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All Fluctuations Are Not Created Equal

1 Introduction

1.1 Background

Following its articulation in 1992 by John Taylor (Taylor 1993), a large literature has developed

around the scrutiny of simple monetary policy rules. Taylor’s rule took the form

 = + b−1 + −1 +  (1)

where  is the federal funds rate, −1 is the annualized inflation rate from period −2 to period −1,b−1 is an estimate of (trendless) real activity (output gap, unemployment rate, or unemployment
rate gap) in period −1, and  is a stationary exogenous monetary shock. There are many variants
of Equation (1); we provide an abbreviated discussion below. (For more details, see Knotek et al.

(2016) and its Appendix.)

A number of studies have used variants of Equation (1) to examine and explain the “Great

Inflation” of the 1970s (e.g., Orphanides 2002) or to examine historical changes in FOMC behavior,

generally finding that the central bank’s policy changed markedly starting with Volcker (see, e.g.,

Judd and Rudebusch (1998) or Clarida, Gali and Gertler (2000); more recent studies reaching

this conclusion include Debortoli and Lakdawala (2016) and Chen, Kirsanova and Leith (2017)).1

One prominent explanation of the pre-Volcker behavior is the “ideas” hypothesis — that FOMC

errors in the 1970s were due to erroneous beliefs about the structure of the economy, including an

unrealistically low estimate of the natural rate of unemployment. Other studies point to biased

forecasts or policy preferences. (We review some of these below.)

Estimating (1) requires an estimate of b−1 ≡ ¡−1 − ∗−1
¢
, that is, an estimate of the time-

varying natural rate of unemployment (or an estimate of potential output). Most empirical work

studying historical FOMC behavior takes for granted that the FOMC used a particular unemploy-

ment rate or output gap, imposed in a specification like Equation (1) a priori. But as we discuss

immediately below, there are both econometric and conceptual problems with this approach. One

1Using the the time-varying parameter framework, Cogley and Sargent (2005), Kim and Nelson (2006)
and McCulloch (2007) come to a similar conclusion. Not all studies reach this conclusion; e.g., Sims and
Zha (2006) find that there is less evidence for significant changes in the reaction coefficients  if one allows
for time-varying variance in the monetary policy shock.
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contribution of the present paper is that we can simultaneously ask whether the FOMC even used

a gap, and can reconstruct an econometrically-valid estimate of the gap that was actually used.

What are the possible econometric problems alluded to above? The use of many of the most

commonly-used estimates of ∗ itself compromises inference. For instance, if one’s estimate of ∗

derives from a two-sided filter — such as an HP filter or a symmetric moving average filter — this

will distort the coefficient estimate  (see Ashley and Verbrugge, 2009b). Further, estimates of

∗ are inherently problematic in that they are estimated very imprecisely, are subject to large

revisions, and typically hinge on untested (and perhaps untestable) auxiliary assumptions about

the natural-rate data-generating process (such as an explicit formulation of its persistence). Any

or all of these may well be substantially incorrect. As might be expected, then, the ∗ estimates

vary widely across concepts and methods (see Tasci and Verbrugge, 2014). (Use of an output gap

instead of an unemployment gap in Equation (1), also common, does not improve matters.)2 Thus,

any particular ∗ series assumed can easily threaten the validity of the resulting inference, and may

render conclusions about such things as the origins of the Great Inflation suspect.

What about the conceptual problem? The selection of a particular ∗ measure amounts to an

assumption that FOMC members were in broad agreement about that particular measure. This

seems unlikely, especially during the 1970s. After the seminal work of Friedman (1968) and Phelps

(1968), a few papers emerged providing estimates of a natural rate of unemployment (typically con-

stant), but there is no evidence that these were taken on board by FOMC members.3 Examining

FOMC Memoranda of Discussion, Kozicki and Tinsley (2006) note that the most prominent pub-

lished estimates, those of the Council of Economic Advisers, were almost never cited in the 1970s.

Hetzel (2017), an author who writes extensively about the historical evolution of central banking,

asserts that during the 1970s there was a “general belief that 4 percent unemployment represented

full employment” (p.13), despite a number of studies suggesting higher estimates (see references in

Nikolsko-Rzhevskyy and Papell, 2012). Other textual analyses of FOMC minutes and transcripts,

2Not only are output gap estimates often derived from two-sided techniques (such as filtering or the use
of a Kalman smoother), output gap estimates derived from multivariate procedures are notoriously sensitive
to model assumptions; see, e.g., Jarociński and Lenza (2018). This makes their imposition particularly
problematic. Our approach is simpler and does not require such assumptions.

3 Indeed, the stagflation in the early 1970s was thought to indicate shortcomings in the concept of a natural
rate of unemployment, and prompted the introduction in 1975 of a related but distinct concept, the NIRU
(Modigliani and Papademos, 1975), which was later re-termed the NAIRU; see Espinosa-Vega and Russell
(1997).
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such as Chappell, McGregor and Vermilyea (2004) or Weise (2012), indicate that the 1970s FOMC

was concerned about high and rising unemployment, and was grappling with the notion of what

level was sustainable, but there was nothing like a settled concept or estimate guiding the FOMC’s

deliberations during this period.4

Given this history, in the present study we let the data themselves speak as to whether and

how the FOMC was actually responding to movements in the unemployment rate, so as to address

such questions as: Has the FOMC historically acted in a manner that (implicitly or explicitly)

responded to an unemployment gap of some sort? Putting this differently, is an unemployment

rate gap useful (or necessary) in order to provide a good description of the FOMC’s historical

behavior?5 Additionally, did the FOMC respond to persistent movements in the unemployment

rate in a way that was systematically different than its response to business cycle fluctuations (or

to even less persistent fluctuations) in that variable?6 Did this aspect of the FOMC’s behavior

change with the chairmanship of Volcker?

The work described below uses the lens of estimated simple policy rules to address — and

provide credible answers to — these questions. It also illustrates the application of a relatively novel

econometric approach that is simple, transparent, and well-suited to the real-time data (in both 

and ) which is appropriate to the FOMC context. The method allows for possible feedback in

the relationship (in contrast to frequency-domain alternative methods), does not require ancillary

assumptions about the data-generating processes, and is sufficiently flexible as to not presuppose

the answers.

Our findings are striking, but quite sensible upon reflection. First, our estimates indicate that

4We note in passing that several studies of monetary policy rules, such as that of Ball and Tchaidze (2002),
do not use an unemployment gap specification. This is consistent with an assumption that the natural rate
is constant.

5We agree with Kozicki and Tinsley (2006) that it is “more plausible that the 1970s FOMC gauged
real resource slack by aggregate unemployment” than by using estimated output gaps. First, there is no
continuous historical record of central bank estimates of an output gap; indeed, this prompted Orphanides
(2003) to use the CEA’s estimates, a practice criticized by Taylor (2000) and Nikolsko-Rzhevskyy and Papell
(2012). Second, pricing equations in the 1970s were mainly specified in terms of unemployment rates. Third,
unemployment rate information is far more timely than output information, and revisions are less frequent
and smaller. Finally, the unemployment rate has always been understood to be an indicator of prime
importance for the FOMC, and employment became part of the “dual mandate” of the Federal Reserve in
1977. For these reasons, we focus on the use of  in studying historical FOMC policy.

6Note that belief in a fixed natural rate of unemployment would not necessarily preclude a differential
FOMC response to persistent unemployment rate fluctuations. In this sense, we can remain agnostic about
historical FOMC beliefs with respect to a natural rate of unemployment.
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FOMC fed funds responses to unemployment rate fluctuations were essentially the same during

the MBM period as during the VGB period. In particular, irrespective of any belief the FOMC

may have had about the natural rate of unemployment, over both periods the FOMC ignored

the most persistent unemployment rate fluctuations. During the entire period of our study, the

FOMC implicitly formed an unemployment gap in the same manner, with the lowest-frequency

fluctuations serving the role of an intermediate target (in the words of Jeffrey Fuhrer).7 This casts

serious doubt on the “ideas” hypothesis — that the Great Inflation in the 1970s was due to erroneous

beliefs about the structure of the economy, including an unrealistically low estimate of the natural

rate of unemployment (e.g., Orphanides 2002, Romer and Romer 2002, Romer 2005). These results

suggest that previous work, which has largely relied on particular gap estimates imposed a priori,

may have come to erroneous conclusions about FOMC behavior in the 1970s.

Second, our findings also indicate that previous empirical work using (1) has been mis-specified

with respect to inflation as well. Historically, the FOMC also responded in a persistence-dependent

manner vis-a-vis inflation; this behavior became much more pronounced after Volcker. Such behav-

ior accords well with intuition: measured inflation is often subject to large transitory influences,

which can affect an aggregate price index for long periods. Policymakers have argued — e.g. Mishkin

(2007) — that the central bank should therefore not respond to transitory fluctuations in inflation.8

Third, our results suggest that policy preferences — possibly driven by political pressures (see, e.g.,

Chappell, Havrilesky and McGregor (1993), Meltzer (2011), Weise (2012), or Levin and Taylor

7Jeffrey Fuhrer suggested this language in his discussion of Fuhrer and Olivei (2017) during the Boston
Fed’s annual central banking conference in October 2017.

8Some analysts have attempted to address this issue by making use of so-called “core" inflation measures
in Equation (1). This expedient is valid, however, only if all movements in the core inflation measure are
identically persistent, which is emphatically not the case; for example, see Bryan and Meyer (2002) and
Dolmas and Wynne (2008). As an example of the historical analysis of transitory shocks to inflation, FOMC
Greenbooks in early 1969 explicitly highlighted transitory inflation fluctuations deriving from federal pay
increases — clearly the FOMC regarded these as transitory. Note that the issue we raise here is distinct from
whether  should instead enter Equation (1) in terms of an “inflation gap,” where this gap is the difference
between  and an inflation target, 

∗. As in the case of , ideally one would want to let the data inform
us as to how the FOMC was actually responding to movements in the inflation rate — e.g., whether it was
ignoring transient movements in this variable, or focusing on the most persistent movements — and whether
this behavior changed with the chairmanship of Volcker. Occasionally, policy rules are specified in terms of
expected inflation (which will implicitly focus attention on the most persistent part of inflation), or on an
inflation gap versus a time-varying inflation target (e.g., Cogley and Sbordone 2008). Our approach allows
for, but does not impose, restrictions along these lines.
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(2013)) — constitute a far more likely explanation of the Great Inflation.9 10 This finding is timely,

in that several scholars have recently argued that the populism’s rise might undermine the sup-

port for central bank independence — see, e.g., Buiter (2016, 2017), Goodhart and Lastra (2018),

Masciandaro and Passarelli (2018), or Agur (2018). Fourth, we provide evidence against the con-

jecture that FOMC behavior in the 1970s chiefly resulted from inaccurate inflation forecasts (see,

e.g., Orphanides 2002, Levin and Taylor 2013 or Fuhrer and Olivei 2017). While this mechanism

could certainly operate in conjunction with policy preferences — Greenbook inflation forecasts for

portions of the 1970s were downward-biased — our evidence indicates that the actual behavior of

the FOMC in the 1970s is more consistent with its using real-time CPI inflation data, and simple

(but reasonably accurate) inflation forecasts.

