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1 Introduction

Panebianco (2014) (from here on “P14”) studies a model of continuous trait transmission with

inter-ethnic attitudes through parental (vertical) and non-parental (oblique) socialization. P14

establishes convergence of cultural traits and studies the structure of steady state outcomes.

This note demonstrates that the proof of the convergence results in P14 is incorrect in two

places. In the first instance, the proof in P14 incorrectly transposes a convergence result for

Markov Chains which does not apply to the model in P14. In the second instance, an algebraic

argument in P14 contains a mistake. The note provides a new proof that corrects both issues

and recovers all affected results of P14.

We first highlight the difference between Markov chains and repeated averaging models,

which are commonly used in models of cultural transmission and opinion formation, in a

simple example in Section 2. In Section 3 we identify the two errors in the convergence proof

of P14 and present a new proof that restores all results and offers some novel insights into the

steady state properties of the P14 model. We conclude with a brief discussion of convergence in

repeated averaging models with time-varying transition matrices of which P14 is an example.

2 Example

Before we present the correction to P14 in detail, we briefly illustrate the repeated averaging

setting and its relationship with Markov chains in a simple example. Fix a sequence of row

stochastic matrices {Xt} that is time-varying by alternating between the two matrices Xodd

and Xeven depending on whether the period t is odd or even.

Xodd =


0.5 0.1 0.4

0 1 0

0 0 1

 Xeven =


0.5 0.4 0.1

0 1 0

0 0 1


Define by XRight

t and XLeft
t the products resulting from multiplying on the right and left, respec-

tively, a total number of t matrices according to the sequence of Xodd and Xeven, starting with

Xodd.

Multiplication on the right as in XRight
t presents a Markov chain. In a Markov chain the

dimensions of Xt correspond to states and Xt is a transition matrix in which element xij(t)

describes the probability of transitioning from state i to j. The right product converges towards
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the matrix

lim
t→∞

XRight
t =XoddXevenXoddXeven . . .

=


0 0.4 0.6

0 1 0

0 0 1

 .

Note that the long-run outcome depends on the first matrix on the left of the sequence. If

the sequence started with Xeven the positions of 0.4 and 0.6 would be switched around in the

long-run outcome.

Multiplication on the left represents a repeated averaging setting that is used in the cultural

traits model of P14. This type of model is also used in naive learning and opinion formation lit-

erature, including for example, Cavalli-Sforza and Feldman (1973), DeGroot (1974) and, more

recently, DeMarzo, Vayanos, and Zwiebel (2003), Golub and Matthew O. Jackson (2010) and

Büchel, Hellmann, and Pichler (2014). Here the transition matrix Xt acts as an influence matrix

that describes how next period attitudes are derived as the weighted average of current-period

attitudes with element xij(t) giving the weight that individual i assigns to the trait of individ-

ual j.

In contrast to the Markov chain approach above, XLeft
t does not converge but instead leads

to a limit cycle which alternates between two matrices depending on whether the final matrix

on the left is Xodd or Xeven.

lim
t→∞

XLeft
t = . . . XevenXoddXevenXodd

=




0 0.4 0.6

0 1 0

0 0 1

 if t is odd, and


0 0.6 0.4

0 1 0

0 0 1

 if t is even.

Figure 1 illustrates these dynamics and plots the entry in the first row and the third column of

XRight
t and XLeft

t . In the cultural traits setting, this entry corresponds to the trait held by the first

agent if we set the initial trait vector to V0 =
(

0 0 1
)′

.

The example illustrates that the convergence behaviour of a given sequence of row stochas-
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Figure 1: Convergence in Markov Chain and Cultural Transmission Models – Counterexample

tic matrices depends on whether multiplication is from the right as in Markov chain models

or the left as in the cultural traits transmission literature discussed here. Furthermore, for

left multiplication, the example is a simple sequence of matrices that does not converge in a

cultural transmission context. Both points play an important role in the inaccuracies in the

convergence proof of P14 that we describe below.

