(w̃)∑I

i=1 Γ(K−1(wi, i))
(23)

Finally, the average posted wage for the overall economy is given by

EF [w] =

∫ w

w
w̃f(w̃)dw̃ =

∑I
i=1 Γ(K−1(wi, i))EFi [w]∑I

i=1 Γ(K−1(wi, i))
(24)

Aggregated density of earned wages

In this case, we focus on the wage actually earned by workers. Consequently, instead

of tracking the measure of firms posting a job at a given skill level, we need to track the

measure of employed workers at each skill level as a proportion of all employed workers.

Based on the cumulative distribution of earned wages per skill presented in equation (6),

we have that the aggregated cumulative distribution and density function of earned wages

are given by

G(w̃) =

∑I
i=1Gi(w̃)(mi − ui)∑I

i=1(mi − ui)
and g(w̃) =

∑I
i=1 gi(w̃)(mi − ui)∑I

i=1(mi − ui)
(25)

respectively. Consequently, the average aggregate wage in this economy is

EG[w] =

∫ w

w
wg(w)dw =

∑I
i=1(mi − ui)EGi [w]∑I

i=1(mi − ui)
(26)

where EGi [w] can be derived after manipulating equations (15) and (16) as well as

implementing a change of variables taking into account that w = K(x, i):

EGi [w] =

∫ x

x(i)
K(x′, i)

(1 + κi)Γ(x?(i))γ(x′)î
Γ(x?(i)) + κiΓ(x′)

ó2dx′ (27)
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Finally, let’s consider the economy-wide variance of earned wages:

V arG(w) =

∫ w

w
(w − EG(w))2g(w)dw (28)

Again, after some algebra and a change of variables considering w = K(x, i), along with

defining M − U =
∑I
i=1(mi − ui), after substituting equation (7) we have:

V arG(w) =
1

M − U

∫ x

x

I∑
i=1

(K(x, i)− EG(w))2lx(i)γ(x)dx (29)

A.3 Wage Variance Decompositions

As we described in the introduction, one of the most important questions that our model can

address pertains to the source of wage inequality across workers in the overall economy. In

particular, the decomposition of the source of wage dispersion in terms of the within- versus

between-firm components is one that has been the focus of most of the recent empirical

literature. In particular, according to Lazear and Shaw (2008), the total variance in wages,

σ2, is given by

σ2 =
J∑
j=1

pjσ
2
j +

J∑
j=1

pj(wj − w)2 (30)

The first term on the RHS of equation (30) is the within-firm component of the variance.

Notice that pj is the share of workers in the economy employed in firm j, while σ2
j is the

variance of wages in firm j. The second term on the RHS of equation (30) represents the

between-firm component of the wage variance. In this expression, wj is the mean wage in

firm j, and w is the mean wage in the economy.

In this section, we apply their decomposition to our model. Let’s start with the within-

firm component. Assume that we partition the interval [x, x] in N intervals of length

∆. Then, we have xi+1 = xi + ∆. Moreover, the measure of type xi+1 firms is given

by Γ(xi+1) − Γ(xi), while the share of employed workers in the economy at type xi+1 is
S(xi+1)
M−U Then, we have that pjσ

2
j can be rewritten as V arφxi+1

(w)S(xi+1)
M−U Γ(xi+1) − Γ(xi).

Multiplying and dividing by ∆ and adding across xs, we have

N∑
i=1

V arφxi+1
(w)

S(xi+1)

M − U
[Γ(xi+1)− Γ(xi)]

∆
∆
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Taking ∆→ 0, we have

Within-firm
component =

∫ x

x

S(x)

M − U
V arφx(w)γ(x)dx (31)

Following the same procedure for the between-firm component, we obtain

Between-firm
component =

∫ x

x

S(x)

M − U
(Eφx(w)− EG(w))2γ(x)dx (32)

Therefore, the entire decomposition can be rewritten as

V arG(w) =

∫ x

x

S(x)

M − U
V arφx(w)γ(x)dx+

∫ x

x

S(x)

M − U
(Eφx(w)− EG(w))2γ(x)dx (33)

where EG(w) is presented in equation (26), while V arφx(w) and Eφx(w) are defined by

Eφx [w] =

∑I
i=1K(x, i)lx(i)

S(x)
(34)

and

V arφx [w] =

∑I
i=1(K(x, i)− Eφx [w])2lx(i)

S(x)
(35)

Moreover, we can adapt Lazear and Shaw (2008)’s decomposition in order to decompose

the overall wage variance in terms of the within and between educational groups. Using the

same logic, we obtain the following decomposition:

σ2 =
I∑
i=1

me
i (σ

e
i )

2 +
I∑
i=1

me
i (w

e
i − w)2 (36)

Similar to the decomposition in terms of within and between firms, the first term in the

RHS of equation (36) represents the within-skill component of the overall wage inequality

and the second term in the RHS is the between-skill component. me
i is the fraction of the

employed labor force with skill level i, σei is the standard deviation of wages for workers of

skill i, wei is the average wage for employed workers with skill level i, and w is the mean

wage in the economy.