1.2 Equation (1): Discussion

There are many variants of Equation (1). Theory often suggests forward-looking versions (e.g.

Clarida, Gali and Gertler (2000)); real-time lags in data collection motivate the use of lagged

inflation and real activity in a backward-looking monetary policy rule (e.g. McCallum and Nelson

(1997)), as we formulate it here; and interest rate smoothing considerations, as well as the statistical

properties of , motivate adding lags of  to the right-hand side of (1). As will be evident below,

our methods sidestep problems with instruments and identification in forward-looking policy rules

(see, e.g., Jondeau, Bihan and Galles (2004)), though information from forecasts is incorporated

gracefully. Some studies extend the policy rule to include other variables such as bond yields (e.g.,

Roskelley 2016) or stock and house prices (e.g., Aastveit, Furlanetto and Loria 2017).

9Some examples of political pressure from the 1970s are a matter of public record; we discuss this below.
Meltzer (2011) argues that such pressures might not always be evident in public discussions. Lakdawala
(2016) also finds that FOMC preferences for fighting inflation, while varying over time, drastically rose
around the appointment of Volcker.
10We view our results as complementary to those of Cogley, Primiceri and Sargent (2010), who argue that

superior policy outcomes following Volcker resulted mainly from superior inflation anchoring, as we might
suggest that more aggressive responses to inflation (and the associated willingness to accept concomitantly
higher unemployment) could lead to such superior anchoring.
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2 Methodology

In this paper, we allow the data to speak as to how the FOMC has historically responded to

fluctuations with various persistence levels in the unemployment rate and in the inflation rate.

Our approach is simple and transparent, but delivers new insights into historical FOMC behavior.

Following Clarida, Gali, and Gertler (2000), we primarily consider two sub-sample periods. The

first of these is January 1965 to August 1979, which roughly corresponds to the Martin-Burns-Miller

period and is here denoted MBM. The second sub-sample runs from September 1979 to August

2008. It covers Volcker’s, Greenspan’s, and part of Bernanke’s tenures, ending as the “zero lower

bound” episode began; it is here denoted VGB.

We estimate the central bank’s assumed monetary policy rule using a new method proposed

by Ashley and Verbrugge (2009b).11 This method allows us to avoid imposing a ∗ estimate, but

to instead test whether, and quantify how, the FOMC in fact distinguished between fluctuations

with differing persistence levels. Essentially, we use a one-sided filtering technique to partition the

real-time unemployment rate and inflation rate into components with differing levels of persistence.

It is then straightforward, using standard regression techniques and tests, to determine whether

the FOMC responded (in real time) to the persistent part in the same manner that it responded to

the less persistent part, or to the high-frequency part. The technique is briefly described as follows

(for more details, refer to the Technical Appendix here, or to Ashley and Verbrugge 2009b).

We use moving windows to filter the real-time data at each time , partitioning the time 

observation into various persistence (or frequency) components. One-sided filtering is necessary

for two reasons: first, two-sided filtering cannot be conducted in real time; and second, two-

sided filtering results in distorted coefficient estimates and destroys the ability to make causal

statements (except in limited cases).12 The precision of the partitioning is substantially enhanced

by extending the data in each window with forecasts or “projections” (see also Stock and Watson

11The Technical Appendix describes the latest version of this method.
12Two-sided filters (such as the HP filter) applied to both the explanatory and dependent variables, as in

classical RBC studies or in recent New Keynesian DSGE modeling, distort relationships amongst variables
which are contemporaneously cross-correlated or in a feedback relationship, because two-sided filtering in-
herently mixes up future and past values of the time series; see Ashley and Verbrugge 2009b for a more
detailed exposition of this point. For the same reason, and because such calculations are incompatible with
the use of real-time data, two-sided cross-spectral estimates or filtering with wavelets should similarly be
eschewed for this kind of analysis.
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(1999), Mise, Kim and Newbold (2005) or Clark and Kozicki (2005)). Thus, for example, to

partition the unemployment rate at time , we apply the Ashley-Verbrugge filter to a rolling window

of 96 observations ending in t, augmented with a set of 1- through 24-month forecasts, starting at

time t+1. The Ashley-Verbrugge filter is then applied to this 120-month window, and the time-t

decomposition is saved. (The inflation rate is partitioned in the same manner, except in that case,

a 42-month window is augmented by 18 months of forecasts. We argue below why distinct window

lengths for the two variables are appropriate.) Figures 1 and 2 display the resulting components

of each of these two variables, in each case partitioning the data by persistence level into three

persistence components.

Is this method subject to our previous critique, the imposition of concepts from the future? No.

We are not arguing that the FOMC made use of techniques from the future in order to guide their

decisionmaking.13 Instead, what we are asking is whether the FOMC, using the tools it had on hand

at various points in time (such as forecasts, judgment, various trend estimates, or detailed studies

of particular unemployment rate or inflation movements), has in fact historically acted as if it was

making this type of persistence distinction in its decisionmaking. Indeed, one may note that our

method uses real-time information to assist in identifying persistent versus transient movements, in

roughly the same manner that an informed observer might do using judgment.14 In particular, we

are using new tools to better understand and describe the historical behavior of the central bank,

allowing the data to inform us as to the manner in which the central bank actually responded to

fluctuations in these macroeconomic variables.

To investigate the “poor forecasts” explanation of the Great Inflation, for the MBM period we

conduct a straightforward out-of-sample forecasting exercise; see Section 3.3. We find that, while

Greenbook forecasts were downward biased for parts of the 1970s, we can better predict FOMC

13While economists were already making use of the conventional tools of spectral analysis by the early
1970s, given the early cogent critique of Granger (1969) and the relative paucity of that sort of research, it is
safe to say that such methods were not at the forefront of FOMC decisionmaking in the 1970s, and probably
not through the chairmanship of Bernanke either.
14This appears to be consistent with the viewpoint of Meyer, Venkatu and Zaman (2013), who state: “By

specifying the inflation threshold in terms of its forecasted values, the FOMC will still be able to ‘look
through’ transitory price changes, like they did, for example, when energy prices spiked in 2008. At that
time, the year-over-year growth rate in the Consumer Price Index (CPI) jumped up above 5.0 percent but
subsequently plummeted below zero a year later when the bottom fell out on energy prices. At the time,
the Committee maintained the federal funds rate target at 2.0 percent, choosing not to react to the energy
price spike.”
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behavior during this time period using CPI inflation in conjunction with simple-but-reasonable CPI

inflation forecasts.

While the original Taylor-type monetary policy response function is attractive in its simplicity,

our extension of it broadens its generality and descriptive power, yielding novel results. By allowing

the data a chance to tell us if the FOMC treated apparently persistent fluctuations differently than

fluctuations that appeared to be more transient, without imposing a particular gap estimate, we

obtain a clearer picture of how the FOMC actually behaved, and how its behavior evolved between

the MBM and VGB periods.

3 Empirical Results

3.1 Data Description and Discussion of Partitioning

We use real-time data on the civilian unemployment rate () and the 12-month growth rate in the

(real-time) Consumer Price Index inflation rate (),
15 taken from the St. Louis Federal Reserve

Bank’s ALFRED data set. (In our investigation of the experience of the 1970s, for comparison

purposes we also make use of real-time quarterly GNP deflator data, and inflation forecasts de-

riving from FOMC Greenbooks, both available from the Real-Time Data Research Center at the

Federal Reserve Bank of Philadelphia.) For our projections of the unemployment rate, a case where

univariate models can be slow to detect turning points in the data, we also make use of the Sur-

vey of Professional Forecasters projections of this variable, also available from the Federal Reserve

Bank of Philadelphia. (We linearly interpolate these quarterly forecasts in order to obtain monthly

forecasts.)

As the backward-looking filtering employed here uses up a good deal of sample data as a ‘start-

up’ period, our regressions begin in January 1965. Our sample period ends in August 2008, just

prior to the point when the sample variation in  becomes minimal. The data we are analyzing

15Specifically, we use the inflation rate defined as the 12-month growth rate in percentage terms — i.e.,
100(−12) — where  is the non-seasonally adjusted Consumer Price Index for urban wage
earners and clerical workers until February 1978 and the non-seasonally adjusted Consumer Price Index for
all urban consumers thereafter. The value for −12 in  is that which was available when  was
released.

10
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correspond closely to those that were available to the FOMC at the time it set the federal funds

rate ().
16

Our treatment of the federal funds rate, and the information available to the FOMC during its

meeting each month, warrants some discussion. Over most of our sample, the federal funds rate

experienced notable day-to-day changes, and was also subject to end-of-month effects as banks ad-

dressed regulatory constraints. Our goal is to estimate the FOMC reaction function, which models

the FOMC fed funds rate decision in its meeting, in reaction to or based upon the information

that the FOMC had available when it made the decision. However, FOMC meeting dates — and

conference phone conversations at which decisions could also be taken — did not occur on the same

day each month.17 Hence, for each month we estimate the monthly fed funds rate by taking a

trimmed-mean estimate of the fed funds rate over the six business days following an FOMC meet-

ing, trimming the highest and lowest daily rates of that period, and taking the average over the

remaining four observations. If there was no meeting that month, we implicitly assume an FOMC

meeting on the 20th day of the month, at which the rate was left unchanged. For the monthly

unemployment rate and inflation rate series, we then utilized the information that was actually

available immediately prior to the FOMC deliberations that month. Most commonly, the FOMC

had available the unemployment rate from the previous month, and the CPI inflation rate from

two months prior. However, for meetings that occurred late in the month, CPI inflation data from

the previous month were often available. (We describe below a robustness exercise that used GNP

deflator information aligned with the same meeting dates.)

