

Working papers of the Federal Reserve Bank of Cleveland are preliminary materials circulated to stimulate discussion and critical comment on research in progress. They may not have been subject to the formal editorial review accorded official Federal Reserve Bank of Cleveland publications. The views stated herein are those of the authors and are not necessarily those of the Federal Reserve Bank of Cleveland or the Board of Governors of the Federal Reserve System.

Working papers are available on the Cleveland Fed's website:
https://clevelandfed.org/wp

How Do Lead Banks Use Their Private Information about Loan Quality in the Syndicated Loan Market?
Lakshmi Balasubramanyan, Allen N. Berger, and Matthew M. Koepke

Abstract

We formulate and test two opposing hypotheses about how lead banks in the syndicated loan market use private information about loan quality, the Signaling Hypothesis and Sophisticated Syndicate Hypothesis. We use Shared National Credit (SNC) internal loan ratings made comparable using concordance tables to measure private information. We find favorable private information is associated with higher lead bank loan retention and lower interest rate spreads for pure term loans, ceteris paribus, supporting the Signaling Hypothesis. Neither hypothesis dominates for pure revolvers. The data partially support two conjectures about the circumstances under which the two hypotheses are more likely to hold.

JEL codes: G21, G28.
Keywords: Lead bank, private information, loan sales, syndication.

Suggested citation: Balasubramanyan, Lakshmi, Allen N. Berger, and Matthew M. Koepke, 2016. "How Do Lead Banks Use Their Private Information about Loan Quality in the Syndicated Loan Market?" Federal Reserve Bank of Cleveland Working Paper, no. 16-16R2. https://doi.org/10.26509/frbc-wp201616 r 2.

[^0]*First version June 2016. First revision January 2017.

1. Introduction

Private information is the lifeblood of commercial banking. Banks are delegated by their depositors and other stakeholders to collect private information about potential borrowers to make informed credit decisions (e.g., Diamond, 1984; Ramakrishnan and Thakor, 1984). Banks generate private information about their loan customers by screening before loans are made, by monitoring after loans are made, and in some cases, from prior relationships that include lending and other connections. In the traditional originate-to-hold model - in which banks keep loans they originate entirely on their balance sheets until maturity - it is well-known that banks use this private information in their present and future dealings with the borrowers. ${ }^{1}$ This model is typically used for small commercial loans.

In contrast, little is known about how private information is used in the alternative originate-todistribute model, in which part or all of the loans banks originate are distributed through syndication. ${ }^{2}$ This model is often used for medium and large commercial loans for which no one bank provides all of the financing in order to reduce credit and/or liquidity risks, comply with capital requirements and/or legal lending limits, reduce funding cost disadvantages, or other reasons. ${ }^{3}$ Rather, the lead bank distributes part of the loans to other banks and nonbank institutions through syndication. ${ }^{4}$

The syndicated loan market provides an ideal setting for studying private information for three
reasons. First, syndicated loans comprise a multi-trillion-dollar market in which many firms are funded. Second, a broad spectrum of borrowing firms - both public and private firms, with variety of different credit ratings as well as unrated firms, and many different firm sizes - is represented. Third

[^1]and most important, direct measures of private information that may be made comparable across lead banks and loans are available, allowing for meaningful econometric analysis.

The syndicated loan literature in some cases constructs indirect proxies for the amount of private information using publicly-available data, such as borrower's public listing status and public debt rating availability. Lead banks likely have more private information about borrowers that are not publicly listed and/or do not have public debt ratings. Using such proxies, Sufi (2007) finds that lead bank loan retention is greater when the lead bank has more private information.

It is now possible to go further by using direct comparable measures of the favorability of private information on individual loans made by a number of large lead banks using data provided to the Federal Reserve. These data indicate the lead banks’ private evaluations of the quality of the loans.

In this paper we address how lead banks use their private information about loan quality in the syndicated loan market. In particular, we address how the favorability of the private information about loan quality affects the lead banks' retention and pricing of the loans. The private information belongs to the lead banks, which generally do most of the screening and monitoring and often have prior relationships with the borrowers. Thus, lead banks are likely the main repositories of private information about syndicated loans, and these are the banks for which we have the private information.

A key issue for the syndicated loan market concerns the incentives of lead banks to invest in producing private information about the borrowers. From a social perspective, there may be incentives to underinvest in private information production because the lead banks receive only a portion of the loan income, and therefore may earn less than the full return on investing in private information. As shown below, our hypotheses about how the private information is used have different implications for how the lead banks may derive additional benefits from the private information and therefore have implications for this underinvestment issue.

We formulate and test two hypotheses about how the private information is used - the Signaling Hypothesis and Sophisticated Syndicate Hypothesis. Under the Signaling Hypothesis, lead
banks retain higher proportions of loans with more favorable private information to signal the information to potential syndicate participants that are otherwise too uninformed about loan quality to participate. Intuitively, this is similar to Leland and Pyle's (1977) separating equilibrium in which entrepreneurs with private information about project quality invest more of their own funds in projects with higher quality. ${ }^{5}$ Signaling is costly to the lead bank in terms of tying up funds, but it allows the market to clear in the presence of asymmetric information. Lead banks may also signal private information through loan pricing. They may charge lower interest rate spreads to borrowers on loans with more favorable private information. This signal is costly in terms of foregone interest income, but it may effectively communicate the quality to potential syndicate members that might otherwise not participate. Thus, the Signaling Hypothesis predicts that lead banks with more favorable private information retain higher proportions and/or charge lower spreads to the borrowers at origination, ceteris paribus.

Under the Sophisticated Syndicate Hypothesis, signaling is unnecessary because the syndicate participants are relatively sophisticated and independently divine the private information. In this case, the lead bank need not retain more of the higher quality loans, as there is no need to signal loan quality. The sophisticated syndicate members demand greater shares of the higher quality loans, resulting in lower proportions of these loans retained by the lead banks. Additionally, under the Sophisticated Syndicate Hypothesis, the private information is not incorporated into the spreads because there is no need to signal it.

These hypotheses have different implications for the incentives of lead banks to invest in private information. To the extent that the Signaling Hypothesis holds, lead banks have more incentives to garner private information because it helps them to sell parts of the loans to participants. With no private information, it would not be possible to signal uninformed potential investors about

[^2]the quality of the loans and they would remain unsold. Notably, the lead banks do not reap all of the benefits of the private information under the Signaling Hypothesis - part accrues to the syndicate participants who become more informed from the signal and part accrues to borrowers that receive lower spreads on their loans. To the extent that the Sophisticated Syndicate Hypothesis holds, there is less incentive for the lead banks to invest in private information because the syndicate members divine the information and purchase larger portions of the higher quality loans, taking greater shares of the returns to the private information.

The two hypotheses are not mutually exclusive - each may dominate for different sets of syndicates. We first test which of the two hypotheses empirically dominate overall by regressing the proportions of the loans retained and their interest rate spreads on variables representing the favorability of the lead banks' private information and numerous control variables. Under the Signaling Hypothesis, more favorable private information is associated with higher lead bank loan retention and lower interest rate spreads, while under the Sophisticated Syndicate Hypothesis, retention is lower and there is reduction in spreads for more favorable private information.

We also test two conjectures about which hypothesis is more likely to dominate for different syndicate types. First, we expect that the data are likely to adhere more strongly to the Signaling Hypothesis for "pure" term loans (loans of fixed amounts with fixed maturities) and to align relatively more with the Sophisticated Syndicate Hypothesis for "pure" revolvers (credits for which the borrower may draw down and repay any amount up to a fixed maximum as often as desired over the maturity of the agreement). ${ }^{6}$ This is because the syndicate participants for pure revolvers are expected to be generally more sophisticated investors than those for pure term loans. Revolvers involve significant liquidity risk because it is not known when loans will be drawn down, and very large banks have comparative advantages over other loan investors in bearing such risk. They carry significant

[^3]portfolios of liquid assets, they already have substantial portfolios of revolvers that they have experience in managing, and they generally create more liquidity on both absolute terms and relative to assets than smaller banks (Berger and Bouwman, 2016). As shown below, the syndicates of pure revolvers generally have much more representation of banks that are ranked highly on the Bloomberg league tables of lead banks on other loans than are the syndicates of pure term loans. This indicates more expertise in evaluating syndicated loans, which likely makes them relatively sophisticated investors. We therefore expect generally less lead bank retention and smaller interest rate spreads on pure revolvers than on pure term loans. To evaluate this, we apply the empirical tests separately to pure term loans and pure revolvers.

Our second related conjecture is that for both pure term loans and pure revolvers, the data are likely to hold more closely to the Signaling Hypothesis for syndicates with low proportions of banks that are ranked highly on the Bloomberg league tables, and to be relatively more consistent with the Sophisticated Syndicate Hypothesis for syndicates with high proportions. These expectations are based on the same logic as above - banks with high Bloomberg league table ranks are more likely to be sophisticated investors. We therefore expect generally less lead bank retention and smaller interest rate spreads on both pure term loans and pure revolvers for syndicates with high Bloomberg league table ranks. To evaluate this, for both pure term loans and pure revolvers, we use interaction terms of the private information variables with dummies for high and low syndicate proportions of banks with Bloomberg league table ranks from the prior year in the Top 3 or Top 30, with medium proportions as the excluded base case.

All of our main tests are performed separately for pure term loans and pure revolvers. The pure term loans and revolvers have very different properties and, as discussed above, very different syndicates that differ in their degree of sophistication. Our separate treatment of term loans and revolvers contrasts with most of the syndicated loan literature, which either includes term loans and revolvers in the same regressions or analyzes credits at the deal level (which may include both loan
types). In either case, the studies often include a dummy for loan type, but generally do not allow the slope coefficients to differ. Our empirical results differ substantially for the two loan types, and we obtain potentially misleading results when we experiment with combining them, justifying our separate treatment.

The data requirements for testing these hypotheses are challenging. It is necessary to access lead banks' private information about loan quality and pricing. These data must also be made comparable across lead banks, which often use different internal rating scales. Fortunately, our dataset meets both requirements. We use data on loan syndicates from the Shared National Credit (SNC) program for the retention analysis and incorporate loan level prices from DealScan. Banks participating in SNC provide regulators with "raw" internal loan ratings that reflect their private information about loan quality. Most of these banks provide internal ratings on an annual basis, but a subset of 18 "expanded reporters" (described in Section 2) provide this information on a quarterly basis. Since 2011:Q1, a total of 32 SNC banks - which includes most of the Comprehensive Capital Analysis and Review (CCAR) stress test banks plus a small number of other lead banks - also provide concordance tables to the Federal Reserve (along with their Y14 reports). ${ }^{7}$ We use these tables to map the "raw" internal loan ratings to the commonly-used Standard and Poor's (S\&P) rating scale. To clarify, the concordance-mapped loan ratings are not S\&P ratings, they simply use the same AAA, AA+, AA, AA-,... scale as S\&P ratings. We use the concordance-mapped internal loan ratings as lead banks' private information measures. Such usage is validated by evidence that these concordancemapped ratings strongly predict loan default (Gutierrez-Mangas, Ivanov, Lueck, Luo, and Nichols, 2015).

The 18 expanded reporters also provide detailed quarterly information on lead bank loan retention and syndicate structure for all the SNC loans for which these banks are either lead banks or

[^4]participants. Thus, our sample includes comparable lead bank private information for all syndicates in which the lead bank is one of the 32 concordance banks and at least one of the 18 expanded reporters is either the lead bank or a participant. The corresponding loan level pricing information is obtained from DealScan. Our sample runs from 2011:Q1 through 2014:Q4.

We regress the proportion of the loan retained by the lead bank on the favorability of its private information about loan quality and a large number of controls and fixed effects, and we do so separately for pure term loans and pure revolvers. We use a strong set of controls because the concordance-mapped loan ratings are likely highly correlated with public information about loan quality, and we want the coefficients on the concordance-mapped ratings to reflect only the effects of private information. Our control variables include reported loss given default; regulatory risk ratings; loan characteristics; the market rank and condition of the lead bank; the strength of the lead bankborrower relationship; borrower characteristics; and borrower public bond ratings. We also include fixed effects for borrower industry and time. For our pricing analysis, we incorporate loan level pricing information from DealScan to calculate interest rate spreads over LIBOR. The exogenous variables are identical to those for the retention regressions except that we exclude other loan characteristics, which may co-determined with the loan spreads. In a robustness check, we confirm that the results also hold when the other loan characteristics are included.

By way of preview, we find that for pure term loans, favorable private information is associated with higher loan retention and lower spreads by lead banks, consistent with the Signaling Hypothesis, while for pure revolvers, neither hypothesis empirically dominates. The data also provide some support for our two conjectures about differences between pure term loans and revolvers and between syndicates with less and more sophisticated participants for both credit types.

Our hypotheses and conjectures have not been investigated in the extant literature. Loan quality cannot be addressed using only DealScan dataset, which most studies of the syndicated loan market use, since DealScan contains only publicly available loan quality information (e.g., Dennis and

Mullineaux, 2000; Bosch and Steffen, 2007; Champagne and Kryzanowski, 2007; Sufi, 2007; Chava and Roberts, 2008; Berndt and Gupta, 2009; Drucker and Puri, 2009; Haselmann and Wachtel, 2011; Maskara and Mullineaux 2011, Bharath, Dahiya, and Hallak, 2013; Firestone and Rezende, 2016; Bradley and Roberts, 2015).

Other studies use the SNC dataset, but study issues other than lead bank loan retention, such as examiner-based loan ratings (Jones, Lang, and Nigro, 2005), the quality of loan monitoring (Avery, Gaul, Nakamura, and Robertson, 2012), the rise of the originate-to-distribute model (Bord and Santos, 2012), firms’ propensity to refinance (Mian and Santos, 2012), the liquidity risk of banks (e.g., Bord and Santos, 2014), banks’ incentives to bias internally-generated risk estimates (Plosser and Santos, 2014), the effects of monetary policy on loan risk (Aramonte, Lee, and Stebunovs, 2015), banks' use of credit default swaps versus loan sales (Hasan and Wu , 2015), and the effect of non-bank lenders on loan renegotiations (Paligorova and Santos, 2015).

The remainder of the paper is organized as follows. Section 2 describes the methodology, data, and variables. Section 3 presents the empirical results, and Section 4 concludes.

2. Methodology, Data, and Variables

2.1 Methodology for Loan Retention

To examine how the favorability of the lead bank's private information affects the proportion of the loan it retains, we use the following regression setup:

PROPRETAIN $_{i, j, k, t}=\beta_{0}+B_{1}$ Bank private info favorability $i_{i, j, k, t}+B_{2}$ Loss given default $i_{i, j, k, t}$ $+B_{3}$ Regulatory loan risk ratings $_{i, j, k, t}+B_{4}$ Loan Characteristics $_{i, j, k, t}$
$+B_{5}$ Bank reputation $_{j, M o s t R e c e n t}+B_{6}$ Bank condition $_{j, t-1}+\beta_{7}$ Relationship strength $_{j, k, t-1}$
$+B_{8}$ Borrower characteristics $_{k, t}+$ B $_{9}$ Borrower Industry FE k, t
$+B_{10}$ Borrower Public Ratings $_{k, t}+B_{11}$ Time $_{\text {FE }}^{t}+e 1_{i, j, k, t}$
The dependent variable is the proportion of loan i retained by lead bank j to borrower k in quarter t in which the loan is originated. The key independent variables capture the bank's private
information favorability and are measured by concordance-mapped internal loan ratings in our main specification, discussed further in Section 2.4.3. Because such ratings are likely highly correlated with publicly-available information about loan quality, we include a strong set of controls to try to ensure that the coefficients on the internal ratings reflect as closely as possible only the effects of the private information. Equation (1) includes several sets of controls (described in Section 2.4.4): loss given default, regulatory loan risk ratings, loan characteristics, bank reputation, bank condition, relationship strength, borrower characteristics, borrower industry fixed effects, borrower public ratings, and time fixed effects.

Our focus is on B_{1}, which measures the net effect of the two competing hypotheses. Under the Signaling Hypothesis, the B_{1} coefficients are more positive for more favorable ratings (lead banks keep more when they have more favorable private information to signal), while under the Sophisticated Syndicate Hypothesis, the B_{1} coefficients are more negative for more favorable ratings (lead banks keep less when they have more favorable private information because of greater demand from participants).

