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1. Introduction

The last two decades of research on structural vector autoregressions (SVARs)
have developed largely in pursuit of relaxing two constraints: constant model pa-
rameters and dogmatic identifying restrictions. Research focused on relaxing the
assumption of constant parameters has followed from the time-varying parameter
VAR with stochastic volatility (VAR-TVP-SV) of Cogley and Sargent (2005) and
Primiceri (2005) and the Markov-switching (MS-VAR) model developed in Sims
and Zha (2006) and Sims, Waggoner, and Zha (2008).1 Research focused on
achieving structural inference while relaxing traditional “zero restrictions” has
followed from the seminal contributions of Faust (1998), Canova and De Nicolo
(2002), and Uhlig (2005). The most widely used variation on these alternative
identifying approaches yields set identification for the objects of interest by im-
posing restrictions on the sign of certain impulse responses, and hence they are
often referred to as “sign restrictions.” The recent growth in popularity of both
types of extensions would be difficult to overstate. To date, however, the research
agendas on time-varying parameters and set identification have lived largely
separate lives.

This paper’s contribution is to be the first to develop a class of structural
time-varying-parameter vector autoregressions from which researchers can ob-
tain internally consistent probabilistic inference under exact–or set–identification.
The structural TVP model I propose uses laws of motion for the time-varying
parameters that fundamentally differ from those used in the literature previously.
The new model I provide for the evolution of the structural parameters yields
sequences of time-varying structural parameters that remain observationally
equivalent under orthogonal rotations, analogous to the standard SVAR with con-
stant parameters. Speaking somewhat loosely, approaches to identifying SVARs
then carry over in a natural way to the time-varying parameter model. In short,
one might alternatively summarize this paper’s key contribution as providing an
SVAR with time-varying parameters that is amenable to the wholesale extension
of the widely used methods developed in Rubio-Ramírez, Waggoner, and Zha

1See Cogley and Sargent (2001) for an earlier version of the VAR-TVP model without
stochastic volatility. The desirability of model extensions in this direction, and at least a partial
description of how one might formulate such models, goes back to Doan, Litterman, and Sims
(1984) and Sims (1993).
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(2010).
A popular approach to inference in SVARs, resulting from the identification

problem, is to first estimate a reduced form implied by the structural model.
Structural inference then proceeds by imposing certain identifying assumptions
as a sort of post-processing stage in which the researcher chooses among the
observationally equivalent candidate truths hiding inside the reduced form. This
is the first paper in the literature to write down a time-varying structural system
and provide conditions under which it implies a reduced-form. Then the path to
structural inference can proceed analogously to that with which researchers are
already familiar for SVARs. In a notable special case, the reducedform implied
by the structural model is highly tractable and relatively well-developed in the
Bayesian statistics literature. I also provide what I believe to be the first algorithm
for the fully Bayesian estimation of all of the model’s free parameters. Further-
more, the MCMC algorithm is fast enough, even in high-level programming
languages such as MATLAB, for the estimation of at least medium-sized VARs to
be practical.

At this stage, one might wonder why a new model is needed at all. Could one
not simply use a piecemeal combination of the existing VAR-TVP-SVmodels and
the set identification methods developed for constant-parameter VARs? Indeed, in
recent years researchers have explored such an approach based on first estimating
the model of Primiceri (2005) followed by the use of Uhlig-like methods, on
a period-by-period basis, on the estimated time-varying coefficients from the
first stage.2 However, such an approach is subject to two key shortcomings in the
interpretation of its results. First, no model for the time-varying structural pa-
rameters is ever proposed that would rationalize the various orthogonally rotated
parameters as observationally equivalent candidate truths. Second, inference
in the model of Primiceri (2005) depends on the ordering of variables in the
VAR. Hence, an n-variable dynamic system admits n! distinct estimates of the
time-varying parameters in the first stage, which form the key input into the
set identification procedure.3 The dependence on variable ordering then passes

2See Canova and Gambetti (2009), Hofmann, Peersman, and Straub (2012), Baumeister and
Peersman (2013b), Baumeister and Peersman (2013a), and Baumeister and Benati (2013) for
examples.

3Indeed, the potential sensitivity of results to variable ordering is known and acknowledged
in both Cogley and Sargent (2005) and Primiceri (2005). See also Section 8 of Fox and West
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through all the way to structural inference when applying the set identification
algorithm to the estimated parameters. In Section 4 I show that in practical ap-
plications this property can easily become much more than just an intellectual
curiosity.

This paper builds off of a number of papers more familiar to Bayesian statis-
ticians than to economists. In a special case of the structural model, the implied
reduced form is known to Bayesian statisticians as a dynamic linear model
(DLM) with discounted Wishart stochastic volatility (DLM-DWSV). Variants
of the DLM with a constant covariance matrix have been used to model finan-
cial time-series since at least Quintana and West (1987), while the discounted
Wishart stochastic volatility process was formalized as a valid probability model
by Uhlig (1994) and Uhlig (1997). Prado andWest (2010) give the most thorough
treatment to date of the complete model.4 Koop and Korobilis (2013) consider
forecasting with a model similar to the reduced-form DLM-DWSV but without
fully Bayesian likelihood-based estimation of the model parameters.

From here the rest of the paper proceeds as follows. In Section 2 I review
the current frameworks for exact and set identification in constant-parameter
SVARs to emphasize the parallelism with my time-varying parameter exten-
sion. In Section 3 I describe the key issues involved in developing a framework
with time-varying parameters that can be analyzed in a fashion analogous to
constant-parameter models. In Section 4 I motivate this paper’s developments by
demonstrating the shortcomings of the current approach to set identification in
time-varying parameter systems. In Section 5 I present my structural VAR with
time-varying parameters and the reduced-form model it implies. In Section 6 I
describe the MCMC algorithm for estimating the reduced-form model. In Section
7 I confront the model and estimation procedure with an empirical application
from the literature, that of Baumeister and Peersman (2013b) on the time-varying
effects of oil supply shocks. In Section 8 I conclude.

Notation. Before moving on, I introduce a few notational conventions used
throughout the paper. Scalars are styled as lowercase letters in normal weight, as

(2014) for a discussion of this issue. Note that both Cogley and Sargent (2005) and Primiceri
(2005) work with small dynamic systems of three variables and two lags, which make it feasible
to check robustness against all six possible orderings.

4See also Harrison and West (1997) and Quintana, Lourdes, Aguilar, and Liu (2003).
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in �. Vectors are styled as lowercase letters in bold, as in y. Matrices are styled
as uppercase letters in bold, as in A. The value of a time-varying object at a
particular time t is referenced by including a subscript, as in At and the collection
of all values between the two points in time t and t + k is denoted with a “:” in
the subscript, as in At∶t+k ≡ {At,At+1,… ,At+k−1,At+k}.

With respect to some special matrices, the n × n identity matrix is denoted
In and 0m,n denotes an m × n matrix of zeroes. n denotes the group of n × n
orthogonal matrices. I often refer to symmetric positive definite matrices as
“SPD.” Letting � be SPD, ℎ(�) denotes the unique lower triangular matrix with
positive diagonal elements for which ℎ(�)ℎ(�)′ = �, while the notation �1∕2

denotes the unique SPD matrix such that �1∕2�1∕2 = �.
Well-known probability distributions are denoted with uppercase letters in

normal weight, as inN(0, 1) to denote the standard normal distribution. The nota-
tionN(m,�) refers to the multivariate normal distribution, whileN(M,�r,�c)
refers to a matrix-variate normal distribution with m × n mean matrixM, m × m
row covariance matrix �r, and n × n column covariance matrix �c .

2. A Crash Course in SVARs

To fix ideas, I start by describing themost widely used framework for inference
in constant-parameter SVARs.My description draws heavily fromRubio-Ramírez
et al. (2010), Del Negro and Schorfheide (2011), and Arías, Rubio-Ramírez, and
Waggoner (2018), to which I refer readers for further details.

2.1 SVAR: The Structural Model

The structural model assumes that n observable, endogenous economic vari-
ables evolve according to a linear relationship between each variable and the
contemporaneous and lagged values of all variables and a constant term. In other
words, I assume that the (n × 1) vector of observables at time t, denoted yt, is
realized according to a structural vector autoregression written as

y′tA =
p
∑

l=1
y′t−lF(l) + c + "

′
t , "t ∼ N(0n,1, In) , for 1 ≤ t ≤ T ,(1)

where "t is an (n × 1) vector of exogenous and mutually orthogonal structural
shocks. The integer p is the number of lags of observables pertinent to the
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structural representation of the dynamic system. The matrices A and F(l) for
0 ≤ l ≤ p are each n × n and c is a (1 × n) vector. I also assume that A is
invertible.

Tomake the subsequent expositionmore concise, I definem ≡ p⋅n+1, the (m×
n) matrix F ≡ [F′(1),… ,F′(p), c

′]′, and the (m × 1) vector xt ≡ [y′t−1,… , y′t−p, 1]
′.

One can then write the model in equation (1) compactly as

y′tA = x
′
tF + "

′
t , "t ∼ N(0n,1, In) , for 1 ≤ t ≤ T .(2)

I refer to (A,F) as the structural parameters because they determine the evolution
of the endogenous economic variables in response to the mutually orthogonal
exogenous disturbances "t. The objects of interest to the economist are either
particular elements of (A,F) or functions thereof, such as impulse responses or
variance decompositions.

From the normality of "t, the density for the vector y′tA has the distribution
N(y′tA|x

′
tF, In). When A−1 exists, the density of y′t can be found by transforming

the random vector y′tA via the right-multiplication by A−1, and finding the distri-
bution of p

(

(y′tA)A
−1
|A,F, xt

)

= p(y′t|A,F, xt). From well-known properties of
the multivariate normal distribution under affine transformations,

p(y′t|A,F, xt) = N
(

y′t | x
′
tFA

−1, (AA′)−1
)

.(3)

and the likelihood is given by p(y1∶T |A,F) =
∏T

t=1 p(y
′
t|A,F, xt).

In the absence of further restrictions, the space of possible values for (A,F)
is the subset of ℝmn+n2 for which A is invertible, and I refer to this space as S.
The structural model then consists of a delineation of the unobservables (A,F),
the space of admissible values for those unobservables S, and the data density
for y1∶T conditional on the unobservables.

2.2 The Identification Problem in SVARs

Following Rothenberg (1971), I consider two parameter points of a model to
be observationally equivalent if and only if they imply the same distribution of
y1∶T .
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Definition 1 (Observational equivalence). The points (A,F) and (Ã, F̃) are ob-
servationally equivalent if and only if p

(

y1∶T |A,F
)

= p
(

y1∶T |Ã, F̃
)

.

Since no data can ever distinguish between the two points, I say that a model
is not identified at (A,F) if an observationally equivalent (Ã, F̃) exists.

For the structural model, it is well-known in the literature that, given any
point (A,F) ∈ S, the alternative point (Ã, F̃) ∈ S is observationally equivalent if
(and only if) there exists a Q ∈ n such that (Ã, F̃) = (AQ,FQ).5 Since, for any
(A,F), there are as many such points as there are matrices in n, it is apparent
that the parameters (A,F) are not identified.

2.3 A Useful Reparameterization of SVARs

Although (A,F) are not identified, one can identify certain combinations of
parameters in (A,F). This fact becomes particularly apparent under a reparam-
eterization of the structural model. Arías et al. (2018) show that the structural
model can be reparameterized as (B,H,Q) = f (A,F) where

f (A,F) =
(

FA−1
⏟⏟⏟

B

, AA′
⏟⏟⏟

H

, ℎ(AA′)−1A
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Q

)

.(4)

H is symmetric positive definite and Q ∈ n.67 Letting ℍ(n) denote the space
of n × n symmetric positive definite matrices, the space of possible values for
(B,H) is ℝm×n ×ℍ(n) and I refer to this space as D. The space of possible values
for (B,H,Q) is then D × n and I refer to this space as DO. The mapping f is
invertible, with f−1 given by

f−1(B,H,Q) =
(

ℎ(H)Q
⏟⏟⏟

A

, Bℎ(H)Q
⏟⏞⏞⏟⏞⏞⏟

F

)

.(5)

5See, for example, Rubio-Ramírez et al. (2010).
6Also see Del Negro and Schorfheide (2011).
7Calling f a “reparameterization” may appear curious at first since the n × n and m × n

matrices of (A,F) are transformed into n × n and m × n matrices (B,H) plus an additional n × n
matrix Q. The ostensible inconsistency is resolved by noting that H is symmetric, and hence has
only n(n + 1)∕2 functionally independent elements, and Q ∈ n, and hence has only n(n − 1)∕2
functionally independent elements. Thus, the total number of functionally independent elements
is the same under either parameterization.
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The reparameterization under f is attractive for a number of reasons. First, it
makes the identification problem transparent. Under the substitutions of f−1 one
can write the model as

y′t = x
′
tB + "

′
tQ

′ℎ(H)−1′ , "t ∼ N(0n,1, In) , for 1 ≤ t ≤ T ,(6)

with conditional likelihood from equation (3) becoming

p(y′t|B,H,Q, xt) = N
(

y′t|x
′
tB,

(

ℎ(H)QQ′ℎ(H)′
)−1) = N(y′t|x

′
tB,H

−1) ,(7)

and likelihood given by

p(y1∶T |B,H,Q) =
T
∏

t=1

=N(y′t |x
′
tB,H

−1)
from eqn (7)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
p(y′t|B,H,Q, xt) = p(y1∶T |B,H) .(8)

Since the likelihood function can be written entirely without recourse to Q it is
apparent that Q is not identifiable.