As noted above, following Clarida, Gali, and Gertler (2000), we primarily consider two sub-

sample periods: January 1965-August 1979, the MBM period; and September 1979-August 2008,

the VGB period. The Great Inflation occured during the MBM period. Most of the VGB period

is also referred to as the Great Moderation — see McConnell and Perez-Quiros (2000) and Kim and

Nelson (1999) — as it is characterized by low variance in most macroeconomic variables. (Since the

onset of the Great Recession, of course, many macroeconomic variables have become more volatile.)

16Source: http://research.stlouisfed.org/fred2/. See Orphanides (2001) for evidence that estimated mone-
tary policy rules are likely not robust to the vintage of the data.
17 In fact, occasionally, there were two or more meetings in a single month. In those cases, we selected one

of the meetings, preferentially the meeting or conference call at which a rate change took place. Earlier in
the sample, when Greenbook forecast information was more variable, we also gave consideration to meetings
at which richer forecast information was included in the Greenbook.
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Each monthly observation on  and  is here decomposed into frequency (persistence) com-

ponents, as noted above and described in the Technical Appendix, using moving windows. In

specifying the length of the moving windows used in decomposing the real-time unemployment

rate, we note that the natural rate of unemployment is usually thought to be quite slowly varying.

For instance, Boivin (2006) uses a five-year moving average of the unemployment rate as a proxy for

the natural rate. A shorter window — say, 36 months — would risk including business cycle effects

within the lowest-frequency unemployment rate component, and likely not properly distinguish

very persistent supply-side pressures on the unemployment rate from less persistent business-cycle-

related influences on the unemployment rate. Put differently, this short window length choice would

impose the restriction that the central bank responds in much the same way to an unemployment

rate fluctuation with a reversion period of 36 months as it does to a fluctuation with substantially

larger reversion periods — e.g., of 5 years, or even 10 years. Hence, we conjectured that a ten-year

window would likely result in a satisfactory decomposition for the unemployment rate.18 As will be

evident below, the outcome of the empirical analysis presented here will inform us as to whether or

not a shorter window would have been adequate. In specifying the length of the moving windows

used in decomposing the real-time inflation rate, in contrast, we considered that a central bank

might very well react differently to a fluctuation in the real-time inflation rate that has persisted

just 12 months — as compared to one that has persisted ca. 36 or 48 months — but that it seems

unlikely   that it would attend to a 60-month-long fluctuation substantially differently than

to one that has persisted substantially longer than this.19 We thus judged that a moving 60-month

window would suffice for the inflation rate.20

18An exercise — not reported here — that estimated the width of a moving average of the unemployment
rate that best matched prominent estimates of the NAIRU resulted in a moving average of nine years.
19A (centered) 36-month moving average is often used as an estimate of trend inflation; see, for exam-

ple, Cecchetti (1997) or Brischetto and Richards (2007); Giannone and Matheson (2007) and Higgins and
Verbrugge (2015) argue for using even shorter moving averages.
20Our empirical results are not particularly sensitive to specifying somewhat shorter (or longer) moving

windows for use in decomposing  and . As noted in the Technical Appendix, this filtering provides
a usefully accurate decomposition for the last sample observation in a moving window only if the sample
observations in the window are augmented by a number of projected observations. We use 18 months of
projections for the inflation rate partitioning, and 24 months of projections for the unemployment rate
partitioning. These choices imply that roughly 80 percent of each window consists of sample data. Based on
minimizing BIC as a selection criterion, the  projection forecasting model chosen for use here combines a
random walk and an ARMA(6,2) process. The  forecasting model builds upon forecasts from the Survey of
Professional Forecasters. These are quarterly, and we linearly interpolate them. Then we augment these with
a forecast based upon an AR(2) model. As with the window lengths themselves, we find that our empirical
results are not sensitive to minor changes in the number of projections or the form of the projection forecasting
model used, but it  necessary to use at least 12 projection months and some kind of reasonable projection
model for filling out each window. RATS code implementing this decomposition methodology is available

12
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In previous versions of the paper, we have explored more disaggregated partitions of the data —

e.g., splitting  and  each into ten components with differing persistence levels and estimating a

distinct policy rule coefficient for each of these components. We also explored more parsimonious

specifications in which the parameter variation across the ten components was constrained by a

quadratic or cubic polynomial, as in Almon (1965). While the latter is a bit more satisfactory (and

the former method still yields reasonable results), it is abundantly clear that a tripartite partition

suffices, yielding the same economic inferences in a much more transparent manner. Accordingly,

here we only quote results from a tripartite partition of each variable.

In particular, here we isolate the most persistent fluctuations that are resolvable given the length

of the filtering window — thus the most persistent fluctuations in the unemployment rate consist of

all fluctuations that take longer than 120 months to complete, while the most persistent fluctuations

in the inflation rate consist of all fluctuations that take longer than 60 months to complete. We

will denote these here as the “very persistent” fluctuations.21 Next, we split out the “transient”

fluctuations of each variable, where these consist of all fluctuations that take 12 months or less to

complete. We will be able to investigate whether the FOMC effectively ignored these fluctuations.

Below we refer to the remaining component of  or  as the “moderately persistent” fluctuations.

Time plots of “extremely persistent” components (“persistent_un” or “persistent_pi”), “mod-

erately persistent” components (“moderate_persist”), and “transient” components (“transient_un”

or “transient_pi) are displayed in Figure 1 for the  components and in Figure 2 for the  com-

ponents.

A few words of explanation may be in order. The very persistent component is not as smooth as

one would, from the nomenclature, expect; and there appears to be a modest correlation between the

very persistent and the moderately persistent components. The first issue comes about because both

from the authors. For non-RATS users, we also have available a ready-to-use Windows-based executable
that implements the decomposition using simple AR() projection; in this case all that the user needs to do
is specify the order , the number of projections, and the window length — the program then produces the
maximal number of frequency (persistence) components and the user can aggregate these components into
frequency (or persistence) bands.
21As we explain below, the extremely persistent component will include all frequency-0 fluctuations, in

addition to all fluctuations corresponding to reversion periods longer than the filtering window. Analysts
may choose to include fluctuations with lesser persistence, although here we do not do so. In terms of the
frequency domain analysis that underlies these decompositions, a 120-month reversion period corresponds
to the sinusoidal frequencies proportional to 1/120; see the Technical Appendix for details.
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Figure 1: Components of Unemployment Rate by Persistence
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Figure 2: Components of Inflation Rate by Persistence
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the real-time data and the projections used in each window can and do shift each period, leading

to not-particularly-smooth fluctuations in what otherwise would have been a very smooth “very

persistent”component. The windowing procedure implies that the extremely persistent component

will incorporate a nonlinear adaptive trend, including all zero-frequency components as well as all

components whose period exceeds the width of the window. (See the Technical Appendix for a figure

demonstrating how the lower frequency movements of the data are estimated by our procedure.)

The second issue arises for similar reasons. Had the entire data sample been subsumed into one

long window, these components would be precisely uncorrelated. But in real time, there is always

a time- innovation that represents a departure from the time  − 1 forecast of the variable at
time . The movement at time  must be decomposed into various persistence components — and

without observations of the variable at times  + 1  + 2 etc., it is impossible to parse the time-

change into its persistence components without error. A given innovation in real-time  or  will

unavoidably be somewhat misattributed across the components, yielding both a modest level of

correlation between the components.22

3.2 Specification and Results

3.2.1 Specification

Our empirical specification was guided by prior work and by theoretical considerations, in conjunc-

tion with a desire to allow the data to speak as clearly as possible.

First, the federal funds rate is highly persistent. Empirical estimates of central bank policy

functions from around the world generally indicate the presence of substantial inertia (see, e.g.,

Goodhart 1999 or Coibion and Gorodnichenko 2012), consistent with partial adjustment of the

interest rate toward its target. Rudebusch (2002) disagrees with the interest rate smoothing inter-

pretation and provides evidence that monetary policy inertia is more likely due to persistent shocks

that the central bank faces. Consolo and Favero (2009) argue, in the forward-looking context, that

the inertia is an artifact of a weak-instrument problem for expected inflation. In their study of the

22Most of the resulting inter-component correlations we observe in Figures 1 and 2 are actually quite small,
typically around 0.1. The most persistent part of each series has a correlation with the moderately persistent
part on the order of 0.2 () to 0.35 (), however.
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U.S. Great Inflation episode in the 1970s, Humpage and Mukherjee (2015) find that inertia was de-

liberate. Incorporating inertia is found to improve outcomes in many theoretical models (see, e.g.,

Woodford 2003, Taylor and Williams 2011). On the basis of their regime-switching-VAR evidence,

Jackson, Owyang and Soques (2016) argue that gradual policy changes may be contraindicated for

fighting recessions. In the U.S. at least, there is some evidence for “double inertia” (see Carlstrom

and Fuerst, 2014): two lags of the federal funds rate are necessary to yield serially uncorrelated

fitting errors. From an econometric standpoint, ignoring such persistence is likely to lead to severe

parameter estimate distortions (see Ashley and Verbrugge, 2009a); these distortions are avoided

here by the inclusion of lags in .

Second, as discussed in the introduction, it is common to see an estimate of a “natural rate of

unemployment” and/or an inflation target in a central bank policy reaction function specification.

Such inclusions are inherently awkward because these quantities are time-varying (albeit slowly so),

but their time variation cannot be identified without making strong (and untestable) assumptions

about their time-evolution. Such variables are not included in our base model specification below

(Equation (2)) because the estimation methodology we use in our immediately subsequent model

specification — i.e., Equation (3) — will allow for the coefficients on  and  to differ for slowly

varying (“highly persistent”) fluctuations in these variables. In this manner, we gracefully allow

for, but do not impose, a gap specification. Hence, our base model specification is given by:

 = 1−1 + 2−2 + (1− 1 − 2)(+  + ) +  (2)

To investigate whether the FOMC reaction function differentiated between highly persistent move-

ments of each variable, moderately persistent movements of each variable, and higher-frequency

movements of each variable, we re-specify Equation (2) to allow for the possibility that the coef-

ficients on  and  depend on the persistence levels of the fluctuations in these variates. This

yields the model:

 = 1−1 + 2−2 + (1− 1 − 2)

⎛⎝+

3X
=1



 +

3X
=1





⎞⎠+  (3)

In Equation (3), the superscripts on  and  distinguish the components of these variables, as

partitioned into three persistence levels. In particular, 1 is the “highly persistent” component of
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; 
2
 is the “moderately persistent” component of of ; and 3 is the “transient” component of

, as described in Section 3.1 above. This model specification allows us to estimate distinct policy-

response coefficients (1, 2, and 3) for these components of unemployment rate fluctuations,

as these may have been perceived by the FOMC based upon the real-time data available to it at

the time a decision was made. The variables
¡
1  

2
  and 3

¢
and coefficients (1, 2, and 3)

are analogously defined, corresponding to the “highly persistent,” “moderately persistent,” and

“transient” components of inflation rate data.