2.2 Methodology for Loan Pricing

To examine how the favorability of the lead bank's private information affects the loan spread, we use the following regression setup:

```
SPREAD \(_{i, j, k, t}=\gamma_{0}+G_{1}\) Bank private info favorability \(i_{i, j, k, t}+G_{2}\) Loss given default \(i_{i, j, k, t}\)
\(+G_{3}\) Regulatory loan risk ratings \(_{i, j, k, t}+G_{5}\) Bank reputation \(_{j, \text { MostRecent }}\)
\(+G_{6}\) Bank condition \(_{j, t-1}+G_{7}\) Relationship strength \({ }_{j, k, t-1}\)
\(+G_{8}\) Borrower characteristics \(_{k, t}+G_{9}\) Borrower Industry FE \(k, t\)
\(+G_{10}\) Borrower Public Ratings \(_{k, t}+G_{11}\) Time FE \(_{t}+e 2_{i, j, k, t}\)

The dependent variable is the interest rate spread relative to LIBOR of loan i retained by lead bank \(j\) to borrower \(k\) in quarter \(t\) in which the loan is originated. Again, the key independent variables
capture the bank's private information and are measured by the bank's internal loan ratings (described in section 2.4.3). Equation (2) includes the same set of control variables as Equation (1), with the exception of the loan characteristics, although as noted, the findings are robust to inclusion of these characteristics. Our focus is on \(G_{1}\), which reflects whether and how private information is priced into the loan. Under the Signaling Hypothesis, the \(G_{1}\) coefficients are more negative for more favorable ratings (lead banks signal higher quality with lower spreads when they have more favorable private information), while these coefficients are zero under the Sophisticated Syndicate Hypothesis (lead banks need not signal).

\subsection*{2.3 Methodology for Second Conjecture - Loan Retention}

PROPRETAIN \({ }_{i, j, k, t}=\mu_{0}+M_{11}\) Bank private info favorability \(i_{i, j, k, t} *\) League Table Proportion HIGH
\(+M_{12}\) Bank private info favorability \({ }_{i, j, k, t}{ }^{*}\) League Table Proportion LOW
\(+M_{13}\) League Table Proportion HIGH + \(M_{14}\) League Table Proportion LOW
\(+M_{2}\) Loss given default \({ }_{i, j, k, t}+M_{3}\) Regulatory loan risk ratings \(_{i, j, k, t}\)

\(+M_{7}\) Relationship strength \(_{j, k, t-1}+M_{8}\) Borrower characteristics \(_{k, t}+M_{9}\) Borrower Industry \({ }^{2} E_{k, t}\)
\(+M_{10}\) Borrower Public Ratings \(_{k, t}+M_{11}\) Time \(F_{t}+e 3_{i, j, k, t}\)

To test the impact the presence of sophisticated investors may have on loan retention, we create dummies League Table Proportion HIGH and League Table Proportion LOW indicating if the syndicate has a high or low proportion of sophisticated investors, where the cutoffs for high and low are based on syndicate proportions of banks with Bloomberg league table ranks from the prior year in the Top 3 or Top 30. The exact cutoffs are discussed in Subsection 2.6.4 below. We regress the proportion retained against our internal loan rating variables interacted with these high and low sophisticated syndicate proportion dummies (with medium excluded), these dummies uninteracted, and our full set of control variables.

\subsection*{2.4 Methodology for Second Conjecture - Loan Pricing}

SPREAD \(_{i, j, k, t}=\theta_{0}+T_{11}\) Bank private info favorability \(y_{i, j, k, t} *\) League Table Proportion HIGH \(+T_{12}{\text { Bank private info favorability } i_{i, j, k, t} * \text { League Table Proportion LOW }}^{*}\)
\(+T_{13}\) League Table Proportion HIGH \(+T_{14}\) League Table Proportion LOW
\(+T_{2}\) Loss given default \(_{i, j, k, t}+T_{3}\) Regulatory loan risk ratings \(_{i, j, k, t}+T_{5}\) Bank reputation \(_{j, \text { MostRecent }}\)
\(+T_{6}\) Bank condition \(_{j, t-1}+T_{7}\) Relationship strength \(_{j, k, t-1}\)
\(+T_{8}\) Borrower characteristics \(_{k, t}+T_{9}\) Borrower Industry FE \({ }_{k, t}\)
\(+T_{10}\) Borrower Public Ratings \(_{k, t}+T_{11}\) Time FE \(_{t}+e 4_{i, j, k, t}\)

To test the impact of the presence sophisticated investors may have on the interest rate spread, we regress the interest rate spread on dummies indicating if the syndicate has a high or low proportion of sophisticated investors and interactions of these dummies with the internal loan ratings. We again base the high and low cutoffs on the syndicate proportions of banks with Bloomberg league table ranks from the prior year in the Top 3 or Top 30 , this time using statistics from the pricing sample.

\subsection*{2.5 Sample Banks and Loans}

Our primary data source is the Shared National Credit (SNC) data. The SNC program was set up by bank regulators in 1977 to provide an efficient and consistent review of the largest syndicated loans. \({ }^{8}\) The lead bank reports detailed information on loans that meet certain criteria. The rules changed considerably in December 2009 for 18 banks transitioning to adopt Basel II. \({ }^{9}\) These banks were designated as "expanded reporters," and have since been required to report more information on a quarterly basis. Table 1 highlights differences in reporting requirements of basic reporters and expanded reporters. Important for our purposes, the expanded reporter information contains data on all SNC syndicates for which these expanded reporters are either lead banks or participants.

\footnotetext{
\({ }^{8}\) The SNC program is governed jointly by the three federal banking agencies, the Federal Reserve System, the Federal Deposit Insurance Corporation, and the Office of the Comptroller of the Currency.
\({ }^{9}\) Basel II was never fully implemented in the U.S. The larger, internationally active U.S. banks were transitioning to Basel II when the subprime lending crisis hit. Basel II was essentially rendered inactive in the U.S. by the Dodd-Frank Act, which forbids the use of credit ratings in U.S. regulations.
}

From 2011:Q1 onward, 32 lead banks have been required to submit concordance tables along with their Y14 reports. These tables can be used to convert "raw" internal loan ratings to ratings that are comparable across lead banks. Because our tests require information on the syndicates from the SNC expanded reporters dataset and internal loan ratings which are standardized using the concordance tables, our sample contains loan syndicates for which the lead bank is one of the 32 concordance banks and at least one of the 18 expanded reporters is either the lead bank or a participant.

The SNC database includes information on different types of term loans, lines of credit (revolvers and non-revolving credit lines), and other loans. To facilitate apples-to-apples comparisons, we focus on pure term loans ( 3,056 cases) and pure revolvers ( 6,477 cases) in our main regressions and eliminate other types of term loans, revolvers, and other loans. \({ }^{10}\) As shown below, when all the syndicated loans are pooled, as is common in the syndicated loan literature, potentially misleading findings occur. \({ }^{11}\)

Since the SNC data does not contain loan pricing information, we merge pricing information from Thomson Reuters’ DealScan database into our sample to test the implications of the hypotheses for loan spreads. Because the SNC and DealScan databases lack a common identifier, we use a Levenshtein algorithm to match borrower names in SNC to borrower names in DealScan. Any unmatched borrowers in our SNC sample are hand-checked against the DealScan database. For matched borrowers, we merge loan pricing information from DealScan into our SNC sample based on the loan origination date, maturity date, commitment value, and loan type. Of our SNC samples, we

\footnotetext{
\({ }^{10}\) We remove several types of term loans: Term Loan A tranches (generally amortizing loans that are largely syndicated to banks: 149 cases); Term Loan B tranches (typically loans with longer maturities than Term Loan A tranches, with bullet payments, and syndicated to institutional investors: 191 cases); Term Loan C tranches (similar to Term Loan B tranches but with longer maturities: 14 cases); bridge term loans (temporary financing for up to one year: 7 cases); asset-based term loans (loans secured by assets: 5 cases); and debtor-in-possession term loans (financing arranged while going through the Chapter 11 bankruptcy process: 1 case). We also discard various types of credit lines: asset-based revolvers ( 546 cases); revolvers converting to term loans (208 cases); debtor-in-possession revolvers (3 cases); non-revolving lines of credit (737); and non-revolving lines of credit that convert to term loans (133 cases). Finally, we delete other loans (487 cases).
\({ }^{11}\) Exceptions in the literature are Berger and Udell (1995), Shockley and Thakor (1997), and Sufi (2009), who examine lines of credit, which include both pure revolvers and other lines of credit.
}
match 1,624 pure term loans and 3,720 pure revolvers to DealScan to form our samples for the pricing equations.

\subsection*{2.6 Regression Variables}

Table 2 Panel A provides definitions, mnemonics, and data sources for the regression variables. Table 2, Panels B through E relate to the retention equations. Panel B displays the summary statistics for all the variables used in the retention equations separately for pure term loans and pure revolvers. Panel C shows the proportions retained by coarse internal loan rating (explained below) and Panel D shows the proportions retained over time. Panel E shows the numbers of distinct borrowers, total number of loans, and the number of distinct lead agents for the retention equations.

Table 2, Panel F through I relate to the pricing equations. Panel F displays the summary statistics for all the variables used in the pricing regressions separately for pure term loans and pure revolvers. Panel G shows the interest rate spread by coarse internal loan rating, and Panel H shows the interest rate spread over time. Finally, Panel I shows the number of distinct borrowers, the number of loans, and the number of distinct lead agents for the pricing equations.

\subsection*{2.6.1 Dependent Variables}

The first dependent variable is the proportion of the loan retained by the lead bank at the end of the quarter of origination. Since sample banks are required to report data on a consolidated basis, we aggregate each bank's loan proportion up to the highest holder in the bank holding company (BHC) and assign that as the lead bank's total exposure for that loan. This avoids artificial changes in loan retention that might arise if one entity formally acts as the lead arranger while another entity in the same BHC takes part of the loan on its books. \({ }^{12}\) The mean proportion retained for pure term loans is 24.7 percent while that for pure revolvers is 25 percent. The second dependent variable is the basis

\footnotetext{
\({ }^{12}\) To ensure there are no aggregation errors, we drop loans from the sample if the sum of the dollar amounts held by all syndicate members combined differs from the total loan amount by more than \(\$ 500\).
}
point spread relative to LIBOR. The mean interest rate spread for pure term loans is 3.3 percent while that for revolvers is 2.2 percent.

\subsection*{2.6.2 Key Independent Variables}

The key independent variables capture the lead bank's private information favorability about the loan. As discussed above, we use concordance-mapped ratings - the bank's raw internal ratings converted to the S\&P scale using the bank's concordance table. Three hypothetical concordance tables are given in Table 3 Panels A, B, and C, illustrating some of the variation in the raw ratings scales and how they map into the S\&P scale. In reality, there are many more different scales. The bank in Panel A uses an alphanumeric scale for its raw internal ratings, and the banks in Panels B and C use purely numeric and purely alphabetic raw internal ratings, respectively. The bank in Panel A has only an 11-point scale and its concordance mapping only matches the main letters of the S\&P scale, with no pluses or minuses. Comparatively, the bank in Panel B has an 18-point scale and its corresponding mapping includes both the main letters of the S\&P scale and includes pluses and minuses. Finally, the bank in Panel C uses a 26-point scale that maps into all the S\&P ratings.

The main regressions use five coarse categories for the concordance-mapped loan ratings: high investment grade ("HIG:" internal rating of A- to AAA), low investment grade ("LIG:" BBB- to BBB+), high sub-investment grade ("HSG:" BB- to BB+), low sub-investment grade ("LSG:" D to \(\mathrm{B}+\) ), and unrated. The unrated dummy is omitted from the regressions to avoid perfect collinearity (but the loans are included). Robustness checks use granular ratings ranging from AAA to D and unrated, with unrated again being the omitted category. We prefer the coarse ratings because there are very few loans in some of the granular categories. \({ }^{13}\) For pure term loans, 3.8 percent are HIG, 17 percent are LIG, 53.4 percent are HSG, 13.4 percent are LSG and 12.6 are not rated. For pure

\footnotetext{
\({ }^{13}\) It is critical to our tests that the standardized loan ratings are not only comparable across lead banks, but that they are confidential to these banks. Otherwise, they would not be private information for which our hypotheses are relevant. The internal ratings are proprietary information and cannot be shared with others, so the information is confidential.
}
revolvers, 13 percent are HIG, 26.2 percent are LIG, 45.4 percent are HSG, 14.1 percent are LSG and 1.2 percent are not rated.

\subsection*{2.6.3. Control Variables}

Loss given default (LGD) variables. We include the loan's expected LGD as provided by the bank and a dummy = 1 if the LGD is available. LGD is not necessarily comparable across banks, since banks may differ in their degree of conservatism. For the retention equations, LGD information is only available for 55 percent of the pure term loans and 71 percent of the revolvers. For the pricing equations, LGD information is available for 56 percent of the pure term loans and 75 percent of the pure revolvers. The dummy accounts for the average difference in loan retention between banks that have LGD available and those that do not. Inclusion of the dummy ensures that observations with missing information do not drop out of the regressions. \({ }^{14}\)

Regulatory risk ratings. Banks are required by regulators to assign loans to one or more of five regulatory risk ratings: (1) pass: no potential weaknesses that may lead to future repayment problems or the bank holds the loan in a for-sale or trading account; (2) special mention: potential weaknesses that may lead to future repayment problems; (3) substandard: inadequately protected and there is a distinct possibility that the bank will sustain some future losses; (4) doubtful: inadequately protected and repayment in full is highly questionable; and (5) loss: uncollectable. These ratings are reviewed by regulators during bank examinations and adjusted if the regulator and bank ratings do not agree. The five variables capture the proportion of a loan that is assigned to each category, although in most cases, the entire loan is assigned to just one category. We omit Pass to avoid perfect collinearity.

Loan characteristics. For our loan retention hypothesis, we include the natural log of facility size (\$ million), the natural log of maturity, and five loan purpose variables (general corporate, acquisition financing, debt refinancing, working capital, and other (omitted from regressions to avoid

\footnotetext{
\({ }^{14}\) This logic of including the LGD dummy applies analogously for several data availability dummies below, but for brevity, we do not re-explain this logic.
}
perfect collinearity). We also include a dummy to indicate if the loan is a packaged loan (a loan originated concurrently with other loans for the same borrower). As noted above, we exclude the loan characteristic controls from our pricing equations as potentially endogenous codetermined variables.

Bank market position variables. Market position is proxied by the lead bank's rank in the U.S. syndicated loans league table in the previous year as identified by Bloomberg. These league tables rank the top 30 banks in terms of dollar volume of syndicated loans originated by each bank. We include dummies for the top 3 banks and the next 27 banks.

Bank condition variables. To control for bank condition, we include the equity capital ratio, a bank liquidity ratio, and the allowance for loan and lease losses ratio, again at the highest holder level. For domestic BHCs, data are obtained from the Consolidated Statements for Holding Companies (FRY9C). For foreign banking organizations, we use quarterly financial reports from Bloomberg, since the FR-Y9C has only the U.S. information of these organizations.

Relationship strength. To measure relationship strength, we focus on the SNC loans obtained by the borrower in the previous five years. If all of those loans were provided by the same lead bank, as long as it has at least one prior loan, the bank-borrower relationship is considered strong.

Borrower characteristics. We include leverage, profitability, and size of the borrower. This information is available for publicly-traded domestic firms from Compustat and for foreign firms from Bloomberg. \({ }^{15}\) We also include a dummy for if the firm is publicly traded. \({ }^{16}\)

Borrower public ratings. We use coarse or granular senior public debt ratings, corresponding with whether the concordance-mapped internal loan ratings are coarse or granular, respectively. We also add a borrower debt public rating available flag.

\footnotetext{
\({ }^{15}\) Our Compustat subscription is restricted to domestic entities.
\({ }^{16}\) To identify public borrowers, we employ a three-step approach. First, we try to match each sample firm's tax identification number to that in Compustat. Second, we try to match unmatched firms with Compustat based on company name and NAICS code using the COMPGED function in SAS. The COMPGED function returns the generalized edit distance between two strings. The lower the score, the higher the likelihood that the name is a match. Firms that we are able to match in this step generally have low scores (up to 300) for both name and NAICS code. Remaining firms are hand matched.
}

\subsection*{2.6.4. Additional Variables for Testing our Second Conjecture}

As discussed above, our second conjecture is that for both pure term loans and pure revolvers, the data are likely to hold more closely to the Signaling Hypothesis for syndicates with low proportions of banks with high Bloomberg league table ranks, and to be relatively more consistent with the Sophisticated Syndicate Hypothesis for syndicates with high proportions of ranked banks. To test this, we create League Table Proportion HIGH and League Table Proportion LOW dummies and interact them with the internal loan rating variables. We base these dummies on the syndicate proportions of banks with Bloomberg league table ranks from the prior year in the Top 3 or Top 30 .

Under the OTHER VARIABLES list in Table 2 Panel B, we show the summary statistics for the retention dataset for PARTICIPTOP3 and PARTICIPTOP30 - the proportions of the syndicate participant dollars that are invested by Bloomberg league table Top 3 and Top 30 lead banks from the prior year, respectively - for both pure term loan and pure revolver retention samples. As shown, the revolver syndicates tend to have much higher proportions of the more sophisticated participants that rank highly in the league tables. We construct the League Table Proportion HIGH and League Table Proportion LOW dummies for the retention tests of the second conjecture based on whether the syndicate proportions are above the means for the pure revolver sample and equal to or below the means for the pure term loan sample. Thus, League Table Proportion HIGH equals one if PARTICIPTOP3 or PARTICIPTOP30 \(>0.130\) or \(>0.510\), respectively, and League Table Proportion LOW equals one if PARTICIPTOP3 or PARTICIPTOP30 \(\leq 0.076\) or \(\leq 0.329\), respectively, depending on whether Top 3 or Top 30 is considered sophisticated.

We construct the League Table Proportion HIGH and League Table Proportion LOW dummies analogously for the pricing tests of the second conjecture based on the summary statistics for PARTICIPTOP3 or PARTICIPTOP30 for the pricing analysis dataset shown in Table 2 Panel F. Thus, for these tests, League Table Proportion HIGH equals one if PARTICIPTOP3 or PARTICIPTOP30 \(>0.138\) or \(>0.544\), respectively, and League Table Proportion LOW equals one if

PARTICIPTOP3 or PARTICIPTOP30 \(\leq 0.075\) or \(\leq 0.337\), respectively, depending on whether Top 3 or Top 30 is considered sophisticated.

\section*{3. Regression Results}

This section tests our hypotheses, presents robustness checks, and shows some additional results.

\subsection*{3.1 Main Results for Retention Analysis}

Table 4 examines whether lead banks retain more or less of loans when their private information is more favorable, i.e., when the loans are rated as higher quality. We regress the proportion of the loan retained by the lead bank on our key private information variables about the loan in coarse form - i.e., grouped into high investment grade (LOANRATINGHIG), low investment grade (LOANRATINGLIG), high sub-investment grade (LOANRATINGHSG), low sub-investment grade (LOANRATINGLSG), and the excluded LOANNOTRATED category. All regressions include time fixed effects and different sets of control variables from Equation (1).

Panel A gives the results for pure term loans, Panel B shows findings for pure revolvers, and Panel C essentially replicates the approach in the literature by including all syndicated loans (pure and impure term loans and revolvers, as well as other loans) in the same regression, with additional dummies for pure term loans and pure revolvers. In Panels A and B, Column (1) includes as controls only the other private information variables - the loss given default variables plus regulatory risk ratings. Subsequent columns add loan characteristics (Column (2)), the lead bank's market rank (Column (3)), the lead bank's condition (Column (4)), bank-borrower relationship strength (Column (5)), borrower characteristics and industry fixed effects (Column (6)), and borrower public debt ratings (Column (7)). In the interest of brevity, coefficient estimates for time and borrower industry fixed effects and data availability flags for loss given default, borrower publicly listed, and publicly rated are not shown. Panel C includes only full specifications, replicating Columns (7) from Panels A and B for easy comparison of results for pure term loans, pure revolvers, and all syndicated loans combined.