Priors and Posteriors. A second attractive feature of the parameterization
under f is that it allows for a prior cleanly separated into the researcher’s beliefs
for objects that the data can identify, (B,H), and the researcher’s beliefs for
objects that the data cannot identify, Q: a prior p(B,H,Q) can in general be
written as

p(B,H,Q) = p(Q|B,H) ⋅ p(B,H) ,(9)

where the density p(Q|B,H) articulates what the researcher will infer about the
structural parameters conditional on the values of the objects the data can inform.8

To further clarify how Q is handled under Bayesian inference, observe that

8The functional form of the likelihood is such that p(B,H) can be conjugate, and also natural
conjugate. Natural conjugate priors have the interpretation of the shape of the likelihood function
under some notional data. Priors of this class provide a useful device for disciplining prior
formulation by requiring the researcher’s prior beliefs to be consistent with the shape of the
likelihood under some conceivable data.
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the posterior for the unobservables (B,H,Q) is given by

p(B,H,Q|y1∶T ) = p(y1∶T )−1 ⋅ p(Q|B,H) ⋅ p(B,H) ⋅

p(y1∶T |B,H)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
p(y1∶T |B,H,Q)(10)

where

p(y1∶T ) = ∫(B,H,Q)
p(Q|B,H) ⋅ p(B,H) ⋅ p(y1∶T |B,H,Q) dB dH dQ(11)

The term p(y1∶T ), known as the marginal data density or marginal likelihood, is
an important Bayesian notion of model fit. Since the likelihood does not depend
on Q one can simplify the expression for p(y1∶T ) as

p(y1∶T ) = ∫(B,H)

(

∫Q
p(Q|B,H) dQ

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1

p(B,H) ⋅ p(y1∶T |B,H) dB dH(12)

Hence, the marginal data density of the model does not depend on the particular
choice of p(Q|B,H). The posterior distribution can then be written as

p(B,H,Q|y1∶T ) = p(Q|B,H) ⋅
p(B,H) ⋅ p(y1∶T |B,H)

∫(B,H) p(B,H) ⋅ p(y1∶T |B,H) d(B,H)
.(13)

Noting that the second term is precisely the marginal posterior of (B,H), the
posterior can be written as

p(B,H,Q|y1∶T ) = p(Q|B,H) ⋅ p(B,H|y1∶T ) .(14)

Equation (14) makes clear the way Bayesian inference will incorporate informa-
tion from the data to make inference about the structural parameters: the data
will update beliefs about the elements of (B,H) directly, while beliefs about Q
are updated by the data only indirectly via the information the data provide about
(B,H). The conditional posterior of Q is simply the conditional prior.
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2.4 Identifying Restrictions in SVARs

Considering inference about the entirety of the space of (B,H,Q) will typi-
cally preclude the possibility of making any economically substantive statements.
To narrow the scope of economic conclusions from the data, researchers typically
impose additional restrictions on the space of potential structural parameters. In
general, one might represent such restrictions as a set ⊆ DO and thus statistical
inference must respect the requirement that (B,H,Q) ∈ .

From the standpoint of Bayesian inference, one can mechanically construct a
prior that respects as

p(B,H,Q) ∝ p(B,H,Q) ⋅ I
{

(B,H,Q) ∈ 
}

(15)

which can in general be factored into a marginal and conditional similarly to the
unrestricted case, as

p(B,H,Q) ∝ p(Q|B,H) ⋅ I
{

Q ∈ Q(B,H)
}

⋅ p(B,H) ⋅ I
{

(B,H) ∈ B,H
}

(16)

where

B,H ≡
{

(B,H) ∶ ∃Q for which (B,H,Q) ∈ 
}

(17)

Q(B,H) ≡
{

Q ∶ (B,H,Q) ∈ 
}

.(18)

The two most widely used approaches to identification in the SVAR literature
are exact and set identification. I conceive of both types of restrictions as “exact-
or-less” in the sense of implying unrestricted support for (B,H) on D, and hence
I{(B,H) ∈ B,H} = 1 for almost all (B,H). Defining the restricted prior for Q
as

p(Q|B,H) =
p(Q|B,H) ⋅ I{Q ∈ Q(B,H)}

∫Q p(Q|B,H) ⋅ I{Q ∈ Q(B,H)}dQ
,(19)

and substituting that expression into equation (14), the posterior of the restricted
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model can be written as

p
(

B,H,Q|y1∶T
)

= p(Q|B,H) ⋅ p
(

B,H|y1∶T
)

.(20)

I call the identifying restrictions exact if  is such that there is a function
mapping each (B,H) to a single Q. In other words, under exact identification
p(Q|B,H) is a pointmass. Intuitively, exact identification amounts to choosing
a single element from the set of observationally equivalent structural parameters
associated with a given (B,H).9

Set identification, which most often takes the form of restrictions on the
“signs” of structural impulse responses, amounts to defining  in such a way
as to allow a positive measure of Q matrices inQ(B,H) for almost all (B,H).
When working within the Bayesian paradigm, the natural next step is to place a
prior over the Q matrices in n. The most common choice in the literature is

p(Q|B,H) ∝ p(Q) ⋅ I{Q ∈ Q(B,H)}(21)

where p(Q) is the uniform distribution over n, which I denote U (n). Rubio-
Ramírez et al. (2010) give an efficient algorithm for generating random draws
from such priors based on combining the algorithm of Stewart (1980) with an
accept-reject step.10

2.5 Reduced form of the SVAR

The irrelevance of Q for the likelihood, and of p(Q|B,H) for the Bayesian
marginal likelihood, implies that one could fit the data just as well by formulating
a model entirely without Q. Indeed, one could consider the parameters (B,H),
their prior density p(B,H), and the data density in equation (7), to be a model in
and of itself.

9This notion of exact identification is sufficiently general to accommodate the conditions
given in Rubio-Ramírez et al. (2010) (see their Theorem 5 and Algorithm 1) as well as the penalty
function approach as in Uhlig (2005) and Mountford and Uhlig (2009).

10See Algorithm 2 in Rubio-Ramírez et al. (2010). My description of the approach to structural
inference with partially identifying restrictions represents only the most commonly implemented
approach in the literature; the validity of the resulting inference for objects of interest in a
particular application presumes that the researcher is comfortable with the prior for the objects
of interest induced by the Haar measure prior over n. See Baumeister and Hamilton (2015) for
an alternative approach to identification in constant-parameter SVARs.
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Writing the model as

y′t = x
′
tB + u

′
t , u′t ∼ N(0n,1,H

−1) , for 1 ≤ t ≤ T(22)

yields a data density p(yt|B,H, xt) = N(yt|B′xt,H−1), which is identical to
equation (7). With identical likelihoods and identical priors, the posterior of
(B,H) in the VAR,

p(B,H|y1∶T ) =
p(B,H) ⋅ p(y1∶T |B,H)

∫(B,H) p(B,H) ⋅ p(y1∶T |B,H) d(B,H)
,(23)

is precisely themarginal posterior of (B,H) in the reparameterized SVAR. Hence,
I say that the reduced-form model is implied by the structural model.

2.6 From Reduced-Form Parameter Estimation to Structural Inference

Even when the objects of interest to the economist depend on the full set
of structural parameters (B,H,Q), the practice of inference often begins by
estimating (B,H) in the reduced-form model. Such an approach is useful for
two reasons. First, as noted in the previous section, the posterior of (B,H) under
the reduced-form model is identical to the marginal posterior of (B,H) in the
structural model. Hence, reduced-form estimation exactly represents a region of
the structural model’s posterior. From a practical perspective this is only useful
insomuch as the posterior of the VAR is tractable, which is very much the case.
Second, after conditioning on (B,H) the structural model’s posterior of Q does
not depend on the data.

Following estimation of (B,H) in the VAR, researchers proceed to structural
inference by sampling from p(Q|B,H), which effectively becomes a form of
post-processing of the reduced-form parameter draws. Thus the algorithm often
used by researchers in practice is Algorithm 1.

Algorithm 1 - Structural posterior sampling

1. Reduced-form model estimation

• For i = 1,… , n1, sample (B(i),H(i)) ∼ p(B,H|y1∶T )

• Store
{

B(i),H(i)
}n1
i=1

11



2. Structural inference

• For each draw in
{

B(i),H(i)
}n1
i=1, sample Q

(i) ∼ p(Q|B(i),H(i)).

An appealing aspect of Algorithm 1 is that, by isolating the step of structural
inference, researchers can assess the robustness of their results to alternative
identification schemes without needing to re-run the reduced-form estimation.

2.7 The SVAR’s Tractability (or The “Want Operator” for a TVP

Extension)

Before moving to the time-varying parameter setting, I pause to take inventory
of the key features of the constant parameter SVAR that make inference for (A,F)
straightforward. The key conceptual properties are:

P1. Observational equivalence of points (A,F) and (AQ,FQ) for Q ∈ n in
the structural model.

P2. The ability to reparameterize the structural model from (A,F) to (B,H,Q)
and separate identifiable elements (B,H) and nonidentifiable elements Q.

From a practical perspective, an additional key property researchers lean on is
the following.

P3. The ability to sample the marginal posterior of (B,H) of the unrestricted
structural model as the posterior of a tractable reduced-form model.

In the next section I describe the analogous notions of these properties in a time-
varying parameter setting. In section 5 I provide an SVAR with time-varying
parameters that delivers the analogous notions of P1, P2, and P3.

3. The Challenge of a Time-Varying Parameter Extension

I take P1, P2, and P3 as the outputs from applying the “want operator” to the
notion of a time-varying parameter extension. However, formulating a model
that has time-varying parameters, and for which inference can proceed along
lines similar to the constant parameter model, poses unique challenges. I next
articulate the general class of models under consideration, and then explain the
unique issues involved in delivering P1, P2, and P3 in a time-varying parameter
setting.

12



Class of Models Under Consideration. Allowing the structural matrices to
change over time, the analogue to equation (2) in the time-varying parameter
setting is

y′tAt = x
′
tFt + "

′
t , "t ∼ N(0n,1, In) , for 1 ≤ t ≤ T .(24)

From the form of equation (24), one can see that, period-by-period, the data
density depends only on (At,Ft), and thus the joint density of y1∶T takes the form

p(y1∶T |A1∶T ,F1∶T ) =
T
∏

t=1
p(yt|At,Ft) .(25)

Period-by-period, p(yt|At,Ft) takes the same form as in the constant-parameter
model.

To close the model, one must specify a law of motion for At and Ft. I assume
that the law of motion is Markovian and governed by some static parameters �
taking values in a space �. The density of (At,Ft) then takes the form

p(At,Ft|�,At−1,Ft−1)(26)

and

p(A1∶T ,F1∶T |�,A0,F0) =
T
∏

t=1
p(At,Ft|�,At−1,Ft−1) .(27)

To conduct inference in the model, one also needs to specify a distribution for
the initial conditions p(A0,F0|�). To refer to the density of the entire sequence
of time-varying parameters inclusive of the distribution of the initial conditions,
I then write

p(A0∶T ,F0∶T |�) = p(A0,F0|�) ⋅ p(A1∶T ,F1∶T |�,A0,F0) .(28)

For each t, the space of values for the random matrices (At,Ft) is St = S. As a
slight abuse of notation I write ST+1 to refer to the space of values for all of the
random matrices in (A0∶T ,F0∶T ). Each St = S and hence ST+1 = S0 ×⋯ × ST .
Lastly, one must specify a prior for �. Having fully specified the Bayesian model,
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the posterior for all of the model’s unobservables takes the form

p(�,A0∶T ,F0∶T |y1∶T ) ∝ p(�) ⋅ p(A0∶T ,F0∶T |�) ⋅ p(y1∶T |A1∶T ,F1∶T ).(29)

Lastly, note that a model of this form can be interpreted as state-space model,
where the unobserved latent states (At,Ft) are related to the data via the “mea-
surement” equation in (24). I will often adopt this terminology going forward.