Mapping this decomposition to our model, we have wei = EGi [w], where EGi [w] is given
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by equation (27) and (σei )
2 is given by

(σei )
2 ≡ V arGi(w) = (1 + κi)Γ(x?(i))

∫ x

x?(i)

ñ
K(x, i)− EGi [w])

Γ(x?(i)) + κiΓ(x)

ô2

γ(x)dx (37)

Finally, the fraction of employed workers who have skill level i in our model is given by

me
i =

κimi
1+κi∑I
j=1

κjmj
1+κj

(38)

Consequently, the decomposition of overall wage variance in terms of within- and between-

skill components is

Within-skill
component =

I∑
i=1

me
iV arGi(w)

Between-skill
component =

I∑
i=1

me
i (EGi [w]− EG[w])2 (39)

where me
i , V arGi(w), EGi [w], and EG[w] are given by equations (38), (37), (27), and (26),

respectively.

A.4 Empirical Evidence: Quarterly Workforce Indicators (QWI)

We present summary statistics and empirical patterns by firm-size that are in line with

the results we have obtained from our model. While this evidence is mostly suggestive, it

offers an initial indication in favor of our model, before we present our calibration exer-

cise. Our empirical approach relies on the identification of firm-level properties using our

model and only data from the worker-level observations conditional on skill. This section

highlights that implications from our model are nevertheless consistent with the firm-level

observations, albeit at an aggegate level.

The database for our analysis in this section comes from the Quarterly Workforce In-

dicators (henceforth QWI).17 The QWI provides local labor statistics by industry, worker

demographics, employer age, and size. The source data for the QWI are the Longitudinal

Employer-Household Dynamics (LEHD), which is a linked employer-employee longitudinal

database covering over 95 percent of the US private sector jobs. While the QWI reports

education information only for workers who are age 25 and up, this still suits our analysis

well, once we focus on workers who completed their education. Consequently, our analy-

sis considers just the universe of employed workers age 25 and up. Moreover, while the

QWI provides data at the establishment level as well as at the firm level, we focus on the

17Data reference is U.S. Census Bureau (2019).
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firm-level information, since it is more closely related to the model’s analysis. Firm size in

the QWI is defined at the national level and it refers to the national employment size of

the firm on March 12th of the previous year for existing firms. For new firms, firm size is

measured as the current year’s March employment (or the employment in the first month

of positive employment if born after March). Firm size is reported only for private-sector

firms. Finally, our measures of employment and earnings hinge on the concept of stable (or

full-quarter) employment, which focuses on individuals that receive earnings from the same

employer for at least three consecutive quarters. Consequently, stable employment suggests

that an employee has an ongoing relationship with the employer throughout the quarter.

Recall from our Theorem 1, that there is a tight link between a firm’s productivity and

its size. While the aggregate data from the QWI are not suitable to show this point, there is

a large literature that documents the joint distribution of firm productivity and its size, both

in the US (Foster, Haltiwanger, and Syverson (2008)) and elsewhere (Abowd, Kramarz, and

Margolis (1999)). Thus, we take this tight link between a firm’s productivity and its size as

given and focus on the aggregate evidence related to the other relevant properties implied

by Theorem 1.

Results displayed in Table A.1 present the average number of workers per educational

group per firm size. These averages are calculated by dividing the number of workers per

education group employed at firms within the size class. The QWI data allow for four

distinct education levels for workers: less than high school (LHS), high school (HS), some

college education (SC) and college educated and above (BA+). Average sizes are normalized

by the number of firms in each firm size class, giving us the size of a typical firm in each size

class. Overall, results presented in Table A.1 are in line with the equilibrium characteristics

presented in Theorem 1. In particular, larger firms hire more at all educational groups.18

Results for other years (1993–2014) are qualitatively the same as the ones for 2015 so we

omitted them here, but they are available upon request.

Similarly, Table A.2 displays the average monthly earnings of workers at different firm

size categories by their education level. Consistent with our Theorem 1, average earnings

increase by education level for each firm-size group. Moreover, a typical worker in each

education level earns more at larger firms. These aggregate patterns are all consistent with

the model implications.

18The model presented in this paper is an example of what Lopes de Melo (2018) calls a “piece-rate”
model. As Lopes de Melo (2018) shows in Sections 3.1 and 3.2, models don’t present sorting in equilibrium,
once reservation strategies and meeting rates are independent of firm type. Consequently, the differences in
κ’s are likely a necessary condition for Proposition 1. Nevertheless, in Lopes de Melo (2018)’s calibration κ
is also increasing with education.
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Table A.1: Avg. No. of workers across firm sizes - 2015

1 to 19 20 to 49 50 to 249 250 to 499 500+
LHS 0.58 3.47 11.66 39.61 303.99
HS 1.09 6.43 21.48 73.46 604.70
SC 1.19 6.84 23.41 81.55 702.71
BA+ 0.98 5.28 18.30 65.14 620.39