The results for pure term loans in Table 4 Panel A are consistent with the Signaling Hypothesis. The loan rating coefficients suggest that lead banks retain more of rated loans than non-rated loans, the omitted base category, across all specifications. Among the rated loans, they also generally retain more of those that are more highly rated. In Column (7) with all of the controls included, the effects are monotonic and all of the coefficients are statistically significant - the higher the private loan rating, the higher the loan retention - providing statistically significant evidence in favor of the Signaling Hypothesis. The results are also economically significant. The coefficient of 0.078 on LOANRATINGHIG in Column (7) suggests that lead banks hold \(7.8 \%\) more of the loans with the highest private rating relative to unrated loans, raising the retention rate by almost one-third relative to the mean of \(24.7 \%\) shown in Table 2 Panel B. The difference between the highest and the lowest of the rated loans - i.e., the difference between the coefficients on LOANRATINGHIG and LOANRATINGLSG - is also a statistically and economically significant 3.8\% (0.078-0.040).

Looking next at the results for pure revolvers in Table 4 Panel B, there are no statistically or economically significant effects of the coarse loan ratings variables on lead bank loan retention in the full specification in column (7), consistent with neither the Signaling Hypothesis nor the Sophisticated Syndicate Hypothesis for pure revolvers. The only private loan ratings that are statistically or economically significant are in Column (1), which has the fewest control variables, and these coefficients are not mutually consistent.

The results are also consistent with our first conjecture that the data would adhere more to the Signaling Hypothesis for pure term loans - the Signaling Hypothesis empirically dominates for these loans - and adhere relatively more with the Sophisticated Syndicate Hypothesis for pure revolvers neither hypothesis dominates for these loans. As discussed above, the syndicates for pure revolvers have higher representations of relatively sophisticated top Bloomberg league table lead banks. As shown in Table 2 Panel B, for pure term loan syndicates, PARTICIPTOP30 has mean and median of \(32.9 \%\) and \(31.6 \%\), respectively, versus \(51.0 \%\) and \(56.8 \%\), respectively, for pure revolver syndicates.

Turning to the effects of the control variables on pure term loan retention in Table 4 Panel A Column (7), LOANLGD has a negative, but only marginally statistically significant coefficient, suggesting a lower retention of lower quality loans, consistent with the results for loan ratings. For the regulatory risk ratings, SUBSTANDARD and DOUBTFUL loans are retained significantly less than PASS loans, again suggesting that lead banks retain more of higher quality loans. Loan size has a negative effect, possibly because the lead bank more often runs into concentration risk problems or legal lending limits in retaining more of larger loans, or because large loans are less informationally opaque. Lead banks also appear to retain less of longer maturity loans, possibly because they are riskier, ceteris paribus. The coefficients of the loan purpose variables are all negative and statistically significant, suggesting that lead banks retain more of "other" loans, which is difficult to interpret. Lead banks that are in the top 3 in the league tables retain less of term loans, possibly because their ranking assures syndicate members of loan quality, reducing the amount they need to hold to signal loan quality. Lead banks with higher liquidity ratios retain more of the loans, possibly reflecting more capacity to keep loans on the balance sheet. Banks with higher loan loss reserves retain much more of the loans they originate, possibly because high reserves hurt their reputations for making quality loans, reducing demand for their syndicated loans. If the lead bank has a strong relationship with the borrower, the bank retains less, possibly because of a certification effect of the quality of the loan. Borrower characteristics and public ratings are sometimes insignificant and of conflicting signs, making them difficult to interpret. Nonetheless, it is important to include a strong set of controls for public information about the borrowers in the regressions, so that we can interpret our main results for the effects of banks' internal ratings as reflecting the effects of private information.

Most of the control variable results are of the same sign but are less often statistically significant for revolvers in Panel B Column (7), but there are notable exceptions. The lead bank condition variables suggest that those with higher capital ratios retain more, rather than the more liquid banks, although the logic behind the findings is essentially the same. Borrower size becomes negative
and statistically significant, but small in magnitude, and the borrower public rating variables are mixed.

As indicated, Panel C shows the full specification when including all of the syndicated loans in Column (3) compared with the pure term loans and pure revolvers in Columns (1) and (2), respectively, repeated from Columns (7) in Panels A and B, respectively. Column (3) shows a regression with 12,011 total loan observations, almost four times as many as the pure term loans in Column (1) and almost twice the total for pure revolvers in Column (2), yet the findings for the full loan sample are largely dominated by the pure term loan subsample. The coefficients on the loan ratings are all positive and statistically and economically significant for the full sample in Column (3), and generally declining as the favorability of the private information decreases, consistent with the pure term loan results. These results suggest that if we had followed the usual procedure of including all the loans in our main tests, we would have concluded that the Signaling Hypothesis was dominant overall, which is not correct for the pure revolvers, which account for most of the loans. Moreover, our tests of our first conjecture about different results for the two credit types would not be possible.

\subsection*{3.2 Robustness Check for Retention Analysis Excluding Unrated Loans}

As a robustness check, in Table 5, we rerun the full specifications, but exclude loans that are not rated and substitute the low sub-investment grade loan ratings as the omitted base category. For brevity, we show only the coefficients for the concordance-mapped internal loan ratings and suppress the coefficients on the controls. The coefficient on LOANRATINGHIG in the full specification for term loans in Table 5 Column (1) is a statistically and economically significant 0.039 . This suggests that lead banks retain 3.9\% more of loans rated as high investment grade than low sub-investment grade, ceteris paribus, almost the same as the \(3.8 \%\) difference between the high investment grade and low sub-investment grade coefficients in the main specification in Table 4 Panel A. The results are again much different for the pure revolvers in Column (2), showing no significance for the LOANRATINGHIG coefficient and negative and statistically significant coefficients for the other two
ratings.

\subsection*{3.3 Robustness Check for Retention Analysis Using Granular Loan Ratings}

For robustness, Table 6 Column (1) and (2) show the findings for pure term loans and pure revolvers, respectively, using granular loan ratings. The results are largely consistent with those for the coarse ratings in Table 4. In Panel A, all of the ratings from AAA to B are positive and statistically significant and monotonically decreasing, with the sole exception of the AA rating, which makes up only one percent of the observations. These results support the main findings and are again consistent with Signaling Hypothesis dominating for pure term loans. The lower ratings - all of which have one percent or fewer of the observations - are somewhat mixed. In Panel B, none of the loan ratings have statistically significant coefficients, with the sole exception of the marginally significant CC rating, which represents less than one percent of the observations. Again, the findings suggest that neither hypothesis empirically dominates for pure revolvers. In the remainder of the results, we focus on the coarse ratings because of the very few observations in some of the granular ratings categories.

\subsection*{3.4 Main Results for Pricing Analyses}

Table 7 examines whether lead banks' private information is priced into the interest rate spreads of the loans using Equation (2) above. Panels A and B give the results for pure term loans and pure revolvers, respectively. The interest rate spread is regressed on our key private information variables about the loan in coarse form, with all the controls and fixed effects from Equation (1) with the exception of loan characteristics, which may be endogenously codetermined with the spreads. Nonetheless, when we include the loan characteristics in untabulated regressions, the main results still hold.

The results in Panel A suggest that for pure term loans, some of the private information is incorporated into the spreads - more favorable private information is associated with lower spreads after controlling for indicators of public information. This is consistent with our retention results above, again suggesting that the Signaling Hypothesis empirically dominates overall for pure term
loans. The coefficient of -0.017 on LOANRATINGHIG in the full specification in Column (6) suggests that lead banks charge a spread of 1.7 percent less for loans with high investment grade rating than unrated loans, which is economically as well as statistically significant, given that the mean spread from Table 2 Panel F is 3.3 percent.

In Panel B Column (6), the narrowing of the spread for pure revolvers is much less than observed for pure term loans. The statistically significant coefficient of -0.008 on LOANRATINGHIG in Column (6) is only about half of that for term loans, and the remaining coefficients are either marginally significant or go in the opposite direction. Consistent with our retention results, these findings suggest that there is no strong domination of either hypothesis for pure revolvers, and are again consistent with our first conjecture that the data would adhere more with the Signaling Hypothesis for pure term loans and adhere relatively more with the Sophisticated Syndicate Hypothesis for pure revolvers.

\subsection*{3.5 Tests of the Second Conjecture}

In our final set of tests, we use the retention and loan spread data to test our second conjecture that for both pure term loans and pure revolvers, the data are likely to hold more closely to the Signaling Hypothesis for syndicates with low proportions of banks that are ranked highly on the Bloomberg league tables, and to be relatively more consistent with the Sophisticated Syndicate Hypothesis for syndicates with high proportions.

In Table 8, we rerun the retention regressions using interaction terms of the private information variables with dummies for high and low syndicate proportions of banks with high Bloomberg league table ranks from the prior year in the Top 3 or Top 30, with mean proportions as the excluded base case. Our full set of control variables are included as well. Columns (1) and (3) show the results for PARTCIPTOP3 while Columns (2) and (4) show the results for PARTICIPTOP30 for pure term and pure revolver loans. The results in Table 8 are partially consistent with our second conjecture. They clearly indicate that the Signaling Hypothesis dominates for pure term loans when the syndicate is
relatively unsophisticated (the LOW interactions), consistent with the second conjecture. However, there is very little evidence suggesting that the Signaling Hypothesis dominates for pure revolvers when the syndicate is relatively unsophisticated or that the Sophisticated Syndicate Hypothesis dominates for either credit type when the syndicate is relatively sophisticated (the HIGH interactions).

Table 9 shows the corresponding analysis for spreads, and the results are again partially consistent with our second conjecture. The interactions with the LOW dummies in Columns (1), (2), and (3) are mostly negative, statistically significant, and greater in magnitude for the higher ratings, consistent with the Signaling Hypothesis for both credit types. The interactions with the HIGH dummies are mostly small and statistically insignificant.

\section*{4. Conclusion}

In the syndicated loan market, lead banks generate private information about loan quality, but little is known about how they use this information. We use an extraordinary dataset in which we are able to compute comparable measures of the favorability of information about the quality of individual loans made by different lead banks. We formulate and test hypotheses about how this favorability affects the proportion of the loan retained and the interest rate spread on the loan by the lead bank. Under the Signaling Hypothesis, potential syndicate participants are relatively uninformed, so lead banks may retain more and charge lower interest rate spreads on loans for which their private information is more favorable to signal the quality to potential participants. Under the opposing Sophisticated Syndicate Hypothesis, the potential participants are sophisticated, and can independently divine the private information, so there is no need to signal loan quality with higher retention and/or lower spreads. The syndicate members demand greater shares of the higher quality loans, resulting in less lead bank retention of these loans.

We also differentiate the results between "pure" term loans (fixed amounts with fixed maturities) and "pure" revolvers (borrower may draw down and repay over the maturity of the
agreement) and test two conjectures about the circumstances under which the different hypotheses are more likely to hold. The first is that the data are likely to adhere more strongly to the Signaling Hypothesis for pure term loans and to align relatively more with the Sophisticated Syndicate Hypothesis for pure revolvers because syndicate participants for pure revolvers are more often large banks that are lead banks on other loans. The second is that for both pure term loans and pure revolvers, the data are likely to hold more closely to the Signaling Hypothesis for syndicates with low proportions of sophisticated banks that are ranked highly on the Bloomberg league tables, and to be relatively more consistent with the Sophisticated Syndicate Hypothesis for syndicates with high proportions.

We find that for pure term loans, favorable private information is associated with higher loan retention and lower spreads by lead banks, consistent with the Signaling Hypothesis, while for pure revolvers, neither hypothesis empirically dominates. The data also provide at least some support for the two conjectures - the Signaling Hypothesis is relatively stronger for pure term loans and for syndicates with less participation by sophisticated banks that are ranked highly on the Bloomberg league tables, and the Sophisticated Syndicate Hypothesis is relatively stronger for pure revolvers and for syndicates with more participation by sophisticated banks with high Bloomberg league table ranks.

The findings also have social implications regarding the issue of lead bank incentives to invest in producing private information. The originate-to-distribute model involves an inherent incentive to underinvest in producing private information because much of the benefits accrue to participants that buy parts of the loans in the syndicated loan market or investors that buy securities backed by loan revenues in the securitization market. This problem may be mitigated to some degree by originating banks signaling some of the private information to the purchasers of the loans or securities backed by loan revenues. Our findings that the Signaling Hypothesis holds for pure term loans overall and for syndicates with relatively low representation of banks ranked highly on the Bloomberg league tables suggest that this incentive to underinvest in private information production may be mitigated to some
degree on some of these loans. The signaling is costly to the lead banks on these loans in terms of tying up funds and receiving lower interest income on the higher quality loans, but it allows the market to clear in the presence of asymmetric information and gives them more of the benefits of investing in private information.

\section*{References}
1. Aramonte, Sirio, Seung Jung Lee, and Viktors Stebunovs, 2015, Risk taking and low longerterm interest rates : Evidence from the U.S. syndicated loan market, Working paper. DOI: 10.2139/ssrn. 2662615.
2. Avery, Robert, Lewis Gaul, Leonard Nakamura, and Douglas Robertson, 2012, Measuring the quality of bank loan monitoring: Evidence from U.S. syndicated loans, Working paper.
3. Berger, Allen N., and Christa H. S. Bouwman. 2016. Bank liquidity creation and financial crises. Amsterdam: Elsevier.
4. Berger, Allen N., and Gregory F. Udell, 1995, Relationship lending and lines of credit in small firm finance, Journal of Business 68: 351-381. DOI: 10.1086/296668.
5. Berndt, Antje, and Anurag Gupta, 2009, Moral hazard and adverse selection in the originate-todistribute model of bank credit, Journal of Monetary Economics 56: 725-743. DOI: 10.1016/j.jmoneco.2009.04.002.
6. Besanko, David and Anjan V. Thakor, 1987a, Collateral and rationing: Sorting equilibria in monopolistic and competitive credit markets, International Economic Review 28: 671-689. DOI: 10.2307/2526573.
7. Besanko, David and Anjan V. Thakor, 1987b, Competitive equilibrium in the credit market under asymmetric information, Journal of Economic Theory 42: 167-183. DOI: 10.1016/0022-0531(87)90108-6.
8. Bester, Helmut, 1985, Screening vs. rationing in credit markets with imperfect information, American Economic Review 75: 850-855.
9. Bester, Helmut, 1987, The role of collateral in credit markets with imperfect information, European Economic Review 106: 60-75. DOI: 10.1016/0014-2921(87)90005-5.
10. Bharath, Sreedhar T., Sandeep Dahiya, and Issam Hallak, 2011, Do shareholder rights affect syndicate structure? Evidence from a natural experiment, Working paper.
11. Bharath, Sreedhar, T., Sandeep Dahiya, Anthony Saunders, Anand Srinivasan, 2007, So what do I get? The bank's view of lending relationships, Journal of Financial Economics 85: 368419. DOI: 10.1016/j.jfineco.2005.08.003.
12. Boot, Arnoud W.A., Anjan V. Thakor, and Gregory F. Udell, 1991, Secured lending and default risk: equilibrium analysis, policy implications and empirical results, Economic Journal 101: 458-472. DOI: 10.2307/2527003.
13. Boot, Arnoud W.A., and Anjan V. Thakor, 1994, Moral hazard and secured lending in an infinitely repeated credit market game, International Economic Review 35: 899-920. DOI: 10.1111/0022-1082.00223.
14. Boot, Arnoud W.A., and Anjan V. Thakor, 2000, Can relationship banking survive competition, Journal of Finance 55: 679-714. DOI: 10.2307/2233552.
15. Bord, Vitaly M., and João A. C. Santos, 2012, The rise of the originate-to-distribute model and the role of banks in financial intermediation, Economic Policy Review July: 21-34.
16. Bord, Vitaly M., and João A. C. Santos, 2014, Banks’ liquidity and the cost of liquidity to corporations, Journal of Money, Credit and Banking 46: 13-45. DOI: 10.1111/jmcb.12076.
17. Bosch, Oliver, and Sascha Steffen, 2007, Informed lending and the structure of loan syndicates - Evidence from the European syndicated loan market, Working paper. DOI: 10.2139/ssrn. 966350.
18. Bradley, Michael, and Michael R. Roberts, 2015, The structure and pricing of corporate debt covenants, Quarterly Journal of Finance 5: 1-37. DOI: 10.1142/S2010139215500019.
19. Champagne, Claudia, and Lawrence Kryzanowski, 2007, Are current syndicated loan alliances related to past alliances?, Journal of Banking and Finance 31: 3145-3161. DOI: 10.1016/j.jbankfin.2006.11.018.
20. Chan, Yuk-Shee, and Anjan V. Thakor, 1987, Collateral and competitive equilibria with moral hazard and private information, Journal of Finance 42: 345-363. DOI: 10.1111/j.15406261.1987.tb02571.x.
21. Chava, Sudheer, and Michael R. Roberts, 2008, How does financing impact investment? The role of debt covenants, The Journal of Finance 63: 2085-2121. DOI: 10.1111/j.15406261.2008.01391.x.
22. Degryse, Hans, Moshe Kim, and Steven Ongena, 2009, Microeconometrics of banking: Methods, applications, and results, Oxford University Press. DOI: 10.1093/acprof:oso/9780195340471.001.0001.
23. Dennis, Steven A., and Donald J. Mullineaux, 2000, Syndicated loans, Journal of Financial Intermediation 9: 404-426. DOI: 10.1006/jfin.2000.0298.
24. Diamond, Douglas W., 1984, Financial intermediation and delegated monitoring, Review of Economic Studies 51: 393-414. DOI: 10.2307/2297430.
25. Drucker, Steven, and Manju Puri, 2009, On loan sales, loan contracting, and lending relationships, Review of Financial Studies 22: 2835-2872. DOI: 10.1093/rfs/hhn067.
26. Firestone, Simon, and Marcelo Rezende, 2016, Are banks' internal risk parameters consistent? Evidence from syndicated loans, Journal of Financial Services Research 50: 211-242. DOI: 10.1007/s10693-015-0224-z.
27. Greenbaum, Stuart I., George Kanatas, and Itzhak Venezia, 1989, Equilibrium loan pricing under the bank-client relationship, Journal of Banking and Finance 13: 221-235. DOI: 10.1016/0378-4266(89)90061-7.
28. Gutierrez-Mangas, Carlos A., Ivan T. Ivanov., Mark Lueck, Shan Luo, and Joseph Nichols, 2015, The information content of banks' internal ratings, Federal Reserve Board of Governors Working Paper.
29. Hasan, Iftekhar, and Deming Wu, 2015, Credit default swaps and bank loan sales: Evidence from bank syndicated lending, Working paper. DOI: 10.2139/ssrn. 2617493.
30. Haselmann, Rainer, and Paul Wachtel, 2011, Foreign banks in syndicated loan markets, Journal of Banking and Finance 35: 2679-2689. DOI: 10.1016/j.jbankfin.2011.02.023.
31. Jones, Jonathan D, William W. Lang, and Peter J. Nigro, 2005, Agent bank behavior in bank loan syndications, The Journal of Financial Research 28: 385-402. DOI: 10.1111/j.14756803.2005.00130.x.
32. Leland, Hayne E., and David H. Pyle, 1977, Informational asymmetries, financial structure and financial intermediation, The Journal of Finance 32, No. 2: 371-387. DOI: 10.2307/2326770.
33. Maskara, Pankaj Kumar, and Donald J. Mullineaux, 2011, Small firm capital structure and the syndicated loan market, Journal of Financial Services Research 39: 55-70. DOI: 10.1007/s10693-010-0086-3.
34. Mian, Atif, and João A. C. Santos, 2012, Liquidity risk and maturity management over the credit cycle, Working paper. DOI: 10.2139/ssrn. 2023516.
35. Paligorova, Teodora, and Joao Santos, 2015, Non-bank loan investors and borrowers’ renegotiation prospects, Working paper.
36. Petersen, Mitchel A., and Raghuram G. Rajan, 1994, The benefits of lending relationships: Evidence from small business data, Journal of Finance 49: 3-37. DOI: 10.1111/j.15406261.1994.tb04418.x.