3.1 P1 in a Structural TVP model

From equation (29) one can see that inference for (A0∶T ,F0∶T ) will depend
on two terms. First, the term p(A0∶T ,F0∶T |�), which represents the ability of the
particular probability model for the time-varying parameters to rationalize a given
sequence (A0∶T ,F0∶T ). Second, the term p(y1∶T |A1∶T ,F1∶T ), which represents the
ability of (A1∶T ,F1∶T ) to rationalize the data. The first of these terms essentially
plays the role of a prior for the full sequence (A0∶T ,F0∶T ), albeit a prior that
happens to be conditional on � and to be constructed from the particular form of
equations (26), (27), and (28).

The observation that p(A0∶T ,F0∶T |�) always plays a role in likelihood-based
inference for the model’s unobservables is the key element of my notion of
observational equivalence of parameter points in the time-varying parameter
model, which I base on the density

p(y1∶T ,A0∶T ,F0∶T |�) = p(A0∶T ,F0∶T |�) ⋅ p(y1∶T |A1∶T ,F1∶T )(30)

and formalize in the following definition.

Definition 2 (Observational equivalence). The points (A0∶T ,F0∶T ) and (Ã0∶T , F̃0∶T )
are observationally equivalent if, for any � ∈ �,

p(y1∶T ,A0∶T ,F0∶T |�) = p(y1∶T , Ã0∶T , F̃0∶T |�) .

The intuition behind Definition 2 is as follows. If the model of time variation
inherently distinguishes between two points (A0∶T ,F0∶T ) and (Ã0∶T , F̃0∶T ) by
assigning them different densities under p(A0∶T ,F0∶T |�), then any likelihood-
based procedure for inference will also distinguish between them. Since the
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differing densities under the law of motion will pass through to equation (30), it
would be erroneous to consider such points observationally equivalent.

From the period-by-period symmetry between equation (24) in the TVP case
and equation (2) in the constant-parameter case, it is apparent that, regardless of
the details of the law of motion, the following claim holds for the invariance of
p(y1∶T |A1∶T ,F1∶T ) to orthogonal rotations.

Proposition 1. If the points (A1∶T ,F1∶T ) and (Ã1∶T , F̃1∶T ) are such that, in each
t, (Ãt, F̃t) = (AtQt,FtQt) for some Qt ∈ n, then

p(y1∶T |A1∶T ,F1∶T ) = p(y1∶T |Ã1∶T , F̃1∶T ) .

For the proof, see Appendix A.1.
Based on Proposition 1 alone, one might have been tempted to conclude that,

regardless of the other details of the model, as long as equation (24) is the model’s
measurement equation, all orthogonally rotated sequences of parameter points
are observationally equivalent. But this is not so. Likelihood-based inference
about (�,A0∶T ,F0∶T ) will depend on the joint density

p(y1∶T ,A0∶T ,F0∶T |�) = p(A0∶T ,F0∶T |�) ⋅ p(y1∶T |A1∶T ,F1∶T ) ,(31)

which includes not only the data density addressed by Proposition 1, but also
the model of time variation p(A0∶T ,F0∶T |�). Hence, if the points (A0∶T ,F0∶T )
are to be observationally equivalent under orthogonal rotations, then, in addi-
tion to Proposition 1, the model of time variation will need to be such that
p(A0∶T ,F0∶T |�) = p(Ã0∶T , F̃0∶T |�) for any �.

3.2 P2 in a Structural TVP model

If a structural TVP model is such that points differing by orthogonal rotations
are observationally equivalent according to Definition 2, then, as in the constant-
parameter case, one might hope to reparameterize the model to separate out the
nonidentifiable elements.

One can reparameterize the randommatrices (At,Ft) in each t via (Bt,Ht,Qt) =
f (At,Ft), just as in the constant-parameter case, and doing so gives the measure-

15



ment equation

y′t = x
′
tBt + "

′
tQ

′
tℎ(Ht)−1

′(32)

and induces a law of motion in the new parameter space of the form

p(Bt,Ht,Qt|�,Bt−1,Ht−1,Qt−1) .(33)

Similarly to the previous section, I write DOT+1 to refer to the space containing
the random matrices (B0∶T ,H0∶T ,Q0∶T ).

Regardless of the specifics of the law of motion, the data density conditional
on (B0∶T ,H0∶T ,Q0∶T ) will take the form of equation (7) period-by-period and
hence can be written without recourse to Q0∶T as

p(y1∶T |B0∶T ,H0∶T ,Q0∶T ) = p(y1∶T |B0∶T ,H0∶T ) .(34)

The posterior then takes the form

p(B0∶T ,H0∶T ,Q0∶T |�, y1∶T )

∝ p(B0∶T ,H0∶T ,Q0∶T |�) ⋅ p(y1∶T |B0∶T ,H0∶T ) .
(35)

For inference to proceed along similar lines as in the constant-parameter case,
one must then factor the density p(B0∶T ,H0∶T ,Q0∶T |�) as

p(Q0∶T |�,B0∶T ,H0∶T ) ⋅ p(B0∶T ,H0∶T |�) .(36)

so that the posterior can be written as

p(B0∶T ,H0∶T ,Q0∶T |�, y1∶T )

= p(Q0∶T |�,B0∶T ,H0∶T ) ⋅ p(B0∶T ,H0∶T |�, y1∶T ) ,
(37)

analogous to equation (14) for the constant-parameter model.
However, attempts to work with the densities in equations (36) and (37) face

unique challenges not present in the constant-parameter case. The first challenge
is simply obtaining the factorization of equation (36) from the structural law of
motion. To see why this is not straightforward, note that, on a period-by-period
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basis, one may generally factor equation (33) as

p(Qt|�,Bt−1,Ht−1,Qt−1,Bt,Ht) ⋅ p(Bt,Ht|�,Bt−1,Ht−1,Qt−1).(38)

At first, equation (38) appears analogous to the prior factorization in equation (9)
in the constant-parameter case. Note, however, that in general the distribution
of (Bt,Ht) remains dependent on the particular structural parameters in time
t− 1 through Qt−1. The presence of the Qt−1 in the law of motion for (Bt,Ht) im-
pedes the construction of the factorization in equation (33). Hence, the structural
model’s law of motion needs to yield densities, under reparameterization by f ,
that decompose as

p(Qt|�,Bt−1,Ht−1,Qt−1,Bt,Ht) ⋅ p(Bt,Ht|�,Bt−1,Ht−1) ,(39)

where the key thing to note is the absence of Qt−1 from the conditioning infor-
mation for the density of (Bt,Ht). If the law of motion can be decomposed as in
equation (39) rather than just (38), then the density for the whole sequence can
be written as in equation (36). Finally, this will yield a posterior of the form in
equation (37).

3.3 P3 in a Structural TVP model

Lastly, and as a practical matter, the density p(Bt,Ht|�,Bt−1,Ht−1) needs
to be tractable enough to conduct Bayesian inference in a purely reduced-form
model consisting of

y′t = x
′
tBt + u

′
t , u′t ∼ N(0n,1,H

−1
t ) , for 1 ≤ t ≤ T(40)

(Bt,Ht) ∼ p(Bt,Ht|�,Bt−1,Ht−1) .(41)

It must also be possible to sample from the conditional prior/posterior density
p(Q0∶T |�,B0∶T ,H0∶T ) in equation (37) to complete the task of structural inference.
With these properties in place, structural inference can proceed with an algorithm
analogous to Algorithm 1.
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4. The Extant Approach (and Its Shortcomings)

The approach currently used in the literature is based on estimating the time-
varying parameter VAR of Primiceri (2005), which takes the form

y′t = vec(Bt)
′(In ⊗ xt) + "′t�t�

−1
t for "t ∼ N

(

0n,1, In
)

(42)

where

�t =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�1,t 0 ⋯ 0
0 �2,t ⋱ ⋮

⋮ ⋱ ⋱ 0
0 ⋯ 0 �n,t

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, �t =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 �12,t ⋯ �1n,t
0 1 ⋱ ⋮

⋮ ⋱ ⋱ �n−1n,t
0 ⋯ 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.(43)

Let �t be a vector containing the elements of �t that are not restricted to be 0 or 1
and define �t ≡ [�1,t,… , �n,t] so that �t = diag(�t). The time-varying parameters
(�t, �t,Bt) evolve according to

�t = �t−1 diag(exp(�t)) , �t ∼ N(0n,1,��)(44)

�t = �t−1 + �t , �t ∼ N(0 n(n−1)
2 ,1,�� )(45)

vec(Bt) = vec(Bt−1) + �t , �t ∼ N(0mn,1,��) .(46)

The static parameters of the model then consist of � ≡ (��,�� ,��).
Researchers call this model a reduced form and then make inference by sam-

pling from a distribution over orthogonal rotations of the parameters. In particular,
they operationalize the algorithm I summarize in Algorithm 2, ostensibly in the
spirit of Algorithm 1.

Algorithm 2 - Structural posterior sampling with Primiceri (2005) as re-
duced form

1. Reduced-form model estimation.11

• For i = 1,… , n1
11One can estimate the parameters of this model using the MCMC algorithm in either Baumeis-

ter and Peersman (2013b) or Del Negro and Primiceri (2015).
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(a) sample
(

�(i)0∶T , �
(i)
0∶T ,B

(i)
0∶T ,�

(i)
)

∼ p(�0∶T , �0∶T ,B0∶T ,�|y1∶T )
(b) for each t, construct �(i)�,�,t = (�

(i)
t )−1

′(�(i)t )2(�
(i)
t )−1.

• Store
{

B(i)0∶T ,�
(i)
�,�,0∶T

}n1
i=1 and call them the reduced-form parameters.

2. Structural inference.

• For each draw in
{

B(i)0∶T ,�
(i)
�,�,0∶T

}n1
i=1, sampleQ

(i)
0∶T ∼ p

(Q0∶T |B
(i)
0∶T ,�

(i)
�,�,0∶T )

In the context of the discussion in Section 3, one might say this approach
starts from the pieces of the decomposition in equations (36) and (39) in the
discussion of P2, rather than deriving them as results from densities for (At,Ft)
that satisfy P1. In the context of Algorithm 1 for the constant-parameter case, the
second step implements a method for choosing among observationally equivalent
parameters in the structural representation. In contrast, Algorithm 2 proceeds
without having formulated a structural representation that rationalizes all of the
candidate parameters sampled in the second step as observationally equivalent.

Of course, when taking such an approach, it is also the case that all properties
of the model formulated over (Bt,Ht) will affect inference for the structural
parameters in the second step. When using Primiceri (2005) as the model for
the evolution of (B0∶T ,H0∶T ), one such known property is the dependence of
estimates of (�0∶T , �0∶T ,B0∶T ,�) on the particular ordering of the variables in yt
during estimation. In other words, when using Primiceri (2005) as a device for
eliciting inference on (�(i)�,�,0∶T ,B0∶T ), as in Algorithm 2, an n variable system
admits n! different answers to any question asked of the model.12 To see this
property, consider the distribution of ��,�,t under the laws of motion in equations
(44) and (45) in a 2-variable example.13 In the 2-variable case,

�t =
[

1 �12,t
0 1

]

⇐⇒ �−1t =

[

1 −�12,t
0 1

]

(47)

12Note that estimating even a single specification of the model is computationally demanding.
A single specification of a VAR-TVP-SV with four variables and four lags can easily take 24 hours
to estimate and another 24 hours for structural inference via the application of sign restrictions to
the first stage’s estimation output. Factorials behaving as they do, even a medium-sized system of
20 variables admits 2.43 × 1018 different orderings. In the absence of analytical results about the
estimator’s properties under alternative orderings, statements about the significance of variable
ordering in such a setting are obviously pure conjecture.

13This simple example is mentioned in footnote 5 of Primiceri (2005).
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and hence

��,�,t = �−1
′

t �t�t�
−1
t =

[

�21,t −�12,t�21,t
−�12,t�21,t �212,t�

2
1,t + �

2
2,t

]

.(48)

Substituting for the elements of ��,�,t in terms of the stochastic processes defined
by equations (43)–(45), the conditional distributions of the diagonal elements
are given by

��,�,[1,1],t = �21,t = (�1,t−1 exp(�1,t)
⏟⏞⏟⏞⏟
∼Lognormal

)2 ∼ Lognormal(49)

��,�,[2,2],t = �212,t�
2
1,t + �

2
2,t

= (�12,t−1 + �1,t)2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
∼ scaled noncentral �2

(�1,t−1 exp(�1,t))2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

∼Lognormal

+ (�2,t−1 exp(�2,t))2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

∼Lognormal

≁ Lognormal

(50)

Thus the distribution of ��,�,[1,1],t is lognormal, while the distribution of ��,�,[2,2],t
is not. Flipping the order of variables 1 and 2 prior to estimation flips each
variable’s pertinent element on the diagonal of ��,�,t. Since the distributions of
��,�,[1,1],t and ��,�,[2,2],t belong to different distributional families, the density of
each variable’s respective element of��,�,t necessarily changes.14 When inference
under alternative orderings leads to different inference for (��,�,0∶T ,B0∶T ), it then
also feeds into different inference for (A0∶T ,F0∶T ). I next show that this property
can have significant consequences in practice for structural inference.

