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1 Introduction

The long-term negative externalities associated with extractive industries have long been

part of the public discourse, though the effects of industries ancillary to extraction have

often proven difficult to examine. The management and disposal of wastewater from oil

and gas operations, for instance, has only recently risen to prominence over concerns about

water contamination from hydraulic fracturing, or “fracking”, and over concerns of increases

in earthquake frequency and severity near areas with booming oil and gas industries.1 Ok-

lahoma has been the state most affected by induced changes in earthquake frequency. It

recorded more magnitude 3.0 (M 3.0) or higher earthquake events than California in 2014,

and more than the other 47 contiguous states combined in 2015.2 The two largest earth-

quakes in Oklahoma history, an M 5.7 earthquake in Prague on November 5, 2011, and an M

5.8 earthquake in Pawnee on September 3, 2016, are thought to have been induced (Keranen

et al., 2013; Yeck et al., 2016).3

Documentation of earthquakes caused by underground injection of fluid reachs at least

as far back as the study by Healy et al. of the 1962-1979 earthquakes near Rocky Moun-

tain Arsenal, Colorado (Healy et al., 1968; Petersen et al., 2016). Induced earthquakes

occurred there following the injection of chemical manufacturing waste by the U.S. Army.

Induced earthquakes from wastewater disposal have since been recorded in Ashtabula, Ohio;

Perry, Ohio; and Cold Lake, Alberta, Canada (Nicholson and Wesson, 1990).4 Reductions in

wastewater injection volume have been associated with lagged decreases in seismicity in these

cases. More recent seismicity, including earthquakes in Milan, Kansas (peak M 4.9; Choy

et al. (2016)), Youngstown, Ohio (peak M 3.7; Kim (2013)), Timpson, Texas (peak M 4.8;

Frohlich et al. (2014)), and Dagger Draw, New Mexico (peak M 4.1; Pursley et al. (2013)),

1Fracking itself has induced some earthquakes in Oklahoma, though the number of induced earthquakes
and the peak recorded magnitude of these earthquakes (M 2.9) are far smaller than for earthquakes induced
by wastewater injection: see Holland (2013).

2Magnitude 3 earthquakes approach the smallest that can be felt by humans: see Dengler and Dewey,
(1998).

3The second-largest earthquake, an M 5.5 event in El Reno on April 9, 1952, has been postulated to be
induced by injection-well activity, though evidence is sparse: see Hough and Page (2015).

4Earthquakes can be induced by underground injection wells, fluid reservoirs, and energy resource ex-
traction practices (Ellsworth, 2013).
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has been induced by the disposal of waste fluids from oil and gas development operations.

In this paper, we examine the external welfare impacts of severe changes to earthquake

frequency and intensity induced by fluid injection in Oklahoma. Fluids injected for disposal

in Oklahoma largely (>95 percent) consist of saltwater extracted along with oil and natural

gas. Injections also contain “flowback” water (<5 percent), which is waste fluid that returns

to the surface following a hydraulic fracturing operation (Abualfaraj et al. (2014); Walsh

and Zoback (2015)). These wastewaters’ high concentrations of total dissolved solids makes

it uneconomical to use them for any other purpose, and they must be disposed of properly

to protect public safety (Guerra et al., 2011). Injecting the wastewater into underground

injection control (UIC) wells is the lowest-cost acceptable disposal method. If the water has

to be transported from a production site to a disposal site, then transportation costs make up

the vast majority of disposal costs (Welch and Rychel, 2004). Relative cost efficiency can be

obtained by injecting large amounts of fluids into a large reservoir using a single well, though

these same high-volume wells are thought to be the wells most likely to induce earthquakes

in Oklahoma. The injection of large volumes of wastewater increases pore pressure in the

rock formation they are injected into; this pressure can propagate below the injection site,

eventually spreading to active faults in basement rock (Walsh and Zoback (2015)). The

recent increases in injection into the Arbuckle formation (Murray (2014)), an Oklahoma

rock formation that sits directly above basement rock, then can explain recent increases in

seismicity. Wastewater management costs are a major factor in oil and gas production, and

the elimination or severe regulation of the most cost-efficient management strategy would

increase costs for producers in a state with substantial economic dependence on oil and gas

production.