Table A.2: Avg. Monthly Earnings - 2015

1 to 19 20 to 49 50 to 249 250 to 499 500+
LHS 2534 2961 3183 3289 3518
HS 2905 3437 3738 3881 4196
SC 3331 4000 4375 4583 5091
BA+ 5067 6371 7141 7730 8925

Another important result from Theorem 1 states that larger firms hire disproportion-

ately more workers with higher educational attainment. This implies a concentration of

higher-education workers in large firms. Hence, we also want to highlight this concen-

tration pattern in the aggregate QWI data. In fact, in order to take into account the

economy-wide distribution of workers across different educational groups, we present two

alternative measures of concentration across education groups. The first one is a measure

based on the location quotient measures (LQ), which is calculated as follows:

LQi =

Ñ
employees in education group i

fraction of firm-size group
é

Ñ
in the economy in education group i

fraction of employed workers
é (40)

Consequently, if LQi > 1 we have that the firm’s labor force is more concentrated

in education group i than in the economy as a whole. We present results for the QWI

database in Figure A.2. Panels A.2(a) and A.2(b) present the results focusing on firm

sizes and education groups, respectively. As we can see, compared to the economy-wide

distribution, low-education groups are overrepresented in small firms, while high-education

workers are overrepresented in large firms. As with the evidence presented in Figure A.1,

the patterns observed in Figure A.2 also corroborate our findings from Theorem 1.

Finally, we create Herfindahl-Hirschman Indexes (henceforth HHIs) to measure the dis-
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tribution of employment by education group within firms.19 In particular, we compute the

following indexes:

HHIfirm j =
∑
i

Ñ
firm-size group j total employment

share of education group i in
é2

(41)

HHIeduc i =
∑
l

Ñ
education group i total employment

share of firm-size group i in
é2

(42)

Figure A.3 presents our results for HHIfirm j and HHIeduc i across several years in

the database. As expected, higher values of HHI indicate higher degrees of concentration.

As we can see from panel A.3(a), large firms (more than 500 workers) tend to be more

concentrated than smaller ones, even though the degree of concentration has decreased

over time. Similarly, panel A.3(b) shows that the distribution of high-education workers

across firm size groups is more concentrated. Moreover, the concentration of workers across

firm-size groups has actually increased over time. A possible explanation for the different

inter-temporal patterns presented in panels A.3(a) and A.3(b) is shown in Figure A.4, in

which we use data from the Business Dynamics Statistics (BDS) in order to calculate the

share of the employed labor force across the different firm-size groups over time. As we

can see, large firms (500+) have absorbed an increasing share of the employed labor force,

possibly explaining the increasing concentration at the HHIeduc i measure.

A brief analysis of the aggregate patterns in the QWI data confirms that our model is

consistent with firm-level observations. In the rest of the paper, we will solely rely on worker

level outcomes (employment, earnings) to calibrate our model and conduct our counterfac-

tual experiments to uncover the main channels responsible for rising wage inequality in the

US.

A.5 Proofs

Proof of Lemma 1

Proof. Toward a contradiction, assume that j > i but x(i) > x(j). From the increasing

differences property of supermodular functions, we have:

p(x(i), j)− p(x(i), i) > p(x(j), j)− p(x(j), i) (43)

19We follow procedures presented in Handwerker and Spletzer (2016).
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Rearranging it, we have:

p(x(i), j)− p(x(j), j) > p(x(i), i)− p(x(j), i) (44)

Since ∂p(x,i)
∂x > 0, we have that the RHS of equation (44) is larger than zero. As a result:

p(x(i), j) > p(x(i), i)⇒ p(x(i), j) > b(j) (45)

which is a contradiction. Consequently, if j > i, we must have x(j) ≥ x(i), concluding the

proof.

Calculations for equation (13)

Now, focusing on the boundary condition, notice that if x?(i) = x(i), we have that

π(K(x(i); i); i) = 0 and the boundary condition is also zero. Similarly, if x?(i) = x, we have

that:

l(K(x; i); i) =
κimi

[1 + κi]
2 (46)

Consequently, notice that∫ x

x(i)

∂p(x′; i)

∂x′
κimi

[1 + κi]
2dx

′ = [p(x, i)− b(i)] κimi

[1 + κi]
2 (47)

Following an argument similar to the one presented in Burdett and Mortensen (1998),

Section 4 (which we will verify in our presentation later), we have that K(x; i) = b(i). As

a result, regardless of whether x?(i) = x(i) or x?(i) = x, we have:

π (x; i) =

∫ x

x(i)

∂p (x′, i)

∂x′
κimi

Γ(x?(i))
[
1 + κi

Γ(x′)

Γ(x?(i))

]2dx′ (48)

which is equation (13) presented in the main text. �

Proof of Lemma 2

Proof.
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Since x > x̃⇒ Γ(x) < Γ(x̃). Then, from equation (14), we have:

K (x; i)−K (x̃; i) =



p (x, i)− p (x̃, i)

−
∫ x̃
x(i)

∂p(x′,i)
∂x′


(

Γ(x?(i))+κiΓ(x)

Γ(x?(i))+κiΓ(x′)

)2
−(

Γ(x?(i))+κiΓ(x̃)