An Example Application. Consider the application of Baumeister and Peers-
man (2013b) to the identification of the time-varying effects of oil supply shocks.
In step 1 of Algorithm 2 the authors estimate the model of Primiceri (2005) with

14Another popular version of this model is that of Cogley and Sargent (2005), in which �t
is time-varying but �t is constant. Restricting �t to be constant still yields random variables
��,�,[1,1],t and ��,�,[2,2],t belonging to different distributional families and thus the same issue is
present. To see this, note that the distribution of ��,�,[1,1],t in equation (49) is unaffected while,
in equation (50), the leading term in deriving the distribution of ��,�,[2,2],t becomes a constant
instead of a scaled noncentral �2 random variable. Nonetheless, the distribution of ��,�,[2,2],t
still involves the sum of lognormal random variables, which does not yield a lognormal random
variable.
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n = 4 observables ordered as

y′t = [Δq
oil
t ,Δp

oil
t ,Δgdpt,Δcpit].(51)

Having collected the draws of
{

��,�,0∶T ,B0∶T
}

, Baumeister and Peersman (2013b)
proceed to structural inference in step 2. The identifying assumptions for the oil
supply shock are that a negative oil supply shock causes, contemporaneously and
for four quarters thereafter, the quantity of oil supplied to fall and the price of oil
to increase.15

Baumeister and Peersman (2013b) find an increasing response over time of
poil to a shock that causes qoil to fall by 1 percent and they generally argue that
the oil demand curve has steepened over time. Ostensibly, the quantitative results
follow from the relatively uncontroversial sign restrictions for identifying the
oil supply shocks. However, to the extent that the empirical results were meant
to follow primarily from the sign restrictions, the dynamic system could just as
easily have been estimated under 4! = 24 different orderings of the variables in
yt.

It turns out that alternative orderings of yt can give substantively different
inference for the structural quantities of interest. Figure 1 shows the (generalized)
IRFs under the paper’s original ordering (left column of plots in Figure 1), as
well as the results from two alternative variable orderings (right column of plots
in Figure 1). In all cases the results are generated by Algorithm 2 and have
identical sign-restrictions.16 The first alternative ordering reverses the ordering of
all variables, in which case one can see that the maximum impulse responses are
roughly half of what they are under the baseline results, and there is significantly

15To be precise, Baumeister and Peersman (2013b) apply the sign restrictions to generalized
impulse responses. The requirement for the oil supply shock at time t, denoted "oil,st , is that in
response to "oil,st < 0,

(52) E
⎡

⎢

⎢

⎣

ℎ
∑

ℎ=0
Δqoilt+ℎ

⎤

⎥

⎥

⎦

< 0 < E
⎡

⎢

⎢

⎣

ℎ
∑

ℎ=0
Δpoilt+ℎ

⎤

⎥

⎥

⎦

for each of ℎ = 0,… , 4.
16I estimate each model using the same specification as Baumeister and Peersman (2013b) for

the MCMC algorithm: 50,000 iterations of “burn-in,” followed by 50,000 iterations for estimation,
from which every 10th draw is retained, thus yielding 5,000 posterior draws used for inference.
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less evidence of meaningful time variation in the impulse responses. The second
alternative ordering reverses the order of only the second and third variables, in
which case the maximum responses are roughly twice as large as they are under
the baseline ordering.17 With no guidance on which ordering is “more correct”
than another, any of the results presented in Figure 1 could have been considered
the “main results” with no aspect of the method pointing to them as more wrong
or right than any of the others.

To be clear, this example does not say that Baumeister and Peersman (2013b)
are “wrong” about the structural question per se. However, it does highlight a
deeply problematic property of pursuing set identification of structural quantities
based on using the Primiceri (2005) model as a device for formulating a law of
motion for the VAR coefficients.

5. The Drifting SVAR

In this section I describemy new structural VARwith time-varying parameters
that delivers P1, P2, and P3. To emphasize the parallels to the consant-parameter
framework, the organization of this section mirrors that of Section 2.

5.1 DSVAR: The Structural Model with Time-Varying Parameters

To more easily reference the full model, I repeat the measurement equation
given in Section 3,

(24) y′tAt = x
′
tFt + "

′
t , "t ∼ N(0n,1, In) , for 1 ≤ t ≤ T .

The key novelty of my approach is to specify the laws of motion for At and Ft,
which define p(At,Ft|�,At−1,Ft−1), as

At = �−1∕2At−1
t for 
t ∼ p(
t)(53)

Ft = Ft−1A−1t−1At +�t for �t ∼ N(0m,n,W, In)(54)

where � is a scalar,
t is an (n× n)matrix of random shocks that multiplicatively
perturb At−1, and �t is an m × n random matrix of matrix-normal mean-zero

17The data for this exercise come from the replication files for Baumeister and Peersman
(2013b), which are publicly available at https://www.aeaweb.org/articles?id=10.1257/
mac.5.4.1.
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FIGURE 1.—Impulse responses of macroeconomic variables to an oil supply
shock causing a 1 percent decrease in world oil production. Numbers in right
margin indicate maximum of a model’s time-series of median responses.
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additive shocks, whereW is an (m × m) symmetric positive definite matrix. The
laws of motion and distributions of shocks in equations (53) and (54) in turn
pin down p(At,Ft|�,At−1,Ft−1) in the model. In this model � ≡ (�,W). For the
moment I remain agnostic about the distribution of 
t beyond the requirement
that it satisfies the following condition.

Condition 1 (Spherical multiplicative shocks). For any 
t and any Q,P ∈ n,
p(
t) = p(Q
tP).

Condition 1 requires that the density of 
t is invariant to multiplication from
the left and right by (possibly different) orthogonal matrices, a property for
which the standard term in multivariate statistics is “spherical.” Note that there
are many candidate distributions for 
t that satisfy Condition 1, for example
p(
t) ∼ N(0n×n, In, In) would do the trick. I refer to a model with laws of motion
in the form of equations (24), (53), and (54) and with p(
t) satisfying Condition
1 as a drifting SVAR, or DSVAR for short.

The notion of structural shocks now includes two types of disturbances. The
first type consists of the vector of shocks "t, which perturb yt through the equilib-
rium dynamics represented by (At,Ft), and which also appeared in the constant-
parameter SVAR. The realization of "t affects yt and yt+1 and so on through
the VAR’s dependence on lagged values, but it does not affect the structural
parameters of the system and hence does not alter impulse response functions.
The second type consists of the random matrices (
t,�t), which perturb the
coefficients governing the equilibrium relationships among the variables, thus
altering impulse responses.

The key properties of the DSVAR go through largely from the structure
already described. However, because the distribution for initial conditions will
always play a role in inference, the following condition will also be required to
complete some of the subsequent arguments.

Condition 2 (Orthogonal invariance of distribution of initial conditions). For
any Q0 ∈ n and any � ∈ �, the density for the initial conditions (A0,F0)
satisfies p

(

A0,F0|�
)

= p
(

A0Q0,F0Q0|�
)

.
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5.2 The Identification Problem in a DSVAR

Turning to the density of (A1∶T ,F1∶T ) under the model’s law of motion, the
following result for the density of sequences of structural parameters is obtained.

Theorem 1. In a DSVAR, if the points (A0∶T ,F0∶T ) and (Ã0∶T , F̃0∶T ) are such
that, in each t, (Ãt, F̃t) = (AtQt,FtQt) for some Qt ∈ n, then

p(A1∶T ,F1∶T |�,A0,F0) = p(Ã1∶T , F̃1∶T |�, Ã0, F̃0) .

If, additionally, p
(

A0,F0|�
)

satisfies Condition 2, then

p(A0∶T ,F0∶T |�) = p(Ã0∶T , F̃0∶T |�) .

For the proof, see Appendix A.2.
Theorem 1 says that for any parameter point of the structural model, all

other parameter points that differ by orthogonal rotations have the same density.
As should be apparent from the discussion in Section 3.1, this is critical for
establishing observational equivalence under orthogonal rotations, but it is also a
surprising result. For example, the rotation of a point (At,Ft) into (Ãt, F̃t) must
be reconciled with two “moving parts” since both the density of At,Ft|At−1,Ft−1
and the density of At+1,Ft+1|At,Ft are affected. With the additional condition on
the distribution of initial conditions, the statement applies to full sequences of
the structural parameters.

From the orthogonal invariance of the law of motion shown in Theorem 1, and
the orthogonal invariance of the conditional data density shown in Proposition 1,
the ingredients are in place for a statement about observational equivalence in a
DSVAR.

Theorem 2. In a DSVAR, if the points (A0∶T ,F0∶T ) and (Ã0∶T , F̃0∶T ) are related
as in Theorem 1,

p(y1∶T ,A1∶T ,F1∶T |�,A0,F0) = p(y1∶T , Ã1∶T , F̃1∶T |�, Ã0, F̃0) .

If, additionally, p
(

A0,F0|�
)

satisfies Condition 2, then

p(y1∶T ,A0∶T ,F0∶T |�) = p(y1∶T , Ã0∶T , F̃0∶T |�) .
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Thus, the points (A0∶T ,F0∶T ) and (Ã0∶T , F̃0∶T ) are observationally equivalent
under Definition 2.

Proof. Examining the factorization in equation (31), the result follows directly
from applying Proposition 1 to the conditional data density and Theorem 1 to
the density of the dynamic parameters.

The same conditions yield an analogous statement for the posterior of all
unobservables.

Corollary 1. Under the conditions of Theorem 2, the posterior of the unobserv-
ables satisfies p(�,A0∶T ,F0∶T |y1∶T ) = p(�, Ã0∶T , F̃0∶T |y1∶T ).

Proof. Examining the factorization in equation (29), the result follows immedi-
ately from Theorem 2.

Theorem 2 (and Corollary 1) mean that for any realization of y1∶T , the econo-
metrician cannot differentiate between parameter points that differ by orthogonal
rotations.

5.3 A Useful Reparameterization of a DSVAR

The DSVAR’s invariance to orthogonal rotations of parameters suggests the
potential utility of reparameterizing in terms of (B0∶T ,H0∶T ,Q0∶T ), similar to the
constant-parameter model.

First, consider making this reparameterization for the structural parameters
in a single period t. The joint density is given by

p
(

Bt,Ht,Qt|�,At−1,Ft−1
)

= pAt,Ft
(

f−1(Bt,Ht,Qt)|�,At−1,Ft−1
)

⋅ J
(

(At,Ft) ←→ (Bt,Ht,Qt)
)

(55)

The following result summarizes the implications of the reparameterization
of the time t structural parameters.

Proposition 2. In a DSVAR

(i) p
(

Bt,Ht,Qt|�,At−1,Ft−1
)

= p(Qt) ⋅ p
(

Bt,Ht|�,At−1,Ft−1
)

(ii) p
(

At+1,Ft+1|�,Bt,Ht,Qt
)

= p
(

At+1,Ft+1|�,Bt,Ht
)

.
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For the proof, see the appendix.
The key elements of Proposition 2 to note are the independence of Qt and

(Bt,Ht) in (i) and the lack of dependence of (At+1,Ft+1) on Qt in (ii).

Proposition 3. In a DSVAR,

p
(

Bt+1,Ht+1,Qt+1|�,Bt,Ht,Qt
)

= p(Qt+1) ⋅ p
(

Bt+1,Ht+1, |�,Bt,Ht
)

.

For the proof, see the appendix.
As a result of the properties summarized in Proposition 3, reparameterizing

all elements of the sequence (A0∶T ,F0∶T ) gives

Corollary 2. In a DSVAR, if the distribution for initial conditions satisfies Con-
dition 2, then

p
(

B0∶T ,H0∶T ,Q0∶T |�
)

= p
(

Q0∶T
)

⋅ p
(

B0∶T ,H0∶T |�
)

(56)

where

p
(

B0∶T ,H0∶T |�
)

= p
(

B0,H0|�
)

⋅
T
∏

t=1
p
(

Bt,Ht|�,Bt−1,Ht−1
)

(57)

p
(

Q0∶T
)

=
T
∏

t=0
p(Qt).(58)

Proof. The proof follows from the fact that p
(

B0∶T ,H0∶T ,Q0∶T |�
)

= p
(

B0,H0,
Q0|�

)

⋅
∏T

t=1 p
(

Bt,Ht,Qt|�,Bt−1,Ht−1,Qt−1) and then applying Proposition 3
in each t.