We measure the welfare effects of these earthquakes by examining their impacts on hous-

ing prices. As Koster and van Ommeren (2015) outline, earthquakes may affect housing

prices through one of three mechanisms: earthquakes can cause property damage; changes

in earthquake frequency may change expectations of future earthquake damages; and even

if properties remain undamaged, earthquakes are unpleasant to live with because of injury,

discomfort, or fear thereof. Although the analysis presented in this paper is unable to distin-
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guish between these mechanisms, each is more likely to manifest in the Oklahoma property

market than in Koster and Ommeren’s area of study in the Netherlands because of the

larger frequency and severity of earthquakes in Oklahoma. The peak magnitude is M 5.7 in

Oklahoma within the period of study, versus M 3.5 in the Netherlands.

The arrival of induced earthquakes appears to be an exogenous shock to Oklahoma real

estate markets. Home sales from a census tract before the induced quakes began can serve as

a control group while home sales in the tract post-earthquake serve as the treatment group.

We assume buyers and sellers did not anticipate the earthquakes. While it has been known

for decades that wastewater disposal can cause seismic activity, some regions with UIC wells

experience little or no seismic activity. The experience of a quake reveals to home buyers

and sellers that the region has the type of geology that makes it susceptible.

When it becomes known that quakes can occur in their region, current homeowners lose

equity proportional to the new risk and disamenity. Until recently, earthquakes were rare in

Oklahoma and they are not usually covered in homeowners insurance policies. In response to

the seismic activity, Oklahoma homeowners have begun adding earthquake coverage (Kae-

lynn, 2015). This expense should be capitalized into home prices (Nyce et al., 2015). To set

prices, insurers have to draw on their experiences in naturally earthquake-prone regions and

make assumptions about how intense the quakes might become. They also need to adjust for

any differences in building practices that are used in earthquake-prone areas but were not

thought necessary in Oklahoma. Some home buyers might predict that because the quakes

are caused by human activity, the state will ban the activity in the near future, the quakes

will subside, and the expense will end (Philips (2016)). Alternately, buyers may consider

that the economic benefits to the state are too large for the state government to introduce a

ban, and the quakes will continue as long as the demand for oil and gas justify the fracking

and wastewater disposal.

In our analysis, we use information on home sales in Oklahoma from 2006 to 2014,

along with a catalog of earthquakes from 2001 to 2014 to measure changes in sale prices

due to changes in earthquake exposure. The 2009-2010 onset of earthquakes in Oklahoma,

persisting and increasing in frequency to the end of the study period, creates a 3-4 year
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baseline period of little to no earthquake exposure and a 3-4 year period of geographically

varying exposure. Results suggest that there is a minimal negative if not slightly positive

effect of “noticeable” yet nondamaging earthquakes. A negative housing market impact of

earthquakes can be detected for potentially damaging earthquakes, with estimated impacts

as large as a 9.7 percent decrease in prices following the largest earthquake observed.

This paper proceeds as follows: Section 2 reviews the literature on the impacts of earth-

quakes, oil and gas development, and other spatially distributed externalities. Section 3

describes the data used in this study. Section 4 presents an econometric model, Section 5

describes the summary statistics, and Section 6 reports results. Section 7 concludes.

2 Literature

Rosen (1974) is the seminal work on hedonic models, noting that the value of goods can be

considered as a function of their characteristics and that consumers’ marginal willingness to

pay for certain attributes of a good can be derived from regression analyses. Brookshire et al.

(1985) were the first to apply this model to earthquake risks, modeling them as characteristics

of houses and examining the reaction of the California housing market to new information

on earthquake risk by region. Although it was known that all Californian households were

exposed to earthquake risk, risk maps displaying risk by region created an information shock

comparable to that of an actual earthquake event. Brookshire et al. estimated that values

differed between high- and low-risk zones by an average of $4,650.