Γ(x?(i))+κiΓ(x′)

)2

 dx′
−
∫ x
x̃
∂p(x′,i)
∂x′

(
Γ(x?(i))+κiΓ(x)

Γ(x?(i))+κiΓ(x′)

)2
dx′


(49)

Since Γ(x) < Γ(x̃), we have that:[Ç
Γ(x?(i)) + κiΓ(x)

Γ(x?(i)) + κiΓ(x′)

å2

−
Ç

Γ(x?(i)) + κiΓ(x̃)

Γ(x?(i)) + κiΓ(x′)

å2]
< 0 (50)

Similarly, since x′ ≤ x, we have that:Ç
Γ(x?(i)) + κiΓ(x)

Γ(x?(i)) + κiΓ(x′)

å2

≤ 1 (51)

with equality only if x′ = x, once γ(·) is continuous with no mass points.

Consequently, we have that:

K (x; i)−K (x̃; i) >

∫ x̃

x(i)

∂p (x′, i)

∂x′


(

Γ(x?(i))+κiΓ(x̃)

Γ(x?(i))+κiΓ(x′)

)2

−
(

Γ(x?(i))+κiΓ(x)

Γ(x?(i))+κiΓ(x′)

)2

 dx′ > 0 (52)

Establishing that K (x; i) > K (x̃; i).

Corollary A.1 The second-order condition of the firm’s profit maximization problem is

satisfied.

Proof. From F.O.C. in equation (11), we obtain the following second-order condition

(henceforth S.O.C.)

2κif
′
i(w)(p(x, i)− w)− κifi(w) (53)

Substituting equation (11) and rearranging, we have that the S.O.C. is satisfied if:

κifi(w)2 − f ′i(w)
î
1 + κiF i(w)

ó
> 0 (54)

Without loss of generality, assume a skill level i ∈ {1, ..., I}. Consider two levels of firm

productivity x1 and x2 ∈ [x?(i), x], with x2 > x1. From F.O.C. in equation (11), after a
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couple of manipulations, we have:

p(x, i) = w +

î
1 + κiF i(w)

ó
2κifi(w)

(55)

Subtracting the F.O.C. for x1 from the F.O.C. for x2, we have

p(x2, i)− p(x1, i) = w2 − w1 +

î
1 + κiF i(w2)

ó
2κifi(w2)

−

î
1 + κiF i(w1)

ó
2κifi(w1)

(56)

Notice that the LHS of equation (56) is positive, since ∂p(x,i)
∂x > 0. As a result the RHS

of equation (56) must also be positive. This result is true for any x1 and x2 ∈ [x?(i), x],

with x2 > x1. Moreover, from Lemma 2 we have that w2 = K(x2; i) > K(x1; i) = w1.

Consequently, we have that the RHS. of equation (56) must be strictly increasing in w.

Therefore

∂

ß
w +

[1+κiF i(w)]
2κifi(w)

™
∂w

=
κifi(w)2 − f ′i(w)

î
1 + κiF i(w)

ó
2κifi(w)2

> 0 (57)

Consequently, we must have that:

κifi(w)2 − f ′i(w)
î
1 + κiF i(w)

ó
> 0 (58)

Implying that the S.O.C. is satisfied.

Proof of Lemma 3

Proof. Consider two productivity levels x and x′ with x > x′ and a skill level i. If x < x(i),

we have that li(x) = li(x
′) = 0. Differently, if x′ < x(i) < x, we have that 0 = li(x

′) < li(x).

Finally, consider the case in which x′ > x(i). From equation (7) and the definition that

li(x) = l(w(x, i), i), we have:

li(x)

li(x′)
=

Ç
Γ(x?(i)) + κiΓ(x′)

Γ(x?(i)) + κiΓ(x)

å2

> 1 (59)

Since Γ(x′) > Γ(x). Consequently, for any x, x′ ∈ [x, x] and x > x′, we have that li(x) ≥
li(x

′).

Proof of Proposition 1

Proof. From Lemma 1, we know the support of skills for a type x firm is {1, ..., I(x)} while

the support of skills hired by firm x′ is {1, ..., I(x′)} with I(x′) ≤ I(x). Consequently, if

I(x′) ≤ i ≤ I(x) we have that Φx′(i) = 1 and Φx(i) ≤ 1 and consequently Φx(i) ≤ Φx′(i).
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Similarly, if i > max{I(x), I(x′)}, we must have Φx′(i) = Φx(i) = 1. Let’s now consider the

case in which i < I(x′). In this case, both firms hire this particular skill. In particular,

consider the skill level Ĩ < I(x′). In this case, we have:

Φx(Ĩ)− Φx′(Ĩ) =

∑Ĩ
i=1 li(x)∑I(x)
j=1 lj(x)

−
∑Ĩ
i=1 li(x

′)∑I(x)
j=1 lj(x

′)
(60)

Rearranging it, we have:

Φx(Ĩ)− Φx′(Ĩ) =
1

S(x)S(x′)


Ĩ∑
i=1

li(x)