The statement about the law of motion in Corollary 2 leads directly to the
following result for the posterior density conditional on �.

Corollary 3. In a DSVAR, if the distribution for initial conditions satisfies Con-
dition 2, then

p
(

B0∶T ,H0∶T ,Q0∶T |�, y1∶T
)

= p(Q0∶T ) ⋅ p(B0∶T ,H0∶T |�, y1∶T )

Proof. Given the factorization in Corollary 2, the result follows directly from
equations (35), (36), and (37).
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Lastly, one can find the following result for the joint posterior of all unob-
servables.

Corollary 4. In a DSVAR, if the distribution for initial conditions satisfies Con-
dition 2, then

p
(

�,B0∶T ,H0∶T ,Q0∶T |y1∶T
)

= p(Q0∶T ) ⋅ p(�,B0∶T ,H0∶T |y1∶T )

Proof. Noting that

p
(

�,B0∶T ,H0∶T ,Q0∶T |y1∶T
)

∝ p(�) ⋅ p
(

B0∶T ,H0∶T ,Q0∶T |�, y1∶T
)

,(59)

the result follows from Corollary 3.

When analyzing the reduced form of a DSVAR it will be useful to note the
following additional properties of the densities in Proposition 3.

Proposition 4. The densities in Proposition 3 take the forms:

p(Qt+1) = U (n)(60)

p
(

Bt+1,Ht+1, |�,Bt,Ht
)

= p(Ht+1|�,Ht) ⋅ p(Bt+1|�,Bt,Ht+1)(61)

where

p
(

Ht+1, |�,Ht
)

∝ p

(

�1∕2ℎ(Ht−1)−1ℎ(Ht)
)

⋅ �n2∕2|ℎ(Ht−1)|−n|Ht|
−1∕2(62)

p(Bt+1|�,Bt,Ht+1) = N(Bt+1|Bt,W,H−1
t+1) .(63)

For the proof, see the appendix.

5.4 Identifying Restrictions in a DSVAR

As in the constant-parameter model, the economist will typically impose re-
strictions on the set of candidates for structural parameters by restricting attention
to certain regions of the parameter space. In general, one might represent such
restrictions as a set  ⊆ DOT+1. To take a simple example, one could impose
some standard restrictions from the SVAR literature on a period-by-period basis.
Note, however, that the restriction region now pertains to the entire joint space of
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all random matrices in (B0∶T ,H0∶T ,Q0∶T ), so more exotic identification schemes
are possible.

Analagous to equation (15) in the constant-parameter model, one can consider
the prior in the restricted model to be

p
(

B0∶T ,H0∶T ,Q0∶T |�
)

= p
(

B0∶T ,H0∶T ,Q0∶T |�
)

⋅ I
{(

B0∶T ,H0∶T ,Q0∶T
)

∈ 
}

.
(64)

which can in general be factored into a marginal and conditional similarly to the
unrestricted case, as

p(B0∶T ,H0∶T ,Q0∶T |�)

∝ p(Q0∶T |B0∶T ,H0∶T ) ⋅ I
{

Q0∶T ∈ Q(B0∶T ,H0∶T )
}

⋅ p(B0∶T ,H0∶T |�) ⋅ I
{

(B0∶T ,H0∶T ) ∈ B,H
}

(65)

where

B,H ≡
{

(B0∶T ,H0∶T ) ∶ ∃Q0∶T for which (B0∶T ,H0∶T ,Q0∶T ) ∈ 
}

(66)

Q(B0∶T ,H0∶T ) ≡
{

Q0∶T ∶
(

B0∶T ,H0∶T ,Q0∶T
)

∈ 
}

.(67)

Under the assumption that the identifying restrictions are, again, “exact or less,” in
the sense that I

{

(B0∶T ,H0∶T ) ∈ B,H
}

= 1 for almost all (B0∶T ,H0∶T ) ∈ DT+1,
I define the restricted prior for Q0∶T as

p(Q0∶T |�,B0∶T ,H0∶T )

=
p(Q0∶T |B0∶T ,H0∶T ) ⋅ I

{

Q0∶T ∈ Q(B0∶T ,H0∶T )
}

∫Q0∶T p(Q0∶T |B0∶T ,H0∶T ) ⋅ I
{

Q0∶T ∈ Q(B0∶T ,H0∶T )
}

dQ0∶T

.
(68)

The posterior of the restricted model then becomes

p
(

B0∶T ,H0∶T ,Q0∶T |y1∶T ,�
)

= p(Q0∶T |�,B0∶T ,H0∶T ) ⋅ p
(

B0∶T ,H0∶T |y1∶T ,�
)

.
(69)
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5.5 Reduced Form of a DSVAR

In this section I show that the structural model of the previous section admits
a set of reduced-form parameters as a marginal for which one can construct a
purely reduced-form representation.

5.5.1 Fully Reduced Form in General

From the factorization in Corollary 3, one can see that, in principle, a DSVAR
should admit a reduced-form representation for the dynamics of (B0∶T ,H0∶T ).
Under the reparameterization of the previous section, the basic idea is to integrate
out the unobservable matrices Q0∶T from the posterior. The sought-after fully
reduced-form model then needs to specify laws of motion for (Bt,Ht) such that
the posterior of (B0∶T ,H0∶T ) is equivalent to the marginal posterior under the
structural model. To do so, it will suffice to construct laws of motion for (Bt,Ht)
that induce the DSVAR’s density for p(B0∶T ,H0∶T |�), which is how I proceed.

Proposition 5. Let p(
t) be as defined for a DSVAR and let p

′ denote the
density of the random matrix
t
′

t. IfHt evolves according to the law of motion

Ht =
1
�
ℎ(Ht−1)�t ℎ(Ht−1)′ for �t ∼ p

′(�t)

then the distribution p(Ht|�,Ht−1) is the same as that given in Proposition 4.

For the proof, see the appendix.
Next, turning to the law of motion for Bt,

Proposition 6. The distribution p(Bt|�,Bt−1,Ht) induced by the law of motion

Bt = Bt−1 + Vt for Vt ∼ N
(

0m,n,W,H−1
t

)

,

is the same as that given in Proposition 4.

Proof. FromProposition 4, the requisite distribution forBt isN(Bt|Bt−1,W,H−1
t ).

The result then follows from the form of Vt and well-known properties of the
matrix-variate normal distribution under affine transformations.

The upshot of the previous two results is that, in principle, one can obtain the
marginal posterior of (B0∶T ,H0∶T ) by estimating a reduced-form model directly.
I codify this fact in the following two results.
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Theorem 3. Let p(B0∶T ,H0∶T |�) be the density from a reparameterized DSVAR,
as given in Proposition 3, and let p̃(B0∶T ,H0∶T |�) be the density under the purely-
reduced-form model, as implied by Proposition 5 and Proposition 6. Then

p(B0∶T ,H0∶T |�) = p̃(B0∶T ,H0∶T |�) .

Proof. The proof follows directly from Proposition 5 and Proposition 6.

Which leads to the following statement about the Bayesian posteriors condi-
tional on �.

Corollary 5. In a DSVAR, with the p(⋅) and p̃(⋅) notation defined analogously
to Theorem 3,

p(B0∶T ,H0∶T |�, y1∶T ) = p̃(B0∶T ,H0∶T |�, y1∶T ) .

Proof. Noting that

p(B0∶T ,H0∶T |�, y1∶T ) ∝ p(B0∶T ,H0∶T |�) ⋅ p(y1∶T |B0∶T ,H0∶T ),(70)

the result follows from Theorem 3.

Lastly, I get the following result for the Bayesian posteriors of the unobserv-
ables including �.

Corollary 6. In a DSVAR, with the p(⋅) and p̃(⋅) notation defined analogously
to Theorem 3,

p(�,B0∶T ,H0∶T , |y1∶T ) = p̃(�,B0∶T ,H0∶T , |y1∶T ) .

Proof. Note that

p(�,B0∶T ,H0∶T |y1∶T ) ∝ p(�) ⋅ p(B0∶T ,H0∶T |�) ⋅ p(y1∶T |B0∶T ,H0∶T )(71)

∝ p(�) ⋅ p(B0∶T ,H0∶T |�, y1∶T ).(72)

The result then follows from Corollary 5.
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5.5.2 A Tractable Special Case

The model that I take to the data in the subsequent sections uses a distri-
bution for 
t that induces a matrix beta distribution for �t = 
t
′

t, denoted
Bn(�1∕2, �2∕2). To do so, I define a density for the shocks 
t that is essentially
a random “matrix square root” of a Bn(�1∕2, �2∕2)-distributed matrix. I leave
the details on the construction of this random matrix for Appendix A.4. For
present purposes, the key thing to note is that inducing �t ∼ Bn(�1∕2, �2∕2)
has the key benefit of yielding a reduced-form model, known in the statistics
literature as a dynamic linear model with discounted Wishart stochastic volatility
(DLM-DWSV), that is tractable and that nests the constant-parameter VAR as a
limiting case. The most tractable form of the DLM-DWSV, and the one that I
take to the data in subsequent sections, uses �1 = �∕(1 − �) and �2 = 1.18

Two keymodel features allow the DLM-DWSV to nest the VAR. First, one can
collapse to 0m,n the distribution for the additive shocks to Bt by takingW→ 0m,m.
With no shocks perturbing the coefficients in Bt from one period to the next, each
Bt is pulled to B0, eliminating the model’s time-varying VAR coefficients. B0
then plays the role of B in the constant-parameter case. Second, under certain
choices of �1 and �2 in which they are linked to �, taking � → 1 pulls �t → �In
for all t.19 From the law of motion in Proposition 5, one can see that forcing
�t = �In will have the effect of pulling each Ht to Ht−1 and so on all the way
back to H0, eliminating the model’s stochastic volatility of forecast errors. H0

then plays the role of H in the constant-parameter case.

5.6 From Reduced-Form Parameter Estimation to Structural Inference

in a DSVAR

Given inference for (B0∶T ,H0∶T ,�), inference for (B0∶T ,H0∶T ,Q0∶T ,�) sub-
ject to identifying restrictions can proceed in much the same way as in constant-
parameter models. Analogous to Algorithm 1, researchers can generate samples
of (B0∶T ,H0∶T ,Q0∶T ,�) by implementing Algorithm 3.

18With �2 = 1, the distribution is known as singular matrix beta with density derived by Uhlig
(1994).

19When the shocks�t are distributed asBn(�1∕2, �2∕2), they haveE[�t] = �1∕(�1+�2) In. Thus,
setting �1∕�2 = �∕(1 − �) gives E[�t] = � In. Since E[Ht|�,Ht−1] = �−1H1∕2t−1E[�t]H

1∕2′
t−1 , the

process for Ht given in Proposition 5 then takes on random walk behavior, i.e., E[Ht|�,Ht−1] =
Ht−1, when E[�t] = � In. For the result on the collapsing second moments, see Konno (1988).
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Algorithm 3 - Structural posterior sampling for a DSVAR

1. Reduced-form model estimation

• For i = 1,… , n1, sample
(

B(i)0∶T ,H
(i)
0∶T

)

∼ p(B0∶T ,H0∶T |y1∶T )

• Store
{

B(i)0∶T ,H
(i)
0∶T

}n1
i=1

2. Structural inference

• For each draw in
{

B(i)0∶T ,H
(i)
0∶T

}n1
i=1, sample Q

(i)
0∶T ∼ p

(Q0∶T |B
(i)
0∶T ,H

(i)
0∶T ).

5.7 The DSVAR’s Tractability (or The “Wants” for a TVP Extension

Delivered)

Before moving on to the empirical application, I pause to take inventory of the
key features of the DSVAR that make inference for (A0∶T ,F0∶T ) straightforward.
The key conceptual properties are:

P1. Observational equivalence of points (A0∶T ,F0∶T ) and (AQ,FQ) forQ0∶T ∈
n in the structural model.

P2. The ability to reparameterize the structural model to (B0∶T ,H0∶T ,Q0∶T ) to
separate identifiable elements (B0∶T ,H0∶T ) and nonidentifiable elements
Q0∶T .

From a practical perspective, an additional key property researchers require is
the following.