37. Plosser, Matthew C., and João A. C. Santos, 2014, Banks' incentives and the quality of internal risk models, Working paper. DOI: 10.2139/ssrn. 2543535.
38. Ramakrishnan, Ram T.S., and Anjan V. Thakor, 1984, Information reliability and a theory of financial intermediation, Review of Economic Studies 51: 415-432. DOI: 10.1111/j.15406261.1992.tb04662.x.
39. Rajan, Raghuram G., 1992, Insiders and outsiders: The choice between informed and arm'slength debt, Journal of Finance 47: 1367-1400. DOI: 10.2307/2297431.
40. Sharpe, Steven A., 1990, Asymmetric information, bank lending and implicit contracts: A stylized model of customer relationships, Journal of Finance 45: 1069-1087. DOI: 10.1111/j.1540-6261.1990.tb02427.x.
41. Shockley, Richard L., and Anjan V. Thakor, 1997, Bank loan commitment contracts: Data, theory, and tests, Journal of Money, Credit and Banking 29: 517-534. DOI: 10.2307/2953711.
42. Sufi, Amir, 2007, Information asymmetry and financing arrangements: Evidence from syndicated loans, The Journal of Finance 62: 629-668. DOI: 10.1111/j.15406261.2007.01219.x.
43. Sufi, Amir, 2009, Bank lines of credit in corporate finance: An empirical analysis, Review of Financial Studies 22: 1659-1691. DOI: 10.1093/rfs/hhm061.

\section*{Table 1: SNC Reporting Requirements for Basic Reporters and Expanded Reporters}

This table shows the Shared National Credit (SNC) annual reporting requirements of the original program for all reporters set up in 1977, requirements which continue currently for basic reporters. The table also shows the quarterly reporting requirements for starting in December 2009 for the 18 expanded reporters, banks that were transitioning to Basel II at that time.
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l} 
Rules of the original program (which continue currently for basic \\
reporters)
\end{tabular} & Rules for the 18 expanded reporters \\
\hline Minimum aggregate loan size & \(\$ 20\) million & \(\$ 0\) \\
\hline Syndicate composition requirements & Contains \(\geq 3\) unaffiliated federally supervised institutions & \\
\hline Reporting frequency & Annually & Contains \(\geq 2\) financial entities \\
\hline Reporting requirements & 1. Bank data & Quarterly \\
& 2. Borrower data & \begin{tabular}{l} 
Items 1-5 (see left) plus: \\
6. Basel II risk metrics incl. \\
probability of default (PD) \\
and loss given default (LGD)
\end{tabular} \\
& 3. Loan data \\
& 4. Participant data \\
5. Credit risk ratings (both internal \& regulatory risk ratings) & \\
\hline
\end{tabular}

\section*{Table 2: Regression Variables}

The analyses use loan level data on syndicated loans from the Shared National Credit (SNC) and the DealScan databases from 2011:Q1 to 2014:Q4. The analyses focus on pure term loans (loans of fixed amounts with fixed maturities) and pure revolvers (credits for which the borrower may draw down and repay any amount up to a fixed maximum as often as desired over the maturity of the agreement) in the SNC database. We exclude term credit with separate tranches, debtor-in-possession loans, bridge loans, non-revolving lines of credit, revolving lines converting to term, and other loans not defined as a term loan or a revolver. Panel A describes the regression variables and their sources. Table 2, Panels B through E relate to the retention equations. The retention equations use the proportion retained as the dependent variable, which is derived from SNC. Panel B displays the summary statistics of all the variables for the retention equations separately for pure term loans and pure revolvers. Panel C shows the proportion retained by coarse internal loan rating. Panel D shows the proportion retained over time. Panel E shows the number of distinct borrowers, total number of loans, and the number of distinct lead agents for the retention equations. Table 2, Panels F through I relate to the pricing equations. The pricing equations use the interest rate spread as the dependent variable, which comes from DealScan. We link pricing information from DealScan to SNC by matching borrower names using a Levenshtein algorithm (we match any unmatched borrower names from the SNC to DealScan by hand). For matched borrowers, we match loans found in SNC to loans found in DealScan based on the origination date, maturity date, loan type, and commitment amount. Panel F displays the summary statistics for the pricing sample for pure term loans and pure revolvers. The pricing sample is smaller than the retention sample because it only consists of observations where pricing information from DealScan is available. Panel G shows the interest rate spread by coarse internal loan rating. Panel H shows the interest rate spread over time. Panel I shows the number of distinct borrowers, number of loans, and the number of distinct lead agents for the pricing sample. For both the coarse and granular internal loan rating explanatory variables, we use concordance maps provided by each bank to their regulators to link each bank's internal loan rating to a common S\&P credit rating scale. To clarify, the concordance-mapped loan ratings are not S\&P ratings, they simply use the same scale as S\&P ratings. Table 3 below illustrates how we map from each bank's internal loan rating to a common S\&P scale. The control variables are from SNC, Bloomberg, Compustat, and Y-9C filings. Since our Compustat subscription only contains information for domestic borrowers, we use Compustat for domestic borrowers and Bloomberg for foreign borrowers. Additionally, because SNC, Bloomberg, and Compustat lack a reliable common identifier, we use a Levenshtein algorithm to match both Bloomberg and Compustat variables to SNC. For unmatched obligors in SNC, we hand match borrowers to Bloomberg or Compustat and ensure the data are merger-adjusted. Finally, we use Y-9C Filings for the bank control variables for domestic highest holders and Bloomberg for foreign high holders.

\section*{Panel A: Variable descriptions}
\begin{tabular}{|c|c|c|c|}
\hline Variable & Mnemonic & Description & Source \\
\hline DEPENDENT VARIABLES & & & \\
\hline Proportion of Loan Retained & RETAIN & Proportion of the loan retained at origination by the lead bank at the highest holder level. (If there are multiple lead arrangers, SNC views the self-identified primary agent to be the lead bank). & SNC \\
\hline Interest rate spread & SPREAD & The interest rate spread of the loan relative to LIBOR. & DealScan, SNC \\
\hline
\end{tabular}

KEY EXPLANATORY VARIABLES:

\section*{BANK PRIVATE INFO FAVORABILITY}

\section*{Internal Loan Ratings}

Loan Ratings from SNC and concordance table (coarse, constructed by authors from granular ratings)
Loan Rating High Investment Grade
Loan Rating Low Investment Grade
Loan Rating High Sub-Investment Grade
Loan Rating Low Sub-Investment Grade
Loan Not Rated
Internal Loan Ratings from SNC and concordance

\section*{table (granular)}

Loan Rating AAA LOANRATINGAAA
Loan Rating AA

LOANRATINGHIG LOANRATINGLIG LOANRATINGHSG LOANRATINGLSG LOANNOTRATED

Dummy \(=1\) if the lead bank internally rates the loan A- or above Dummy \(=1\) if the lead bank internally rates the loan BBB- to BBB+ Dummy \(=1\) if the lead bank internally rates the loan BB- to BB + Dummy \(=1\) if the lead bank internally rates the loan D to B+ Dummy \(=1\) if the lead bank does not rate the loan

Dummy \(=1\) if the lead bank internally rates the loan AAA Dummy = 1 if the lead bank internally rates the loan AA+ / AA / AA-

SNC, concordance tables SNC, concordance tables SNC, concordance tables SNC, concordance tables SNC, concordance tables

SNC, concordance tables SNC, concordance tables
\begin{tabular}{|c|c|c|c|}
\hline Variable & Mnemonic & Description & Source \\
\hline \multicolumn{4}{|l|}{Loss Given Default Variables from SNC (cont.)} \\
\hline Loan Rating A & LOANRATINGA & Dummy = 1 if the lead bank internally rates the loan A+ / A / A- & SNC, concordance tables \\
\hline Loan Rating BBB & LOANRATINGBBB & Dummy \(=1\) if the lead bank internally rates the loan \(\mathrm{BBB}+/ \mathrm{BBB} / \mathrm{BBB}-\) & SNC, concordance tables \\
\hline Loan Rating BB & LOANRATINGBB & Dummy \(=1\) if the lead bank internally rates the loan BB \(/ / \mathrm{BB} / \mathrm{BB}-\) & SNC, concordance tables \\
\hline Loan Rating B & LOANRATINGB & Dummy = 1 if the lead bank internally rates the loan B+/ B / B- & SNC, concordance tables \\
\hline Loan Rating CCC & LOANRATINGCCC & Dummy \(=1\) if the lead bank internally rates the loan CCC + / CCC / CCC- & SNC, concordance tables \\
\hline Loan Rating CC & LOANRATINGCC & Dummy \(=1\) if the lead bank internally rates the loan CC & SNC, concordance tables \\
\hline Loan Rating C & LOANRATINGC & Dummy \(=1\) if the lead bank internally rates the loan C & SNC, concordance tables \\
\hline Loan Rating D & LOANRATINGD & Dummy = 1 if the lead bank internally rates the loan D & SNC, concordance tables \\
\hline Loan Loss Given Default & LOANLGD & Expected loss given default of the loan before credit enhancement if available, otherwise after credit enhancement, if available. & SNC \\
\hline Loan Loss Given Default Available Flag & LOANLGDAVAIL & Dummy \(=1\) if LOANLGD available & SNC \\
\hline \multicolumn{4}{|l|}{Regulatory Risk Ratings} \\
\hline Proportion of Pass & PASS & Proportion of the loan rated by the regulators as "Pass" & SNC \\
\hline Proportion of Special Mention & SPECIALMENTION & Proportion of the loan rated by the regulators as "Special Mention" & SNC \\
\hline Proportion of Substandard & SUBSTANDARD & Proportion of the loan rated by the regulators as "Substandard" & SNC \\
\hline Proportion of Doubtful & DOUBTFUL & Proportion of the loan rated by the regulators as "Doubtful" & SNC \\
\hline Proportion of Loss & LOSS & Proportion of the loan rated by the regulators as "Loss" & SNC \\
\hline \multicolumn{4}{|l|}{Loan Characteristics} \\
\hline Natural Log of Facility Size (\$ mln) & LN(FACILITYSIZE) & Natural log of the loan facility size & SNC \\
\hline Natural Log of Maturity (years) & LN(MATURITY) & Natural log of loan maturity in years & SNC \\
\hline Loan Purpose: General Corporate & LOANPURPGENERAL & Dummy = 1 if the loan is used for general corporate purposes & SNC \\
\hline Loan Purpose: Acquisition Financing & LOANPURPACQFIN & Dummy \(=1\) if the loan is used to finance acquisitions & SNC \\
\hline Loan Purpose: Debt Refinancing & LOANPURPDEBTREFI & Dummy \(=1\) if the loan is used to refinance debt & SNC \\
\hline Loan Purpose: Working Capital & LOANPURPWC & Dummy = 1 if the loan is used to finance working capital needs & SNC \\
\hline Loan Purpose: Other & LOANPURPOTHER & Dummy = 1 if the loan is used for other purposes & SNC \\
\hline Packaged Loan Dummy & PACKAGEDLOAN & Dummy \(=1\) if the loan was originated concurrently with other loans to the same obligor at the same origination date & SNC \\
\hline \multicolumn{4}{|l|}{Bank Market Rank} \\
\hline Top 3 US Syndicated Loan League Table Dummy & LEADTOP3 & Dummy = 1 if the bank is in the top 3 (out of 30) of the US syndicated loan league table in the previous year as identified by Bloomberg. & Bloomberg \\
\hline Next 27 US Syndicated Loan League Table Dummy & LEADNEXT27 & Dummy \(=1\) if the bank is ranked 4 to 30 (out of 30 ) in the US syndicated loan league table in the previous year as identified by Bloomberg. & Bloomberg \\
\hline \multicolumn{4}{|l|}{Bank Condition} \\
\hline Bank Equity Capital Ratio & BANKEQUITYR & The highest holder lead agent bank shareholder's equity divided by total assets & FR Y-9C, Bloomberg \\
\hline Bank Cash to Total Assets Ratio & BANKCASHR & The highest holder lead agent banks' cash divided by total assets & FR Y-9C, Bloomberg \\
\hline Bank Allowance for Loan \& Lease Loss Ratio & BANKALLLR & The highest holder lead agent banks' allowance for loan and lease losses divided by total assets & FR Y-9C, Bloomberg \\
\hline \multicolumn{4}{|l|}{Relationship Strength} \\
\hline Strong Relationship Dummy & STRONGRELSHIP & Dummy \(=1\) if the borrower has all of its SNC loans from the bank in the past 5 years, provided it has at least 1 prior loan during that interval. & SNC \\
\hline
\end{tabular}
(Continuation from previous page)
\begin{tabular}{l} 
Variable \\
\hline Borrower Characteristics \\
Borrower Leverage \\
Borrower Return on Assets \\
Borrower Log Total Assets \\
Borrower Publicly-Traded Flag \\
Borrower Public Debt Ratings \\
Borrower Public Debt Ratings (coarse,
\end{tabular}

\section*{constructed by authors from granular ratings)}

Public Debt Rating High Investment Grade
Public Debt Rating Low Investment Grade
Public Debt Rating High Sub-Investment Grade
Public Debt Rating Low Sub-Investment Grade
Borrower Debt Rating Available Flag

\section*{Borrower Public Debt Ratings (granular)}

Public Debt Rating AAA
Public Debt Rating AA
Public Debt Rating A
Public Debt Rating BBB
Public Debt Rating Berger and Bouwman
Public Debt Rating B
Public Debt Rating CCC
Public Debt Rating CC
Public Debt Rating C

\section*{FIXED EFFECTS}

Industry FEs

Time FEs

\section*{OTHER VARIABLES}

The dollar proportion of the syndicate ranked in the top 3 of the syndicated loan league tables
The dollar proportion of the syndicate ranked in the top 30 of the syndicated loan league tables
Mnemonic Description

Source
BORROWERLEV
BORROWERROA
BORROWERLNTA
BORROWERPUBLIC

BOROWPUBRATINGHIG BORROWPUBRATINGLIG BORROWPUBRATINGHSG BORROWPUBRATINGLSG BORROWRATINGAVAIL

BORROWPUBRATINGAAA BORROWPUBRATINGAA BORROWPUBRATINGA BORROWPUBRATINGBBB BORROWPUBRATINGBB BORROWPUBRATINGB BORROWPUBRATINGCCC BORROWPUBRATINGCC BORROWPUBRATINGC

PARTICIPTOP3
PARTICIPTOP30
(Total assets minus shareholder equity) divided by total assets.
Net income divided by total assets.
Size measured as the natural log of total assets.
Dummy = 1 if the borrower is publicly traded so that leverage, return on assets, and total assets are available from Compustat or Bloomberg.

Dummy = 1 if the S\&P senior debt rating is A- or above
Dummy \(=1\) if the S\&P senior debt rating is BBB- to BBB +
Dummy \(=1\) if the S\&P senior debt rating is BB- to BB+
Dummy \(=1\) if the \(\mathrm{S} \& \mathrm{P}\) senior debt rating is D to \(\mathrm{B}+\)
Dummy \(=1\) if borrower public debt rating is available from Compustat. This variable is included in the summary statistics only.

Dummy \(=1\) if the S\&P senior debt rating is AAA
Dummy \(=1\) if the \(\mathrm{S} \& \mathrm{P}\) senior debt rating is \(\mathrm{AA}+/ \mathrm{AA} / \mathrm{AA}-\)
Dummy \(=1\) if the \(\mathrm{S} \& \mathrm{P}\) senior debt rating is \(\mathrm{A}+/ \mathrm{A} / \mathrm{A}-\)
Dummy \(=1\) if the S\&P senior debt rating is BBB \(+/\) BBB \(/\) BBB-
Dummy \(=1\) if the \(\mathrm{S} \mathrm{\& P}\) senior debt rating is \(\mathrm{BB}+/ \mathrm{BB} / \mathrm{BB}-\)
Dummy = 1 if the S\&P senior debt rating is \(\mathrm{B}+/ \mathrm{B} / \mathrm{B}-\)
Dummy \(=1\) if the S\&P senior debt rating is CCC \(+/\) CCC / CCC-
Dummy \(=1\) if the S\&P senior debt rating is CC
Dummy \(=1\) if the \(\mathrm{S} \& \mathrm{P}\) senior debt rating is C

7 dummies \(=1\) for the 7 industries (production; sales, transportation and utilities; financial services; professional and business services; healthcare and education; leisure and hospitality; other)
16 dummies \(=1\) for the 16 sample quarters (2011:Q1 - 2014:Q4)

The dollar proportion of the syndicate dollars held by banks in the top 3 of the syndicated loan league tables
The dollar proportion of the syndicate dollars held by banks in the top 30 of
the syndicated loan league tables

Compustat, Bloomberg Compustat, Bloomberg Compustat, Bloomberg Compustat, Bloomberg

Compustat Compustat Compustat Compustat Compustat

Compustat
Compustat
Compustat Compustat Compustat
Compustat
Compustat
Compustat
Compustat

Panel B: Retention Analysis Summary Statistics for Pure Term Loans and Pure Revolvers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Variable} & \multirow[b]{2}{*}{Mnemonic} & \multicolumn{6}{|c|}{Pure Term} & \multicolumn{6}{|c|}{Pure Revolvers} \\
\hline & & N & Mean & SD & P25 & P50 & P75 & N & Mean & SD & P25 & P50 & P75 \\
\hline \multicolumn{14}{|l|}{DEPENDENT VARIABLE} \\
\hline Proportion of Loan Retained & RETAIN & 3056 & 0.247 & 0.181 & 0.105 & 0.225 & 0.365 & 6477 & 0.250 & 0.154 & 0.125 & 0.214 & 0.343 \\
\hline \multicolumn{14}{|l|}{\begin{tabular}{l}
KEY EXPLANATORY VARIABLES: \\
BANK PRIVATE INFO \\
FAVORABILITY
\end{tabular}} \\
\hline \multicolumn{14}{|l|}{Loan Ratings} \\
\hline \multicolumn{14}{|l|}{Loan Ratings from SNC and concordance table (coarse)} \\
\hline Loan Rating High Investment Grade & LOANRATINGHIG & 3056 & 0.038 & 0.190 & 0.000 & 0.000 & 0.000 & 6477 & 0.130 & 0.336 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating Low Investment Grade & LOANRATINGLIG & 3056 & 0.170 & 0.375 & 0.000 & 0.000 & 0.000 & 6477 & 0.262 & 0.440 & 0.000 & 0.000 & 1.000 \\
\hline Loan Rating High Sub-Investment Grade & LOANRATINGHSG & 3056 & 0.534 & 0.499 & 0.000 & 1.000 & 1.000 & 6477 & 0.454 & 0.498 & 0.000 & 0.000 & 1.000 \\
\hline Loan Rating Low Sub-Investment Grade & LOANRATINGLSG & 3056 & 0.134 & 0.340 & 0.000 & 0.000 & 0.000 & 6477 & 0.141 & 0.348 & 0.000 & 0.000 & 0.000 \\
\hline Loan Not Rated & LOANNOTRATED & 3056 & 0.126 & 0.332 & 0.000 & 0.000 & 0.000 & 6477 & 0.012 & 0.110 & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{14}{|l|}{Loan Ratings from SNC and concordance table (granular)} \\
\hline Loan Rating AAA & LOANRATINGAAA & 3056 & 0.003 & 0.054 & 0.000 & 0.000 & 0.000 & 6477 & 0.003 & 0.058 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating AA & LOANRATINGAA & 3056 & 0.005 & 0.072 & 0.000 & 0.000 & 0.000 & 6477 & 0.031 & 0.173 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating A & LOANRATINGA & 3056 & 0.029 & 0.169 & 0.000 & 0.000 & 0.000 & 6477 & 0.096 & 0.294 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating BBB & LOANRATINGBBB & 3056 & 0.170 & 0.375 & 0.000 & 0.000 & 0.000 & 6477 & 0.262 & 0.440 & 0.000 & 0.000 & 1.000 \\
\hline Loan Rating BB & LOANRATINGBB & 3056 & 0.534 & 0.499 & 0.000 & 1.000 & 1.000 & 6477 & 0.454 & 0.498 & 0.000 & 0.000 & 1.000 \\
\hline Loan Rating B & LOANRATINGB & 3056 & 0.113 & 0.316 & 0.000 & 0.000 & 0.000 & 6477 & 0.118 & 0.323 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating CCC & LOANRATINGCCC & 3056 & 0.007 & 0.081 & 0.000 & 0.000 & 0.000 & 6477 & 0.012 & 0.110 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating CC & LOANRATINGCC & 3056 & 0.004 & 0.063 & 0.000 & 0.000 & 0.000 & 6477 & 0.005 & 0.072 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating C & LOANRATINGC & 3056 & 0.001 & 0.036 & 0.000 & 0.000 & 0.000 & 6477 & 0.001 & 0.033 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating D & LOANRATINGD & 3056 & 0.009 & 0.095 & 0.000 & 0.000 & 0.000 & 6477 & 0.004 & 0.061 & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{14}{|l|}{\begin{tabular}{l}
CONTROL VARIABLES \\
Loss Given Default Variables from SNC
\end{tabular}} \\
\hline \multicolumn{14}{|l|}{(Regressions include zeros for missing values and the flag equals one for these observations)} \\
\hline Loan Loss Given Default & LOANLGD & 1684 & 0.304 & 0.156 & 0.213 & 0.343 & 0.420 & 4611 & 0.346 & 0.135 & 0.280 & 0.373 & 0.442 \\
\hline Loan Loss Given Default Available Flag & LOANLGDAVAIL & 3056 & 0.551 & 0.497 & 0.000 & 1.000 & 1.000 & 6477 & 0.712 & 0.453 & 0.000 & 1.000 & 1.000 \\
\hline \multicolumn{14}{|l|}{Regulatory Risk Ratings} \\
\hline Proportion of Pass & PASS & 2995 & 0.944 & 0.230 & 1.000 & 1.000 & 1.000 & 6384 & 0.946 & 0.226 & 1.000 & 1.000 & 1.000 \\
\hline Proportion of Special Mention & SPECIALMENTION & 3056 & 0.033 & 0.178 & 0.000 & 0.000 & 0.000 & 6477 & 0.040 & 0.196 & 0.000 & 0.000 & 0.000 \\
\hline Proportion of Substandard & SUBSTANDARD & 3056 & 0.021 & 0.142 & 0.000 & 0.000 & 0.000 & 6477 & 0.013 & 0.114 & 0.000 & 0.000 & 0.000 \\
\hline Proportion of Doubtful & DOUBTFUL & 3056 & 0.002 & 0.048 & 0.000 & 0.000 & 0.000 & 6477 & 0.002 & 0.040 & 0.000 & 0.000 & 0.000 \\
\hline Proportion of Loss & LOSS & 3056 & 0.002 & 0.037 & 0.000 & 0.000 & 0.000 & 6477 & 0.000 & 0.008 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Variable} & \multirow[b]{2}{*}{Mnemonic} & \multicolumn{6}{|c|}{Pure Term} & \multicolumn{6}{|c|}{Pure Revolvers} \\
\hline & & N & Mean & SD & P25 & P50 & P75 & N & Mean & SD & P25 & P50 & P75 \\
\hline \multicolumn{14}{|l|}{Loan characteristics} \\
\hline Facility Size (\$ mln) (regressions use natural log) & FACILITYSIZE & 3056 & 321.0 & 936.4 & 50.0 & 125.0 & 300.0 & 6477 & 437.2 & 782.8 & 70.0 & 180.0 & 500.0 \\
\hline Maturity (years) (regressions use natural log) & MATURITY & 3056 & 5.021 & 1.786 & 4.142 & 5.117 & 5.408 & 6477 & 4.432 & 1.715 & 4.075 & 5.094 & 5.133 \\
\hline Loan Purpose: General Corporate & LOANPURPGENERAL & 3056 & 0.240 & 0.427 & 0.000 & 0.000 & 0.000 & 6477 & 0.297 & 0.457 & 0.000 & 0.000 & 1.000 \\
\hline Loan Purpose: Acquisition Financing & LOANPURPACQFIN & 3056 & 0.192 & 0.394 & 0.000 & 0.000 & 0.000 & 6477 & 0.043 & 0.203 & 0.000 & 0.000 & 0.000 \\
\hline Loan Purpose: Debt Refinancing & LOANPURPDEBTREFIN & 3056 & 0.129 & 0.336 & 0.000 & 0.000 & 0.000 & 6477 & 0.026 & 0.159 & 0.000 & 0.000 & 0.000 \\
\hline Loan Purpose: Working Capital & LOANPURPWC & 3056 & 0.176 & 0.381 & 0.000 & 0.000 & 0.000 & 6477 & 0.419 & 0.493 & 0.000 & 0.000 & 1.000 \\
\hline Loan Purpose: Other & LOANPURPOTHER & 3056 & 0.262 & 0.440 & 0.000 & 0.000 & 1.000 & 6477 & 0.216 & 0.411 & 0.000 & 0.000 & 0.000 \\
\hline Packaged Loan Flag & PACKAGEDLOAN & 3056 & 0.368 & 0.482 & 0.000 & 0.000 & 1.000 & 6477 & 0.181 & 0.385 & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{14}{|l|}{Bank Market Rank} \\
\hline Top 3 US Syndicated Loan League Table Dummy & LEADTOP3 & 3056 & 0.451 & 0.498 & 0.000 & 0.000 & 1.000 & 6477 & 0.495 & 0.500 & 0.000 & 0.000 & 1.000 \\
\hline Next 27 US Syndicated Loan League Table Dummy & LEADNEXT27 & 3056 & 0.462 & 0.499 & 0.000 & 0.000 & 1.000 & 6477 & 0.445 & 0.497 & 0.000 & 0.000 & 1.000 \\
\hline \multicolumn{14}{|l|}{Bank Condition} \\
\hline Bank Equity Capital Ratio & BANKEQUITYR & 3056 & 0.094 & 0.029 & 0.082 & 0.104 & 0.112 & 6477 & 0.097 & 0.026 & 0.084 & 0.107 & 0.112 \\
\hline Bank Cash to Total Assets Ratio & BANKCASHR & 3056 & 0.069 & 0.040 & 0.044 & 0.064 & 0.079 & 6477 & 0.072 & 0.042 & 0.044 & 0.065 & 0.088 \\
\hline Bank Allowance for Loan \& Lease Loss Ratio & BANKALLLR & 3056 & 0.010 & 0.005 & 0.006 & 0.010 & 0.013 & 6477 & 0.011 & 0.005 & 0.007 & 0.011 & 0.014 \\
\hline \begin{tabular}{l}
Relationship Strength \\
Strong Relationship Dummy
\end{tabular} & STRONGRELSHIP & 3056 & 0.432 & 0.495 & 0.000 & 0.000 & 1.000 & 6477 & 0.449 & 0.497 & 0.000 & 0.000 & 1.000 \\
\hline \multicolumn{14}{|l|}{Borrower Characteristics} \\
\hline (Regressions include zeros for missing values and the flag equals one for these observations) & & & & & & & & & & & & & \\
\hline Borrower Leverage & BORROWERLEV & 892 & 0.715 & 1.460 & 0.508 & 0.622 & 0.758 & 2766 & 0.774 & 4.570 & 0.477 & 0.617 & 0.741 \\