3 Convergence in the Panebianco (2014) Model

The model in P14 presents a model of cultural transmission that can be summarized as follows:

Vt+1 =XtVt

=XtXt−1 . . . X0V0

=Xt
LeftV0

, (1)

where V is a column vector of inter-ethnic attitudes and Xt is a time-varying row stochastic

square transition matrix. P14 endows Xt with the following specific structure:

Xt = St + (I− St)Φ, (2)

where St is a diagonal square matrix capturing the vertical aspect of socialization within a

group and Φ is a row stochastic square matrix with entries φij that captures the oblique social-

ization between groups. Assumption 1 in Panebianco (2014) ensures that the entries of St and

thus the diagonal entries of Xt are non-zero for all time periods t. For off-diagonal entries this
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structure implies that the pattern of zeros in Xt is equal to that of Φ. Furthermore, the ratio of

any pair of off-diagonal entries of Xt in the same row, that is, the relative socialization weight

that any group puts on a given pair of other groups, is constant for all t.

P14 presents one main convergence result for this system and a corollary that presents a

generalization of the result to time-varying Φt under the condition that Φt has at most one

communication class per component and a pattern of zero entries that is constant across time.

A component in a repeated averaging setting refers to a group of individuals such that

there is a non-zero weight between every pair in the group in at least one direction after a

certain minimum number of periods. This positive weight corresponds to the notion of a

directed path through a network if one treats the individuals as a set of vertices and Xt as an

adjacency matrix in which xi,j(t) > 0 implies that individual i is influenced by individual j.

A communication class then refers to a group of individuals that influence each other but put

zero weight on individuals outside the group. Such a class is also referred to as an essential

class. Furthermore, individuals that themselves influence every other individual that they

are influenced by are called essential. Those that are not essential are called inessential. The

convergence results in P14 are as follows.

(P14) Proposition 2 The system described by Equations (1) and (2) converges for any time-

invariant row stochastic matrix Φ.

(P14) Corollary 1 The convergence result can be extended to time-varying Φt if each Φt has at

most one communication class per component and the zero entries of Φt are fixed for all

t > T for some period T.

The proof of Proposition 2 in P14 distinguishes between transition matrices that are irreducible

and those that are reducible. Irreducible matrices correspond to influence networks that are

strongly connected such that every pair of individuals, either directly or indirectly, influences

each other. All individuals thus form a single essential class. By contrast, in a reducible transi-

tion matrix, there exist some inessential individuals that are influenced by some other individ-

uals that they themselves do not influence. If a matrix is reducible, it can be written in lower

triangular block form as illustrated in Equation (3) where those groups of individuals that are

essential are collected in the block matrix Xt,[1,1] and the second row collects the remaining

inessential individuals.

Xt =

Xt,[1,1] 0

Xt,[2,1] Xt,[2,2]

 (3)
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Reducible matrices are then further subdivided according to whether the individuals in block

Xt,[1,1] form one diagonal block and thus a single essential class (Case 1) or more than one

diagonal block and thus more than one essential class (Case 2). The convergence proof in P14

is incorrect in its argument for convergence of reducible matrices for both cases.

3.1 Case 1 – One Essential Class

In the proof of Case 1, P14 restates Theorem 3.2 from D’Amico, Janssen, and Manca (2009)

which establishes convergence of single-unireducible non-homogeneous Markov chains, and

then builds on this result. However, in restating it as Theorem 2 on p.602, P14 switches the

direction of multiplication from the right as in the original to the left as needed for the model

in P14. It thus incorrectly applies a result from Markov chains to a repeated average setting.

The two classes of models show different convergence behaviours for time-varying matrices

as we show in the example in Section 2.

Convergence for the case of reducible matrices with a single diagonal block can be readily

recovered by using an appropriate convergence result for left multiplication. Theorem 1.10 in

Hartfiel (2006) provides this result. The theorem relies on the notion of regular matrices. A

stochastic matrix A is regular if it has exactly one essential class and the upper left block in

lower triangular form is primitive, that is, there exists a constant k such that Ak
1,1 has all strictly

positive entries.