P3. The DSVAR is described in enough generality here that this will vary
across model formulations; however, Section 5.5.2 gives a special case that
is particularly tractable (described in greater detail in the next section).
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6. Bayesian Estimation of the Reduced-Form Model with
Matrix-Beta Shocks

Given the data y1∶T , Bayesian estimation of the reduced-form model entails
characterizing the posterior distribution of the model’s unobservables:

p(�,B0∶T ,H0∶T |y1∶T ) =
p(�,B0∶T ,H0∶T ) p(y1∶T |�,B0∶T ,H0∶T )

p(y1∶T )
(73)

After having estimated (�,B0∶T ,H0∶T ), inference for structural parameters can
proceed as described in Section 5.6.

One cannot fully characterize the posterior in equation (73) analytically so I
make inference about (�,B0∶T ,H0∶T ) by generating a random sample from the
posterior via a Markov chain Monte Carlo (MCMC) algorithm. MCMC algo-
rithms iterate over a Markov chain constructed to have the posterior distribution
as its invariant distribution. While draws from the MCMC algorithm are not
iid, iteratively sampling from the MCMC algorithm asymptotically yields draws
representative of the model’s posterior. In particular, my MCMC algorithm is
of a type known as a Gibbs sampler, which means that the algorithm entails
iteratively sampling from the conditional posteriors of the subsets of a partition
of the model’s unobservables.

My Gibbs sampler for the DLM-DWSV consists of two blocks of parameters
based on the partition of the unobservables intoW and (�,B0∶T ,H0∶T ). The goal
then becomes sampling from the conditional distributions,

1. Block 1. p(W|y1∶T , �,B0∶T ,H0∶T )

2. Block 2. p(�,B0∶T ,H0∶T |y1∶T ,W)

(a) p(�|y1∶T ,W)

(b) p(B0∶T ,H0∶T |y1∶T , �,W)

I leave the exact formulas for Appendix B, but the high-level considerations to
be mindful of are as follows. Under an inverse Wishart prior forW, which may
condition on the value of �, the conditional posterior in Block 1 is also an inverse
Wishart distribution; hence, this draw is straightforward. In Block 2 the sample
from the joint posterior of �,B0∶T ,H0∶T |y1∶T ,W is achieved by factoring the joint
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distribution into the distribution of �|y1∶T ,W in Step 2(a), which is marginal
of B0∶T ,H0∶T , and the distribution of B0∶T ,H0∶T |y1∶T ,W, � in Step 2(b), which
conditions on the value of �.

My sampling strategy for Block 2 makes use of two particularly elegant
properties of the DLM-DWSV. First, there exist exact expressions for evalu-
ating the likelihood for the static parameters marginal of the entire sequence
B0∶T ,H0∶T , including the stochastic volatility components, in a fashion analo-
gous to likelihood-based inference with the Kalman filter. I describe the steps of
the recursive filter in Table I.20 The draw of �|y1∶T ,W in Step 2(a) can then be

TABLE I
RECURSIVE FILTER FOR LIKELIHOOD EVALUATION IN THE DLM-DWSV

Distribution Supporting
of Interest Distributional Family Parameters Computations

Step 1 – Prior
(

dt−1|t−1,	t−1|t−1,Bt−1|t−1,Ct−1|t−1
)

given from iteration t − 1

(Ht|y1∶t−1,�) W
(

dt|t−1,	−1t|t−1
)

dt|t−1 = �dt−1|t−1
	t|t−1 = �	t−1|t−1

(Bt|y1∶t−1,�,Ht) N
(

Bt|t−1,Ct|t−1,H−1t
)

Bt|t−1 = Bt−1|t−1
Ct|t−1 = Ct−1|t−1 +W

Step 1.5 – Prediction

(yt|y1∶t−1,�) T�t
(

yt|t−1,�yt
)

�t = dt|t−1 − n + 1
yt|t−1 = B

′
t|t−1xt

�yt = (qt∕�t)	t|t−1 qt = x′tCt|t−1xt + 1

Step 2 – Posterior

(Ht|y1∶t,�) W
(

dt|t,	−1t|t
)

dt|t = dt|t−1 + 1
	t|t = 	t|t−1 +

1
qt
ete′t et = yt − yt|t−1

(Bt|y1∶t,�,Ht) N
(

Bt|t,Ct|t,H−1t
)

Bt|t = Bt|t−1 +Kte′t Kt = Ct|t−1xt∕qt
Ct|t = Ct|t−1 −KtK′tqt

implemented with a Metropolis-Hastings step since one can evaluate (a kernel

20Table I summarizes the relevant results from the statistics literature; see Prado and West
(2010).
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of) the target density pointwise. Evaluating the log-likelihood function pointwise
amounts to simply running the algorithm forward and accumulating the sum of
evaluations of the log of the density in Step 1.5 at the realized values of yt. Sec-
ond, step 2(b) can be implemented via known exact expressions for recursively
sampling backwards the sequence of latent states. I summarize the algorithm for
this draw, sometimes referred to as a “simulation smoother,” in Table II.21

TABLE II
SIMULATION SMOOTHER FOR DLM-DWSV

Distribution to Distributional Parameters and
Be Sampled Family Supporting Computations

(

dt|t,	t|t,Bt|t,Ct|t,Bt+1|t,Ct+1|t
)

given from forwards filter

(Ht|y1∶T ,�,Ht+1) Ht = �Ht+1 + �t d∗t|t+1 = (1 − �)dt|t
�t ∼ W (d∗t|t+1,	

−1
t|t )

(Bt|y1∶T ,�,Ht,Bt+1) N(Bt|t+1,Ct|t+1,H−1t ) K̃t = Ct|tC−1t+1|t
Bt|t+1 = Bt|t + K̃t(Bt+1 − Bt+1|t)
Ct|t+1 = Ct|t − K̃tCt+1|tK̃′t

6.1 Priors

Themodel primitives requiring prior distributions are �,W, and (B0,H0). This
section describes the general structure of my priors, with the specific choices of
prior hyperparameters provided in the context of the application.

Prior for �. The uncertainty overHt at each step of the filter is characterized by
a Wishart distribution with degrees of freedom of either �ℎt−1 or �ℎt−1 + 1 (see
Table I). When starting the ℎt values at their steady state of 1∕(1−�), the smaller
of these two degrees of freedom parameters is �∕(1 − �). To maintain, at each
step of the filter, a valid Wishart probability distribution and a valid multivariate-t

21The distribution of Bt given in Table II corrects an erratum in Prado
and West (2010) (M. West, personal communication, January 23, 2018).
The corrected version is publicly available by incorporating the changes in
http://www2.stat.duke.edu/∼mw/Prado&WestBook/errata.pdf.
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predictive density for yt, � then needs to satisfy �∕(1 − �) > n − 1 and thus
p(�) can have positive density only on ((n − 1)∕n, 1). I use a 4-parameter beta
distribution, which allows one to set the min and max values in addition to the
usual shape and scale parameters of the beta distribution.

Prior forW. As described in equation (46), in the model of Primiceri (2005)
the distribution of the model’s linear coefficients takes the form vec(Bt) ∼
N(vec(Bt−1),��). It has become standard in the literature to base the prior for
�� on a presample of observations. In particular, a standard choice is

�� ∼ IW (Tpre, k2�� ⋅ Tpre ⋅ V (B̂OLS))(74)

where Tpre is the number of pre-sample observations, kQ is a hyperparameter
chosen by the researcher, and V (b̂OLS) is the matrix of standard errors for the b̂pre
OLS estimates.22 In Primiceri (2005), kQ = 0.01 and Tpre = 40 and V (B̂OLS) =
�pre ⊗ (X′

preXpre)−1.
In the DLM-DWSV, vec(Bt) has distribution

vec(Bt) ∼ N(vec(Bt−1),�t ⊗W)(75)

and hence the matrix (H−1
t ⊗W) functions similarly to Q from the Primiceri

(2005) model. I choose a prior for W in the spirit of the p(Q) given in (74).
Estimating a VAR over a presample under a diffuse prior yields the posterior for
bpre of

bpre|�pre ∼ N(b̂pre, �pre ⊗ (X′
preXpre)−1) .(76)

I then scale the prior according to the number of presample observations and a
hyperparameter �21 .

W ∼ IW (�21 ⋅ Tpre ⋅ (X
′
preXpre)−1, Tpre) .(77)

Prior for (B0,H0). The prior for the initial values of the dynamic latent states
(B0,H0) maintains the form of the distributional families in the recursive filter

22Clark and Ravazzolo (2015) follow this procedure as well.
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summarized in Table I, i.e., (B0,H0) ∼ NW (B0|0,C0|0, d0|0,	−1
0|0). The prior

for (B1,H1) is then induced by the model’s law of motion and inference for its
sufficient statistics is obtained according to Step 1 of Table I. Treating (B0,H0) in
this fashion allows its elements to be integrated out of the likelihood, just like the
rest of the sequence (B1∶T ,H1∶T ). The remaining primitives to be specified are
then (B0|0,C0|0, d0|0,	−1

0|0). In the context of the application, I leave discussion of
the specific choices for these hyperparameters to the appendix.

7. Application: Revisiting a Time-Varying Oil Demand
Elasticity

I apply the DSVAR to revisit the extent of time-varying price elasticities
in the oil market. The basic set-up is the same as in the motivating example of
Section 4. Figure 2 plots the impulse responses frommy model plotted against the
impulse responses from the 3 orderings in the motivating example. The results
from my DSVAR have some similarities to those of Baumeister and Peersman
(2013b) under their variable ordering, but my results generally indicate smaller
and smoother responses, more in line with the results from the reverse ordering.

To further contextualize the results of the DSVAR, I compare it to the results
one would obtain from an approach based on Algorithm 2, but which was “ag-
nostic” about which variable ordering was correct. In particular, I estimate all
n! = 24 possible orderings and then estimate impulse responses by integrating
over the simulated impulse responses from all of the models. It is worth em-
phasizing that, although I can conduct such an exercise in the context of this
particular model, such an approach rapidly becomes computationally infeasible
as the number of variables moves beyond n = 4. Figure 3 shows the results
of the DSVAR against the posterior medians and Bayesian credible sets one
would obtain by integrating over the impulse responses of all 24 orderings. In-
terestingly, the posterior medians from the DSVAR are virtually identical to
those obtained by considering estimates from Algorithm 2 when accounting for
all 24 orderings. Thus the inference obtained from the DSVAR, which entails
estimating only a single model, replicates the inference one would obtain from
an approximately agnostic approach that keeps the Primiceri (2005) model at the
core of the inference.
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8. Conclusion

This paper developed a new SVAR with time-varying parameters, which I
call a DSVAR. It is the only such model in the literature to date that allows for
internally consistent notions of exact and set identification of structural param-
eters following the estimation of a reduced form. As a byproduct, unlike other
approaches in the literature, the methods developed here are invariant to variable
ordering in the vector of observables. I apply the model to the application of
Baumeister and Peersman (2013b) and show that my proposed method yields
inference almost identical to what one would obtain by accounting for all n!
possible orderings of the Baumeister and Peersman (2013b) model.
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FIGURE 2.—Impulse responses of macroeconomic variables to an oil supply
shock causing a 1 percent decrease in world oil production.

40



FIGURE 3.—Impulse responses of macroeconomic variables to an oil supply
shock causing a 1 percent decrease in world oil production.
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A. Proofs

A.1 Useful Results

I first prove two useful results that are well-known in the literature on constant-
parameter SVARs, but which will also prove useful in my extension to a TVP
model.

Lemma 1. Let (A,F) be a parameter point in S,Q a matrix inn, and (Ã, F̃) =
(AQ,FQ), then p(yt|A,F, yt−p∶t−1) = p(yt|Ã, F̃, yt−p∶t−1).

Proof. First rewrite equation (2) as

y′t = x
′
tFA

−1 + "′tA
−1 .(A.78)

Under the assumption that "t ∼ N(0n,1, In), the density of yt is thus

p(yt|(A,F), yt−p∶t−1) = (2�)−n∕2|(AA′)−1|−1∕2

⋅ exp
{

−(1∕2) ⋅ (y′t − x
′
tFA

−1)(AA′)(y′t − x
′
tFA

−1)′
}

.
(A.79)

The lemma follows from evaluating equation (A.79) at the parameter point S̃ and
noting that

ÃÃ′ = AQQ′A′ = AA′(A.80)

F̃Ã−1 = FQQ−1A−1 = FA′(A.81)

where the second equalities in equations (A.80) and (A.81) follow from the
orthogonality of Q.

The previous result leads to the following corollary for the likelihood of the
entire sequence of observables.