3.2.2 Results

The first two columns of Table 1 display NLS estimates of 1, 2, , and  separately over the

MBM and VGB subperiods, corresponding to Equation (2). As noted above, the inclusion of

two lags in  in this model suffices to yield serially uncorrelated model fitting errors. Eicker-

White standard errors are quoted for all coefficient estimates, here and below, to account, at least

asymptotically, for any heteroskedasticity in .
23 The coefficients 1 and 2 can be taken to quantify

the “double-inertia” interest rate smoothing behavior by the FOMC alluded to in Section 3.2.1, so

it is noteworthy that the null hypothesis that both of these coefficients are zero can be always be

rejected with   00005.24

Our base model specification — Equation (2) — imposes the assumption that the FOMC did

not distinguish the most persistent movements in  and  from other fluctuations. As one might

23Possible parameter estimation distortion due to three outlying observations in the fitting errors — for July
1973, May 1980, and Feb 1981 — was addressed using dummy variables to shift the intercept. The estimated
coefficients on these dummy variables were always highly significant — and (negative, negative, positive) in
signs, respectively — but their exclusion did not substantively affect the inference results reported below.
Consequently, the listing of these coefficient estimates — and the model intercept term () — is, for simplicity,
suppressed in Table 1. Below, we discuss a robustness exercise involving bootstrapped standard errors.
24Fed funds rate dynamics were significantly more volatile prior to 1983 than afterwards. What might

explain these changes? One potential explanation is regime shifts. First, the Federal Reserve formally
adopted monetary targets in 1970. However, by the mid-1970s the fed funds rate had essentially become
the operational target. Then, in October 1979, ostensibly to control high inflation, the Federal Reserve
switched to targeting monetary aggregates. During this period, there were several episodes during which
large fluctuations in the federal funds rate prompted no FOMC response (see Gilbert, 1994). Finally, in
October 1982, the Federal Reserve effectively began targeting the fed funds rate again (although arguably
this may not have always been the chief focus of attention; for instance, during a conference call on January
9, 1991, Richard Sternlight, who was manager of the trading desk at the Federal Reserve Bank of New
York, remarked, “Somewhat by default we might place more guidance on, of all things, the federal funds
rate...”). Regime switches often lead to uncertainty, experimentation, and apparent policy reversals, and the
associated diminishment of any beneficial effects arising from stable expectations.
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have expected, during the VGB period, this is a profound misspecification. While  and  enter

with conventional signs and statistical significance during the MBM period, during the VGB period

the estimates would appear to indicate that the FOMC ignored fluctuations in  in this period,

since 0 :  = 0 cannot be rejected at conventional levels of significance. Taking these coefficient

estimates at face value also indicates that the FOMC’s response to inflation rate fluctuations was

notably smaller in the MBM than in the VGB period: on average the FOMC increased the federal

funds rate by only 0.63 percent for every 1 percent increase in the inflation rate in the MGM

period, whereas, in the VGB period, the estimated response is 1.82 percent. The FOMC’s short-run

response to a 1 percent increase in the unemployment rate is only economically meaningful during

the MBM period, and even then it is of only modest economic significance (−084 percent).25

But these results are artifactual; during this period, the implicit  target of the FOMC was

varying substantially. Allowing for (but not imposing an assumption that) the possibility that the

FOMC could distinguish the most persistent movements in  and  from other fluctuations (in

Equation (3)) yields interestingly different results.

25 If one re-estimates Equation (2) using a conventional unemployment rate gap, one finds — in keeping
with most of the literature — evidence for a response to unemployment rate fluctuations in the VGB period.
Evidently, the apparent non-response to unemployment rate fluctuations in the VGB period indicated in
Table 1 for Equation (2) arises from the fact that the FOMC does not respond to extremely persistent
movements in the unemployment rate, and these comprise a large part of the variance.
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Table 1: Estimation Results

Equation (2) Equation (3)

MBM Period VGB Period Persistence
(in months)

MBM Period VGB Period

1 +146
(009)

+137
(008)

1 +133
(009)

+128
(008)

2 −055
(009)

−042
(008)

2 −042
(009)

−037
(007)

1 120 −046
(032)

+038
(035)


()

−084
(026)

+008
(036)

2 12-120 −157
(050)

−263
(051)

3 ≤12 −658
(267)

−514
(205)

1 60 +060
(017)

+163
(030)


()

+063
(016)

+182
(048)

2 12-60 +009
(060)

−028
(111)

3 ≤12 +116
(182)

−505
(180)

F-test:  = 0 ∀ 0004 0000

F-test:  =  ∀  0023 0000

F-test: 2 = 3 076 024

F-test:  = 0 ∀ 0001 0000

F-test:  =  ∀  066 0013

F-test: 2 = 3 081 0016

With respect to the persistence-decomposed  fluctuations, we note that the null hypothesis

1 = 2 = 3 can be rejected in both periods. The source of that rejection is clear: 1, the

coefficient on the very persistent component of , is statistically insignificant in both periods.

Thus, we can conclude that during the MBM period, just as in the VGB period, the FOMC did

not respond to — i.e., was ignoring — the most persistent unemployment rate fluctuations. Now

turn to the 2 estimates, i.e., the coefficients on the “moderately persistent” components of  for

the two periods. We note that during the VGB period, even more than in the MBM period, the
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FOMC aggressively responded to those unemployment rate fluctuations that are, perhaps, the most

responsive to policy changes.26 Thus, we find that the FOMC in both periods ignored very persistent

movements in , and has significantly focused on responding to less-persistent fluctuations. Our

method allows us to determine this without making use of ancillary assumptions, or imposing any

concepts that were arguably not guiding FOMC discussions during this period.

This continuity of behavior that we find vis-a-vis fluctuations in the unemployment rate is evi-

dence against the “views” explanation of the Great Inflation. Arguably, conceptual or measurement

struggles related to the activity gap do not explain FOMC behavior in the 1970s, as some analysts

have asserted. Instead, as noted above, over the time span in our study the FOMC always ignored

very persistent fluctuations in the unemployment rate, a response that stands in sharp contrast to

its strong response to moderately persistent fluctuations of the unemployment rate. Note that this

most persistent part of  includes very-low-frequency movements in the unemployment rate — of

the sort comprising conventional natural rate estimates, such as the CBO’s — but is not limited to

those movements. This ignoring-of-persistent-movements-in- is consistent with its viewing such

movements as being natural rate fluctuations. But this interpretation is not necessary, and one

might equally interpret this behavior as treating the persistent part as an intermediate target, one

that includes very-low-frequency movements in the unemployment rate of the sort comprising con-

ventional natural rate estimates, such as the CBO’s, but is not limited to those movements. Our

results thus suggest that much previous work (which has often focused on particular estimates of

an output gap, rather than on an unemployment gap) may have come to erroneous conclusions

about FOMC behavior in the 1970s.

With respect to inflation rate () fluctuations, we find that — in contrast to its continuity of

response to the unemployment rate over both periods — the FOMC’s response to inflation movements

changed in not just one, but two ways, between the MBM and the VGB periods. First, comparing

the 1 2 and 3 estimates for the two periods, the VGB FOMC became notably more aggressive

in its response to inflation — something other authors have noted (e.g., Clarida, Gali and Gertler

2000 or Conrad and Eife 2012). Indeed, in contrast to many studies,27 we find that — if one takes

26We here note that one cannot reject the hypothesis that b2 = b3 in either period at the 5 percent
significance level. We discuss the corresponding b2 = b3 hypothesis test below.
27See, e.g., Coibion and Gorodnichenko (2012) and discussion therein.
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the coefficient estimates b1 across the different periods at face value, so that the comparison is
sensible — we can reject the hypothesis that these coefficients are equal across the two periods

(Z-score = 2.99).28 And second, in the VGB period the FOMC also became much more focused on

fighting the persistent fluctuations in inflation, and ignoring more transient movements.29 While the

 coefficient estimates themselves are consistent with a differential-inflation-persistence-response

interpretation in the MBM period, the formal statistical test of coefficient equality fails to reject

the null hypothesis that the FOMC responded to all inflation fluctuations in the same way during

this period. We interpret this as indicating that the FOMC during the VGB period became either

more focused on, or more accurate at identifying, persistent inflation fluctuations.

3.3 Robustness

As a robustness check, and because of the potential for distortion in least-squares inference with

regard to coefficients on highly persistent regressors in samples of modest length — as noted in Ashley

and Verbrugge (2009a) — we also used wild bootstrap simulation to test the various null hypotheses

indicated in Table 1. (The wild bootstrap was used in view of strong evidence for heteroskedasticity

in the model errors.) With one exception, the resulting inferences were essentially unchanged: the

standard error estimates and inference p-values for the hypothesis test results given in Table 1

were generally quite similar to those obtained using the NLS asymptotic heteroskedasticity-robust

standard errors. The only exception to this is the rejection p-value for the test of the joint null

hypothesis that the coefficients on all three  components were equal in the MBM period, where

the wild bootstrap simulations resulted in a rejection p-value of 0.09, whereas the p-value resulting

from the NLS asymptotics yields a rejection p-value of 0.023. Each of these p-values is, itself, just an

28To further test this result, we computed the statistic (∆1)
2
+ (∆2)

2
+ (∆3)

2
, where ∆ refers to

the difference between the coefficient estimates across the two periods, and performed a wild bootstrap to
generate p-values for this statistic. The resulting p-value is 0.056. Conversely, performing the same exercise
using  coefficients yields a p-value in excess of 0.70.
29On its face, 3 is estimated to be significantly negative during the VGB period, ostensibly indicating high-

frequency accommodation of inflation rate fluctuations. However, this result is actually an artifact, because
this coefficient was unstable during the VGB period: Between October 1979 and October 1982, rather than
targeting the fed funds rate, the FOMC was targeting nonborrowed reserves (as a means to control monetary
aggregates, and hence inflation). During this period, the fed funds rate was highly variable, with reversals
that roughly line up with high-frequency inflation shifts. This is consistent with the view that high-frequency
shifts in inflation occurred along with (and perhaps causing) high-frequency shifts in money demand that,
in turn, induced high-frequency shifts in the fed funds rate. When one allows a break in 3 after 1982, this
coefficient is statistically different from zero only during the pre-1983 period.
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(asymptotically-justified) sample estimate. Consequently we take the inference here to be rejection

at the 2 percent to 10 percent level of significance. This significance level is not as compelling as

we would like; however, we note that this result is likely an artifact of the nonlinear least squares

estimation technique that Equation (3) requires due to the gap expression. In particular, when we

instead reformulate these models simply using two lagged dependent variables in the specification

and estimate by OLS (with HAC standard errors), the null hypothesis  =  ∀  is resoundingly
rejected at the 0.00001 level of significance.