Beron et al. (1997) were the first to implement this model for an earthquake event, using

the 1989 California Loma Prieta earthquake. They find that consumer perceptions of earth-

quake risk decreased between 26 and 35 percent after the earthquake, indicating initially

inflated risk perceptions. Naoi, Seko, and Sumita (2009), however, find the opposite result

in Japan, indicating that regional expectations of earthquake risk will in part determine

market reaction to actual earthquake events. Nakagawa, Saito, and Yamaga (2007) use a

hedonic model based on a recently updated earthquake risk map to examine how consumers’

price sensitivity to earthquake risk can change across time. They find that the difference in
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discounting of earthquake risk between low- and high-risk areas varied from to 3-8 percent,

increased over time, but did not change in response to major recent earthquake events such

as the Great Hanshin-Awaji earthquake. Koster and van Ommeren (2015) were the first to

use a hedonic model to examine the impacts of induced seismic events on housing prices,

finding that each “noticeable” earthquakes lead to 1.9 percent decreases in property val-

ues, with a maximum of 7 earthquakes experienced by a single household. Using a dataset

from Groningen, Netherlands, and using an earthquake attenuation function to estimate

household experiences of earthquake events from 2001 to 2013, they examine the impact of

small-magnitude-earthquake events on a region and the impact of induced seismic events on

a region with little to no previous seismicity. Using a separate measure of exposure to earth-

quakes that cannot be felt by humans, they argue that their measure of earthquake exposure

for “noticeable” earthquakes is conditionally spatially independent of other spatiotemporally

correlated factors. They estimated that the total nonmonetary costs of “noticeable” earth-

quakes in the region amounted to €600 per household, which is comparable in magnitude

to the total monetary costs.5

Externalities from oil and gas development have been more widely explored with hedonic

models, most recently with Gopalakrishnan and Klaiber (2014), and Muelenbachs, Spiller,

and Timmins (2012; 2015) who examine the impact of shale gas wells on local property values.

They find that wells decrease the values of nearby properties, though only consistently for

properties dependent on locally sourced well water. This indicates that only the homes most

prone to the externality of interest (well-water contamination) have values impacted by the

probabilistic externality of contamination. Guignet (2013) and Zabel and Guignet (2012)

report null results for similar models of the impacts of leaking underground storage tanks,

suggesting that risk or issue salience may impact whether risks are priced into property

values.

This paper contributes an estimation of the impact of more intense and more frequent

earthquakes in a US context. Also, we are able to investigate the impact of earthquakes

5They define “monetary” costs to be costs from damages to property. Homeowners are compensated for
these costs by the single natural gas producer in the region. There is no such compensation arrangement in
Oklahoma, though several suits for compensatory damages have been filed against injection-well drillers.
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on properties’ time-on-market. Benefield, Cain and Johnson provide an extensive survey of

the literature relating home sale prices and time-on-market (2014). It is widely recognized

that time-on-market creates an economically consequential transaction cost. Households

usually must pay principal, interest, property taxes, insurance, and utilities each month that

a home is on the market. It is possible to underestimate a negative value shock if it is

reflected in longer marketing times in addition to lower sale prices. However, price and time

are endogenously determined, and there is no widely available and accepted instrument for

either measure. We report specifications that include time-on-market as a control variable

in a hedonic price model, and we estimate models with time-on-market as the dependent

variable.

3 Data

3.1 Real Estate Data

We accessed data representing property sales in the state of Oklahoma from January 2006

to December 2014 through CoreLogic, a national real estate data provider. The dataset

contains information about the sale price and the building and land plot size of a given sold

property. The records contain additional information about the circumstances of sale such as

whether the sale was a foreclosure or at arm’s length. CoreLogic collects the digitized records

maintained by county recorders and property tax assessors across the US. Because counties

digitized property records in different years, the sales histories are of different lengths. In

general, the more populous counties have more complete records, and smaller counties begin

to appear throughout the study period. In some instances, the exact date of the sales are not

available, and all sales are reported in a single month of their sale year. When calculating

the earthquake exposure for these observations, we treat them as is if they had in fact all

sold in the month listed. This could be slightly overstating the earthquake exposure if the

true sale date was earlier than the date recorded and additional quakes struck between the

two dates. Consistent with Muehlenbachs, Spiller, and Timmins (2015), we consider only
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single-family residences, townhouses, duplexes, and rural homesites in this analysis. We drop

properties listed with sales prices below $10,000 or above $1,000,000 to limit the influence of

outliers and data entry errors. The land plot and building sizes are also trimmed of extreme

values, and the land plot sizes are logged. Cleaning with respect to sale price occurs after

an adjustment of sale prices to December 2014 dollars using the consumer price index for

housing.6 We drop properties that were sold more than three times over the nine-year period,

as well as identical entries, leaving 258,058 sales. Using latitude and longitude coordinates,

we link this sales dataset to a dataset of earthquakes in the Central and Eastern United

States (CEUS). Figure 1 displays the locations of all houses sold in the dataset.