Corollary 7. Let (A,F) and (Ã, F̃) be as defined in Lemma 1, then p(y1∶T |A,F) =
p(y1∶T |Ã, F̃).
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Proof.

p(y1∶T |A,F) =
T
∏

t=1
p(yt|A,F, y0∶t−1)(A.82)

=
T
∏

t=1
p(yt|A,F, yt−p∶t−1)(A.83)

=
T
∏

t=1
p(yt|Ã, F̃, yt−p∶t−1)(A.84)

= p(y1∶T |Ã, F̃) .(A.85)

where the equality in (A.84) follows from Lemma 1.

These results carry over almost immediately to the time-varying parame-
ter model because each p(yt|At,Ft, yt−p∶t−1) takes a form nearly identical to its
counterpart in the constant-parameter model.

Corollary 8. Let (At,Ft) be a parameter point in St, Qt a matrix in n, and
(Ãt, F̃t) = (AtQt,FtQt), then p(yt|At,Ft, yt−p∶t−1) = p(yt|Ãt, F̃t, yt−p∶t−1).

Proof. The proof goes through identically to Lemma 1 by adding the subscript t
to A, F, and Q.

This leads to the proof of Proposition 1.

Proof of Proposition 1. The proof goes through identically to Corollary 7 by
adding the subscript t to each S and making recourse to Corollary 8.

A.2 Proof of Theorem 1

Proof of Theorem 1.
I prove the result in three parts.

Part I: Preliminaries.
The structure of equations (53) and (54) is such that one can factor each

conditional density as

p(At,Ft|�,At−1,Ft−1) = p(At|�,At−1,Ft−1) ⋅ p(Ft|�,At−1,Ft−1,At)(A.86)

= p(At|At−1,�) ⋅ p(Ft|At−1,Ft−1,�,At)(A.87)
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where (A.87) follows from the definition of the law of motion for At in equation
(53), which does not depend on Ft−1. Hence, one can write equation (27) as

p(A1∶T ,F1∶T |�,A0,F0) =
[

T
∏

t=1
p(At|�,At−1)

]

⋅

[

T
∏

t=1
p(Ft|�,At−1,Ft−1,At)

]

.

(A.88)

To prove the desired result it then suffices to show that, for parameter points
related as

(Ãt, F̃t) = (AtQt,FtQt)(A.89)

(Ãt−1, F̃t−1) = (At−1Qt−1,Ft−1Qt−1) ,(A.90)

the following two equalities hold

p(At|At−1,�) = p(Ãt|Ãt−1,�)(A.91)

p(Ft|At−1,Ft−1,�,At) = p(F̃t|Ãt−1, F̃t−1,�, Ãt) .(A.92)

Part II: Proof that equation (A.91) holds.
Deriving the conditional density of At as a change of variables from the

random matrix 
t and the law of motion in equation (53) gives

p(At|At−1,�, p
) = p
(�1∕2A−1t−1At) ⋅ J
(


t ←→ At|At−1,�
)

(A.93)

Evaluating the p
 term in equation (A.93) at the point Ãt and Ãt−1 gives

p
(�1∕2Ã−1t−1Ãt) = p
(�
1∕2Q−1

t−1A
−1
t−1AtQt)(A.94)

= p
(Q−1
t−1(�

1∕2A−1t−1At)Qt)(A.95)

= p
(�1∕2A−1t−1At)(A.96)

The equality of the p
 evaluations in equations (A.95) and (A.96) follows from
the assumption that p
 satisfies Condition 1 and the fact that both Q−1

t−1 and Qt

are orthogonal matrices.
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The Jacobian term is given by

J
(


t ←→ At|At−1,�
)

= |�1∕2A−1t−1|
n = �n2∕2|At−1|−n .(A.97)

Evaluated at the point (Ãt, Ãt−1), the Jacobian simplifies as

J
(


t ←→ At|At−1,�
)

|

|

|(At,At−1)=(Ãt,Ãt−1)
= �n2∕2|Ãt−1|−n(A.98)

= �n2∕2|At−1Qt−1|
−n(A.99)

= �n2∕2|At−1|−n |Qt−1|
−n

⏟⏟⏟
=1

(A.100)

= �n2∕2|At−1|−n(A.101)

Putting the results in equations (A.96) and (A.101) together, one can see that

p(At|At−1,�, p
) = p(Ãt|Ãt−1,�, p
) ,(A.102)

which completes Part II.

Part III: Proof that equation (A.92) holds.
Define Ft ≡ Ft−1A−1t−1At. Under the law of motion in equation (54), it is

immediate from the definition of �t and well-known properties of the matrix-
variate normal distribution that

p(Ft|�,At−1,Ft−1,At) = pN (Ft|Ft,W, In)(A.103)

Hence, the conditional density of Ft is given by

p(Ft|At−1,Ft−1,�,At) = (2�)−nm∕2|In|−m∕2|W|

−n∕2

⋅ exp{−1
2
tr[I−1n (Ft − Ft)

′W−1(Ft − Ft)]}
(A.104)
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Now consider a random matrix F̂t where

F̂t = F̃t−1Ã−1t−1Ãt +�t(A.105)

=
(

Ft−1Qt−1
) (

Q−1
t−1A

−1
t−1

) (

AtQt
)

+�t(A.106)

= Ft−1A−1t−1AtQt +�t(A.107)

= FtQt +�t(A.108)

and hence

F̂t|Ãt−1, F̃t−1,�, Ãt ∼ N(FtQt, W, In)(A.109)

From inspection of the expressions in (A.103) and (A.109), one can see that
the density of F̂t and the density of Ft differ by only their means, which appear
only in the exponential-trace term of the matrix-variate normal density. The
exponential-trace term from the density of F̂t is

tr
[

(F̂t − FtQt)′W−1(F̂t − FQt)
]

.(A.110)

Evaluating the expression in (A.110) at the point F̂t = F̃t = FtQt gives

tr
[

(FtQt − FtQt)′W−1(FtQt − FtQt)
]

(A.111)

= tr
[

Q′
t(Ft − Ft)

′W−1(Ft − Ft)Qt

]

(A.112)

= tr
[

QtQ′
t(Ft − Ft)

′W−1(Ft − Ft)
]

(A.113)

= tr
[

(Ft − Ft)′W−1(Ft − Ft)
]

(A.114)

where (A.113) and (A.114) follow from the cyclical property of the trace operator
and the orthogonality of Qt. The expression in (A.114) matches the trace term in
(A.104), which completes the proof.

The following result will be useful in the proof of Proposition 2.

Proposition 7. The Jacobian under the transformation f is given by

J
(

(At,Ft) ←→ (Bt,Ht,Qt)
)

= 2−
n(n+1)
2
| det(Ht)|

m−1
2 .(A.115)
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Proof of Proposition 7. Letting �t = H−1
t , Arías et al. (2018) show that

J
(

(At,Ft) ←→ (Bt,�t,Qt)
)

= 2−
n(n+1)
2
| det(�t)|−

2n+m+1
2(A.116)

By a known result, for example see Theorem 2.1.8 in Muirhead (1982), J (�t ←→
H−1
t ) = det(Ht)−(n+1). Hence,

J
(

(At,Ft) ←→ (Bt,Ht,Qt)
)

=

J((At,Ft)←→(Bt,�t,Qt))
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

2−
n(n+1)
2
| det(H−1

t )|
− 2n+m+1

2

J (�t←→H−1t )
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
| det(Ht)|−(n+1)(A.117)

= 2−
n(n+1)
2
| det(Ht)|

m−1
2(A.118)

Proof of Proposition 2.
Proof of Part I.

Given the density of p
(

At,Ft|�,At−1,Ft−1
)

as derived in the proof of Theo-
rem 1, I derive the distribution of (Bt,Ht,Qt) = f (At,Ft) as a change of variables.
Recall that the density in the (At,Ft)-space is

p(At,Ft|�,At−1,Ft−1) = p
(�1∕2A−1t−1At) ⋅ �
n2∕2

|At−1|−n

c ⋅ exp{−1
2
tr[(Ft − Ft−1A−1t−1At)

′W−1(Ft − Ft−1A−1t−1At)]}
(A.119)

where c = (2�)−nm∕2|W|

−n∕2. Next, I substitute in terms of f (At,Ft). First, note
that

Ft − Ft−1A−1t−1At = BtH
1∕2
t Qt − Ft−1A−1t−1H

1∕2
t Qt(A.120)

=
(

Bt − Ft−1A−1t−1
)

H1∕2
t Qt(A.121)

implies

tr
[

(Ft − Ft−1A−1t−1At)
′W−1(Ft − Ft−1A−1t−1At)

]

(A.122)

= tr
[

Q′
tH

1∕2′
t

(

Bt − Ft−1A−1t−1
)′W−1(Bt − Ft−1A−1t−1

)

H1∕2
t Qt

]

(A.123)

= tr
[

H1∕2
t QtQ′

tH
1∕2′
t

(

Bt − Ft−1A−1t−1
)′W−1(Bt − Ft−1A−1t−1

)]

(A.124)

= tr
[

Ht
(

Bt − Ft−1A−1t−1
)′W−1(Bt − Ft−1A−1t−1

)]

(A.125)
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where the last equality follows from the cyclicality of the trace operator. Next,
note that by Condition 1

p
(�1∕2A−1t−1H
1∕2
t Qt) = p


(

�1∕2A−1t−1H
1∕2
t

)

.(A.126)

Putting these together, including the Jacobian gives

p(Bt,Ht,Qt|�,At−1,Ft−1) = p

(

�1∕2A−1t−1H
1∕2
t

)

⋅ �n2∕2|At−1|−n

⋅ c ⋅ exp{−1
2
tr
[

Ht
(

Bt − Ft−1A−1t−1
)′W−1(Bt − Ft−1A−1t−1

)]

}

⋅ J
(

(At,Ft) ←→ (Bt,Ht,Qt)
)

(A.127)

From Proposition 7, the Jacobian term is not a function of Qt and one can see
from equation (A.127) that neither is any other term interacting with (Bt,Ht),
which proves that

p(Bt,Ht,Qt|�,At−1,Ft−1)

= p(Qt|�,At−1,Ft−1) ⋅ p(Bt,Ht|�,At−1,Ft−1)
(A.128)

Furthermore, no term explicitly involves Qt and hence p(Qt|�,At−1,Ft−1) =
p(Qt) = U (n) and one can write

p(Bt,Ht,Qt|�,At−1,Ft−1) = p(Qt) ⋅ p(Bt,Ht|�,At−1,Ft−1)(A.129)

completing the proof of Part I.

Proof of Part II.
Shifting the time subscripts in equation (A.119) forward one period and

substituting for (At,Ft) as Bt,Ht,Qt gives

p(At+1,Ft+1|�,Bt,Ht,Qt) = p
(�1∕2Q−1
t H

−1∕2
t At+1) ⋅ �n

2∕2
|H1∕2

t Qt|
−n

c ⋅ exp{−1
2
tr[(Ft+1 − BtAt+1)′W−1(Ft+1 − BtAt+1)]}

(A.130)
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Note that

p
(�1∕2Q−1
t H

−1∕2
t At+1) = p
(Q−1

t �
1∕2H−1∕2

t At+1)(A.131)

= p
(�1∕2H
−1∕2
t At+1)(A.132)

where the last equality follows from the orthogonality of Q−1
t and Condition 1.

Noting also that |H1∕2
t Qt| = |H1∕2

t ||Qt| and |Qt| = 1, means that the density in
equation (A.130) can be written without reference to Qt as

p(At+1,Ft+1|�,Bt,Ht,Qt) = p
(�1∕2H
−1∕2
t At+1) ⋅ �n

2∕2
|H1∕2

t |

−n

c ⋅ exp{−1
2
tr[(Ft+1 − BtAt+1)′W−1(Ft+1 − BtAt+1)]} .

(A.133)

This completes the proof of Part II.

Proof of Proposition 3. Substituting for At−1,Ft−1 in equation (A.119) gives

p(Bt,Ht,Qt|�,Bt−1,Ht−1,Qt−1)

= p

(

�1∕2Q−1
t−1H

−1∕2
t−1 H

1∕2
t Qt

)

⋅ �n2∕2|H1∕2
t−1Qt−1|

−n

⋅ c ⋅ exp{−1
2
tr
[

Ht
(

Bt − Bt−1
)′W−1(Bt − Bt−1

)]

}

⋅ 2−
n(n+1)
2
| det(Ht)|

m−1
2

(A.134)

The first line of which can be written as

p

(

�1∕2H−1∕2
t−1 H

1∕2
t

)

⋅ �n2∕2|H1∕2
t−1|

−n(A.135)

and the final Jacobian term can be split as

| det(Ht)|
m−1
2 = | det(Ht)|

m
2
| det(Ht)|

− 1
2(A.136)

= | det(H−1
t )|

−m
2
| det(Ht)|

− 1
2(A.137)

Noting that

N(Bt|Bt−1,W,H−1
t )

= | det(H−1
t )|

−m
2 ⋅ c ⋅ exp{−1

2
tr
[

Ht
(

Bt − Bt−1
)′W−1(Bt − Bt−1

)]

}
(A.138)
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Collecting these results, one can write the density as

p(Bt,Ht,Qt|�,Bt−1,Ht−1,Qt−1)

= 2−
n(n+1)
2 ⋅ p


(

�1∕2ℎ(Ht−1)−1ℎ(Ht)
)

⋅ �n2∕2|ℎ(Ht−1)|−n|Ht|
−1∕2

⋅N(Bt|Bt−1,W,H−1
t )

(A.139)

Noting that the expression of the density makes no recourse to either Qt or to
Qt−1 proves the result.