As we have noted above, our results are robust to a number of specification choices. One in

particular may be noteworthy. It may be argued that during the VGB period, the FOMC was

implicitly using a time-varying target natural rate of interest (∗ ) concept. If we modify (3) to

incorporate an ∗ in the parenthetical expression, and then use the real-time ∗ estimate from

Fuhrer and Olivei (2017),30 or the one-sided ∗ estimate from Laubach and Williams (2003, 2015),

our results are nearly unchanged.

3.4 What about the CBO’s natural rate?

One might ask, is our Equation (3) model for the VGB period significantly better than a conven-

tional alternative? One metric is its ability to forecast out of sample. We thus ask, how do the

predictions based upon our decompositions compare to those from an alternative model that uses

a more conventional estimate of ∗ , such as that of the CBO, and ignores the distinction betweeen

persistent and transient movements in inflation? We used the Diebold-Mariano forecast compar-

ison test to compare one-step-ahead forecast errors from two linear models over the VGB period,

estimated over rolling ten-year windows.31 To make the treatment of  comparable across models,

we specified both models in “gap” form: in the CBO model, the unemployment gap was defined to

be
³
 − 

∗


´
, while in our model, the unemployment gap was defined to be

³
 − 




´
.

In both models, this gap term was lagged one month. Regarding the treatment of , the CBO

model simply uses the real-time estimate of , while our model uses the real-time estimate of



 . In both models, this term was lagged two months. Then each model included a con-

30We thank these authors for sharing these data with us.
31This is not a true real-time forecast comparison, since the CBO estimate is taken from the future. One

might argue, however, that this biases the comparison against our Equation (3) model.
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stant and one lag of the fed funds rate. Our model significantly outperformed the CBO model: the

p-value of the Diebold-Mariano test statistic was  0.0005.

3.5 The Great Inflation

3.5.1 “Ideas” versus a change in policy preferences

As noted above, our results shed some light on the origins of the Great Inflation. They imply that

the “ideas” hypothesis — that FOMC errors in the 1970s were due to erroneous beliefs about the

structure of the economy, including an unrealistically low estimate of the natural rate of unemploy-

ment (e.g., Orphanides 2002, Romer and Romer 2002, Romer 2005) — cannot fully explain FOMC

policy during that time period. Our findings point in this direction because we show that FOMC

behavior with respect to the fed funds rate response to the unemployment rate remained rather

stable between the MBM and VGB periods: during both periods, it ignored the most persistent

fluctuations in . Putting this differently, FOMC behavior in the 1970s does not seem related to

mismeasurement of ∗ . So what can explain the high inflation of that period?

As noted above, during the VGB period, the FOMC became more aggressive in its response

to inflation, and more focused on fighting the persistent fluctuations in inflation. What accounts

for this distinct change in behavior? On the face of it, our results suggest that a change in policy

preferences — possibly driven by political pressures and their easing (see, e.g., Chappell, Havrilesky

and McGregor (1993), Meltzer (2011), Weise (2012), or Levin and Taylor (2013)) — is a leading

explanation. A striking example of such pressure during the early 1970s is related in Abrams

(2006). Citing the Nixon tapes, Abrams (2006) states: “Richard Nixon demanded and Arthur

Burns supplied an expansionary monetary policy and a growing economy in the run-up to the 1972

election” (p. 178). The pressure President Nixon applied was somewhat unconventional. Abrams

write: “In his memoir After the Fall, William Safire (1975, pp. 491-95), who was a speechwriter

for Nixon during this time, recounts how the Nixon administration kept up a steady stream of

anonymous leaks to pressure Burns” (p. 185). Abrams argues further that “Without invoking

political pressure, the surge of expansionary monetary policy leading up to the 1972 election seems

hard to explain.” In 1979, after leaving the FOMC, in his “The Anguish of Central Banking” speech,
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Burns (1979) himself indicated that “at any time within that period, [the FOMC] could have ...

terminate[d] inflation with little delay” and that it did not do so for political reasons.

3.5.2 Whither the “poor forecasts” explanation

What about the conjecture that FOMC behavior in the 1970s resulted from inaccurate inflation

forecasts (see, e.g., Orphanides 2002, Levin and Taylor 2013 or Fuhrer and Olivei 2017)? This

mechanism could certainly operate in conjunction with other explanations. To investigate whether

poor forecasts drove FOMC behavior during this period, in parallel to our treatment of the real-time

monthly CPI inflation rate, we constructed monthly estimates of the highly persistent part of the

quarterly GNP deflator. For this exercise, one-sided filtering was conducted for each month using

a five-year window of quarterly data based upon 15 quarters of real-time data, augmented with the

monthly real-time nowcasts and 4 quarterly forecasts in the Greenbook of that month. (Early in the

sample, in order to obtain a sufficient number of forecasts, we had to augment Greenbook forecasts.

We did this using SPF forecasts when available, or using simple univariate forecasts that treated

available Greenbook forecasts (or Greenbook + SPF forecasts) as additional data.) We find that, as

one might have expected based upon previous research, the implied (Greenbook-based) estimate of



 is systematically lower than our baseline CPI-based estimate during a large portion of the

1970s. However, we conducted a second out-of-sample forecast comparison test to determine which

model — our baseline CPI-based model, or the alternative GNP-deflator-with-Greenbook-forecasts

— better predicted or described actual FOMC behavior. As before, we used the Diebold-Mariano

forecast comparison test to compare two linear models over the MBM period, estimated over rolling

ten-year windows. Both models treat  identically, with this variable entering in gap form as in³
 − 




´
; in both models, this term was lagged one month. Regarding the treatment of ,

the GNP deflator model uses the current real-time estimate of 

 , while our model uses our

real-time estimate of 

 , lagged two months. Then each model included a constant and one

lag of the fed funds rate. Despite our model’s informational disadvantage — the GNP deflator model

always uses all available inflation information, including CPI inflation and other inflation-relevant

data, while our baseline model ignores other inflation-relevant data and is sometimes one month

out of date relative to the GNP deflator data — our baseline model significantly outperformed the
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GNP deflator model: the p-value of the Diebold-Mariano test statistic was 0.037. This indicates

that the actual behavior of the FOMC in the 1970s is more consistent with its using real-time CPI

inflation data (where identification of the persistent part of inflation fluctuations uses information

from simple-but-reliable inflation forecasts). We conclude that while poor inflation forecasts may

have contributed to the Great Inflation, they are not the chief explanation.32

4 Conclusions

Using the lens of simple monetary policy reaction functions, we apply recently developed econo-

metric tools to deepen our understanding of FOMC behavior and how it changed between the

MBM and VGB periods. Standard simple monetary policy rules like Equation (2) properly allow

for persistence in the fed funds rate but arbitrarily impose an assumption regarding an activity

gap, as well as an assumption of persistence-independence vis-a-vis the inflation rate reaction. In

this paper, we relax these restrictions and test them. Our results are surprising along some dimen-

sions, but accord well with intuition and some other accounts. Our study reaches the following

conclusions.

First, we note that estimates of Equation (2) — which imposes a constant natural rate of unem-

ployment and persistence-independence in the FOMC reaction function vis-a-vis the unemployment

rate — lead to the conclusion that the FOMC was unresponsive to unemployment rate fluctuations

in the VGB period. While we agree that Equation (2) is rarely estimated in this form, we note

that this fundamentally misleading result underscores the necessity in this instance of allowing

for a distinction between the response to persistent movement in the unemployment rate versus

the response to a less persistent fluctuation. By extension, we would argue that there are likely

many other macroeconomic relationships in which the relationship between two variables differs by

persistence level. In such cases, restricting this relationship to be the same will quite likely miss

32We have conducted several different investigations into the post-sample forecasting effectiveness of our
models, comparing the ability of models incorporating frequency-partitioned explanatory variables relative
to analogous models specified without frequency dependence; two of these were reported above. These
results were encouraging, in that a disaggregated model is always somewhat superior on this metric, lending
credence to our modeling approach. We note, however, that the present study is about inference rather than
forecasting, and we lay no claim here to having developed a new forecasting approach. For a study along
those lines, see, e.g., Carlstrom and Zaman (2014).
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out on uncovering some interesting features in the data, and may well lead to over-simplified and

distorted inferences. And, given the tools now at our disposal, such restrictions are not necessary.

Second, in the VGB period, the FOMC’s response to inflation movements changed in not just

one, but two, ways. First, the VGB FOMC became more aggressive in its response to inflation

— something other authors have noted (e.g., Clarida, Gali and Gertler 2000). But second, it also

became much more focused on fighting the persistent fluctuations in inflation, and began ignoring

more transient movements.33

Third, by allowing the data themselves to inform us about FOMC responses to persistent

fluctuations versus higher-frequency fluctuations, we notably find that a) the FOMC during the

MBM period did in fact respond to an unemployment gap, and that b) mismeasurement of ∗ (or

the output gap) is not an entirely convincing explanation of FOMC behavior in the 1970s, as some

analysts have argued. Instead, whether or not such an equilibrium concept was understood formally,

or simply incorporated into judgment (whether consciously or unconsciously), the FOMC in both

periods ignored extremely persistent fluctuations in the unemployment rate, although it arguably

got better at this in the VGB period. We follow Fuhrer and term this persistent component of the

unemployment rate the FOMC’s “intermediate unemployment rate target.” This lack of response

to extremely persistent fluctuations stands in sharp contrast to the FOMC’s strong response to

moderately persistent fluctuations of the unemployment rate, those fluctuations presumably most

responsive to policy.