\hline Borrower Return on Assets & BORROWERROA & 892 & -0.061 & 1.211 & 0.000 & 0.007 & 0.015 & 2766 & -0.019 & 0.731 & 0.003 & 0.010 & 0.019 \\
\hline Borrower Total Assets (\$ billion) (regressions use natural log) & BORROWERTA & 892 & 24.6 & 161.9 & 1.2 & 2.9 & 7.3 & 2767 & 23.3 & 128.8 & 1.3 & 3.6 & 12.4 \\
\hline Borrower Publicly-Traded Flag & BORROWERPUBLIC & 3056 & 0.292 & 0.455 & 0.000 & 0.000 & 1.000 & 6477 & 0.427 & 0.495 & 0.000 & 0.000 & 1.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{(Continuation from previous page)} \\
\hline \multirow[b]{2}{*}{Variable} & \multirow[b]{2}{*}{Mnemonic} & \multicolumn{6}{|c|}{Pure Term} & \multicolumn{6}{|c|}{Pure Revolvers} \\
\hline & & N & Mean & SD & P25 & P50 & P75 & N & Mean & SD & P25 & P50 & P75 \\
\hline \multicolumn{14}{|l|}{Borrower Public Debt Ratings} \\
\hline \multicolumn{14}{|l|}{Borrower Public Debt Ratings (coarse, constructed by authors from granular ratings)} \\
\hline Borrower Public Rating High Investment Grade & BORROWPUBRATINGHIG & 429 & 0.061 & 0.239 & 0.000 & 0.000 & 0.000 & 1450 & 0.237 & 0.425 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Public Rating Low Investment Grade & BORROWPUBRATINGLIG & 429 & 0.287 & 0.453 & 0.000 & 0.000 & 1.000 & 1450 & 0.366 & 0.482 & 0.000 & 0.000 & 1.000 \\
\hline Borrower Public Rating High SubInvestment Grade & BORROWPUBRATINGHSG & 429 & 0.396 & 0.490 & 0.000 & 0.000 & 1.000 & 1450 & 0.250 & 0.433 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Public Rating Low SubInvestment Grade & BORROWPUBRATINGLSG & 429 & 0.256 & 0.437 & 0.000 & 0.000 & 1.000 & 1450 & 0.148 & 0.355 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Rating Available Flag & BORROWRATINGAVAIL & 3056 & 0.140 & 0.347 & 0.000 & 0.000 & 0.000 & 6477 & 0.224 & 0.417 & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{14}{|l|}{Borrower Public Debt Ratings (granular)} \\
\hline Borrower Public Rating AAA & BORROWPUBRATINGAAA & 429 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1450 & 0.010 & 0.098 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Public Rating AA & BORROWPUBRATINGAA & 429 & 0.005 & 0.068 & 0.000 & 0.000 & 0.000 & 1450 & 0.030 & 0.172 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Public Rating A & BORROWPUBRATINGA & 429 & 0.056 & 0.230 & 0.000 & 0.000 & 0.000 & 1450 & 0.197 & 0.398 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Public Rating BBB & BORROWPUBRATINGBBB & 429 & 0.287 & 0.453 & 0.000 & 0.000 & 1.000 & 1450 & 0.366 & 0.482 & 0.000 & 0.000 & 1.000 \\
\hline Borrower Public Rating BB & BORROWPUBRATINGBB & 429 & 0.396 & 0.490 & 0.000 & 0.000 & 1.000 & 1450 & 0.250 & 0.433 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Public Rating B & BORROWPUBRATINGB & 429 & 0.249 & 0.433 & 0.000 & 0.000 & 0.000 & 1450 & 0.146 & 0.353 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Public Rating CCC & BORROWPUBRATINGCCC & 429 & 0.005 & 0.068 & 0.000 & 0.000 & 0.000 & 1450 & 0.002 & 0.045 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Public Rating CC & BORROWPUBRATINGCC & 429 & 0.002 & 0.048 & 0.000 & 0.000 & 0.000 & 1450 & 0.001 & 0.026 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Public Rating C & BORROWPUBRATINGC & 429 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1450 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Public Rating D & BORROWPUBRATINGD & 429 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1450 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{14}{|l|}{FIXED EFFECTS} \\
\hline Borrower Industry FEs & Production & 3056 & 0.333 & 0.471 & 0.000 & 0.000 & 1.000 & 6477 & 0.342 & 0.474 & 0.000 & 0.000 & 1.000 \\
\hline & Sales, transportation, utilities & 3056 & 0.161 & 0.368 & 0.000 & 0.000 & 0.000 & 6477 & 0.207 & 0.405 & 0.000 & 0.000 & 0.000 \\
\hline & Financial services & 3056 & 0.193 & 0.395 & 0.000 & 0.000 & 0.000 & 6477 & 0.196 & 0.397 & 0.000 & 0.000 & 0.000 \\
\hline & Professional business services & 3056 & 0.161 & 0.368 & 0.000 & 0.000 & 0.000 & 6477 & 0.155 & 0.362 & 0.000 & 0.000 & 0.000 \\
\hline & Healthcare and education & 3056 & 0.064 & 0.244 & 0.000 & 0.000 & 0.000 & 6477 & 0.040 & 0.196 & 0.000 & 0.000 & 0.000 \\
\hline & Leisure and hospitality & 3056 & 0.074 & 0.262 & 0.000 & 0.000 & 0.000 & 6477 & 0.048 & 0.213 & 0.000 & 0.000 & 0.000 \\
\hline & Other & 3056 & 0.014 & 0.116 & 0.000 & 0.000 & 0.000 & 6477 & 0.012 & 0.110 & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{14}{|l|}{Time FEs} \\
\hline \multicolumn{14}{|l|}{OTHER VARIABLES} \\
\hline The dollar proportion of the Syndicate Ranked in the top 3 of the League Tables & PARTICIPTOP3 & 3056 & 0.076 & 0.113 & 0.000 & 0.000 & 0.144 & 6477 & 0.130 & 0.129 & 0.000 & 0.123 & 0.205 \\
\hline The dollar proportion of the Syndicate Ranked in the top 30 of the League Tables & PARTICIPTOP30 & 3056 & 0.329 & 0.264 & 0.047 & 0.316 & 0.578 & 6477 & 0.510 & 0.232 & 0.364 & 0.568 & 0.686 \\
\hline
\end{tabular}

Panel C: Loan Proportion Retained by Coarse Internal Loan Rating
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{6}{|c|}{Panel C1: Pure Term} & \multicolumn{6}{|c|}{Panel C2: Pure Revolvers} \\
\hline & N & Mean & Std. Dev. & P25 & Median & P75 & N & Mean & Std. Dev. & P25 & Median & P75 \\
\hline HIG & 115 & 0.270 & 0.148 & 0.151 & 0.267 & 0.350 & 842 & 0.189 & 0.141 & 0.091 & 0.131 & 0.237 \\
\hline LIG & 518 & 0.237 & 0.155 & 0.114 & 0.200 & 0.333 & 1700 & 0.192 & 0.130 & 0.100 & 0.150 & 0.250 \\
\hline HSG & 1631 & 0.279 & 0.155 & 0.154 & 0.270 & 0.386 & 2943 & 0.278 & 0.150 & 0.160 & 0.250 & 0.374 \\
\hline LSG & 408 & 0.240 & 0.223 & 0.049 & 0.207 & 0.373 & 912 & 0.323 & 0.161 & 0.201 & 0.300 & 0.419 \\
\hline NR & 384 & 0.128 & 0.217 & 0.005 & 0.027 & 0.127 & 80 & 0.258 & 0.152 & 0.138 & 0.227 & 0.333 \\
\hline Total & 3056 & 0.247 & 0.181 & 0.105 & 0.225 & 0.365 & 6477 & 0.250 & 0.154 & 0.125 & 0.214 & 0.343 \\
\hline
\end{tabular}

Panel D: Loan Proportion Retained Over Time
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{6}{|c|}{Panel D1: Pure Term} & \multicolumn{6}{|c|}{Panel D2: Pure Revolvers} \\
\hline & N & Mean & Std. Dev. & P25 & Median & P75 & N & Mean & Std. Dev. & P25 & Median & P75 \\
\hline 2011 & 723 & 0.233 & 0.175 & 0.106 & 0.200 & 0.346 & 1783 & 0.223 & 0.142 & 0.113 & 0.183 & 0.300 \\
\hline 2012 & 765 & 0.252 & 0.181 & 0.112 & 0.237 & 0.368 & 1606 & 0.259 & 0.159 & 0.131 & 0.222 & 0.350 \\
\hline 2013 & 746 & 0.248 & 0.176 & 0.105 & 0.233 & 0.360 & 1491 & 0.262 & 0.152 & 0.135 & 0.240 & 0.361 \\
\hline 2014 & 822 & 0.255 & 0.190 & 0.102 & 0.234 & 0.377 & 1597 & 0.261 & 0.159 & 0.127 & 0.225 & 0.360 \\
\hline Total & 3056 & 0.247 & 0.181 & 0.105 & 0.225 & 0.365 & 6477 & 0.250 & 0.154 & 0.125 & 0.214 & 0.343 \\
\hline
\end{tabular}

Panel E: Number of Distinct Borrowers, Number of Loans, And Number Of Distinct Lead Arrangers Over Time
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|c|}{Panel E1: Pure Term} & \multicolumn{3}{|c|}{Panel E2: Pure Revolvers} \\
\hline & Number of borrowers & Number of loans & Number of lead arrangers & Number of borrowers & Number of loans & Number of lead arrangers \\
\hline 2011 & 586 & 723 & 26 & 1502 & 1783 & 29 \\
\hline 2012 & 635 & 765 & 28 & 1379 & 1606 & 31 \\
\hline 2013 & 634 & 746 & 26 & 1307 & 1491 & 30 \\
\hline 2014 & 674 & 822 & 28 & 1440 & 1597 & 30 \\
\hline Total & 2137 & 3056 & 30 & 4307 & 6477 & 31 \\
\hline
\end{tabular}

Table F: Pricing Analysis Summary Statistics for Pure Term Loans and Pure Revolvers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Variable} & \multirow[b]{2}{*}{Mnemonic} & \multicolumn{6}{|c|}{Pure Term} & \multicolumn{6}{|c|}{Pure Revolvers} \\
\hline & & N & Mean & SD & P25 & P50 & P75 & N & Mean & SD & P25 & P50 & P75 \\
\hline \multicolumn{14}{|l|}{DEPENDENT VARIABLE} \\
\hline Interest Rate Spread & SPREAD & 1624 & 0.033 & 0.016 & 0.020 & 0.030 & 0.040 & 3720 & 0.022 & 0.012 & 0.013 & 0.018 & 0.028 \\
\hline \multicolumn{14}{|l|}{KEY EXPLANATORY VARIABLES: BANK PRIVATE INFO FAVORABILITY} \\
\hline \multicolumn{14}{|l|}{Loan Ratings} \\
\hline \multicolumn{14}{|l|}{Loan Ratings from SNC and concordance table (coarse)} \\
\hline Loan Rating High Investment Grade & LOANRATINGHIG & 1624 & 0.026 & 0.161 & 0.000 & 0.000 & 0.000 & 3720 & 0.120 & 0.325 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating Low Investment Grade & LOANRATINGLIG & 1624 & 0.158 & 0.365 & 0.000 & 0.000 & 0.000 & 3720 & 0.308 & 0.462 & 0.000 & 0.000 & 1.000 \\
\hline Loan Rating High Sub-Investment Grade & LOANRATINGHSG & 1624 & 0.524 & 0.500 & 0.000 & 1.000 & 1.000 & 3720 & 0.430 & 0.495 & 0.000 & 0.000 & 1.000 \\
\hline Loan Rating Low Sub-Investment Grade & LOANRATINGLSG & 1624 & 0.137 & 0.344 & 0.000 & 0.000 & 0.000 & 3720 & 0.133 & 0.340 & 0.000 & 0.000 & 0.000 \\
\hline Loan Not Rated & LOANNOTRATED & 1624 & 0.155 & 0.362 & 0.000 & 0.000 & 0.000 & 3720 & 0.009 & 0.095 & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{14}{|l|}{Loan Ratings from SNC and concordance table (granular)} \\
\hline & LOANRATINGAAA & 1624 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 3720 & 0.003 & 0.054 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating AA & LOANRATINGAA & 1624 & 0.003 & 0.055 & 0.000 & 0.000 & 0.000 & 3720 & 0.023 & 0.149 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating A & LOANRATINGA & 1624 & 0.023 & 0.151 & 0.000 & 0.000 & 0.000 & 3720 & 0.094 & 0.292 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating BBB & LOANRATINGBBB & 1624 & 0.158 & 0.365 & 0.000 & 0.000 & 0.000 & 3720 & 0.308 & 0.462 & 0.000 & 0.000 & 1.000 \\
\hline Loan Rating BB & LOANRATINGBB & 1624 & 0.524 & 0.500 & 0.000 & 1.000 & 1.000 & 3720 & 0.430 & 0.495 & 0.000 & 0.000 & 1.000 \\
\hline Loan Rating B & LOANRATINGB & 1624 & 0.124 & 0.330 & 0.000 & 0.000 & 0.000 & 3720 & 0.120 & 0.325 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating CCC & LOANRATINGCCC & 1624 & 0.009 & 0.092 & 0.000 & 0.000 & 0.000 & 3720 & 0.009 & 0.092 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating CC & LOANRATINGCC & 1624 & 0.002 & 0.043 & 0.000 & 0.000 & 0.000 & 3720 & 0.004 & 0.061 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating C & LOANRATINGC & 1624 & 0.001 & 0.025 & 0.000 & 0.000 & 0.000 & 3720 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Loan Rating D & LOANRATINGD & 1624 & 0.001 & 0.035 & 0.000 & 0.000 & 0.000 & 3720 & 0.001 & 0.033 & 0.000 & 0.000 & 0.000 \\
\hline \multicolumn{14}{|l|}{\multirow[t]{2}{*}{CONTROL VARIABLES}} \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{(Regressions include zeros for missing values and the flag equals one for these observations)} \\
\hline Loan Loss Given Default & LOANLGD & 918 & 0.299 & 0.155 & 0.205 & 0.342 & 0.422 & 2822 & 0.360 & 0.127 & 0.290 & 0.390 & 0.450 \\
\hline Loan Loss Given Default Available Flag & LOANLGDAVAIL & 1624 & 0.565 & 0.496 & 0.000 & 1.000 & 1.000 & 3720 & 0.759 & 0.428 & 1.000 & 1.000 & 1.000 \\
\hline \multicolumn{14}{|l|}{Regulatory Risk Ratings} \\
\hline Proportion of Pass & PASS & 1615 & 0.955 & 0.206 & 1.000 & 1.000 & 1.000 & 3706 & 0.954 & 0.209 & 1.000 & 1.000 & 1.000 \\
\hline Proportion of Special Mention & SPECIALMENTION & 1624 & 0.035 & 0.184 & 0.000 & 0.000 & 0.000 & 3720 & 0.037 & 0.188 & 0.000 & 0.000 & 0.000 \\
\hline Proportion of Substandard & SUBSTANDARD & 1624 & 0.009 & 0.096 & 0.000 & 0.000 & 0.000 & 3720 & 0.009 & 0.095 & 0.000 & 0.000 & 0.000 \\
\hline Proportion of Doubtful & DOUBTFUL & 1624 & 0.001 & 0.035 & 0.000 & 0.000 & 0.000 & 3720 & 0.001 & 0.023 & 0.000 & 0.000 & 0.000 \\
\hline Proportion of Loss & LOSS & 1624 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 3720 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Variable} & \multirow[b]{2}{*}{Mnemonic} & \multicolumn{6}{|c|}{Pure Term} & \multicolumn{6}{|c|}{Pure Revolvers} \\
\hline & & N & Mean & SD & P25 & P50 & P75 & N & Mean & SD & P25 & P50 & P75 \\
\hline \multicolumn{14}{|l|}{Bank Market Rank} \\
\hline Top 3 US Syndicated Loan League Table Dummy & LEADTOP3 & 1624 & 0.478 & 0.500 & 0.000 & 0.000 & 1.000 & 3720 & 0.559 & 0.497 & 0.000 & 1.000 & 1.000 \\
\hline Next 27 US Syndicated Loan League Table Dummy & LEADNEXT27 & 1624 & 0.472 & 0.499 & 0.000 & 0.000 & 1.000 & 3720 & 0.418 & 0.493 & 0.000 & 0.000 & 1.000 \\
\hline \multicolumn{14}{|l|}{Bank Condition} \\
\hline Bank Equity Capital Ratio & BANKEQUITYR & 1624 & 0.093 & 0.029 & 0.082 & 0.099 & 0.111 & 3720 & 0.096 & 0.025 & 0.084 & 0.107 & 0.112 \\
\hline Bank Cash to Total Assets Ratio & BANKCASHR & 1624 & 0.070 & 0.039 & 0.045 & 0.064 & 0.079 & 3720 & 0.075 & 0.041 & 0.050 & 0.066 & 0.092 \\
\hline Bank Allowance for Loan \& Lease Loss Ratio & BANKALLLR & 1624 & 0.009 & 0.005 & 0.006 & 0.010 & 0.013 & 3720 & 0.011 & 0.004 & 0.007 & 0.011 & 0.014 \\
\hline Relationship Strength & & & & & & & & & & & & & \\
\hline Strong Relationship Dummy & STRONGRELSHIP & 1624 & 0.440 & 0.497 & 0.000 & 0.000 & 1.000 & 3720 & 0.466 & 0.499 & 0.000 & 0.000 & 1.000 \\
\hline \multicolumn{14}{|l|}{Borrower Characteristics} \\
\hline \multicolumn{14}{|l|}{(Regressions include zeros for missing values and the flag equals one for these observations)} \\
\hline Borrower Leverage & BORROWERLEV & 548 & 0.736 & 1.430 & 0.515 & 0.628 & 0.770 & 1865 & 0.750 & 3.666 & 0.477 & 0.613 & 0.732 \\
\hline Borrower Return on Assets & BORROWERROA & 548 & -0.086 & 1.517 & 0.001 & 0.008 & 0.016 & 1865 & -0.026 & 0.861 & 0.003 & 0.011 & 0.020 \\
\hline Borrower Total Assets (\$ billion) (regressions use natural log) & BORROWERTA & 548 & 22.6 & 161.9 & 1.2 & 2.9 & 6.4 & 1866 & 16.8 & 99.5 & 1.2 & 3.5 & 11.4 \\
\hline Borrower Publicly-Traded Flag & BORROWERPUBLIC & 1624 & 0.337 & 0.473 & 0.000 & 0.000 & 1.000 & 3720 & 0.502 & 0.500 & 0.000 & 1.000 & 1.000 \\
\hline \multicolumn{14}{|l|}{Borrower Public Debt Ratings} \\
\hline \multicolumn{14}{|l|}{Borrower Public Debt Ratings (coarse)} \\
\hline Borrower Public Rating High Investment Grade & BORROWPUBRATINGHIG & 283 & 0.042 & 0.202 & 0.000 & 0.000 & 0.000 & 989 & 0.201 & 0.401 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Public Rating Low Investment Grade & BORROWPUBRATINGLIG & 283 & 0.279 & 0.449 & 0.000 & 0.000 & 1.000 & 989 & 0.405 & 0.491 & 0.000 & 0.000 & 1.000 \\
\hline Borrower Public Rating High Sub-Investment Grade & BORROWPUBRATINGHSG & 283 & 0.406 & 0.492 & 0.000 & 0.000 & 1.000 & 989 & 0.255 & 0.436 & 0.000 & 0.000 & 1.000 \\
\hline Borrower Public Rating Low Sub-Investment & BORROWPUBRATINGLSG & & & & & & & & & & & & \\
\hline Grade & & 283 & 0.272 & 0.446 & 0.000 & 0.000 & 1.000 & 989 & 0.139 & 0.346 & 0.000 & 0.000 & 0.000 \\
\hline Borrower Rating Available Flag & BORROWRATINGAVAIL & 1624 & 0.174 & 0.379 & 0.000 & 0.000 & 0.000 & 3720 & 0.266 & 0.442 & 0.000 & 0.000 & 1.000 \\
\hline \multicolumn{14}{|l|}{FIXED EFFECTS} \\
\hline \multirow[t]{7}{*}{Borrower Industry FEs} & Production & 1624 & 0.341 & 0.474 & 0.000 & 0.000 & 1.000 & 3720 & 0.363 & 0.481 & 0.000 & 0.000 & 1.000 \\
\hline & Sales, transportation, utilities & 1624 & 0.162 & 0.369 & 0.000 & 0.000 & 0.000 & 3720 & 0.213 & 0.409 & 0.000 & 0.000 & 0.000 \\
\hline & Financial services & 1624 & 0.171 & 0.376 & 0.000 & 0.000 & 0.000 & 3720 & 0.152 & 0.359 & 0.000 & 0.000 & 0.000 \\
\hline & Professional business services & 1624 & 0.179 & 0.384 & 0.000 & 0.000 & 0.000 & 3720 & 0.169 & 0.374 & 0.000 & 0.000 & 0.000 \\
\hline & Healthcare and education & 1624 & 0.057 & 0.232 & 0.000 & 0.000 & 0.000 & 3720 & 0.041 & 0.198 & 0.000 & 0.000 & 0.000 \\
\hline & Leisure and hospitality & 1624 & 0.077 & 0.267 & 0.000 & 0.000 & 0.000 & 3720 & 0.051 & 0.219 & 0.000 & 0.000 & 0.000 \\
\hline & Other & 1624 & 0.013 & 0.113 & 0.000 & 0.000 & 0.000 & 3720 & 0.012 & 0.107 & 0.000 & 0.000 & 0.000 \\
\hline Time FEs & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Variable} & \multirow[b]{2}{*}{Mnemonic} & \multicolumn{6}{|c|}{Pure Term} & \multicolumn{6}{|c|}{Pure Revolvers} \\
\hline & & N & Mean & SD & P25 & P50 & P75 & N & Mean & SD & P25 & P50 & P75 \\
\hline OTHER VARIABLES & & & & & & & & & & & & & \\
\hline The dollar proportion of the Syndicate Ranked in the top 3 of the Syndicated Loan League & PARTICIPTOP3 & 1624 & 0.075 & 0.109 & 0.000 & 0.006 & 0.143 & 3720 & 0.138 & 0.121 & 0.000 & 0.133 & 0.211 \\
\hline Tables & & & & & & & & & & & & & \\
\hline The dollar proportion of the Syndicate Ranked in the top 30 of the Syndicated Loan League Tables & PARTICIPTOP30 & 1624 & 0.337 & 0.265 & 0.054 & 0.329 & 0.582 & 3720 & 0.544 & 0.215 & 0.420 & 0.597 & 0.707 \\
\hline
\end{tabular}

Panel G: Interest Rate Spread Proportion by Coarse Internal Loan Rating
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Rating} & \multicolumn{6}{|c|}{Panel G1: Pure Term} & \multicolumn{6}{|c|}{Panel G2: Pure Revolvers} \\
\hline & N & Mean & Std. Dev. & P25 & Median & P75 & N & Mean & Std. Dev. & P25 & Median & P75 \\
\hline HIG & 43 & 0.014 & 0.006 & 0.010 & 0.013 & 0.018 & 447 & 0.011 & 0.005 & 0.008 & 0.010 & 0.013 \\
\hline LIG & 256 & 0.020 & 0.010 & 0.015 & 0.018 & 0.023 & 1145 & 0.015 & 0.006 & 0.011 & 0.014 & 0.018 \\
\hline HSG & 851 & 0.031 & 0.013 & 0.021 & 0.030 & 0.038 & 1599 & 0.025 & 0.011 & 0.018 & 0.023 & 0.031 \\
\hline LSG & 222 & 0.046 & 0.018 & 0.035 & 0.043 & 0.053 & 495 & 0.038 & 0.012 & 0.028 & 0.038 & 0.045 \\
\hline NR & 252 & 0.043 & 0.017 & 0.030 & 0.038 & 0.050 & 34 & 0.024 & 0.013 & 0.013 & 0.020 & 0.035 \\
\hline Total & 1624 & 0.033 & 0.016 & 0.020 & 0.030 & 0.040 & 3720 & 0.022 & 0.012 & 0.013 & 0.018 & 0.028 \\
\hline
\end{tabular}

Panel H: Interest Rate Spread Proportion Over Time
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{6}{|c|}{Panel H1: Pure Term} & \multicolumn{6}{|c|}{Panel H2: Pure Revolvers} \\
\hline & N & Mean & Std. Dev. & P25 & Median & P75 & N & Mean & Std. Dev. & P25 & Median & P75 \\
\hline 2011 & 380 & 0.032 & 0.015 & 0.020 & 0.030 & 0.040 & 1035 & 0.022 & 0.012 & 0.013 & 0.018 & 0.028 \\
\hline 2012 & 390 & 0.034 & 0.018 & 0.020 & 0.030 & 0.045 & 947 & 0.023 & 0.013 & 0.013 & 0.018 & 0.030 \\
\hline 2013 & 405 & 0.032 & 0.016 & 0.020 & 0.030 & 0.040 & 872 & 0.022 & 0.011 & 0.013 & 0.018 & 0.030 \\
\hline 2014 & 449 & 0.032 & 0.016 & 0.020 & 0.030 & 0.040 & 866 & 0.021 & 0.011 & 0.013 & 0.018 & 0.028 \\
\hline Total & 1624 & 0.033 & 0.016 & 0.020 & 0.030 & 0.040 & 3720 & 0.022 & 0.012 & 0.013 & 0.018 & 0.028 \\
\hline
\end{tabular}

Panel I: Number of Distinct Borrowers, Number of Loans, and Number of Distinct Lead Arrangers When Pricing is Available
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|c|}{Panel I1: Pure Term} & \multicolumn{3}{|c|}{Panel I2: Pure Revolvers} \\
\hline & Number of borrowers & Number of loans & Number of lead arrangers & Number of borrowers & Number of loans & Number of lead arrangers \\
\hline 2011 & 349 & 380 & 23 & 953 & 1035 & 23 \\
\hline 2012 & 354 & 390 & 23 & 857 & 947 & 26 \\
\hline 2013 & 363 & 405 & 23 & 805 & 872 & 25 \\
\hline 2014 & 393 & 449 & 23 & 830 & 866 & 27 \\
\hline Total & 1281 & 1624 & 26 & 2813 & 3720 & 29 \\
\hline
\end{tabular}

\section*{Table 3: Hypothetical Concordance Mappings}

This table shows three hypothetical examples of concordance mappings, one alphanumeric, one numeric, and one alphabetic. Every bank in our sample assigns an internal loan rating for each of its loans in our sample; however, every bank's internal rating system is different with some banks using an alphanumeric scale, some banks using a purely numeric scale, and other banks using an alphabetic scale. Additionally, many banks' internal credit rating systems differ with regards to granularity with some banks having highly granular credit rating scales while other banks use coarse scales; consequently, concordance maps that map every bank's internal loan rating to a common S\&P scale are necessary to compare internal loan ratings between banks. The bank's "raw" internal loan ratings scale is shown on the left of each panel and the corresponding concordance-mapped ratings based upon the S\&P ratings scale from the bank's concordance table are shown on the right. Note that not all the banks' concordance tables map into all of the possible S\&P ratings.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Panel A: Alphanumeric Example} & \multicolumn{2}{|r|}{Panel B: Numeric Example} & \multicolumn{2}{|r|}{Panel C: Alphabetic Example} \\
\hline Bank’s "raw" internal loan ratings scale & Concordance-mapped ratings & Bank's "raw" internal loan ratings scale & Concordance-mapped ratings & Bank's "raw" internal loan ratings scale & Concordance-mapped ratings \\
\hline A1 & AAA & 75+ & AA+ & A & AAA \\
\hline B1 & AA & 75 & AA & B & AA+ \\
\hline C1 & A & 75- & AA- & C & AA \\
\hline A2 & BBB & 70+ & A+ & D & AA- \\
\hline B2 & BB & 70 & A & E & A+ \\
\hline C2 & B & 70- & A- & F & A \\
\hline 3 & CCC & 65+ & BBB+ & G & A- \\
\hline 4 & CC & 65 & BBB & H & BBB+ \\
\hline 5 & C & 65- & BBB- & I & BBB \\
\hline 6 & D & 60+ & BB+ & J & BBB- \\
\hline 7N & Not Rated & 60 & BB & K & BB+ \\
\hline & & 60- & BB- & L & BB \\
\hline & & 55+ & B+ & M & BB- \\
\hline & & 55 & B & N & B+ \\
\hline & & 55- & B- & O & B \\
\hline & & 50 & CCC+/CCC/CCC- & P & B- \\
\hline & & 45 & CC+/CC/CC- & Q & CCC+ \\
\hline & & 40 & D & R & CCC \\
\hline & & & & S & CCC- \\
\hline & & & & T & CC+ \\
\hline & & & & U & CC \\
\hline & & & & V & CC- \\
\hline & & & & W & C+ \\
\hline & & & & X & C \\
\hline & & & & Y & C- \\
\hline & & & & Z & D \\
\hline & & & & ZZ & Not Rated \\
\hline
\end{tabular}

\section*{Table 4: Main Results for Retention Analysis}