Proof of Proposition 4. The proof essentially amounts to a careful examination
of equation (A.138). First, from the lack of dependence of any terms on Qt, it is
apparent that p(Qt) = U (n). Second, the term N(Bt|Bt−1,W,H−1

t ) integrates
to 1 regardless of H−1

t , leaving behind only the marginal density of Ht, which
depends on only Ht−1 and �.

A.3 Densities for Reduced-Form Model

Proof of Proposition 5. First deriving the density of Ht as a change of variables
from �t gives

p(Ht|�, ℎ(Ht−1)) = p�
(

ℎ(Ht−1)−1
′�Htℎ(Ht−1)−1

)

⋅ J (�t ←→ Ht) .(A.140)

The Jacobian term is given by

J (�t ←→ Ht) = |�1∕2ℎ(Ht−1)−1|n+1(A.141)

= (�n∕2|ℎ(Ht−1)−1|)n+1(A.142)

= �n(n+1)∕2|ℎ(Ht−1)|−(n+1) .(A.143)

The expression for the Jacobian, which uses the fact that�t is symmetric, is known
in the literature and available from a variety of sources, such as Theorem 2.1.6.
in Muirhead (1982). From here the result follows from applying Proposition 10
and simplifying.
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A.4 Properties of Shocks

Definition 3. An n×n randommatrixZ is distributedBn(�1∕2, �2∕2) for �1, �2 >
n − 1if its density function is

p(Z) = cBn(�1∕2,�2∕2) ⋅ det(Z)
(�1−n−1)∕2 det(In − Z)(�2−n−1)∕2 ,(A.144)

for 0 < Z < In and

cBn(�1∕2,�2∕2) =
Γn
(

(�1 + �2)∕2
)

Γn(�1∕2) Γn(�2∕2)
(A.145)

Definition 4. A random matrix 
 is HBn(�1∕2, �2∕2)-distributed, if it can be
written as 
 = Z1∕2Q, where Z ∼ Bn(�1∕2, �2∕2) and Q ∼ U (n) are indepen-
dent.

Proposition 8. The density of R ∼ HBn(�1∕2, �2∕2), for �1, �2 > n − 1, is

p(R) = cHBn(�1∕2,�2∕2) ⋅ det(RR
′)(�1−n)∕2 det(In − RR′)(�2−n−1)∕2(A.146)

for 0 < RR′ < In and

cHBn(�1∕2,�2∕2) =
Γn(n∕2)
�n2∕2

⋅

[

Γn
(

(�1 + �2)∕2
)

Γn(�1∕2) Γn(�2∕2)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
cBn(�1∕2,�2∕2)

(A.147)

Proof of Proposition 8. The proof proceeds along similar lines as Theorem
5.3.21 in Gupta and Nagar (2000). Starting from the joint density of the two
random matrices invoked in Definition 4, the joint density of Z and Q is

p(Z,Q) = cZcQ ⋅ det(Z)(�1−n−1)∕2 det(In − Z)(�2−n−1)∕2 ⋅ gn,n(Q) ,(A.148)

where cZ = cBn(�1∕2,�2∕2) and cQ = Γn(n∕2)∕(2
n�n2∕2). Transform Z = TT′ for T
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lower triangular with positive diagonal elements, with the Jacobian given by

J (Z ←→ TT′) = 2n
n
∏

t=1
tn−i+1ii(A.149)

and where tii denotes the element of T in row-i, column-i.
Next, consider the transformation R = TQ, with the Jacobian given by

J (T,Q ←→ R) =
n
∏

i=1
t−n+iii

[

gn,n(Q)
]−1(A.150)

Hence, the Jacobian of the transformation

J (Z,Q ←→ R) = J (Z ←→ TT′) J (T,Q ←→ R)(A.151)

=

[

2n
n
∏

t=1
tn−i+1ii

][

n
∏

i=1
t−n+iii

[

gn,n(Q)
]−1

]

(A.152)

= 2n
(

n
∏

i=1
tii

)

[

gn,n(Q)
]−1(A.153)

Noting that | det(R)| =
∏n

i=1 tii gives

J (Z,Q ←→ R) = 2n| det(R)|
[

gn,n(Q)
]−1(A.154)

= 2n det(RR′)1∕2
[

gn,n(Q)
]−1(A.155)

The density of R is then

p(R) = cZcQ ⋅ det(RR′)(�1−n−1)∕2 det(In − RR′)(�2−n−1)∕2

⋅ 2n det(RR′)1∕2 ,
(A.156)

= cR ⋅ det(RR′)(�1−n)∕2 ⋅ det(In − RR′)(�2−n−1)∕2(A.157)

where cR = 2ncZcQ, which simplifies to the expression given in Proposition 8.23

23Note that in the special case of �1 = n, the distribution of the random matrix becomes that of
an “inverted matrix variate t-distribution” with parameters ITn,n(�2 − n + 1, 0n,n, In, In), where
the notation is that of GN’s Definition 4.4.1. In that case the proof is the same as that of GN’s
Theorem 5.3.21.
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The distribution of 
 satisfies the key condition to admit a reduced form.

Proposition 9. The distribution of a random matrix 
 ∼ HB(�1∕2, �2∕2) sat-
isfies Condition 1.

Proof of Proposition 9. The proof follows by evaluating the density in Proposi-
tion 8 directly at the point in Q
P for Q,P ∈ n.

p(Q
P) = cHBn(�1∕2,�2∕2) ⋅ det(Q
PP
′
′Q′)(�1−n)∕2

⋅ det(In −Q
PP′
′Q′)(�2−n−1)∕2.
(A.158)

Noting that the determinant terms simplify as det(Q
PP′
′Q′) = det(Q

′Q′) =
det(Q) det(

′) det(Q′) = det(

′) and det(In −Q
PP′
′Q′) = det

(

Q(In −

PP′
′)Q′

)

= det
(

Q(In−

′)Q′
)

= det(Q) det(In−

′) det(Q′) = det(In−


′) gives

p(Q
P) = cHBn(�1∕2,�2∕2) ⋅ det(


′)(�1−n)∕2 det(In −

′)(�2−n−1)∕2(A.159)

= p(
).(A.160)

Proposition 10. If the distribution of 
 satisfies Condition 1, with pdf denoted
p
, then the density of � = 

 is

p(�) = �n2∕2

Γn(n∕2)
| det(�)|−1∕2p


(

T�
)

,(A.161)

where T� denotes the unique lower triangular n × n factorization, with positive
diagonal elements, of � such that T�T′� = �.

Proof of Proposition 10. The proof follows a standard line of argument; see,
for example, Theorem 3.2.2 in Gupta and Nagar (2000). First, make the trans-
formation 
 = TL for T lower triangular with positive diagonal and L ∈ n.
The Jacobian is given by J (
 ←→ T,L) =

∏n
i=1 t

n−i
ii gn,n(L), which gives the joint
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density of (T,L) as

p(T,L) = p
(TL)
n
∏

i=1
tn−iii gn,n(L).(A.162)

By Condition 1 p
(TL) = p
(T), so one can write

p(T,L) = p
(T)
n
∏

i=1
tn−iii gn,n(L).(A.163)

Next integrate out L to obtain the marginal density of T as

p(T) = p
(T)
n
∏

i=1
tn−iii ⋅ ∫LL′=In

gn,n(L) dL

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2n�(1∕2)n2

Γn(n∕2)

.(A.164)

Lastly, transform � = TT′(= 

′), where J (T ←→ �) =
(

2n
∏n

i=1 t
n−i+1
ii

)−1.
After some simplifying and noting that | det(�)|−1∕2 =

∏n
i=1 t

−1
ii , the density of �

is

p(�) = �n2∕2

Γn(n∕2)
| det(�)|−1∕2p
(T�).(A.165)

From Proposition 10 one can easily obtain the density for the reduced-form
law of motion induced by “half matrix beta” structural shocks.

Proposition 11. If 
 ∼ HBn(�1∕2, �2∕2), then � = 

′ is such that � ∼
Bn(�1∕2, �2∕2).

Proof of Proposition 11. Noting that T�T′� = 


′ = � and applying Proposi-

tion 10 to the density in Definition 4, the density of � is given as

p(
) = �n2∕2

Γn(n∕2)
det(�)−1∕2

[

c ⋅
Γn(n∕2)
�n2∕2

det(�)
�1−n
2 det(In − �)

�2−n−1
2

]

(A.166)

where c = cBn(�1∕2,�2∕2). Simplifying yields the density in Definition 3.
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B. Gibbs Sampler for DLM-DWSV Parameters

This section of the appendix gives the details of the steps of the Gibbs sampler.

Initialization. I initialize the MCMC algorithm by simulating many random
draws from the prior for the static parameters � and evaluating their marginal
posterior kernel. I then choose the value for � with the highest value for the
marginal posterior kernel, call it �∗. I then simulate a sequence of (B0∶T ,H0∶T )
backwards conditional on �∗ as described in Table II.

Block 1: W | y1∶T , �,B0∶T ,H0∶T

Given a draw of the history of latent states (B0∶T ,H0∶T ), each matrix of shocks
Vt to the linear coefficients is known via

Vt = Bt − Bt−1.(B.167)

Assuming the prior has the form p(W|�) ∼ IW (Ψ0, �0), the conditional posterior
ofW is

p(W|Y , �,B0∶T ,H0∶T ) ∼ IW (Ψ0∶T , �0∶T )(B.168)

where

Ψ0∶T = Ψ0 + Ψ1∶T(B.169)

�0∶T = �0 + �1∶T(B.170)

and

Ψ1∶T =
T
∑

t=1
VtHtV′t(B.171)

�1∶T =
T
∑

t=1
n = T n .(B.172)

Block 2: �,B0∶T ,H0∶T | y1∶T ,W

Sampling from Block 2 entails sampling from the joint distribution of �,
B0∶T ,H0∶T |y1∶T ,W. I accomplish this by first sampling from the distribution of
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�|y1∶T ,W, which is marginal of (B0∶T ,H0∶T ), and subsequently conditioning on
� and sampling from the distribution of B0∶T ,H0∶T |y1∶T ,W, �.

Step 2a: � | y1∶T ,W
The form of this step is often referred to as a Metropolis-within-Gibbs step.

Given �(i−1), one “proposes” a value for �(i), call the proposal �∗, as a random
sample from a density q(�∗|�(i−1)). One “accepts” �∗ and sets �(i) = �∗ with
probability

�
(

�∗|y1∶T ,W
)

= min

{

p
(

�∗,W(i)
|y1∶T

)

q(�(i−1)|�∗)

p
(

�(i−1),W(i)
|y1∶T

)

q(�∗|�(i−1))
, 1

}

.(B.173)

If �∗ is rejected, one sets �(i) = �(i−1). I use q(�∗|�(i−1)) = pN (�(i−1), ��), which
is symmetric and hence the ratio of q(⋅) densities in (B.173) cancels. Let

k
(

W, �|y1∶T
)

= p(W, �) p(y1∶T |�,W) ,(B.174)

where k(W, �|y1∶T ) differs from p(W, �|y1∶T ) by only a normalizing constant
that would cancel in (B.173). Hence, we can calculate � as

�
(

�∗|y1∶T ,W
)

= min

{

k
(

W(i), �∗|y1∶T
)

k
(

W(i), �(i−1)|y1∶T
) , 1

}

,(B.175)

so long as we can calculate k(W, �|y1∶T ) pointwise. To evaluate the kernel, I
presume one can evaluate p(W, �) pointwise. One can evaluate p(y1∶T |�,W)
pointwise by using the recursive filtering algorithm summarized in Table I com-
puting

p(y1∶T |�,W) =
T
∏

t=1
p(yt|W, �, y1∶t−1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Step 1.5 in Table I

(B.176)

Step 2b: B0∶T ,H0∶T | y1∶T , �,W
The final step is a sample from the recursive backwards simulation “smoother”

algorithm for (B0∶T ,H0∶T ) summarized in Table II. The draw proceeds backwards
from the end of the forward filtering algorithm.
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