The continuity of FOMC behavior between the MBM and VGB periods sheds some light on

the origins of the Great Inflation and suggests that much previous work, imposing a priori gaps

on the data, may have come to erroneous conclusions about FOMC behavior in the 1970s. In

particular, our results imply that the “ideas” hypothesis — that FOMC errors in the 1970s were due

to erroneous beliefs about the structure of the economy, particularly conceptual or measurement

33While the coefficient estimates themselves are consistent with a differential-inflation-persistence-response
interpretation in the MBM period, formal statistical tests fail to reject the null hypothesis that the FOMC
responded to all inflation fluctuations in the same way during this period. We interpret this as indicating
that the FOMC during the VGB period became either more focused on, or more accurate at identifying,
persistent inflation fluctuations. Broadly speaking, this accords with the analysis of Goodfriend and King
(2013); in discussing that paper, Svensson (2013) states “... that a major explanation for the Great Inflation
could be a small weight on inflation stabilization and a drifting inflation target does not seem so far-fetched”
(p. 213).
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errors regarding the activity gap (e.g., Orphanides 2002, Romer and Romer 2002, or Romer 2005)

— cannot fully explain FOMC policy during that time period. Our forecasting results further imply

that the “poor inflation forecasts” hypothesis also fails to explain FOMC behavior. Hence, taken

together, our results suggest that policy preferences — possibly driven by political pressures — are

far more likely to be the central explanation of the Great Inflation.

Economic theory often suggests that decision-makers distinguish between fluctuations with dif-

ferent degrees of persistence. The relatively straightforward technique used here illustrates how one

can easily test this hypothesis — even in settings where (as here) feedback is likely, so that ordinary

spectral analysis is inappropriate. This methodological innovation can lead to sharp new insights

about the process generating such data, whereas ordinary time-series techniques (in either the time

domain or the frequency domain) would both fail to reliably uncover features of this nature in the

data-generating process, and yield distorted inference results for having glossed over them. Any

empirical finding of persistence-dependence deriving from the new econometric methodology used

here is very clearly interpretable in intuitive economic terms. This methodology is therefore partic-

ularly well suited to guiding the construction of deeper and richer structural model specifications

for the economic processes underlying the data-generating mechanism whose properties have been

thus unveiled.

In keeping with this, we conclude with a discussion of the implications of our work for DSGE

modeling. Most of the DSGE models used for studying optimal monetary policy are essentially

linearized approximations to richer models, and are typically driven by exogenous AR(1) driving

processes; thus, they yield linear empirical specifications. Ultimately, this is why policy rules

resembling (1) are often found to be optimal (or nearly so) in such DSGE models. Above, we

have discussed some episodes — corresponding to different Fed chairmanships — during which we

find that empirical estimations of the policy rules apparently used by the FOMC are persistence-

dependent to a statistically significant degree. Apparently, the FOMC in its historical behavior did

routinely distinguish between unemployment and inflation rate fluctuations with differing perceived

persistence levels, and differently so across the two chairmanship episodes we consider.

As demonstrated in Ashley and Verbrugge (2009b), these persistence-dependence results are the

natural reflection of a neglected nonlinearity in the empirical policy rule specification. As has been
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noted many times (e.g., Fernandez-Villaverde 2011), linearization eliminates many phenomena of

interest, such as asymmetries and threshold effects; persistence-dependence is another real-world

phenomenon that is eliminated. Our persistence-dependence results — and analogous results on

inflation dynamics that we obtain in Ashley and Verbrugge (2018), or on consumption behavior in

Blundell, Low and Preston (2013), or on the money-interest rate link in Cochrane (1989) — suggest

that DSGE modeling might benefit from specifying a richer dynamic structure that endogenously

generates persistence-dependent optimal policies.
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5 Technical Appendix

5.1 Modeling Frequency Dependence

In this section we discuss the technique used here for modeling frequency dependence in the mon-

etary policy rule, Equation (2) above.34

The idea of regression in the frequency domain can be traced back to Hannan (1963) and Engle

(1974, 1978), and is further developed in Tan and Ashley (1999a and 1999b), who developed a

real-valued reformulation of Engle’s (1974) complex-valued framework.

Consider the ordinary regression model:

 =  +   ∼ (0 2) (4)

where  and  are each  × 1 and  is  × . Now define a  ×  matrix , whose ( )

element is given by:

 =

( 1

)
1
2 for  = 1;

( 2

)
1
2 cos(

(−1)


) for  = 2 4 6  ( − 2) or ( − 1);
( 2

)
1
2 sin(

(−1)(−1)


) for  = 3 5 7  ( − 1) or  ;
( 1

)
1
2 (−1)+1 for  =  when  is even.

(5)

It can be shown that  is an orthonormal matrix, so its transpose is its inverse and  is still

distributed (0 2). Pre-multiplying the regression model (4) by  thus yields,

 =  +→  ∗ = ∗ + ∗ ∗ ∼ (0 2) (6)

where  ∗ is defined as  , ∗ is defined as , and ∗ is defined as . The dimensions of the

 ∗, ∗, and ∗ arrays are the same as those of  , , and  in Equation (4), but the  components

of  ∗ and ∗ and the rows of ∗ now correspond to frequencies instead of time periods.

To fix ideas, we initially focus on the  component of , i.e., column  of the  matrix,

corresponding to the  − 1 explanatory variable if there is an intercept in the model. The 

34See Ashley and Verbrugge (2009b) for details; this section provides the most up-to-date exposition,
however. Additional descriptions are given in Ashley and Tsang (2013), Ashley and Li (2014), and Ashley
and Verbrugge (2018).
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frequency components are partitioned into  frequency bands, and   × 1 dimensional dummy
variable vectors, ∗1 ∗ , are defined as follows: for elements that fall into the  frequency

band, ∗ equals ∗
{}, and the elements are zero otherwise. The regression model can then be

generalized as:

 ∗ = ∗
{}{} +

X
=1


∗ + ∗ (7)

where ∗
{} is the ∗ matrix with its  column deleted and {} is the  vector with its 

component deleted.

To test whether the  component of  is frequency-dependent (i.e., to test whether the effect

of the  variable in  on  is frequency or persistence dependent) one can then simply test the

null hypothesis that 0 : 1 = 2 =  =  .

In the present application, we focus on two columns of : the real-time unemployment rate

and the real-time inflation rate; these columns are denoted  and  below. By the same reasoning

used above, one can quantify (and test for) frequency dependence in the two model coefficients 

and  corresponding to these two columns by re-writing the regression model (Equation 7) as:

 ∗ = ∗
{}{} +

X
=1


∗ +

X
=1


∗ + ∗ (8)

To make this regression equation a bit more intuitive, one can back-transform Equation (8)

from the frequency domain into the time domain by pre-multiplying both sides of this equation

with the inverse of , which (because  is an orthonormal matrix) is just its transpose:

0 ∗ = 0∗
{}{} +0

X
=1


∗ +0

X
=1


∗ +0∗ (9)

This yields the time-domain specification:

 = {}{} +
X
=1


 +

X
=1


 +  (10)

where {} is the original  matrix, omitting columns  and  and {} is the original  vector,

omitting components  and .
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Note that now the dependent variable is the same time series ( ) as in the original model,

Equation (4). Similarly, all of the explanatory variables — except for the  and  — are the same

as in the original model. Indeed, the only difference is that these two explanatory variables have

each been replaced by  new variables: i.e., the explanatory variable  has been replaced by

1  and the explanatory variable  has been replaced by 1. Each of these 

variables can be viewed as a bandpass-filtered version of the original data (the  or column of

the  matrix), with the nice property that the frequency component variables corresponding to

column  of the  matrix add up precisely to the  column of  and the frequency component

variables corresponding to column  of the  matrix add up precisely to the  column of .

In other words, the  column of  — for example — is now partitioned into parts. Reference

to definition of the  matrix in Equation (5) shows that the first (lowest-frequency) component

utilizing the first row ( = 1) of the  matrix and corresponding to  = 1, if the first band has

only a single component, is proportional to the sample average of the data for this explanatory

variable. Similarly, the last component (corresponding to  =  , if the last band has only a

single component — as it will whenever  is an even number) utilizes the last row ( =  ) of the

 matrix35 is essentially a sequence of changes in the data; hence this is the highest-frequency

component that can be extracted from the data on this variable. (As noted above, we provide a

simple example with a ten-period-window in Section 5.3 below to clarify and provide intuition.) To

test for frequency dependence in the regression coefficient on this  regressor, then, all that one

need do is test the joint null hypothesis that 1 = 2 =  =  . Similarly,  is replaced by

1 and one tests the null hypothesis that 1 = 2 =  =  .

However, because the  transformation mixes up past and future values (as in any Fourier-

based bandpass filter, or any two-sided filter for that matter), it can be shown that these 

frequency components are correlated with the model error term  if there is feedback between 

and either of these two explanatory variables, leading to inconsistent estimation of the parameters

1 2  and 1 2  in that case. Feedback between the federal funds rate and

inflation or unemployment rates is certainly likely, so this is an important issue here.

To avoid this problem in general, Ashley and Verbrugge (2009b) suggest modifying the procedure

35When  is even; it uses the last two rows when  is odd.
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described above in order to obtain a one-sided filter for partitioning a variable into its frequency

components. In particular, they provisionally36 suggest decomposing  , the 
 explanatory vari-

able data vector, into frequency components by applying the transformation described above within

a moving window of length  . (Since the discussion from this point forward entirely focuses on

extracting the frequency component from such moving windows, the symbol  will henceforth

be used to denote the length of the full sample, as this is now distinct from dimensionality ( ) of

the  matrix for each window.  is a constant — that is, the windows do not increase in length as

they move through the sample.) Letting the window for decomposing  at time period  consist

of the data from time  −  + 1 to time , then for time  only the time  frequency component

values (of the  values that are calculated from this window) are retained.

The filtering of  is similar to that for  , but we note that there is no need to constrain the

window length ( ) to be identical for both  and : this is a modeling decision that should be

based on relevant economic theory and on the data themselves. Indeed, we discuss this issue above

(in Section 3.1) and do set distinct window lengths for use in obtaining the frequency components for

each of the two explanatory variables in the Taylor rule formulations considered here. In particular,

we set a window length of  ≡ 60 months for decomposing the inflation rate data (“”) into its

frequency/persistence components, and we set a window length of  ≡ 120 months for similarly
decomposing the unemployment rate data. Thus, the transformation matrix  defined in Equation

(5) is of dimension  = 60×60months for the inflation rate data and is of dimension  = 120×120
months for the unemployment rate data. For expositional clarity, however, we focus almost entirely

on the case  = 60 in the remainder of the present sub-section, and below.