(Hartfiel (2006), Theorem 1.10) If Bp,h is regular for each p ≥ 0, h > 1 and

min
i,j

+aij(k) ≥ γ > 0

uniformly for all k ≥ 1 (where min+ is the minimum over all positive entries), then

limh→∞ Bp,h = Y, a rank one matrix that depends on p. Further there are constants K and

β, 0 < β < 1, such that

∥∥Bp,h − Y
∥∥ ≤ Kβh.

Bp,h denotes the backward product of a sequence of matrices At with elements aij(t) and is

defined as

Bp,h = Ap+hAp+h−1 . . . Ap+1.

Proof of Convergence for Case 1. Case 1 of the P14 model satisfies the conditions of Theorem 1.10
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Hartfiel (2006). First, the left multiplication in Equation (1) corresponds to backward products.

Second, in Case 1 there is exactly one essential or communication class. Third, the block ma-

trix corresponding to this class is primitive. By the definition of a communication class there

exists a path from every individual within the class to every other individual within the class.

Furthermore, as Xt has non-zero diagonal entries, the block matrix is aperiodic and thus there

exists an integer k > 0 such that all entries of the k-step backward product of Xt,[1,1] are posi-

tive. Finally, Assumption 1 in P14 together with fixed oblique socialization matrix Φ ensures

that the non-zero entries of the transition matrix Xt are bounded away from zero. The left

product is thus regular for all t.

It follows from Theorem 1.10 Hartfiel (2006) that XLeft
t converges and the long-run outcome

X is a matrix of rank one, implying consensus in cultural traits. Furthermore, there are con-

stants K and βX < 1 such that ‖XLeft
t − X‖ ≤ Kβt

X

The proof extends to the case of time-varying Φt covered by Corollary 1. The additional

condition of the corollary that the pattern of zeros remains constant ensures that the regularity

of the left product is preserved. Thus as long as the non-zero elements in Φt are bounded

away from zero for all t, Hartfiel (2006) Theorem 1.10 continues to apply and the cultural traits

converge to consensus.

3.2 Case 2 – More Than One Essential Class

To show convergence for Case 2, that is, a reducible transition matrix with more than one

isolated block matrix in Xt,[1,1], P14 presents a proof by construction. The proof decomposes

each updating step of an individual trait into a weighted average of the previous value of the

trait and the long-run outcomes of the essential classes.1 The argument in P14 is incorrect

because the terms that describe the weight assigned to the long-run outcomes of the essential

classes do not converge with arbitrary time-varying entries in the transition matrix. Specifically,

the assertion that “∑t
i=1 βi

αt !
αi !

is a monotone increasing [in t] series” in P14 (top of p. 605) is not

true without further restrictions.

To see why, rewrite this sum term by defining b(t) ≡ ∑t
i=1 βi

αt !
αi !

and then rearrange as

1See the derivation on the bottom half of p.604 of P14.
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follows:

b(t) =
t

∑
i=1

βi
αt!
αi!

=αt!
t

∑
i=1

βi

αi!

=αt · αt−1!

[
t−1

∑
i=1

βi

αi!
+

βt

αt!

]
=αtb(t− 1) + βt

b(t) is strictly monotone increasing in t if and only if it is strictly larger than b(t− 1). Given

that αt < 1, b(t) can be smaller than b(t − 1) if βt is small. In a model with a general time-

varying transition matrix b(t) can increase as well as decrease for large t if the individual βt

switch between large and small values.

Note that the proof in P14 does not make use of the specific restrictions on Xt in that paper

and summarized in Equation (2) above. If the proof were valid it would thus apply to a very

general class of time-varying transition matrices, including those with time-varying ratios of

off-diagonal elements and including the example presented above. As we have shown, this

general claim is not true. However, as we argue next, convergence in the model of P14 is

preserved, and can be proven by using the restrictions on time variation in the P14 setting.

Proof of Case 2. As Xt is reducible, the left product XLeft
t is also reducible and can be written in

lower triangular form

XLeft
t =

XLeft
t,[1,1] 0

XLeft
t,[2,1] XLeft

t,[2,2]

 .

We discuss convergence of each block in sequence.