This table examines if banks retain more or less of the loan when their private information is favorable, i.e., when the loans are rated as higher quality, using Equation (1). To ensure we are comparing similar loans, our results only consider pure term loans (loans of fixed amounts with fixed maturities) and pure revolvers (credits for which the borrower may draw down and repay any amount up to a fixed maximum as often as desired over the maturity of the agreement) in the SNC database. We exclude term credit with separate tranches, debtor-in-possession loans, bridge loans, non-revolving lines of credit, revolving lines converting to term, and other loans not identified as a term loan or a revolver. We regress the proportion of the loan retained on our internal loan rating variables, and on alternative sets of control variables. The main results presented here are based on the coarse internal loan ratings. Panel A focuses on pure term loans, while Panel B is based on pure revolvers. To demonstrate robustness, we include progressively more control variables in each column of Panels A and B with the full specifications presented in Column (7). Panel C considers the full specification from Panels A and B, which only contain pure term loans and pure revolvers and compares the results to the entire sample containing all syndicated loans. In the full sample, we include pure term loans and pure revolvers as well as term credit with separate tranches, debtor-in-possession loans, bridge loans, non-revolving lines of credit, revolving lines converting to term, capitalized lease obligations, standby letters of credit, other real estate owned, and other loans. Panel C, Columns (1) and (2) replicate Column (7) from Panels A and B for easy comparison of pure term loans and pure revolvers to the full specification in Column (3) that includes all syndicated loans in the same regression, with additional dummies for pure term loans and pure revolvers We include LOANLGDAVAIL, PACKAGEDLOAN, BORROWERPUBLIC, and Industry fixed effect dummies in Panels A, B, and C; however, we do not show them for brevity. For all regressions, we include LOANLGDAVAIL flag to account for the average difference in loan retention by the lead agent for loans which the bank has LGD information available and for loans that bank does not. For regressions that control for loan characteristics, Column (2) through Column (7), we include a PACKAGEDLOAN flag to account for the average difference in loan retention by the lead agent for loans that are originated concurrently with other loans for the same borrower as part of a packaged deal and for loans that are originated independently. For regressions that control for borrower characteristics, Column (6) and Column (7), we include the BORROWERPUBLIC flag to capture average difference in loan retention by the lead agent for loans which the borrower's financial information is publicly available and for loans which the borrower's financial information is not available publicly. Finally, we capture industry fixed effects in Column (6) and Column (7). All variables are defined in Table 2, Panel A. t-statistics based on robust standard errors clustered by bank are reported in parentheses. \({ }^{*},{ }^{* *}\), and \({ }^{* * *}\) denote significance at the \(10 \%, 5 \%\), and \(1 \%\) level, respectively.

Panel A: Main Results for Retention Analysis - Pure Term Loans
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline Dependent variable: & RETAIN \\
\hline LOANRATINGHIG & \[
\begin{gathered}
\hline 0.163^{* * *} \\
(8.98)
\end{gathered}
\] & \[
\begin{gathered}
\hline 0.100^{* * *} \\
(5.57)
\end{gathered}
\] & \[
\begin{gathered}
0.091^{* * *} \\
(4.96)
\end{gathered}
\] & \[
\begin{gathered}
\hline 0.068^{* * *} \\
(3.63)
\end{gathered}
\] & \[
\begin{gathered}
\hline 0.072 * * * \\
(3.86)
\end{gathered}
\] & \[
\begin{gathered}
\hline 0.083^{* * *} \\
(4.39)
\end{gathered}
\] & \[
\begin{gathered}
\hline 0.078 * * * \\
(4.14)
\end{gathered}
\] \\
\hline LOANRATINGLIG & \[
\begin{gathered}
0.143 * * * \\
(9.95)
\end{gathered}
\] & \[
\begin{gathered}
0.073^{* * *} \\
(5.11)
\end{gathered}
\] & \[
\begin{gathered}
0.066 * * * \\
(4.57)
\end{gathered}
\] & \[
\begin{gathered}
0.048 * * * \\
(3.21)
\end{gathered}
\] & \[
\begin{gathered}
0.051^{* * *} \\
(3.43)
\end{gathered}
\] & \[
\begin{gathered}
0.061^{* * *} \\
(4.08)
\end{gathered}
\] & \[
\begin{gathered}
0.062 * * * \\
(3.98)
\end{gathered}
\] \\
\hline LOANRATINGHSG & \[
\begin{gathered}
0.171^{* * *} \\
(13.87)
\end{gathered}
\] & \[
\begin{gathered}
0.063^{* * *} \\
(4.71)
\end{gathered}
\] & \[
\begin{gathered}
0.055^{* * *} \\
(4.10)
\end{gathered}
\] & \[
\begin{gathered}
0.038^{* * *} \\
(2.72)
\end{gathered}
\] & \[
\begin{gathered}
0.043^{* * *} \\
(3.02)
\end{gathered}
\] & \[
\begin{gathered}
0.046 * * * \\
(3.29)
\end{gathered}
\] & \[
\begin{gathered}
0.047 * * * \\
(3.32)
\end{gathered}
\] \\
\hline LOANRATINGLSG & \[
\begin{gathered}
0.127 * * * \\
(7.41)
\end{gathered}
\] & \[
\begin{gathered}
0.053^{* * *} \\
(3.13)
\end{gathered}
\] & \[
\begin{gathered}
0.041^{* *} \\
(2.45)
\end{gathered}
\] & \[
\begin{gathered}
0.038^{* *} \\
(2.27)
\end{gathered}
\] & \[
\begin{gathered}
0.040^{* *} \\
(2.38)
\end{gathered}
\] & \[
\begin{gathered}
0.040^{* *} \\
(2.37)
\end{gathered}
\] & \[
\begin{gathered}
0.040^{* *} \\
(2.36)
\end{gathered}
\] \\
\hline LOANLGD & \[
\begin{gathered}
-0.104^{* * *} \\
(-3.25)
\end{gathered}
\] & \[
\begin{gathered}
-0.078^{* *} \\
(-2.47)
\end{gathered}
\] & \[
\begin{gathered}
-0.068^{* *} \\
(-2.18)
\end{gathered}
\] & \[
\begin{gathered}
-0.072^{* *} \\
(-2.32)
\end{gathered}
\] & \[
\begin{gathered}
-0.075^{* *} \\
(-2.42)
\end{gathered}
\] & \[
\begin{gathered}
-0.054^{*} \\
(-1.76)
\end{gathered}
\] & \[
\begin{gathered}
-0.053^{*} \\
(-1.72)
\end{gathered}
\] \\
\hline SPECIALMENTION & \[
\begin{gathered}
-0.013 \\
(-0.47)
\end{gathered}
\] & \[
\begin{aligned}
& -0.002 \\
& (-0.09)
\end{aligned}
\] & \[
\begin{aligned}
& -0.002 \\
& (-0.07)
\end{aligned}
\] & \[
\begin{aligned}
& 0.002 \\
& (0.08)
\end{aligned}
\] & \[
\begin{aligned}
& 0.001 \\
& (0.05)
\end{aligned}
\] & \[
\begin{aligned}
& 0.001 \\
& (0.03)
\end{aligned}
\] & \[
\begin{aligned}
& 0.000 \\
& (0.01)
\end{aligned}
\] \\
\hline SUBSTANDARD & \[
\begin{aligned}
& 0.021 \\
& (0.84)
\end{aligned}
\] & \[
\begin{gathered}
-0.044^{*} \\
(-1.79)
\end{gathered}
\] & \[
\begin{gathered}
-0.039 \\
(-1.60)
\end{gathered}
\] & \[
\begin{gathered}
-0.046 * \\
(-1.91)
\end{gathered}
\] & \[
\begin{gathered}
-0.043^{*} \\
(-1.81)
\end{gathered}
\] & \[
\begin{gathered}
-0.042^{*} \\
(-1.81)
\end{gathered}
\] & \[
\begin{gathered}
-0.042^{*} \\
(-1.82)
\end{gathered}
\] \\
\hline DOUBTFUL & \[
\begin{aligned}
& 0.034 \\
& (0.61)
\end{aligned}
\] & \[
\begin{gathered}
-0.108^{* * *} \\
(-3.09)
\end{gathered}
\] & \[
\begin{gathered}
-0.103^{* * *} \\
(-2.93)
\end{gathered}
\] & \[
\begin{gathered}
-0.094^{* * *} \\
(-2.81)
\end{gathered}
\] & \[
\begin{gathered}
-0.095^{* * *} \\
(-2.75)
\end{gathered}
\] & \[
\begin{gathered}
-0.085^{* *} \\
(-2.42)
\end{gathered}
\] & \[
\begin{gathered}
-0.085^{* *} \\
(-2.42)
\end{gathered}
\] \\
\hline LOSS & \[
\begin{gathered}
0.128^{* *} \\
(2.11)
\end{gathered}
\] & \[
\begin{aligned}
& -0.013 \\
& (-0.20)
\end{aligned}
\] & \[
\begin{aligned}
& -0.007 \\
& (-0.10)
\end{aligned}
\] & \[
\begin{aligned}
& -0.017 \\
& (-0.25)
\end{aligned}
\] & \[
\begin{gathered}
-0.024 \\
(-0.35)
\end{gathered}
\] & \[
\begin{aligned}
& -0.004 \\
& (-0.07)
\end{aligned}
\] & \[
\begin{aligned}
& -0.004 \\
& (-0.07)
\end{aligned}
\] \\
\hline LN(FACILITYSIZE) & & \[
\begin{gathered}
-0.063^{* * *} \\
(-25.28)
\end{gathered}
\] & \[
\begin{gathered}
-0.062^{* * *} \\
(-24.70)
\end{gathered}
\] & \[
\begin{gathered}
-0.060^{* * *} \\
(-23.64)
\end{gathered}
\] & \[
\begin{gathered}
-0.060^{* * *} \\
(-23.78)
\end{gathered}
\] & \[
\begin{gathered}
-0.055^{* * *} \\
(-20.74)
\end{gathered}
\] & \[
\begin{gathered}
-0.055^{* * *} \\
(-20.34)
\end{gathered}
\] \\
\hline LN(MATURITY) & & \[
\begin{gathered}
-0.023^{* * *} \\
(-3.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.022 * * * \\
(-2.87)
\end{gathered}
\] & \[
\begin{gathered}
-0.019^{* *} \\
(-2.51)
\end{gathered}
\] & \[
\begin{gathered}
-0.020^{* *} \\
(-2.56)
\end{gathered}
\] & \[
\begin{gathered}
-0.020 * * \\
(-2.58)
\end{gathered}
\] & \[
\begin{gathered}
-0.019 * * \\
(-2.48)
\end{gathered}
\] \\
\hline LOANPURPGENERAL & & \[
\begin{gathered}
-0.049^{* * *} \\
(-5.79)
\end{gathered}
\] & \[
\begin{gathered}
-0.047^{* * *} \\
(-5.59)
\end{gathered}
\] & \[
\begin{gathered}
-0.041^{* * *} \\
(-4.64)
\end{gathered}
\] & \[
\begin{gathered}
-0.041^{* * *} \\
(-4.65)
\end{gathered}
\] & \[
\begin{gathered}
-0.036^{* * *} \\
(-4.11)
\end{gathered}
\] & \[
\begin{gathered}
-0.036^{* * *} \\
(-4.10)
\end{gathered}
\] \\
\hline LOANPURPACQFIN & & \[
\begin{gathered}
-0.036 * * * \\
(-4.34)
\end{gathered}
\] & \[
\begin{gathered}
-0.038^{* * *} \\
(-4.52)
\end{gathered}
\] & \[
\begin{gathered}
-0.036^{* * *} \\
(-4.30)
\end{gathered}
\] & \[
\begin{gathered}
-0.037 * * * \\
(-4.42)
\end{gathered}
\] & \[
\begin{gathered}
-0.033^{* * *} \\
(-3.79)
\end{gathered}
\] & \[
\begin{gathered}
-0.032^{* * *} \\
(-3.75)
\end{gathered}
\] \\
\hline LOANPURPDEBTREFIN & & \[
\begin{gathered}
-0.045 * * * \\
(-4.54)
\end{gathered}
\] & \[
\begin{gathered}
-0.046 * * * \\
(-4.70)
\end{gathered}
\] & \[
\begin{gathered}
-0.039 * * * \\
(-4.00)
\end{gathered}
\] & \[
\begin{gathered}
-0.039 * * * \\
(-3.99)
\end{gathered}
\] & \[
\begin{gathered}
-0.033^{* * *} \\
(-3.45)
\end{gathered}
\] & \[
\begin{gathered}
-0.033^{* * *} \\
(-3.44)
\end{gathered}
\] \\
\hline LOANPURPWC & & \[
\begin{gathered}
-0.051^{* * *} \\
(-6.71)
\end{gathered}
\] & \[
\begin{gathered}
-0.047 * * * \\
(-6.07)
\end{gathered}
\] & \[
\begin{gathered}
-0.048^{* * *} \\
(-6.23)
\end{gathered}
\] & \[
\begin{gathered}
-0.046 * * * \\
(-6.04)
\end{gathered}
\] & \[
\begin{gathered}
-0.040 * * * \\
(-5.28)
\end{gathered}
\] & \[
\begin{gathered}
-0.040 * * * \\
(-5.23)
\end{gathered}
\] \\
\hline LEADTOP3 & & & \[
\begin{gathered}
-0.064^{* * *} \\
(-4.18)
\end{gathered}
\] & \[
\begin{gathered}
-0.060^{* * *} \\
(-3.79)
\end{gathered}
\] & \[
\begin{gathered}
-0.056 * * * \\
(-3.56)
\end{gathered}
\] & \[
\begin{gathered}
-0.053^{* * *} \\
(-3.38)
\end{gathered}
\] & \[
\begin{gathered}
-0.053^{* * *} \\
(-3.41)
\end{gathered}
\] \\
\hline LEADNEXT27 & & & \[
\begin{gathered}
-0.042^{* * *} \\
(-4.40)
\end{gathered}
\] & \[
\begin{gathered}
-0.014 \\
(-1.41)
\end{gathered}
\] & \[
\begin{gathered}
-0.012 \\
(-1.18)
\end{gathered}
\] & \[
\begin{aligned}
& -0.012 \\
& (-1.20)
\end{aligned}
\] & \[
\begin{gathered}
-0.012 \\
(-1.24)
\end{gathered}
\] \\
\hline BANKEQUITYR & & & & \[
\begin{aligned}
& 0.171 \\
& (1.30)
\end{aligned}
\] & \[
\begin{aligned}
& 0.115 \\
& (0.87)
\end{aligned}
\] & \[
\begin{aligned}
& 0.106 \\
& (0.80)
\end{aligned}
\] & \[
\begin{aligned}
& 0.105 \\
& (0.79)
\end{aligned}
\] \\
\hline BANKCASHR & & & & \[
\begin{gathered}
0.172^{* *} \\
(1.98)
\end{gathered}
\] & \[
\begin{gathered}
0.184^{* *} \\
(2.12)
\end{gathered}
\] & \[
\begin{aligned}
& 0.155^{*} \\
& (1.79)
\end{aligned}
\] & \[
\begin{gathered}
0.154^{*} \\
(1.78)
\end{gathered}
\] \\
\hline BANKALLLR & & & & \[
\begin{gathered}
5.293 * * * \\
(6.49)
\end{gathered}
\] & \[
\begin{gathered}
5.656^{* * *} \\
(6.87)
\end{gathered}
\] & \[
\begin{gathered}
5.354^{* * *} \\
(6.50)
\end{gathered}
\] & \[
\begin{gathered}
5.246 * * * \\
(6.36)
\end{gathered}
\] \\
\hline STRONGRELSHIP & & & & & \[
\begin{gathered}
-0.031^{* * *} \\
(-4.29)
\end{gathered}
\] & \[
\begin{gathered}
-0.030^{* * *} \\
(-4.18)
\end{gathered}
\] & \[
\begin{gathered}
-0.029 * * * \\
(-4.01)
\end{gathered}
\] \\
\hline BORROWERLEV & & & & & & \[
\begin{gathered}
0.007 * * * \\
(2.70)
\end{gathered}
\] & \[
\begin{gathered}
0.007 * * * \\
(2.93)
\end{gathered}
\] \\
\hline BORROWERROA & & & & & & \[
\begin{gathered}
0.009 * * * \\
(2.97)
\end{gathered}
\] & \[
\begin{gathered}
0.010^{* * *} \\
(3.46)
\end{gathered}
\] \\
\hline BORROWERLNTA & & & & & & \[
\begin{aligned}
& 0.001 \\
& (0.54)
\end{aligned}
\] & \[
\begin{aligned}
& -0.000 \\
& (-0.04)
\end{aligned}
\] \\
\hline BORROWPUBRATINGHIG & & & & & & & \[
\begin{gathered}
0.060^{* *} \\
(2.39)
\end{gathered}
\] \\
\hline BORROWPUBRATINGLIG & & & & & & & \[
\begin{gathered}
-0.003 \\
(-0.23)
\end{gathered}
\] \\
\hline BORROWPUBRATINGHSG & & & & & & & \[
\begin{aligned}
& -0.019 \\
& (-1.57)
\end{aligned}
\] \\
\hline BORROWPUBRATINGLSG & & & & & & & \[
\begin{aligned}
& 0.002 \\
& (0.10)
\end{aligned}
\] \\
\hline Observations & 3,056 & 3,056 & 3,056 & 3,056 & 3,056 & 3,056 & 3,056 \\
\hline Adjusted R-squared & 0.100 & 0.300 & 0.304 & 0.317 & 0.322 & 0.332 & 0.333 \\
\hline
\end{tabular}

Panel B: Main Results for Retention Analysis- Pure Revolvers
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & (1) & (2) & (3) & (4) & \begin{tabular}{l}
(5) \\
RETAIN
\end{tabular} & \begin{tabular}{l}
(6) \\
RETAIN
\end{tabular} & \begin{tabular}{l}
(7) \\
RETAIN
\end{tabular} \\
\hline Dependent variable: & RETAIN \\
\hline \multirow[t]{2}{*}{LOANRATINGHIG} & -0.044** & 0.016 & 0.008 & 0.006 & 0.009 & 0.011 & 0.007 \\
\hline & (-2.46) & (0.99) & (0.54) & (0.41) & (0.56) & (0.71) & (0.44) \\
\hline \multirow[t]{2}{*}{LOANRATINGLIG} & -0.038** & -0.007 & -0.012 & -0.014 & -0.011 & -0.009 & -0.008 \\
\hline & (-2.20) & (-0.45) & (-0.79) & (-0.88) & (-0.74) & (-0.64) & (-0.54) \\
\hline \multirow[t]{2}{*}{LOANRATINGHSG} & 0.029* & -0.003 & -0.013 & -0.015 & -0.012 & -0.015 & -0.014 \\
\hline & (1.67) & (-0.20) & (-0.89) & (-0.98) & (-0.82) & (-1.00) & (-0.92) \\
\hline \multirow[t]{2}{*}{LOANRATINGLSG} & 0.080*** & 0.017 & 0.003 & 0.008 & 0.009 & 0.004 & 0.004 \\
\hline & (4.48) & (1.08) & (0.22) & (0.51) & (0.55) & (0.26) & (0.25) \\
\hline \multirow[t]{2}{*}{LOANLGD} & -0.127*** & -0.042*** & -0.043*** & -0.054*** & -0.054*** & -0.035*** & -0.036*** \\
\hline & (-7.74) & (-3.08) & (-3.17) & (-3.79) & (-3.85) & (-2.58) & (-2.63) \\
\hline \multirow[t]{2}{*}{SPECIALMENTION} & -0.018 & -0.004 & -0.007 & -0.003 & -0.002 & 0.001 & -0.000 \\
\hline & (-1.56) & (-0.42) & (-0.79) & (-0.32) & (-0.25) & (0.09) & (-0.01) \\
\hline \multirow[t]{2}{*}{SUBSTANDARD} & -0.007 & -0.040*** & -0.039** & -0.042*** & -0.041*** & -0.037** & -0.037** \\
\hline & (-0.42) & (-2.62) & (-2.54) & (-2.71) & (-2.71) & (-2.45) & (-2.49) \\
\hline \multirow[t]{2}{*}{DOUBTFUL} & -0.057 & -0.101* & -0.090 & -0.097* & -0.094 & -0.085 & -0.086 \\
\hline & (-1.24) & (-1.70) & (-1.56) & (-1.67) & (-1.63) & (-1.49) & (-1.52) \\
\hline \multirow[t]{2}{*}{LOSS} & -0.034 & -0.052 & -0.029 & -0.030 & -0.045 & 0.011 & 0.005 \\
\hline & (-1.29) & (-1.59) & (-0.91) & (-0.95) & (-1.41) & (0.33) & (0.15) \\
\hline \multirow[t]{2}{*}{LN(FACILITYSIZE)} & & \(-0.070 * * *\) & -0.069*** & -0.069*** & -0.068*** & -0.062*** & -0.061*** \\
\hline & & (-48.79) & (-47.25) & (-47.14) & (-46.85) & (-38.73) & (-38.30) \\
\hline \multirow[t]{2}{*}{LN(MATURITY)} & & -0.036*** & -0.035*** & -0.034*** & -0.035*** & -0.029*** & -0.029*** \\
\hline & & (-10.52) & (-10.15) & (-9.82) & (-10.11) & (-8.42) & (-8.25) \\
\hline \multirow[t]{2}{*}{LOANPURPGENERAL} & & \(-0.014^{* * *}\) & -0.014*** & \(-0.014^{* * *}\) & -0.013*** & -0.010** & -0.010** \\
\hline & & (-3.36) & (-3.56) & (-3.40) & (-3.10) & (-2.28) & (-2.34) \\
\hline \multirow[t]{2}{*}{LOANPURPACQFIN} & & -0.013 & -0.014 & -0.016* & -0.015* & -0.013 & -0.012 \\
\hline & & (-1.48) & (-1.56) & (-1.74) & (-1.73) & (-1.56) & (-1.45) \\
\hline \multirow[t]{2}{*}{LOANPURPDEBTREFIN} & & 0.003 & -0.003 & 0.001 & 0.002 & 0.005 & 0.004 \\
\hline & & (0.26) & (-0.27) & (0.12) & (0.19) & (0.39) & (0.37) \\
\hline \multirow[t]{2}{*}{LOANPURPWC} & & 0.003 & 0.001 & -0.002 & -0.001 & -0.001 & -0.001 \\
\hline & & (0.76) & (0.35) & (-0.41) & (-0.34) & (-0.32) & (-0.32) \\
\hline \multirow[t]{2}{*}{LEADTOP3} & & & -0.044*** & -0.040*** & -0.040*** & -0.037*** & -0.036*** \\
\hline & & & (-4.96) & (-4.49) & (-4.54) & (-4.26) & (-4.18) \\
\hline \multirow[t]{2}{*}{LEADNEXT27} & & & -0.013* & -0.004 & -0.005 & -0.004 & -0.004 \\
\hline & & & (-1.68) & (-0.57) & (-0.69) & (-0.59) & (-0.56) \\
\hline \multirow[t]{2}{*}{BANKEQUITYR} & & & & 0.208** & 0.204** & 0.194** & 0.191** \\
\hline & & & & (2.37) & (2.33) & (2.25) & (2.22) \\
\hline \multirow[t]{2}{*}{BANKCASHR} & & & & 0.086* & 0.080* & 0.072 & 0.071 \\
\hline & & & & (1.82) & (1.71) & (1.57) & (1.54) \\
\hline \multirow[t]{2}{*}{BANKALLLR} & & & & 0.973* & 1.050** & 1.269** & 1.166** \\
\hline & & & & (1.80) & (1.97) & (2.40) & (2.21) \\
\hline \multirow[t]{2}{*}{STRONGRELSHIP} & & & & & -0.022*** & -0.023*** & -0.022*** \\
\hline & & & & & (-5.91) & (-6.13) & (-6.05) \\
\hline \multirow[t]{2}{*}{BORROWERLEV} & & & & & & -0.000 & -0.000 \\
\hline & & & & & & (-0.77) & (-0.81) \\
\hline \multirow[t]{2}{*}{BORROWERROA} & & & & & & -0.001 & -0.000 \\
\hline & & & & & & (-0.13) & (-0.10) \\
\hline \multirow[t]{2}{*}{BORROWERLNTA} & & & & & & -0.008*** & -0.007*** \\
\hline & & & & & & (-6.99) & (-6.62) \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGHIG} & & & & & & & 0.006 \\
\hline & & & & & & & (0.97) \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGLIG} & & & & & & & -0.015*** \\
\hline & & & & & & & (-3.54) \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGHSG} & & & & & & & -0.030*** \\
\hline & & & & & & & (-5.66) \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGLSG} & & & & & & & 0.001 \\
\hline & & & & & & & (0.14) \\
\hline Observations & 6,477 & 6,477 & 6,477 & 6,477 & 6,477 & 6,476 & 6,476 \\
\hline Adjusted R-squared & 0.154 & 0.447 & 0.452 & 0.454 & 0.457 & 0.475 & 0.477 \\
\hline
\end{tabular}

Panel C: Main Results for Retention Analysis - Comparisons with all Syndicated Loans
\begin{tabular}{|c|c|c|c|}
\hline Sample: & Pure Term Loans & Pure Revolvers & All Syndicated Loans \\
\hline & (1) & (2) & (3) \\
\hline Dependent variable: & RETAIN & RETAIN & RETAIN \\
\hline \multirow[t]{2}{*}{LOANRATINGHIG} & 0.078*** & 0.007 & 0.047*** \\
\hline & (4.14) & (0.44) & (4.42) \\
\hline \multirow[t]{2}{*}{LOANRATINGLIG} & 0.062*** & -0.008 & 0.042*** \\
\hline & (3.98) & (-0.54) & (4.13) \\
\hline \multirow[t]{2}{*}{LOANRATINGHSG} & 0.047*** & -0.014 & 0.039*** \\
\hline & (3.32) & (-0.92) & (3.85) \\
\hline \multirow[t]{2}{*}{LOANRATINGLSG} & 0.040** & 0.004 & 0.042*** \\
\hline & (2.36) & (0.25) & (3.85) \\
\hline \multirow[t]{2}{*}{LOANLGD} & -0.053* & -0.036*** & -0.069*** \\
\hline & (-1.72) & (-2.63) & (-5.40) \\
\hline \multirow[t]{2}{*}{SPECIALMENTION} & 0.000 & -0.000 & -0.005 \\
\hline & (0.01) & (-0.01) & (-0.56) \\
\hline \multirow[t]{2}{*}{SUBSTANDARD} & -0.042* & -0.037** & -0.031*** \\
\hline & (-1.82) & (-2.49) & (-2.80) \\
\hline \multirow[t]{2}{*}{DOUBTFUL} & -0.085** & -0.086 & -0.097*** \\
\hline & (-2.42) & (-1.52) & (-2.86) \\
\hline \multirow[t]{2}{*}{LOSS} & -0.004 & 0.005 & -0.005 \\
\hline & (-0.07) & (0.15) & (-0.12) \\
\hline \multirow[t]{2}{*}{LN(FACILITYSIZE)} & -0.055*** & -0.061*** & -0.054*** \\
\hline & (-20.34) & (-38.30) & (-18.86) \\
\hline \multirow[t]{2}{*}{LN(MATURITY)} & -0.019** & -0.029*** & -0.027*** \\
\hline & (-2.48) & (-8.25) & (-8.58) \\
\hline \multirow[t]{2}{*}{LOANPURPGENERAL} & -0.036*** & -0.010** & -0.019*** \\
\hline & (-4.10) & (-2.34) & (-5.24) \\
\hline \multirow[t]{2}{*}{LOANPURPACQFIN} & -0.032*** & -0.012 & -0.024*** \\
\hline & (-3.75) & (-1.45) & (-4.46) \\
\hline \multirow[t]{2}{*}{LOANPURPDEBTREFIN} & -0.033*** & 0.004 & -0.008 \\
\hline & (-3.44) & (0.37) & (-1.15) \\
\hline \multirow[t]{2}{*}{LOANPURPWC} & -0.040*** & -0.001 & -0.006* \\
\hline & (-5.23) & (-0.32) & (-1.84) \\
\hline \multirow[t]{2}{*}{LEADTOP3} & -0.053*** & -0.036*** & -0.047*** \\
\hline & (-3.41) & (-4.18) & (-6.79) \\
\hline \multirow[t]{2}{*}{LEADNEXT27} & -0.012 & -0.004 & -0.011** \\
\hline & (-1.24) & (-0.56) & (-2.04) \\
\hline \multirow[t]{2}{*}{BANKEQUITYR} & 0.105 & 0.191** & 0.179*** \\
\hline & (0.79) & (2.22) & (2.63) \\
\hline \multirow[t]{2}{*}{BANKCASHR} & 0.154* & 0.071 & 0.178*** \\
\hline & (1.78) & (1.54) & (4.46) \\
\hline \multirow[t]{2}{*}{BANKALLLR} & 5.246*** & 1.166** & 3.200*** \\
\hline & (6.36) & (2.21) & (7.70) \\
\hline \multirow[t]{2}{*}{STRONGRELSHIP} & -0.029*** & -0.022*** & -0.030*** \\
\hline & (-4.01) & (-6.05) & (-9.10) \\
\hline \multirow[t]{2}{*}{BORROWERLEV} & 0.007*** & -0.000 & 0.000 \\
\hline & (2.93) & (-0.81) & (0.12) \\
\hline \multirow[t]{2}{*}{BORROWERROA} & 0.010*** & -0.000 & 0.004 \\
\hline & (3.46) & (-0.10) & (0.91) \\
\hline \multirow[t]{2}{*}{BORROWERLNTA} & -0.000 & -0.007*** & -0.007*** \\
\hline & (-0.04) & (-6.62) & (-4.90) \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGHIG} & 0.060** & 0.006 & 0.007 \\
\hline & (2.39) & (0.97) & (1.28) \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGLIG} & -0.003 & -0.015*** & -0.014*** \\
\hline & (-0.23) & (-3.54) & (-3.16) \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGHSG} & -0.019 & -0.030*** & -0.032*** \\
\hline & (-1.57) & (-5.66) & (-6.29) \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGLSG} & 0.002 & 0.001 & -0.000 \\
\hline & (0.10) & (0.14) & (-0.03) \\
\hline \multirow[t]{2}{*}{PURE TERM FLAG} & & & -0.019*** \\
\hline & & & (-4.05) \\
\hline \multirow[t]{2}{*}{PURE REVOLVER FLAG} & & & -0.006* \\
\hline & & & (-1.68) \\
\hline Observations & 3,056 & 6,476 & 12,011 \\
\hline Adjusted R-squared & 0.333 & 0.477 & 0.377 \\
\hline
\end{tabular}

\section*{Table 5: Robustness Check for Retention Analysis Excluding Unrated Loans}

This table provides a robustness check to the main retention results in Table 4. We rerun the full specification regressions from Columns (7) of Table 4, Panels A and B excluding loans that are not rated and using the low sub-investment grade loan ratings (LOANRATINGLSG) as the omitted base category. Our results only consider pure term loans (loans of fixed amounts with fixed maturities) and pure revolvers (credits for which the borrower may draw down and repay any amount up to a fixed maximum as often as desired over the maturity of the agreement) in the SNC database. We exclude term credit with separate tranches, debtor-in-possession loans, bridge loans, non-revolving lines of credit, revolving lines converting to term, and other loans not identified as a term loan or a revolver. We regress the proportion of the loan retained on our internal loan rating variables (with LOANSRATINGLSG omitted), and the full set of control variables. The robustness check results presented here are based on coarse loan ratings. Column (1) focuses on term loans, Column (2) on revolvers. All regressions include an intercept, time fixed effects and all of the control variables (not shown for brevity). All variables are defined in Table 2, Panel A. t-statistics based on robust standard errors clustered by bank are reported in parentheses. \({ }^{*},{ }^{* *}\), and \({ }^{* * *}\) denote significance at the \(10 \%, 5 \%\), and \(1 \%\) level, respectively.
\begin{tabular}{lcc}
\hline Sample: & Pure Term Loans & Pure Revolvers \\
\hline & \((1)\) & \((2)\) \\
Dependent variable: & RETAIN & RETAIN \\
\hline LOANRATINGHIG & \(0.039^{* *}\) & 0.001 \\
& \((2.22)\) & \((0.19)\) \\
LOANRATINGLIG & \(0.027^{* *}\) & \(-0.013^{*}\) \\
& \((2.21)\) & \((-1.85)\) \\
LOANRATINGHSG & 0.007 & \(-0.018^{* * *}\) \\
& \((0.66)\) & \((-2.88)\) \\
Loss given default & & \\
Regulatory risk ratings & Yes & Yes \\
Loan characteristics & Yes & Yes \\
Bank market ranking & Yes & Yes \\
Bank condition & Yes & Yes \\
Relationship strength & Yes & Yes \\
Borrower characteristics & Yes & Yes \\
Borrower Public Ratings & Yes & Yes \\
LGD available flag & Yes & Yes \\
Packaged loan flag & Yes & Yes \\
Borrower public flag & Yes & Yes \\
Borrower industry FEs & Yes & Yes \\
Time FEs & Yes & Yes \\
& & Yes \\
Observations & 2,672 & \\
Adjusted R-squared & 0.355 & 6,396 \\
\hline
\end{tabular}

\section*{Table 6: Robustness Check for Retention Analysis Using Granular Loan Ratings}