I(x′)∑
j=1

lj(x
′)−

Ĩ∑
i=1

li(x
′)

I(x)∑
j=1

lj(x)

 (61)

Simplifying it, we have:

Φx(Ĩ)− Φx′(Ĩ) =
1

S(x)S(x′)


∑Ĩ
i=1

∑I(x′)

j=Ĩ+1
li(x)

[
lj(x

′)− li(x
′)

li(x) lj(x)
]

−∑Ĩ
i=1

∑I(x)
j=I(x′)+1 li(x

′)lj(x)

 (62)

As a result, a sufficient condition for Φx(Ĩ)− Φx′(Ĩ) ≤ 0 is:

lj(x
′)− li(x

′)

li(x)
lj(x) ≤ 0, ∀i ∈ {1, ..., Ĩ} and ∀j ∈ {Ĩ + 1, I(x′)} (63)

Rearranging equation (63), we have:

lj(x)

lj(x′)
≥ li(x)

li(x′)
, ∀i ∈ {1, ..., Ĩ} and ∀j ∈ {Ĩ + 1, I(x′)} (64)

Replacing equation (59) into equation (64), we have:Ç
Γ(x?(j)) + κjΓ(x′)

Γ(x?(j)) + κjΓ(x)

å2

≥
Ç

Γ(x?(i)) + κiΓ(x′)

Γ(x?(i)) + κiΓ(x)

å2

(65)

According to Lemma 3, we have lj(x) > lj(x
′) and li(x) > li(x

′). So the above inequality

can be simplified as Ç
Γ(x?(j)) + κjΓ(x′)

Γ(x?(j)) + κjΓ(x)

å
≥
Ç

Γ(x?(i)) + κiΓ(x′)

Γ(x?(i)) + κiΓ(x)

å
(66)

A-12



Rearranging it and simplifying it, we have:î
Γ(x′)− Γ(x)

ó î
κjΓ(x?(i))− κiΓ(x?(j))

ó
≥ 0 (67)

Since x > x′, we have that
î
Γ(x′)− Γ(x)

ó
≥ 0. Similarly, since j > i, from Lemma 1 we have

that x?(j) ≥ x?(i). Consequently
î
κjΓ(x?(i))− κiΓ(x?(j))

ó
≥ 0. Finally, given κj ≥ κi, we

have that the inequality presented in equation (63) is satisfied and Φx(Ĩ)− Φx′(Ĩ) ≤ 0.

In summary, Φx(i)−Φx′(i) ≤ 0, ∀i ∈ {1, ..., I}. Consequently, Φx(i) dominates stochas-

tically in first order Φx′(i).

Proof of Lemma 4

Proof.

From the integral on the RHS of equation (14), notice that, given that x′ ≤ x, we have

that
(

Γ(x?(i))+κiΓ(x)

Γ(x?(i))+κiΓ(x′)

)
≤ 1, with equality only at the limit x′ = x. Moreover, consider j < i.

From Lemma 1, we have x(j) ≤ x(i)⇒ Γ(x(j)) ≥ Γ(x(i)). Then, we can easily show that,

given κi ≥ κj , we have:Ç
Γ(x?(i)) + κiΓ(x)

Γ(x?(i)) + κiΓ(x′)

å
≤
Ç

Γ(x?(j)) + κjΓ(x)

Γ(x?(j)) + κjΓ(x′)

å
(68)

As a result, from equation (14), we have:

K (x; i) ≥ p (x, i)−
∫ x

x(i)

∂p (x′, i)

∂x′

Ç
Γ(x?(j)) + κjΓ(x)

Γ(x?(j)) + κjΓ(x′)

å2

dx′ (69)

Consequently:

K (x; i)−K (x; j) ≥


p (x, i)− p (x, j)

−
∫ x
x(i)

(
∂p(x′,i)
∂x′ −

∂p(x′,j)
∂x′

)Å
Γ(x?(j))+κjΓ(x)

Γ(x?(j))+κjΓ(x′)

ã2

dx′

+
∫ x(i)
x(j)

∂p(x′,j)
∂x′

Å
Γ(x?(j))+κjΓ(x)

Γ(x?(j))+κjΓ(x′)

ã2

dx′

 (70)

Since x′ ≤ x, we have that
Γ(x?(j))+κjΓ(x)

Γ(x?(j))+κjΓ(x′)
≤ 1 with equality only at x′ = x. Consequently,

we have that:
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∫ x

x(i)

Ç
∂p (x′, i)

∂x′
− ∂p (x′, j)

∂x′

åÇ
Γ(x?(j)) + κjΓ(x)

Γ(x?(j)) + κjΓ(x′)

å2

dx′ <∫ x

x(i)

Ç
∂p (x′, i)

∂x′
− ∂p (x′, j)

∂x′

å
dx′ = (p(x, i)− p(x, j))− (p(x(i), i)− p(x(i), j)) (71)

Substituting back into (70), we have:

K (x; i)−K (x; j) >


p(x(i), i)− p(x(i), j)+

+
∫ x(i)
x(j)

∂p(x′,j)
∂x′

Å
Γ(x?(j))+κjΓ(x)

Γ(x?(j))+κjΓ(x′)

ã2

dx′

 (72)

Since i > j ⇒ p(x(i), i)− p(x(i), j) > 0, we have that K (x; i) > K (x; j).