3.2.1 XLeft
t,[1,1] converges to a matrix of rank one X[1,1]

Note that for the case of more than one communication class, the block matrix XLeft
t,[1,1] is no

longer regular as it contains two communication classes that do not influence each other. Thus,

Theorem 1.10 Hartfiel (2006) does not directly imply convergence of XLeft
t as a whole. How-

ever, as the different communication classes present independent blocks consisting of exactly

one communication class each, the argument of Case 1 continues to apply to each of them sep-

arately. Theorem 1.10 Hartfiel (2006) thus implies convergence of the block matrix XLeft
t,[1,1] to a

rank one matrix X[1,1].
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3.2.2 XLeft
t,[2,2] converges to the zero matrix

Note first that for every t the lower right block of the transmission matrix Xt,[2,2] is substochas-

tic, that is, the elements in every row sum to less than or equal to one and at least one of the row

sums to strictly less than one. Furthermore, as all individuals within this block are inessential,

they are each directly or indirectly influenced by an individual outside the block. Therefore

there exists a k such that the left product of k times Xt,[2,2] is a substochastic matrix in which all

rows add up to strictly less than one. It then follows that XLeft
t,[2,2] = Xt,[2,2]Xt−1,[2,2] . . . X0,[2,2] is

the product of strictly substochastic matrices and converges to zero.

3.2.3 XLeft
t,[2,2] converges to a matrix X[2,2]

Finally, we show that the block XLeft
t,[2,1] converges. In P14 a reducible transition matrix Xt derives

from Φ being reducible and it can thus be decomposed as follows:

Xt =St + (I− St)Φ

=

St,[1,1] 0

0 St,[2,2]

+

I− St,[1,1] 0

0 I− St,[2,2]

Φ[1,1] 0

Φ[2,1] Φ[2,2]


=

St,[1,1] +
(

I− St,[1,1]

)
Φ[1,1] 0(

I− St,[2,2]

)
Φ[2,1] St,[2,2] +

(
I− St,[2,2]

)
Φ[2,2]

 .

We can then write XLeft
t,[2,1] recursively and substitute for Xt to yield

XLeft
t,[2,1] =

[
XtXLeft

t−1

]
[2,1]

= Xt,[2,1]X
Left
t−1,[1,1] +Xt,[2,2]X

Left
t−1,[2,1]

=
(

I− St,[2,2]

)
Φ[2,1]X

Left
t−1,[1,1] +

[
St,[2,2] +

(
I− St,[2,2]

)
Φ[2,2]

]
XLeft

t−1,[2,1].

To simplify notation define

K ≡
[
I−Φ[2,2]

]−1
Φ[2,1]

Rt ≡ St,[2,2] +
(

I− St,[2,2]

)
Φ[2,2],

which implies

I− St,[2,2] = (I− Rt)
[
I−Φ[2,2]

]−1
.
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Substituting in the recursive equation above yields

XLeft
t,[2,1] = RtXLeft

t−1,[2,1] + (I− Rt)KXLeft
t−1,[1,1].

Iterating this recursive definition of XLeft
t,[2,1] over t and simplifying by cancelling terms yields

XLeft
t,[2,1] = RtXLeft

t−1,[2,1] + (I− Rt)KXLeft
t−1,[1,1]

= Rt

{
Rt−1XLeft

t−2,[2,1] + (I− Rt−1)KXLeft
t−2,[1,1]

}
+ (I− Rt)KXLeft

t−1,[1,1]

= RtRt−1 . . . R1XLeft
0,[2,1]

+ (I− Rt)KXLeft
t−1,[1,1]

+ Rt (I− Rt−1)KXLeft
t−2,[1,1]

+ RtRt−1 (I− Rt−2)KXLeft
t−3,[1,1]

+

...

+ RtRt−1 . . . R2 (I− R1)KXLeft
0,[1,1]

= KXLeft
t−1,[1,1]

+ RtRt−1 . . . R1

[
XLeft

0,[2,1] − XLeft
0,[1,1]

]
+ RtK∆XLeft

t−1,[1,1]

+ RtRt−1K∆XLeft
t−2,[1,1]

+

...