For robustness, Table 6 Columns (1) and (2) show the findings for pure term loans and pure revolvers, respectively, using granular ratings. Our results only consider pure term loans (loans of fixed amounts with fixed maturities) and pure revolvers (credits for which the borrower may draw down and repay any amount up to a fixed maximum as often as desired over the maturity of the agreement) in the SNC database. We exclude term credit with separate tranches, debtor-in-possession loans, bridge loans, non-revolving lines of credit, revolving lines converting to term, and other loans not identified as a term loan or a revolver. We regress the proportion of the loan retained on our internal loan rating variables and the full set of control variables. For this robustness check, we use the granular loan ratings instead of the coarse loan ratings used in Table 4. Column (1) focuses on pure term loans; Column (2) contains pure revolvers. Regressions include an intercept, time fixed effects, and all the control variables (not shown for brevity). All variables are defined in Table 2, Panel A. t-statistics based on robust standard errors clustered by bank are reported in parentheses. *, **, and *** denote significance at the \(10 \%, 5 \%\), and \(1 \%\) level, respectively.
\begin{tabular}{lcc}
\hline Sample: & Pure Term Loans & Pure Revolvers \\
\hline & \((1)\) & \((2)\) \\
Dependent variable: & RETAIN & RETAIN \\
\hline LOANRATINGAAA & \(0.157^{* * *}\) & 0.014 \\
& \((3.94)\) & \((0.61)\) \\
LOANRATINGAA & 0.049 & 0.018 \\
& \((1.52)\) & \((1.07)\) \\
LOANRATINGA & \(0.075^{* * *}\) & 0.002 \\
& \((3.70)\) & \((0.14)\) \\
LOANRATINGBBB & \(0.061^{* * *}\) & -0.009 \\
& \((3.96)\) & \((-0.59)\) \\
LOANRATINGBB & \(0.047^{* * *}\) & -0.014 \\
LOANRATINGB & \((3.31)\) & \((-0.96)\) \\
& \(0.042^{* *}\) & 0.003 \\
LOANRATINGCCC & \((2.47)\) & \((0.16)\) \\
& -0.006 & 0.008 \\
LOANRATINGCC & \((-0.14)\) & \((0.35)\) \\
& \(0.086^{* *}\) & \(0.056^{*}\) \\
LOANRATINGC & \((2.13)\) & \((1.89)\) \\
& 0.010 & -0.018 \\
LOANRATINGD & \((0.25)\) & \((-0.46)\) \\
& -0.045 & -0.001 \\
Loss given default & \((-0.88)\) & \((-0.01)\) \\
Regulatory risk ratings & & Yes \\
Loan characteristics & Yes & Yes \\
Bank market ranking & Yes & Yes \\
Bank condition & Yes & Yes \\
Relationship strength & Yes & Yes \\
Borrower characteristics & Yes & Yes \\
Borrower Public Ratings & Yes & Yes \\
LGD available flag & Yes & Yes \\
Packaged loan flag & Yes & Yes \\
Borrower public flag & Yes & Yes \\
Borrower industry FEs & Yes & Yes \\
Time FEs & Yes & Yes \\
Observations & Yes & Yes \\
Adjusted R-squared & 3,056 & Yes \\
\hline & 0.334 & 6,476 \\
\hline
\end{tabular}

\section*{Table 7: Main Results for Pricing Analysis}

This table examines if banks' private information is priced into the interest rate spreads of the loan using Equation (2). To ensure we are comparing similar loans, our main results only consider pure term loans (loans of fixed amounts with fixed maturities) and pure revolvers (credits for which the borrower may draw down and repay any amount up to a fixed maximum as often as desired over the maturity of the agreement) in the SNC database. We excluded term credit with separate tranches, debtor-in-possession loans, bridge loans, nonrevolving lines of credit, revolving lines converting to term, and other loans not identified as a term loan or a revolver. Furthermore, for the pricing regressions, we only consider observations where pricing information is available. We regress the interest rate spread on our internal loan rating variables and on alternative sets of control variables. The main results presented here are based on the coarse internal loan ratings. Panel A focuses on pure term loans while Panel B is based on pure revolvers (a comparison of the regression results for the pricing equations between pure term loans, pure revolvers, and all syndicated loans for which pricing information is available in the appendix). To demonstrate robustness, we include progressively more control variables in each column of Panels A and B with the full specifications presented in Column (6). We include LOANLGDAVAIL, BORROWERPUBLIC, and industry fixed effect dummies in Panels A and B; however, we do not show them for brevity. For all regressions, we include LOANLGDAVAIL flag to account for the average difference in the interest rate spread for loans which the bank has LGD information available and for loans that bank does not. For regressions that control for borrower characteristics, Column (6), we include the BORROWERPUBLIC flag to capture average difference in the interest rate spread for loans which the borrower's financial information is publicly available and for loans which the borrower's financial information is not available publicly. Finally, we capture industry fixed effects in Columns (5) and (6). The LOSS variable is omitted from Table 7, Panels A and B since the proportion loss is zero for all observations in the sample. All variables are defined in Table 2, Panel A. t-statistics based on robust standard errors clustered by bank are reported in parentheses. *, **, and *** denote significance at the \(10 \%, 5 \%\), and \(1 \%\) level, respectively.

Panel A: Main Results for Pricing Analysis- Pure Term Loans
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & (1) & (2) & (3) & (4) & (5) & (6) \\
\hline Dependent variable: & SPREAD & SPREAD & SPREAD & SPREAD & SPREAD & SPREAD \\
\hline \multirow[t]{2}{*}{LOANRATINGHIG} & -0.024*** & -0.024*** & -0.022*** & -0.021*** & -0.017*** & -0.017*** \\
\hline & (-17.37) & (-17.42) & (-13.79) & (-13.19) & (-10.87) & (-10.02) \\
\hline \multirow[t]{2}{*}{LOANRATINGLIG} & -0.017*** & -0.017*** & -0.015*** & -0.014*** & -0.012*** & -0.012*** \\
\hline & (-12.15) & (-12.39) & (-9.77) & (-9.20) & (-8.49) & (-7.54) \\
\hline \multirow[t]{2}{*}{LOANRATINGHSG} & -0.009*** & -0.009*** & -0.007*** & -0.006*** & -0.006*** & -0.006*** \\
\hline & (-7.31) & (-7.36) & (-4.76) & (-4.10) & (-4.65) & (-4.21) \\
\hline \multirow[t]{2}{*}{LOANRATINGLSG} & 0.005*** & 0.005*** & 0.005*** & 0.006*** & 0.004** & 0.004** \\
\hline & (3.04) & (2.67) & (2.99) & (3.32) & (1.96) & (2.01) \\
\hline \multirow[t]{2}{*}{LOANLGD} & -0.027*** & -0.026*** & -0.028*** & -0.029*** & -0.025*** & -0.025*** \\
\hline & (-7.15) & (-7.01) & (-6.91) & (-7.17) & (-6.24) & (-6.25) \\
\hline \multirow[t]{2}{*}{SPECIALMENTION} & 0.006** & 0.007** & 0.006** & 0.006** & 0.006** & 0.006** \\
\hline & (2.45) & (2.44) & (2.10) & (2.12) & (2.24) & (2.11) \\
\hline \multirow[t]{2}{*}{SUBSTANDARD} & -0.001 & -0.001 & -0.000 & -0.000 & 0.001 & 0.001 \\
\hline & (-0.27) & (-0.24) & (-0.08) & (-0.05) & (0.25) & (0.20) \\
\hline \multirow[t]{2}{*}{DOUBTFUL} & 0.042*** & 0.042*** & 0.043*** & 0.043*** & 0.041*** & 0.040*** \\
\hline & (24.36) & (22.15) & (21.62) & (20.82) & (11.93) & (13.70) \\
\hline \multirow[t]{2}{*}{LOSS} & - & - & - & - & - & - \\
\hline & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{LEADTOP3} & & -0.002 & -0.003 & -0.002 & -0.002 & -0.002 \\
\hline & & (-0.95) & (-1.28) & (-0.86) & (-0.71) & (-0.75) \\
\hline \multirow[t]{2}{*}{LEADNEXT27} & & -0.001 & -0.004** & -0.004** & -0.003 & -0.003 \\
\hline & & (-0.67) & (-2.23) & (-2.04) & (-1.61) & (-1.56) \\
\hline \multirow[t]{2}{*}{BANKEQUITYR} & & & -0.031* & -0.041** & -0.036** & -0.033** \\
\hline & & & (-1.92) & (-2.55) & (-2.29) & (-2.16) \\
\hline \multirow[t]{2}{*}{BANKCASHR} & & & -0.004 & -0.003 & -0.000 & 0.001 \\
\hline & & & (-0.38) & (-0.27) & (-0.03) & (0.08) \\
\hline \multirow[t]{2}{*}{BANKALLLR} & & & -0.373*** & -0.313*** & -0.330*** & -0.352*** \\
\hline & & & (-3.77) & (-3.18) & (-3.49) & (-3.75) \\
\hline \multirow[t]{2}{*}{STRONGRELSHIP} & & & & -0.004*** & -0.005*** & -0.005*** \\
\hline & & & & (-4.91) & (-5.44) & (-5.45) \\
\hline \multirow[t]{2}{*}{BORROWERLEV} & & & & & 0.004** & 0.003 \\
\hline & & & & & (2.03) & (1.64) \\
\hline \multirow[t]{2}{*}{BORROWERROA} & & & & & 0.004* & 0.003 \\
\hline & & & & & (1.69) & (1.24) \\
\hline \multirow[t]{2}{*}{BORROWERLNTA} & & & & & -0.001*** & -0.001*** \\
\hline & & & & & (-3.64) & (-2.78) \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGHIG} & & & & & & -0.002 \\
\hline & & & & & & (-0.52) \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGLIG} & & & & & & -0.004*** \\
\hline & & & & & & \[
(-3.51)
\] \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGHSG} & & & & & & -0.003** \\
\hline & & & & & & (-2.55) \\
\hline \multirow[t]{2}{*}{BORROWPUBRATINGLSG} & & & & & & 0.002 \\
\hline & & & & & & (1.20) \\
\hline Observations & 1,624 & 1,624 & 1,624 & 1,624 & 1,624 & 1,624 \\
\hline Adjusted R-squared & 0.340 & 0.340 & 0.351 & 0.361 & 0.418 & 0.421 \\
\hline
\end{tabular}

Panel B: Main Results for Pricing Analysis- Pure Revolvers
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
(1) \\
SPREAD
\end{tabular} & \begin{tabular}{l}
(2) \\
SPREAD
\end{tabular} & \begin{tabular}{l}
(3) \\
SPREAD
\end{tabular} & \begin{tabular}{l}
(4) \\
SPREAD
\end{tabular} & \begin{tabular}{l}
(5) \\
SPREAD
\end{tabular} & \begin{tabular}{l}
(6) \\
SPREAD
\end{tabular} \\
\hline Dependent variable: & SPREAD & SPREAD & SPREAD & SPREAD & SPREAD & SPREAD \\
\hline LOANRATINGHIG & \[
\begin{gathered}
-0.010^{* * *} \\
(-4.58)
\end{gathered}
\] & \[
\begin{gathered}
-0.010^{* * *} \\
(-4.53)
\end{gathered}
\] & \[
\begin{gathered}
-0.009^{* * *} \\
(-4.14)
\end{gathered}
\] & \[
\begin{gathered}
-0.009^{* * *} \\
(-4.15)
\end{gathered}
\] & \[
\begin{gathered}
-0.009^{* * *} \\
(-4.23)
\end{gathered}
\] & \[
\begin{gathered}
-0.008^{* * *} \\
(-4.13)
\end{gathered}
\] \\
\hline LOANRATINGLIG & \[
\begin{gathered}
-0.006 * * * \\
(-2.60)
\end{gathered}
\] & \[
\begin{gathered}
-0.006^{* * *} \\
(-2.58)
\end{gathered}
\] & \[
\begin{gathered}
-0.005^{* *} \\
(-2.17)
\end{gathered}
\] & \[
\begin{gathered}
-0.005^{* *} \\
(-2.18)
\end{gathered}
\] & \[
\begin{gathered}
-0.004^{*} * \\
(-2.11)
\end{gathered}
\] & \[
\begin{gathered}
-0.004^{*} \\
(-1.93)
\end{gathered}
\] \\
\hline LOANRATINGHSG & \[
\begin{aligned}
& 0.003 \\
& (1.33)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (1.33)
\end{aligned}
\] & \[
\begin{gathered}
0.004^{*} \\
(1.80)
\end{gathered}
\] & \[
\begin{gathered}
0.004^{*} \\
(1.82)
\end{gathered}
\] & \[
\begin{aligned}
& 0.003 \\
& (1.63)
\end{aligned}
\] & \[
\begin{gathered}
0.004^{*} \\
(1.87)
\end{gathered}
\] \\
\hline LOANRATINGLSG & \[
\begin{gathered}
0.015 * * * \\
(6.49)
\end{gathered}
\] & \[
\begin{gathered}
0.015 * * * \\
(6.45)
\end{gathered}
\] & \[
\begin{gathered}
0.015^{* * *} \\
(6.23)
\end{gathered}
\] & \[
\begin{gathered}
0.015 * * * \\
(6.23)
\end{gathered}
\] & \[
\begin{gathered}
0.012 * * * \\
(5.67)
\end{gathered}
\] & \[
\begin{gathered}
0.012 * * * \\
(5.94)
\end{gathered}
\] \\
\hline LOANLGD & \[
\begin{gathered}
-0.011^{* * *} \\
(-7.80)
\end{gathered}
\] & \[
\begin{gathered}
-0.011^{* * *} \\
(-7.84)
\end{gathered}
\] & \[
\begin{gathered}
-0.011^{* * *} \\
(-7.66)
\end{gathered}
\] & \[
\begin{gathered}
-0.011^{* * *} \\
(-7.61)
\end{gathered}
\] & \[
\begin{gathered}
-0.009 * * * \\
(-6.09)
\end{gathered}
\] & \[
\begin{gathered}
-0.008^{* * *} \\
(-5.58)
\end{gathered}
\] \\
\hline SPECIALMENTION & \[
\begin{gathered}
-0.002 * \\
(-1.88)
\end{gathered}
\] & \[
\begin{gathered}
-0.002^{*} \\
(-1.77)
\end{gathered}
\] & \[
\begin{gathered}
-0.002^{*} \\
(-1.88)
\end{gathered}
\] & \[
\begin{gathered}
-0.002^{*} \\
(-1.88)
\end{gathered}
\] & \[
\begin{aligned}
& -0.001 \\
& (-1.28)
\end{aligned}
\] & \[
\begin{gathered}
-0.002^{*} \\
(-1.68)
\end{gathered}
\] \\
\hline SUBSTANDARD & \[
\begin{gathered}
0.007 * * * \\
(3.15)
\end{gathered}
\] & \[
\begin{gathered}
0.007 * * * \\
(3.05)
\end{gathered}
\] & \[
\begin{gathered}
0.008^{* * *} \\
(3.41)
\end{gathered}
\] & \[
\begin{gathered}
0.008^{* * *} \\
(3.36)
\end{gathered}
\] & \[
\begin{gathered}
0.008^{* * *} \\
(3.56)
\end{gathered}
\] & \[
\begin{gathered}
0.008^{* * *} \\
(3.72)
\end{gathered}
\] \\
\hline DOUBTFUL & \[
\begin{gathered}
0.014^{* * *} \\
(3.40)
\end{gathered}
\] & \[
\begin{gathered}
0.014^{* * *} \\
(3.36)
\end{gathered}
\] & \[
\begin{gathered}
0.016 * * * \\
(4.13)
\end{gathered}
\] & \[
\begin{gathered}
0.016 * * * \\
(4.11)
\end{gathered}
\] & \[
\begin{gathered}
0.021^{* * *} \\
(6.13)
\end{gathered}
\] & \[
\begin{gathered}
0.021^{* * *} \\
(6.27)
\end{gathered}
\] \\
\hline LOSS & - & - & - & - & - & - \\
\hline LEADTOP3 & & \[
\begin{gathered}
-0.003^{*} \\
(-1.95)
\end{gathered}
\] & \[
\begin{gathered}
-0.004^{* * *} \\
(-3.01)
\end{gathered}
\] & \[
\begin{gathered}
-0.004^{* * *} \\
(-3.01)
\end{gathered}
\] & \[
\begin{gathered}
-0.003^{* * *} \\
(-2.79)
\end{gathered}
\] & \[
\begin{gathered}
-0.004^{* * *} \\
(-2.86)
\end{gathered}
\] \\
\hline LEADNEXT27 & & \[
\begin{gathered}
-0.003^{* *} \\
(-2.40)
\end{gathered}
\] & \[
\begin{gathered}
-0.004^{* * *} \\
(-3.36)
\end{gathered}
\] & \[
\begin{gathered}
-0.004^{* * *} \\
(-3.39)
\end{gathered}
\] & \[
\begin{gathered}
-0.004^{* * *} \\
(-3.16)
\end{gathered}
\] & \[
\begin{gathered}
-0.004 * * * \\
(-3.28)
\end{gathered}
\] \\
\hline BANKEQUITYR & & & \[
\begin{gathered}
-0.019^{* *} \\
(-2.20)
\end{gathered}
\] & \[
\begin{gathered}
-0.020^{* *} \\
(-2.29)
\end{gathered}
\] & \[
\begin{gathered}
-0.022 * * * \\
(-2.65)
\end{gathered}
\] & \[
\begin{gathered}
-0.021^{* * *} \\
(-2.62)
\end{gathered}
\] \\
\hline BANKCASHR & & & \[
\begin{gathered}
0.011^{* *} \\
(2.33)
\end{gathered}
\] & \[
\begin{gathered}
0.011^{* *} \\
(2.34)
\end{gathered}
\] & \[
\begin{gathered}
0.013 * * * \\
(2.81)
\end{gathered}
\] & \[
\begin{gathered}
0.012 * * * \\
(2.62)
\end{gathered}
\] \\
\hline BANKALLLR & & & \[
\begin{gathered}
-0.235^{* * *} \\
(-3.86)
\end{gathered}
\] & \[
\begin{gathered}
-0.236 * * * \\
(-3.91)
\end{gathered}
\] & \[
\begin{gathered}
-0.257 * * * \\
(-4.39)
\end{gathered}
\] & \[
\begin{gathered}
-0.267 * * * \\
(-4.59)
\end{gathered}
\] \\
\hline STRONGRELSHIP & & & & \[
\begin{gathered}
-0.001^{* * *} \\
(-3.96)
\end{gathered}
\] & \[
\begin{gathered}
-0.001^{* * *} \\
(-3.91)
\end{gathered}
\] & \[
\begin{gathered}
-0.001^{* * *} \\
(-4.05)
\end{gathered}
\] \\
\hline BORROWERLEV & & & & & \[
\begin{aligned}
& 0.000 \\
& (0.30)
\end{aligned}
\] & \[
\begin{aligned}
& 0.000 \\
& (0.24)
\end{aligned}
\] \\
\hline BORROWERROA & & & & & \[
\begin{aligned}
& -0.000 \\
& (-0.96)
\end{aligned}
\] & \[
\begin{aligned}
& -0.001 \\
& (-1.44)
\end{aligned}
\] \\
\hline BORROWERLNTA & & & & & \[
\begin{gathered}
-0.000^{* *} \\
(-2.17)
\end{gathered}
\] & \[
\begin{aligned}
& -0.000 \\
& (-0.13)
\end{aligned}
\] \\
\hline BORROWPUBRATINGHIG & & & & & & \[
\begin{gathered}
-0.002 * * * \\
(-4.03)
\end{gathered}
\] \\
\hline BORROWPUBRATINGLIG & & & & & & \[
\begin{gathered}
-0.002 * * * \\
(-4.81)
\end{gathered}
\] \\
\hline BORROWPUBRATINGHSG & & & & & & \[
\begin{aligned}
& 0.000 \\
& (0.53)
\end{aligned}
\] \\
\hline BORROWPUBRATINGLSG & & & & & & \[
\begin{gathered}
0.006 * * * \\
(6.13)
\end{gathered}
\] \\
\hline Observations & 3,720 & 3,720 & 3,720 & 3,720 & 3,719 & 3,719 \\
\hline Adjusted R-squared & 0.485 & 0.487 & 0.496 & 0.498 & 0.539 & 0.548 \\
\hline
\end{tabular}

\section*{Table 8: Tests of the Second Conjecture - Loan Retention}

This table examines our second conjecture related to loan retention using Equation (3). Our second conjecture is that for both pure term loan and pure revolver syndicates, syndicates with a low proportion of sophisticated investors will adhere to the Signaling Hypothesis while syndicates with a high proportion of sophisticated investors will adhere to the Sophisticated Syndicate Hypothesis. Our results only consider pure term loans (loans of fixed amounts with fixed maturities) and pure revolvers (credits for which the borrower may draw down and repay any amount up to a fixed maximum as often as desired over the maturity of the agreement) in the SNC database. To measure the presence of sophisticated investors within the syndicate, we create dummies indicating if the syndicate has a low or high proportion of sophisticated investors and we interact these dummies with our coarse internal loan ratings. We regress the proportion retained against our coarse internal loan rating variables interacted with our low and high sophisticated syndicate proportion dummies (with the medium proportion excluded), uninteracted low and high sophisticated syndicated proportion dummies, and our full set of control variables. We use two proportions of sophisticated investors: the dollar proportion of banks in the syndicate ranked in the Top 3 of the syndicated league tables and the dollar proportion of banks in the syndicate ranked in the Top 30. The League Table Proportion HIGH and League Table Proportion LOW dummies are based on whether the syndicate proportions are above the means for the pure revolver sample and equal to or below the means for the pure term loan sample using the retention dataset. Thus, League Table Proportion HIGH equals one if PARTICIPTOP3 or PARTICIPTOP30 \(>0.130\) or \(>0.510\), respectively, and League Table Proportion LOW equals one if PARTICIPTOP3 or PARTICIPTOP30 \(\leq 0.076\) or \(\leq 0.329\), respectively, depending on whether Top 3 or Top 30 is considered sophisticated. Column (1) and Column (3) contain the results for the dollar proportion of banks in the syndicate ranked in the Top 3 of the league tables for pure term loans and pure revolvers respectively. Column (2) and Column (4) contain the results for the Top 30 for pure term loans and pure revolvers respectively. Regressions include an intercept, time fixed effects, and all the control variables (not shown for brevity). All variables are defined in Table 2, Panel A. t-statistics based on robust standard errors clustered by bank are reported in parentheses. *, **, and \({ }^{* * *}\) denote significance at the \(10 \%, 5 \%\), and \(1 \%\) level, respectively.
\begin{tabular}{|c|c|c|c|c|}
\hline Sample: & Pure Term Loans & Pure Term Loans & Pure Revolvers & Pure Revolvers \\
\hline & (1) & (2) & (3) & (4) \\
\hline & Top 3 & Top 30 & Top 3 & Top 30 \\
\hline Dependent variable: & RETAIN & RETAIN & RETAIN & RETAIN \\
\hline LOANRATINGHIG * League table proportion HIGH & 0.090* & -0.029 & 0.018 & -0.006 \\
\hline & (1.83) & (-0.62) & (0.91) & (-0.31) \\
\hline LOANRATINGLIG * League table proportion HIGH & -0.005 & -0.065 & 0.009 & -0.017 \\
\hline & (-0.10) & (-1.49) & (0.47) & (-0.87) \\
\hline LOANRATINGHSG * League table proportion HIGH & -0.023 & -0.088** & 0.006 & -0.019 \\
\hline & (-0.53) & (-2.02) & (0.31) & (-1.02) \\
\hline LOANRATINGLSG * League table proportion HIGH & -0.001 & -0.048 & 0.018 & -0.019 \\
\hline & (-0.03) & (-1.02) & (0.88) & (-0.98) \\
\hline LOANRATINGHIG * League table bank proportion LOW & 0.049** & 0.063** & -0.012 & 0.098** \\
\hline & (2.08) & (1.97) & (-0.43) & (2.44) \\
\hline LOANRATINGLIG * League table proportion LOW & 0.075*** & 0.099*** & -0.042 & 0.048 \\
\hline & (4.39) & (5.19) & (-1.58) & (1.31) \\
\hline LOANRATINGHSG * League table proportion LOW & 0.066*** & 0.075*** & -0.027 & 0.034 \\
\hline & (4.31) & (4.87) & (-1.04) & (1.00) \\
\hline LOANRATINLSG * League table proportion LOW & 0.041** & 0.046** & -0.006 & 0.042 \\
\hline & (2.30) & (2.40) & (-0.21) & (1.17) \\
\hline League table bank proportion HIGH & 0.049 & 0.044 & 0.031 & -0.007 \\
\hline & (1.11) & (1.02) & (1.57) & (-0.39) \\
\hline League table bank proportion LOW & 0.002 & -0.081*** & 0.100*** & -0.011 \\
\hline & (0.13) & (-5.27) & (3.83) & (-0.31) \\
\hline Loss given default & Yes & Yes & Yes & Yes \\
\hline Regulatory risk ratings & Yes & Yes & Yes & Yes \\
\hline Loan characteristics & Yes & Yes & Yes & Yes \\
\hline Bank market ranking & Yes & Yes & Yes & Yes \\
\hline Bank condition & Yes & Yes & Yes & Yes \\
\hline Relationship strength & Yes & Yes & Yes & Yes \\
\hline Borrower characteristics & Yes & Yes & Yes & Yes \\
\hline Borrower Public Ratings & Yes & Yes & Yes & Yes \\
\hline LGD available flag & Yes & Yes & Yes & Yes \\
\hline Packaged loan flag & Yes & Yes & Yes & Yes \\
\hline Borrower public flag & Yes & Yes & Yes & Yes \\
\hline Borrower industry FEs & Yes & Yes & Yes & Yes \\
\hline Time FEs & Yes & Yes & Yes & Yes \\
\hline Observations & 3,056 & 3,056 & 6,476 & 6,476 \\
\hline Adjusted R-squared & 0.347 & 0.342 & 0.503 & 0.490 \\
\hline
\end{tabular}

\section*{Table 9: Tests of the Second Conjecture - Loan Pricing}

This table examines our second conjecture related to loan pricing using Equation (4). Our second conjecture is that for both pure term loan and pure revolver syndicates, syndicates with a low proportion of sophisticated investors will adhere to the Signaling Hypothesis while syndicates with a high proportion of sophisticated investors will adhere to the Sophisticated Syndicate Hypothesis. Our results only consider pure term loans (loans of fixed amounts with fixed maturities) and pure revolvers (credits for which the borrower may draw down and repay any amount up to a fixed maximum as often as desired over the maturity of the agreement) in the SNC database. Furthermore, for the pricing regressions, we only consider observations where pricing information is available. To measure the presence of sophisticated investors within the syndicate, we create dummies indicating if the syndicate has a low or high proportion of sophisticated investors and we interact these dummies with our coarse internal loan ratings. We regress the interest rate spread against our coarse internal loan rating variables interacted with our low and high sophisticated syndicate proportion dummies (with medium excluded), uninteracted low and high sophisticated syndicate proportion dummies, and our full set of control variables. We use two proportions of sophisticated investors: the dollar proportion of banks in the syndicate ranked in the Top 3 of the syndicated league tables and the dollar proportion of banks in the syndicate ranked in the Top 30. The League Table Proportion HIGH and League Table Proportion LOW dummies based on whether the syndicate proportions are above the means for the pure revolver sample and equal to or below the means for the pure term loan sample using the pricing dataset. Thus, for these tests, League Table Proportion HIGH equals one if PARTICIPTOP3 or PARTICIPTOP30 \(>0.138\) or \(>0.544\), respectively, and League Table Proportion LOW equals one if PARTICIPTOP3 or PARTICIPTOP30 \(\leq 0.075\) or \(\leq 0.337\), respectively, depending on whether Top 3 or Top 30 is considered sophisticated. Columns (1) and (3) contain the results for the dollar proportion of banks in the syndicate ranked in the Top 3 of the league tables for pure term loans and pure revolvers respectively. Columns (2) and (4) contain the results for the dollar proportion of banks in the syndicate ranked in the Top 30 of the league tables for pure term loans and pure revolvers respectively. Regressions include an intercept, time fixed effects, and all the control variables (not shown for brevity). All variables are defined in Table 2, Panel A. tstatistics based on robust standard errors clustered by bank are reported in parentheses. \({ }^{*},{ }^{* *}\), and \({ }^{* * *}\) denote significance at the \(10 \%\), \(5 \%\), and \(1 \%\) level, respectively.
```