In a second set of estimates, we make use of another data set collected by CoreLogic from

Multiple Listing Services (MLS). Across the US, licensed realtors form regional organizations

that host real estate listings. In these systems, a property record is created when a realtor

is contracted to market a property. The realtors can populate a long list of fields with

descriptions of features of the house. Descriptions can be provided for architectural style,

exterior material, flooring, garages, basements, and several other categories. In the data,

the fields are not always populated.7 MLS regions were formed earlier in more urbanized

areas, so the MLS data is similar to the recorded deed data in that less populous counties

begin to appear in the data over time. One key variable that is available in the MLS data is

the number of days on the market. Because houses have high carrying costs for households,

the sale price does not perfectly reflect the value the seller captures. The value lost once a

house becomes exposed to earthquake risk may be lost through a longer marketing time and

higher carrying expenditures. With the MLS data, we can include the time-on-market as a

6Although our data-cleaning procedure is strict, it is not without precedent: to eliminate outlying proper-
ties, Boxall, Chan, and McMillan (2005) impose sale price bounds of $150,000 and $450,000 in their analysis
of the impact of oil and gas facility proximity on housing prices in Alberta, dropping approximately 10
percent of their observations.

7Some MLS data entry systems are coded so that the listing will not post until there are valid entries for
mandatory fields. Other agents or the public can contact the MLS to report inaccurate information. The
MLS can assess additional fees on agents who repeatedly post or fail to correct inaccuracies. It is possible
for inaccuracies to go uncorrected if no individual has an incentive to report them. In extreme cases, buyers
can sue an agent if the agent used the MLS to misrepresent a property. The MLS is distinct from states’
legal mandates that sellers must disclose home defects in disclosure documents. Disclosure documents cover
many problems that only trained home inspectors would be able to detect, and issues that an occupant
would observe but a buyer would not, such as leaks during heavy rains. In contrast, the characteristics listed
in the MLS are mainly things that can be easily verified by buyers viewing a home.
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control.

3.2 Earthquake Data

We use earthquake data from the Oklahoma Geological Survey (OGS) and the US Geological

Survey (USGS). We extract the events in the region defined by the coordinates from 29°N to

45°N and 86°W to 110°W. This allows for earthquakes occurring beyond Oklahoma’s borders

that would be felt in Oklahoma.8 We drop duplicate observations and earthquakes recorded

with magnitude less than or equal to M2.9 for earthquakes within Oklahoma and M3 for

earthquakes outside of Oklahoma. This results in a dataset consisting of 1,093 earthquakes

from Oklahoma and 543 earthquakes from outside of Oklahoma over the period from January

1, 2001, to December 31, 2014.9 Figure 2 displays the number of these earthquakes occurring

in Oklahoma by magnitude by month from January 2001 to February 2016, grouped from

M2.9 to M3.9 and from M4.0 and higher. Earthquakes are of low frequency and magnitude

from 2001-2008, increasing in frequency and severity over the 2009-2016 period. As there is

no reason to expect a change in the rate of naturally occurring earthquakes over this time

frame (Petersen et al. (2016)), the substantial spikes in earthquake frequency from 2009

onward may be reasonably considered to be almost entirely induced by human activity.

Using an attenuation function from Atkinson and Wald (2007), we link the earthquake

magnitude and the distance of a property to the earthquake epicenter to the Modified Mercalli

Intensity (MMI) that an individual property would experience for a given earthquake.10

Table 1 describes the impacts that experiencing an earthquake at a given MMI would have

on a property at different levels of structural resistance and whether that earthquake would

be noticeable by people on that property. There are values above 7 on the MMI scale, but

quakes of higher magnitudes were not observed in Oklahoma during the study period. The

maximum MMI experienced during the M5.6 Prague, Oklahoma earthquake was 6.

8The vast majority of earthquakes experienced in Oklahoma have epicenters in Oklahoma. Of the extra-
Oklahoman earthquakes included, only earthquakes in southern Kansas and several earthquakes in Trinidad,
Colorado, affected homes in Oklahoma at relevant intensities.