Decompositions by frequency must be performed on trendless data, and accordingly, frequency-

domain filters typically detrend the sample data prior to performing the decomposition, and add

the trend back afterwards. The procedure here is no different in this respect, except that detrending

must occur within each sample window. We consequently instead separately detrend the data in

each window prior to filtering using a linear time trend regression. Upon detrending the data

within the window, one implication is that the first (low-frequency) component 1 is now zero

(at machine precision). Of course, these trend estimates are not dropped: after converting the data

36The word “provisional” is used here because — to fix ideas— this description initially ignores the use of
projections for each window; the need for these projections is discussed below.

41



All Fluctuations Are Not Created Equal

back to the time domain, Ashley and Verbrugge (2009b) add the time- estimate of the (within-

window) trend to the lowest-frequency component 1 . That is, included in the most persistent

component of  at time  is the trend estimate of this variable pertaining to time  (i.e., the

trend is estimated for the time- window, and the time- portion of that trend is added to the most

persistent component at ).

It would then, at the outset, appear that the sample average over the  observations — cor-

responding to the zero-frequency component ( = 1), and obtained using the first row of the 

matrix — thus becomes a moving average of order  once the filtering is now being applied to

a moving window, so that this first component is now extracting a backward-looking nonlinear

trend from the full sample of data, using a moving average of order  . It is well-known, however,

that moving average trend estimates of this type have very poor properties. In particular, they

are known to induce pronounced phase shifts in the estimated trend time series that substantially

distort lag length selection and the apparent turning points in the time series.

There is a second weakness in this provisional procedure. When decomposing  using a

window, one must confront the usual problem of “edge effects” near the window endpoints.

Both the turning point problem and the edge effect problem are addressed by augmenting the

data within a window with projections. In particular, as in Dagum (1978), Stock and Watson

(1999), Mise, Kim and Newbold (2005) and Clark and Kozicki (2005), we augment the window

sample data with projected data, here postpending to the 42 sample data points (ending with

period ) in our 60-month  windows 18 months of projected values. (And we similarly postpend

24 months of  projections to the 96 sample data points (ending in period ) in our 120-month

 windows). Thus, for example, a 60-month window incorporating the real-time data on  as of

period  includes 42 past values of  — as known at time  — plus projections (forecasts) of its values

for months + 1 to + 18. This window of data is then used, as described above, to compute the

corresponding  = 31 components of  — i.e., the vectors 
1 31 . The 42 element of each

of these 60-vectors is then used as the period- filtered value of  for this particular frequency.

In our experience, the estimated values of the coefficient () on  and its estimated stan-

dard error are generally not very sensitive to the number of projection periods chosen (as long as
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at least 12 months of projections are used), nor to the details of how the projections (forecasts) are

produced.37 Since it is well known that the FOMC makes extensive use of forecasts in its decision-

making, utilizing projections of this nature in our windowed bandpass filters seems particularly

appropriate. As in the procedure described above — “provisional” because we there omitted dis-

cussion of these projections — the estimated trend (now at time ) is included in the zero-frequency

component 1 . Because of this window-specific detrending, where the last 18 months of the data

in, for example, a 60-month window are projections, the resulting backward-looking nonlinear trend

time series (which then includes both the zero-frequency component at time , and also all frequency

components with frequency  
30
, i.e., with reversion periods longer than 60 months) is now a com-

ponent that embodies the very-low-frequency fluctuations. These complications ensure that this

most-persistent component does not exhibit substantive phase and turning point distortions.

This moving-window approach is used in the present paper for an additional, and here crucial,

reason. The moving window makes it possible — and, indeed, easy — to use real-time data for the

values of  and : the data used in each window are simply those available at the time period

that is the window’s endpoint. The frequency decomposition is in this way gracefully consistent in

each period with the data that were available to policymakers at the time. Conversely, any two-

sided approach — whether a conventional analysis based upon gain and transfer analysis (further

discussed below), or an approach based upon wavelets — inherently rules out the use of real-time

data.

Presuming that  and  (the window lengths, for decomposing  and , respectively) are

both even numbers, then reference to Equation (5), and to Table 2 below (for which  is set to

60), makes it evident that there will be  =

2
+ 1 distinct frequency components — and hence


2
+ 1 coefficients to estimate in the leftmost sum within Equation (10); similarly there will be

 =

2
+ 1 distinct frequency components — and hence 

2
+ 1 coefficients to estimate in the

rightmost sum. In the present application,  was set to 60 — for the windows used in partitioning

the sample variation in () — yielding 31 distinct frequency components, and  was set to 120 —

for the windows used in partitioning the sample variation in () — yielding 61 distinct frequency

components. While not outright infeasible, it is clearly not desirable to be estimating all 92 of these

37See footnote 20 for details on the particular projection models used here.
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coefficients. In economic applications, one will generally be interested in more highly aggregated

frequency bands, so as to facilitate exposition of one’s results on economic or intuitive grounds, as in

Ashley and Tsang (2013) and Ashley and Li (2014), where the frequency components are aggregated

into just three bands.38 In Section 3.1 we do the same, defining (for the inflation rate variable, )

a low frequency (“very persistent,” or “persistent_pi()”) component corresponding to fluctuations

with reversion periods greater than 60 months, a medium frequency (“moderately persistent” or

“moderate_persist_pi()”) component corresponding to fluctuations with reversion periods greater

than or equal to 12 months and less than or equal to 60 months, and a high frequency (“transient”

or “transient_pi()”) component corresponding to fluctuations with reversion periods of less than

12 months.39 Referring to Table 2 (with regard to the 60-period windows for the  data), the

“persistent_pi()” component thus consists of all frequency components with reversion periods

greater than the length of the window, 60 months; the “moderate_persist_pi()” component is

the sum of the five components with intermediate frequencies (components 2-6, corresponding

to reversion periods of 12, 15, 20, 30, and 60 months); and the “transient_pi()” component

comprises the sum of the remaining 25 (highest frequency) components, which all revert more

quickly. One might consider this particular a priori partitioning of the 31 components (of ) or

the 61 components (of ) into just three bands to be a bit arbitrary. On the other hand, these

three aggregated bands are economically interpretable in terms of roughly the same calendar that

the FOMC’s policymakers live on.

This is a good point at which to contrast the frequency decomposition used here with su-

perficially similar procedures in the existing literature. For example, in contrast to trend-cycle

decomposition methods (e.g., Beveridge-Nelson), our approach does not decompose an explanatory

variable like  into just two components: an arbitrarily-persistent (1) or (1)-like trend and a

stationary (0) fluctuation. Our decomposition instead produces components (adding up to )

that span a complete range of persistence levels. And it allows the data itself — via regression analy-

sis applied to Equation (10), or the closely related Equation (3) in Section 3.2.1 — to quantify how

38The  matrix allocates two rows for every non-zero frequency except, for  even, the highest one. The
reversion period corresponding to each frequency is proportional to the reciprocal of its frequency, so the
number of components with the very highest frequencies are most numerous. For example, in the 120-month
windows, 21 of the 60 non-zero frequencies all correspond to reversion periods of a quarter or less.
39The frequency components for  are analogously named. For this variate, however, the window length

is set to 120 months, so the “persistent_un()” component includes all frequency components corresponding
to reversion periods greater than 120 months.
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Frequency Component Frequency Reversion Period Row Number(s) in 

1 0 60 1
2 30 601 = 6000 2,3
3 230 602 = 3000 4,5
4 330 603 = 2000 6,7
5 430 604 = 1500 8,9
6 530 605 = 1200 10,11
7 630 606 = 1000 12,13
8 730 607 = 857 14,15
9 830 608 = 750 16,17
10 930 609 = 667 18,19
11 1030 6010 = 600 20,21
12 1130 6011 = 545 22,23
13 1230 6012 = 500 24,25
14 1330 6013 = 462 26,27
15 1430 6014 = 429 28,29
16 1530 6015 = 400 30,31
17 1630 6016 = 375 32,33
18 1730 6017 = 353 34,35
19 1830 6018 = 333 36,37
20 1930 6019 = 316 38,39
21 1030 6020 = 300 40,41
22 1130 6021 = 286 42,43
23 1230 6022 = 273 44,45
24 1330 6023 = 261 46,47
25 1430 6024 = 250 48,49
26 1530 6025 = 240 50,51
27 1630 6026 = 231 52,53
28 1730 6027 = 222 54,55
29 1830 6028 = 214 56,57
30 1930 6029 = 207 58,59
31 3030 6030 = 200 60

Table 1: Frequencies and Reversion Periods for a 60-Month Window In months, calcu-
lated as 2 divided by the frequency. The sinusoids comprising the elements of the row(s) of the 
matrix corresponding to this reversion period complete a full cycle in this many months. Thus, the
scalar product of such a row with a time-series vector whose fluctuations self-reverse substantially
slower than this will be very small. The  matrix is defined in Equation (3).
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the coefficients 1   vary across all of these persistence levels. Further, our decomposition

still yields consistent parameter estimation where (as is typically the case with economic relation-

ships) one cannot rule out feedback (or bi-directional causality); this is in contrast to the earlier

spectral regression models cited at the outset of this section, which employ two-sided filtering and

hence yield inconsistent parameter estimation in the presence of feedback. Finally, our approach

is uniquely appropriate to the present analysis of the FOMC’s historical policy rules, because the

central bank surely bases its actual policy decisions on real-time data. In particular, the current

real-time history of each of the relevant explanatory variables (the inflation and unemployment

rates) corresponds exactly to the data we use in each window for the decomposition of the current

value of each variable into its frequency/persistence components.

We note, in this context, that an analogous kind of analysis based on the gain and phase of a

transfer function model for the federal funds rate — as in Box and Jenkins (1976, Part III) — would

be problematic because such models characteristically involve lagged values of the dependent and

explanatory variables. For one thing, models containing lagged variables are inherently awkward

when using real-time data because it is not clear whether the period- datum to be used for 

lagged, say, two periods should be the value for that period as known currently (i.e., in period

) or at the time (i.e., in period  − 2). In addition, transfer function gain and phase plots are
substantially more challenging to interpret than our 1   coefficients, especially where (as

here) bi-directional causality is likely. For example, Granger (1969) notes, “In many realistic

economic situations, however, one suspects that feedback is occurring. In these situations the

coherence and phase diagrams become difficult or impossible to interpret, particularly the phase

diagram.”