+ RtRt−1 . . . R2K∆XLeft
1,[1,1]

= KXLeft
t−1,[1,1]

+ RtRt−1 . . . R1

[
XLeft

0,[2,1] − XLeft
0,[1,1]

]
+

t−1

∑
i=1

{
Rt . . . Rt−i+1K∆XLeft

t−i,[1,1]

} . (4)

where

∆XLeft
t,[1,1] = XLeft

t,[1,1] − XLeft
t−1,[1,1]

We discuss convergence of all three terms in Equation (4).
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The first term converges to KX[1,1] =
[
I−Φ[2,2]

]−1
Φ[2,1]X[1,1]. This follows from the argu-

ment regarding the block XLeft
t,[1,1] above.

The second term converges to the zero matrix. The expression is proportional to RtRt−1 . . . R1,

which is the left product of a sequence of matrices Ri. By its definition matrix Ri is the weighted

average of the identity matrix and Φ[2,2] with strictly positive weight on Φ[2,2] for all t as the

diagonal elements of Si are strictly positive due to P14 Assumption 1. This implies that Ri in-

herits from Φ[2,2] the property that it is substochastic with at least one row adding up to strictly

less than one and all individuals inessential. It then follows that the second term in Equation

(4) converges to the zero matrix analogous to the argument for XLeft
t,[2,2] above.

Finally, consider the third term involving the sum of terms including ∆XLeft
t,[1,1]. We show

that each summand has an upper bound in a matrix norm that converges to zero exponentially

with t. Each summand indexed by i ∈ {1, 2, . . . , t− 1} is the left product of Rt . . . Rt−i+1 and

∆XLeft
t−i,[1,1]. We consider these in turn.

a) Rt . . . Rt−i+1 Each matrix Ri is substochastic and consists of inessential individuals and thus

its left product converges to zero. Moreover, from all individuals being inessential it

follows that there exists k such that every row of Ri+kRi+k−1 . . . Ri adds up to strictly

less than one for any non-negative i. This implies that there exists βR < 1 such that

‖Ri+kRi+k−1 . . . Ri‖ ≤ βR where ‖ · ‖ is the maximum row sum or ∞-norm defined by

‖A‖ = maxi

{
∑j |aij|

}
. For any i we thus have ‖RtRt−1 . . . Rt−i+1‖ ≤ β

bi/kc
R ≤ β

(i−k)/k
R =(

β1/k
R

)i−k
which is strictly less than one for any i ≥ k.

b) ∆XLeft
t−i,[1,1] For any given i, ‖∆XLeft

t−i,[1,1]‖ can be bounded from above using the triangle in-

equality and the second part of Theorem 1.10 Hartfiel (2006).

‖∆XLeft
t−i,[1,1]‖ = ‖X

Left
t−i,[1,1] − XLeft

t−i−1,[1,1]‖

= ‖
[
XLeft

t−i,[1,1] − X[1,1]

]
−
[
XLeft

t−i−1,[1,1] − X[1,1]

]
‖

≤ ‖
[
XLeft

t−i,[1,1] − X[1,1]

]
‖+ ‖

[
XLeft

t−i−1,[1,1] − X[1,1]

]
‖

≤ KX βt−i
X + KX βt−i−1

X

= KX βt−i−1
X (βX + 1)

for some constants KX and βX < 1 following Theorem 1.10 Hartfiel (2006).
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It then follows that we can bound the ∞-norm of every summand from above as follows.

‖Rt . . . Rt−i+1K∆XLeft
t−i,[1,1]‖ ≤ ‖Rt . . . Rt−i+1‖‖K‖‖∆XLeft

t−i,[1,1]‖

≤
[

β1/k
R

]i−k
‖K‖KX βt−i−1

X (βX + 1)

≤ βi−k‖K‖KX βt−i−1(β + 1)

≤ ‖K‖KRKX βt−1−k(β + 1)

= λβt−1

for β = max{β1/k
R , βX} < 1 and some scalar λ that collects terms invariant with t. This bound

applies to all summands in the sum in Equation (4). By the sub-additivity of the norm ‖ · ‖ and

L’Hôpital’s rule

lim
t→∞
‖

t−1

∑
i=1

{
Rt . . . Rt−i+1K∆XLeft

t−i,[1,1]

}
‖ ≤ lim

t→∞

t−1

∑
i=1
‖Rt . . . Rt−i+1K∆XLeft

t−i,[1,1]‖

≤ lim
t→∞

t−1

∑
i=1

λβt−1

= λ lim
t→∞

(t− 1)βt−1

= 0 for β < 1.