Proof of Proposition 2

Proof. From Lemmas 2 and 4, we know that for all x, K(x, i) > K(x, j), and for all skill

i, we have K(x, i) > K(x′, i) if x > x′. Moreover, from Corollary 3, we have that the

support of wages offered to i and j-type workers is [b(i),K(x, i)] and [b(j),K(x, j)], where

b(i) ≥ b(j) and K(x, i) > K(x, j). Moreover, the distributions are continuous with no mass

points and with a connected support, as shown by Burdett and Mortensen (1998). Now let’s

consider Fi(w) and Fj(w). If w ∈ (b(j), b(i)), we have that Fj(w) > 0 and Fi(w) = 0, so

Fi(w) ≤ Fj(w). Similarly, if w ∈ (K(x, j),K(x, i)), we have that Fj(w) = 1 and Fi(w) < 1,

so Fi(w) ≤ Fj(w). Finally, if w ∈ [b(i),K(x, j)], so the wage is offered to both skill-i and

skill-j workers. From equation (15), we have that

Fi(w) =
Γ(K−1(w, i))− Γ(K−1(wi, i))

Γ(K−1(wi, i))
(73)

From Corollary 2, we have K−1(w, i) < K−1(w, j), since the firm offering a given wage w for

a higher-skill worker must have a lower productivity than the firm offering the same wage

for a lower-skill worker. Consequently, Γ(K−1(w, i)) < Γ(K−1(w, j)). On the other side,

Lemma 1 shows that x(i) is weakly increasing in i, and we have that x(i) ≡ K−1(wi, i) ≥
K−1(wj , j) ≡ x(j). Consequently, Γ(K−1(wi, i)) ≥ Γ(K−1(wj , j)). Then, we have that

Fi(w)− Fj(w) =
Γ(K−1(w, i))− Γ(K−1(wi, i))

Γ(K−1(wi, i))
−

Γ(K−1(w, j))− Γ(K−1(wj , j))

Γ(K−1(wj , j))
(74)
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Manipulating it, we have

Fi(w)− Fj(w) =


Γ(K−1(wj , j))Γ(K−1(w, i))

−Γ(K−1(wi, i))Γ(K−1(w, j))

+Γ(K−1(w, i))− Γ(K−1(w, j))


Γ(K−1(wj , j))Γ(K−1(wi, i))

(75)

Adding and subtracting one to the numerator and manipulating, we obtain

Fi(w)− Fj(w) =

{
Γ(K−1(wi, i))Γ(K−1(w, j))

−Γ(K−1(wj , j))Γ(K−1(w, i))

}
Γ(K−1(wj , j))Γ(K−1(wi, i))

< 0 (76)

since Γ(K−1(wi, i)) < Γ(K−1(wj , j)) and Γ(K−1(w, j)) < Γ(K−1(w, i)). Consequently,

Fi(w) ≤ Fj(w), ∀w. Therefore, Fi(w) first-order stochastically dominates Fj(w).

Proof of Corollary 4

Proof.
EFi [w] =

∫ x
x(i)K(x′, i) γ(x′)

1−Γ(x(i))dx
′ ≥

∫ x
x(i)K(x′, j) γ(x′)

1−Γ(x(i))dx
′ ≥

≥
∫ x
x(j)K(x′, j) γ(x′)

1−Γ(x(j))dx
′ = EFj [w]

(77)

where the first inequality comes from 2, while the second inequality comes from Fi(w)

F.O.S.D. Fj(w). Simplifying the above expression, we have EFi [w] ≥ EFj [w].

Proof of Proposition 3

Proof. From Lemmas 2 and 4, we know that for all x, K(x, i) > K(x, j), and for all

skill i we have K(x, i) > K(x′, i) if x > x′. Moreover, from Corollary 3, we have that the

support of wages offered to i and j-type workers is [b(i),K(x, i)] and [b(j),K(x, j)], where

b(i) ≥ b(j) and K(x, i) > K(x, j). Moreover, the distributions are continuous with no mass

points and with a connected support, as shown by Burdett and Mortensen (1998). Now let’s

consider Gi(w) and Gj(w). If w ∈ (b(j), b(i)), we have that Gj(w) > 0 and Gi(w) = 0, so

Gi(w) ≤ Gj(w). Similarly, if w ∈ (K(x, j),K(x, i)) we have that Gj(w) = 1 and Gi(w) < 1,

so Gi(w) ≤ Gj(w). Finally, if w ∈ [b(i),K(x, j)], so the wage is earned by both skill-i and

skill-j workers. In this case, we have

Gi(w)

Gj(w)
=
Fi(w)

Fj(w)
× 1 + κjF (w)

1 + κiF i(w)
(78)

From 2, we have Fi(w) ≤ Fj(w) ⇒ F i(w) ≥ F j(w). Given the assumption that κi ≥ κj
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both terms in the RHS of equation (78) are smaller than one. Hence Gi(w) ≤ Gj(w) and

Gi(w) F.O.S.D. Gj(w).