5.2 The Appeal of this Frequency-based Approach to Disaggregation by Per-

sistence Level

The focus of this paper is to investigate, in a data-driven way, the degree and manner to which

the FOMC has responded to persistent fluctuations in the unemployment rate and the inflation

rate differently than it has to more transitory fluctuations in those variables. Thus the objective of

partitioning two of the explanatory variable time series —  and  in Section 4.1 above, which
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are the real-time unemployment and inflation rates in the present application — is not the bandpass

filtering per se. Rather, we decompose the unemployment and inflation rates into frequency compo-

nents so that we can separately estimate the historical impact of fluctuations of distinctly different

persistence levels in these two variables on the federal funds rate and make inferences concerning

these differential impacts; this allows a richer consideration of how FOMC policy has varied over

the several time periods considered.

No representation is made here that the bandpass filtering described in Section 5.1 above is

asymptotically optimal — e.g., as in Koopmans (1974) or Christiano and Fitzgerald (2003) — although

the relevance of asymptotic optimality in filtering windows of data that are only of length 60 or 120

months, and that might need to be considerably smaller in other applications, is debatable.40 On

the other hand, our method of decomposing a time series into frequency components has several

very nice characteristics, which make this decomposition approach overwhelmingly well-suited to

the present application:

1) The  frequency components that are generated from an explanatory variable (i.e., from a

column of ) by construction partition it. That is, these  components add up precisely to the

original observed data on this column of . This makes estimation and inference with regard

to persistence dependence (or its inverse, frequency dependence) in the corresponding regression

coefficient particularly straightforward: we simply replace this explanatory variable in the regression

model by a linear form in the  components and analyze the resulting  coefficient estimates.

2) Due to the moving windows used, this particular way of partitioning the data on an explana-

tory variable into these  frequency components by construction utilizes backward-looking (i.e.,

one-sided) filters. As demonstrated in Ashley and Verbrugge (2009b), this feature is crucial to con-

sistent OLS coefficient estimation where there is bi-directional Granger-causality (i.e., feedback)

between the dependent variable and the explanatory variable being decomposed by frequency. The

dependent variable in the present context is the federal funds rate, which is quite likely to be in a

40 In this context we note that it is feasible — albeit somewhat awkward — to iteratively employ a Christiano-
Fitzgerald (2003) low-pass filter to partition the data in such a way that the frequency components still add
up to the original data. This procedure involves applying the filter repeatedly, at each iteration varying the
frequency threshold and applying the filter to the residuals from the previous iteration. This procedure is, of
course, no longer even asymptotically optimal, but it does yield frequency components that still add up to the
original data — as the ones in our present formulation do automatically. Experiments with decompositions
along these lines did not yield substantially different frequency dependence results in the present application,
but we are investigating this topic in future work.
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feedback relationship with the unemployment and inflation rates.

3) Finally, this way of partitioning the data on an explanatory variable into frequency/persistence

components is not just mathematically valid and straightforward, it is also intuitively appealing.

In particular — in contrast to many analyses in the frequency domain — our decompositions are not

a “black box.” The next section illustrates this point with a simple example.

5.3 An Illustrative Example with a Very Short Window

An example with a window ten periods in length illustrates the sense in which the frequency

components defined above are extracting components of, say,  of differing levels of persistence.

This window length is sufficiently large as to illustrate the point, while sufficiently small as to yield

an expositionally manageable example.41 In particular, Table 3 displays the multiplication of the

matrix  — whose elements are defined in Equation (5) — by the ten-component sub-vector of 

corresponding to a window beginning in the particular period 21 and ending in period 30. For this

illustrative example, we will assume that there are no projections, so that this window corresponds

to time period 30. We will also assume that the data are trendless over these 10 observations.42

The first row of the  matrix is just a constant. The operation of this row of  on this

particular ten-dimensional sub-vector of  is just calculating the sample mean over these ten

observations. Thus, as this window progresses through the entire sample of data  , the first

component of the vector formed by multiplying each ten-dimensional sub-vector of  on the left by

 represents a one-sided, real-time, nonlinear trend estimate based (in this example) on a 10-period

moving average. This is the “zero-frequency” component of the full  vector, corresponding to a

sinusoidal reversion period unbounded in length. This component of  includes all of its variation

at frequencies so low (i.e., reversion periods so large) that they are essentially invisible in a window

that is only ten periods in length.

41As described above, the empirical implementation in this paper uses a window 60 months in length (for
) and 120 months in length (for ). See Table 2 for an explicit listing of the component frequencies, the
corresponding reversion periods, and the corresponding  matrix rows for a 60-dimensional  matrix.
42As noted in Section 5.1 above, in actual practice a portion of every moving window consists of projections,

and data within every moving window are detrended. These complications are suppressed in the present sub-
section so as to focus attention on the  matrix in a setting so simple as to elucidate how the application of
this matrix is extracting components for which the terms “frequency” and “reversion period” are intuitively
meaningful verbal constructs.
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Period Matrix  Data
 10 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 (21)
10 0.45 0.36 0.14 -0.14 -0.36 -0.45 -0.36 -0.14 0.14 0.36 (22)
10 0.00 0.26 0.43 0.43 0.26 0.00 -0.26 -0.43 -0.43 -0.26 (23)
5 0.45 0.14 -0.36 -0.36 0.14 0.45 0.14 -0.36 -0.36 0.14 (24)
5 0.00 0.43 0.26 -0.26 -0.43 0.00 0.43 0.26 -0.26 -0.43 (25)
3.3 0.45 -0.14 -0.36 0.36 0.14 -0.45 0.14 0.36 -0.36 -0.14 (26)
3.3 0.00 0.43 -0.26 -0.26 0.43 0.00 -0.43 0.26 0.26 -0.43 (27)
2.5 0.45 -0.36 0.14 0.14 -0.36 0.45 -0.36 0.14 0.14 -0.36 (28)
2.5 0.00 0.26 -0.43 0.43 -0.26 0.00 0.26 -0.43 0.43 -0.26 (29)
2 0.32 -0.32 0.32 -0.32 0.32 -0.32 0.32 -0.32 0.32 -0.32 (30)

Table 2: An Example With a Window of Length Ten Periods. The first row of  times the

data vector simply yields 1
√
 times the sample mean of the data in this ten-period window. As

the window moves through the data set, this operation extracts any, possibly nonlinear, trend as a
moving average. Rows two and three take a weighted average of the window data, using smoothly-
varying weights that take a full ten periods to reverse, so any fluctuation in the window data that
reverses in a couple of periods yields a small value. The product of row ten and the window data
is essentially calculating five changes in the data that occur during the window period. A long,
smooth variation in the window data yields a small value for this frequency component.

Higher-frequency (lower persistence) components of  are, conversely, distinguishable using

this window. The “Period” column in Table 3 is the number of observations over which the sine

or cosine used in the corresponding row of the  matrix completes one full cycle. This is ten

observations for rows two and three of this  matrix, 10
2
= 5 observations for rows four and five,

10
3
= 31

3
observations for rows six and seven, 10

4
= 21

2
observations for rows eight and nine, and

10
5
= 2 observations for row ten.43 In the most common convention, the frequency is defined as 

2

times the inverse of the cycle length (period) of the corresponding sine or cosine for that row of the

 matrix, in which case the frequencies run from zero (for row one) to  for row ten.

To see intuitively why multiplication of the  vector by, for example, rows two and three

extract only slowly varying fluctuations in  , notice that these two rows are smoothly varying

weights that will be applied to the ten components of  in forming its dot (or scalar) products

with these two rows. Slowly varying fluctuations in  will thus have a large impact on these two

dot products, whereas rapidly reverting variations in  will have little effect on the values of these

two dot products. Hence, components two and three of the matrix product  will “contain”

only those parts of  that are slowly varying.

43The number of observations in the sub-vector is an even integer — ten — in this example, implying that
the sine and cosine terms are multiples of one another for what becomes a singleton last (tenth) row of the
 matrix.
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Conversely, it is evident upon inspection of the last row of the matrix that only high-frequency

(low persistence) fluctuations — i.e., fluctuations that reverse in just two months or so — will con-

tribute significantly to the tenth component of  .

Thus, the first rows of the  matrix are distinguishing and extracting what are sensibly the

“low-frequency” or “large period”or “highly persistent” or “relatively permanent” components of

this ten-month  sub-vector as the window moves through the sample. Conversely, the last rows

of the  matrix are distinguishing and extracting what are sensibly the “high-frequency” or “small

period”or “low persistence” or “relatively temporary” components of this  sub-vector.

5.4 Application to a Simple DGP

In this section, we illustrate the decomposition used here via its application to an artificially gen-

erated time series simulated using a particularly simple data generating process.44

The data-generating process is composed of the sum of four distinct sine waves, plus a white

noise error. More specifically,

 = 21 + 2 + 3 + 054 + 

with  v  (0 1), where

 

1 = sin (005) 1257

2 = sin (014 (+ 25)) 449

3 = sin (4) 157

4 = sin (22) 029

We apply our one-sided filtering method, as described above,with moving windows of length 60,

of which 24 are projections. Here the projections are obtained from the average of forecasts from a

univariate AR(4) model in levels and forecasts from a univariate AR(4) model in first-differences.

Here the “very persistent” component is defined to include all fluctuations whose period is longer

44We are not suggesting that  or  is generated in this way; the intent here is solely to present an
illustrative example.
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than 58 time units and simply denoted “persistent” in Figure 3. The cutoff for the transient

component is set to a reversion period of 12 time units. Thus, “persistent” should reflect 1 and

“moderate” in Figure 4 should reflect 2.

Figure 3: For the simple DGP, our procedure accurately estimates the most persistent component
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Figure 4: For the simple DGP, our procedure accurately estimates the moderately persistent

component

As described above, the most persistent component (here simply labeled “persistent”) is effec-

tively estimated using a nonlinear adaptive trend. Its behavior is mainly driven by the window

length, which determines the frequency cutoff, and by the length and quality of the projections

within that window.

As is evident in Figure 3, our procedure does a reasonable job of estimating 1, though it is

modestly fooled by moderately persistent movements deriving mainly from 2 And as is evident

in Figure 4, our procedure likewise does a reasonable job of estimating 2.
45

45A linear regression of the most persistent component on 1  4 yields a coefficient of 0.93 on 1 and
0.53 on 2, with small loadings on 3 and 4. A linear regression of the moderately persistent component
on 1  4 yields a coefficient of 0.00 on 1 and 0.37 on 2, with very small loadings on 3 and 4. Finally,
a linear regression of the transient component on 1  4 yields a coefficient of 0.05 on 1 and 0.06 on 2,
with loadings of 0.90 and 0.91 on 3 and 4.
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