Therefore the infinite sum forming the third term converges to the zero matrix.

Summarizing, we have

lim
t→∞

XLeft
t,[2,1] = lim

t→∞
KXLeft

t−1,[1,1]

=
[
I−Φ[2,2]

]−1
Φ[2,1]X[1,1]

as required.

This new proof includes a characterization of the long-run traits for inessential individuals

as a weighted average over the long-run traits of the essential individuals. Furthermore, those

weights are independent of the sequence of vertical socialization weights St,[2,2] for the inessen-

tial individuals. Thus, the weights assigned to oblique socialization as captured in Φ[2,1] and

Φ[2,2] are sufficient to describe the long-run traits of individuals in the inessential group relative

to the traits of the essential individuals. The convergence result in P14 can thus be extended to

include this characterization.

(P14) Proposition 2 (Extended) The system described by Equations (1) and (2) converges for
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any time-invariant row stochastic matrix Φ. The long-run traits of the inessential indi-

viduals converge to a weighted average of the long-run traits of the essential classes with

weights given by
[
I−Φ[2,2]

]−1
Φ[2,1]. The long-run traits of inessential individuals are

independent of the time-varying matrix of socialization efforts St.

4 Discussion

There are two main points that we aim to highlight in this note. First, for time-varying transi-

tion matrices the convergence behaviour of repeated averaging models is not identical to that

of Markov chains. Section 1 highlight this point by providing a stark example of a sequence

of row stochastic matrices that converges when multiplied from the right as a Markov chain

but that enters a limit cycle when multiplied from the left as in a cultural traits model. The

difference between the two settings is also reflected in an established literature on the mathe-

matics of repeated averaging models that – while acknowledging parallels with Markov chains

– offers independent convergence results for left multiplications.

It is worth noting that time variation is a necessary condition for this issue to arise. If

the sequence of transition matrices is not time-varying then results from Markov chain theory

readily translate into the opinion dynamics context. For example, Theorem 8.1 in Matthew

O Jackson (2008) and results in Golub and Matthew O. Jackson (2010) provide conditions for

convergence with invariant transition matrices that draw directly on Markov chain theory. In

the example in Section 1, if the sequence of matrices is altered to a sequence of Xodd or Xeven

only, so that it is no longer time-varying, then there is convergence both with multiplication

from the left and the right. This may also be the reason why the distinction between Markov

chains and cultural traits models appears insufficiently appreciated in the literature.

The second more general message is that convergence in cultural traits transmission or

opinion dynamics models with time-varying transition matrices generally requires relatively

strong assumptions to prevent cycling. For example, in the case of P14 Proposition 2, con-

vergence is ensured by the structure of the transition matrix embodied in Equation (2) which

restricts time variation to the weight each individual assigns to her own traits. This property

plays a critical part of the new proof included in this note. The P14 model is itself a general-

ization of the setting in DeMarzo, Vayanos, and Zwiebel (2003) who study a setting with time

variation in the weight on own beliefs that is restricted to be the same across all individuals

in any period. Corollary 1 exploits a different set of conditions, specifically those of Theorem

1.10 Hartfiel (2006), that there is exactly one essential class with a regular transition matrix.

By contrast, Büchel, Hellmann, and Pichler (2014) pursue a different approach to ensure con-

12



vergence for the general case with time-varying transition matrices they study in Appendix C.

They impose a certain form of symmetry on the socialization matrix and then build on results

for the convergence of left products of matrices in Lorenz (2005) and Lorenz (2006). Finally,

Prummer and Siedlarek (2017) present a model of cultural transmission with community lead-

ers, that are in effect two isolated essential individuals, and a group of followers who assign

time-varying weight on the traits of the leaders. They show that convergence is ensured under

their Assumption 1 that limits the speed with which weights change from one period to the

next. Their Proposition 2.2 establishes that under this assumption the cultural traits updating

process is a contraction and thus converges globally to a unique steady state.
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