A.6 Methodology of Non-parametric Estimation of p(x, i)

We enact the following steps:

1. We nonparametrically (kernel estimation) estimate Gi(w). We use Launov (2006)’s

procedure to obtain an estimate of the upper tail using a Pareto distribution.

2. We adjust the estimates in order to obtain distributions that are closest to the es-

timated ones but still satisfy the model’s conditions, i.e., the distribution must be

single-peaked and

3κigi(w)2 − g′i(w) [1 + κiGi(w)] > 0 (79)

3. We assume all firms hire all skill levels: x?(i) = x, ∀i.

Based on our estimates for the earned wage distributions and the parameters λ(i), δ(i),

and d, estimated from the job flows and death rates, we pin down output and output density

functions (υi(p(x, i))) as

p(x, i) = w +
1 + κiGi(w)

2κigi(w)
(80)

and

υi(p(x, i)) =
2κi(1 + κi)gi(w)3{

3κi {1 + κ1Gi(w)}2 gi(w)2

−g′i(w){1 + κiGi(w)}3

} (81)

Note that the recovered output distributions – Υi(·), i ∈ {1, ..., 5} – are consistent

with the labor market turnover rates and the average unemployment rates by different skill

groups. Between conditions 2 and 3 described above, 2 ends up being the most material.

It effectively guarantees that wages are non-decreasing with firm output for a given skill

type. This does not stand out as a very restrictive assumption a priori, but we find this

to be violated in the data, especially at the low-skill levels and at the low end of the wage

distribution among low-skill worker types. The single-peak feature guarantees that for

wages higher than the mod-wage, this condition is satisfied just by virtue of g′i(w) < 0. We

ensure this by effectively flattening the local peaks in the relevant domain for each skill

type, keeping the aggregate mass constant. This step is rather straightforward and does

not require a calibrated wage density that is far off from the empirical one. The problem

is a bit complicated on the left side of the distribution for wages lower than the mod-wage.
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Intuitively, our restriction in 2 implies that the calibrated density cannot be increasing

“very fast” in that region. It turns out that this seems to be a feature of the data anyway

for high-skill types. In the end, we can easily calibrate output distributions so that we can

get the wage densities exactly for workers with a college degree or more, both for 1985 and

2015. For the low-skill workers, though, our best fit seems to fail to account for the rapid

increase in the density early on.

We present the empirical estimates of gi(w) and the closest distributions we can get

following our methodology that satisfy conditions 2 and 3 in Figures A.5 and A.6 for 1985

and 2015, respectively. As we can see, the adjusted distributions, serving as the inputs in

our non-parametric calibration of the output distributions, are quite close to the empirical

counterparts. Our largest “mismatch” is for high school dropouts in 1985, and that yields

a fitted wage density that has 5.6 percent of its mass away from the empirical density. For

the rest of the skill types, it rapidly declines to 3 percent for high school graduates and 1

percent for workers with some college. By these measures, our fit is much better for 2015.

We obtain a calibrated density that only relocates 4.5 percent of the mass for the lowest

skill type and 1.5 percent for the high school grads. The mismatch for workers with some

college education is less than 0.5 percent. For both years, our non-parametric match to the

empirical density for college graduates and workers with post-graduate degrees requires a

distortion that is less than 0.03 percent of the respective mass. In summary, our inputs to

the calibration of the output distributions present only small deviations from the empirical

counterparts.

A.7 Matching Function Estimates: Adjustments for Job Finding and Ar-

rival Rates

The matching function estimates are presented in Table A.3. The estimates for 1985 are

based on monthly data for the sample period 02/1976 – 12/1990, while the 2015 estimates

are based on monthly data for the sample period 01/2000 – 12/2015. The estimates, pre-

sented in Table A.3, show that matching efficiency has increased across all submarkets,

although at different rates. Differently, the elasticity of the matching function with respect

to labor supply have gone down in all submarkets, showing that the congestion caused by

workers on each other within each submarket has gone up across all markets. Furthermore,

we observe a positive trend in the matching function in the first period, while the second

period has a negative and significant downward trend. While coefficients are small, these

trends significantly affect the job finding rates.

In order to calculate the job-finding rates in each submarket, we follow Tasci (2012) and
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Table A.3: Matching Function Estimates

Matching Efficiency

log(A1) log(A2) log(A3) log(A4) log(A5)

1985 2.503*** 6.887*** 3.953*** 2.833*** 1.837**
(0.883) (0.501) (0.542) (0.640) (0.809)

2015 5.764*** 8.116*** 9.230*** 6.163*** 5.230***
(0.439) (0.546) (0.534) (0.701) (0.711)

Matching Elasticity

1-β1 1-β2 1-β3 1-β4 1-β5

1985 0.267*** 0.521*** 0.346*** 0.279*** 0.222***
(0.058) (0.031) (0.036) (0.044) (0.056)

2015 0.464*** 0.577*** 0.641*** 0.462*** 0.423***
(0.028) (0.033) (0.033) (0.044) (0.047)

Time Trend φ

1985 0.001*** 2015 -0.002***
(0.000) (0.000)

introduce the adjustment presented in equation (82):

jfri =
Mi(mi, Vi)

mi
+

flowUiNi

Ui
× flowNiEi

flowNiEi + flowNiUi
(82)

The adjustment in the RHS of equation (82) captures the created matches that invlove

a spell in not in the labor force (N) that may be missed otherwise in our estimation.