[^0]: Lakshmi Balasubramanyan is at Case Western Reserve University (lakshmi@case.edu); she was at the Federal Reserve Bank of Cleveland when the research for this paper commenced. Allen N. Berger is at the University of South Carolina, Wharton Financial Institutions Center, and the European Banking Center (aberger@moore.sc.edu). Matthew M. Koepke is at the Federal Reserve Bank of Cleveland (matthew.m.koepke@clev.frb.org). The authors thank Rob Cote and Jenny Yam for help with data matters, Nida Davis and Mike Gibson for their guidance, and Xinming Li for help with the literature. They thank Christa Bouwman for providing suggestions for the paper. They also thank Bolo Enkhtaivan, Matt Gustafson, Joe Haubrich, Rus Irani, Jim Kolari, Loretta Mester, seminar participants at the Federal Reserve Bank of Cleveland, and conference participants at the Chicago Financial Institutions Conference, the Texas A\&M Young Scholars Finance Consortium, the Financial Management Association conference, and the University of South Carolina Fixed Income and Financial Institutions Conference for useful comments.

[^1]: ${ }^{1}$ Pioneering contributions that establish that banks can use their private information to resolve informational frictions and increase the surplus generated by the bank-borrower relationship include Greenbaum, Kanatas, and Venezia (1989), Sharpe (1990), Rajan (1992), and Boot and Thakor (1994, 2000). Most studies using U.S. data tend to find benefits for borrowers, including lower cost, lower collateral requirements, and better access to credit (e.g., Petersen and Rajan, 1994; Berger and Udell, 1995; for a review, see Degryse, Kim, and Ongena, 2009), while a more limited literature finds benefits for the banks (e.g., Bharath, Dahiya, Saunders, and Srinivasan, 2007).
 ${ }^{2}$ We study loan syndication, rather than securitization, the other main form of the originate-to-distribute model. Securitization usually involves residential mortgages, consumer loans, and other credits that typically involve relatively little private information loans. Syndicated loans better fit our focus on private information.
 ${ }^{3}$ Under legal lending limits, a U.S. bank generally cannot lend or otherwise expose more than 15% of its equity to any one borrower. This can increase to 25% if the addition is fully secured by readily marketable collateral.
 ${ }^{4}$ There may be multiple lead arrangers, but our analysis focuses on a single lead bank. The Shared National Credit (SNC) database we use has only one self-identified lead bank.

[^2]: ${ }^{5}$ The Signaling Hypothesis is also analogous to some theories of collateral in which borrowers with favorable private information pledge collateral to signal their quality to differentiate themselves from lower-quality borrowers (e.g., Bester, 1985, 1987; Besanko and Thakor, 1987a, 1987b; Chan and Thakor, 1987; and Boot, Thakor, and Udell, 1991).

[^3]: ${ }^{6}$ As discussed further below, we delete "impure" loan types such as revolvers converting to term loans in order to have relatively clean samples of comparable loans.

[^4]: ${ }^{7}$ The Federal Reserve's CCAR assesses the capital adequacy of large, complex U.S. bank holding companies, and the practices used to manage their capital. The number of CCAR banks has generally increased over time. As of the early part of each year, there were 19 CCAR banks in 2011 and 2012, 18 in 2013, 30 in 2014, and 31 in 2015.