Finally, in order to pin down λi, we follow Shimer (2012) and the adjustment presented

in equation (83):

λi = − log(1− jfri)

1− δi
(83)

However, our results are qualitatively the same if we ignore these adjustments in our

counterfactual exercises.
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Figure A.2: Location quotient of educational-attainment groups across firm-size groups
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Figure A.5: Comparison between Empirical Wage Distributions and Adjusted Distributions
that Fulfill Model Requirements – 1985

A-21



Wage - 2015 $USD
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

g
1
(w

)
×10

-4

0

1

2

3

4

5

6

7

8

Input
Data

(a) High School Dropouts

Wage - 2015 $USD
0 2000 4000 6000 8000 10000 12000

g
2
(w

)

×10
-4

0

0.5

1

1.5

2

2.5

3

3.5

4

Input
Data

(b) High School Graduates

Wage - 2015 $USD
0 5000 10000 15000

g
3
(w

)

×10
-4

0

0.5

1

1.5

2

2.5

3

Input
Data

(c) Some College
Wage - 2015 $USD ×10

4
0 0.5 1 1.5 2 2.5

g
4
(w

)

×10
-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Input
Data

(d) College Graduates

Wage - 2015 $USD ×10
4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

g
5
(w

)

×10
-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Input
Data

(e) Post-Graduates

Figure A.6: Comparison between Empirical Wage Distributions and Adjusted Distributions
that Fulfill Model Requirements – 2015

A-22



2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

p
a
ra

m
e
tr

ic
 p

(X
,1

)

2000 4000 6000 8000 10000
non−parametric p(X,1)

45−degree line Parametric Estimate

(a) High School Dropouts

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

p
a
ra

m
e
tr

ic
 p

(X
,2

)

2000 4000 6000 8000
non−parametric p(X,2)

45−degree line Parametric Estimate

(b) High School Graduates

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

p
a
ra

m
e
tr

ic
 p

(X
,3

)

2000 4000 6000 8000
non−parametric p(X,3)

45−degree line Parametric Estimate

(c) Some College

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

p
a
ra

m
e
tr

ic
 p

(X
,4

)

2000 4000 6000 8000
non−parametric p(X,4)

45−degree line Parametric Estimate

(d) College Graduates

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

p
a
ra

m
e
tr

ic
 p

(X
,5

)

2000 4000 6000 8000 10000
non−parametric p(X,5)

45−degree line Parametric Estimate

(e) Post-Graduates

Figure A.7: Comparison between Parametric and Non-parametric Estimates of Output –
1985
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(e) Post-Graduates

Figure A.8: Comparison between Parametric and Non-parametric Estimates of Output –
2015
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Figure A.9: Change in Size Distribution Across Quantiles – 1985 vs. 2015

Table A.4: Comparison Model vs. Data – Non-parametric Approach
(Calculations using values in $1000 2015 USD)

A. Average Earned Wage

All >HS HS SC Col Col+
1985 - Model 3.84 2.72 3.41 3.75 5.03 6.45
1985 - Data 3.79 2.76 3.22 3.71 5.00 6.43

2015 - Model 4.49 2.35 3.23 3.76 6.07 7.34
2015 - Data 4.48 2.43 3.30 3.69 5.60 7.38

B. Std. Deviation of Earned Wages

All >HS HS SC Col Col+
1985 - Model 2.41 1.20 1.62 1.81 2.83 4.29
1985 - Data 2.42 1.31 1.54 1.89 2.97 4.34

2015 - Model 3.26 1.00 1.58 2.03 3.45 5.09
2015 - Data 3.37 1.15 1.75 2.10 3.49 5.36
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Table A.5: Comparison Model vs. Data – Parametric Approach
(Calculations using values in $1000 2015 USD)

A. Average Earned Wage

All >HS HS SC Col Col+
1985 - Model 3.21 2.31 2.82 3.20 4.31 5.11
1985 - Data 3.79 2.76 3.22 3.71 5.00 6.43

2015 - Model 3.61 2.21 2.82 3.15 4.50 5.61
2015 - Data 4.48 2.43 3.30 3.69 5.60 7.38

B. Std. Deviation of Earned Wages

All >HS HS SC Col Col+
1985 - Model 1.37 0.71 0.94 1.07 1.42 1.65
1985 - Data 2.42 1.31 1.54 1.89 2.97 4.34

2015 - Model 1.69 0.68 0.95 1.11 1.62 2.02
2015 - Data 3.37 1.15 1.75 2.10 3.49 5.36
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