9We choose these earthquake magnitude thresholds because they are the lowest magnitudes for which all
earthquakes in their respective regions have been recorded.

10Data adapted from Wald et al. (2010).
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The MMI attenuation function allows for earthquake intensity to vary by exact magni-

tude and depth, making a household earthquake measure that is more accurate to actual

experience than a measure of earthquake epicenters within a certain distance of a household.

An advantage of the Wald and Atkinson functions is that they specify separate attenuation

functions for California and the CEUS. This is advantageous because it incorporates the

lower average attenuation of earthquakes in the CEUS region. If unaccounted for, this dif-

ference would lead to underestimates of earthquake intensity in our study area. Where M

is the magnitude of an earthquake, D is the depth of an earthquake, and S is the surface

distance of an earthquake epicenter to a property’s centroid, the attenuation function for the

CEUS region is estimated to be

MMI = 11.72+2.36(M−6)+0.1155(M−6)2−.44 log(R)−.002044R+2.31B+.479M log(R),

where

R =
√
D2 + S2 + 289

B =


0 if R ≤ 80

log( R
80
) if R > 80

Figure 3 displays this attenuation function evaluated for earthquakes at a variety of magni-

tudes at a constant depth of 5km, the median for earthquakes in the Oklahoma dataset. Note

that although fractional MMI levels are easily obtained from this function, they are qualita-

tively meaningless except to say that they are levels of intensity between two qualitatively

defined levels of intensity.

For each earthquake, we use this function to estimate the distance (S) from the epicenter

to the points at which MMI equals 3, 4, 5, and 6, setting S equal to zero for a given MMI

level when no value of S can result in that MMI level. With these distances, we use ArcGIS

(a geographic information system) to estimate the monthly earthquake exposure of every

property in the CoreLogic sales dataset for the four corresponding levels of earthquake ex-

posure, corresponding to MMI levels of 3, 4, 5, and 6. For each earthquake, we generate four
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circular regions with radius S, centered at the earthquake’s epicenter: a house is “exposed”

to an earthquake if it is within the region defined for a given level of intensity.

Figure 5 displays this process for the M 5.6 earthquake in Prague for five properties:

Property A is unexposed to the earthquake, Property B is exposed to the earthquake only at

the MMI3 level, Property C is exposed to the earthquake at the MMI4 level, and Properties

D and E are exposed to the earthquake at the MMI5 and MMI6 levels, respectively.11

As housing sales are observed at the monthly level in most models, our independent

variables of interest will be indicators of the highest-intensity earthquake that the property

has experienced from January 2001 until one month before the sale. We lag exposure one

month to prevent cases in which earthquakes occurring after a house’s sale would be counted

towards its earthquake exposure. Consistent with Koster and van Ommeren (2015), we

will also use a measure of cumulative exposure through the month before the sale.12 The

cumulative earthquake exposure variables for MMI3, 4, 5, and 6, are respectively defined as

C3
ht =

t−1∑
t=0

I(4 > MMIht ≥ 3) (1)

C4
ht =

t−1∑
t=0

I(5 > MMIht ≥ 4) (2)

C5
ht =

t−1∑
t=0

I(6 > MMIht ≥ 5) (3)

C6
ht =

t−1∑
t=0

I(MMIht ≥ 6) (4)

where I(B > MMIht ≥ A) is an indicator function equal to 1 if the largest MMI

experienced by a house for a given earthquake is less than B and greater than or equal to

A, and 0 if else. CZ
ht is the cumulative earthquake exposure of household h sold t months

after January 2001 at MMI level Z. Because the attenuation function used to define this

11Although one could consider measures where, for instance, Property C would be exposed at the MMI3
and MMI4 levels, these measures do not lend themselves to straightforward interpretations when used in
regression models. Nevertheless, the results presented in this paper are robust to using those measures.

12A start year before 2001 would yield little to no change in cumulative exposure: seismicity rates were
essentially constant at two small earthquakes per year over the late 20th century in Oklahoma.
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cumulative measure is not an exact estimate of ground motion in Oklahoma, this cumulative

measure will contain some amount of error; this error is likely altogether random, and so is

not expected to bias estimates.

3.3 Underground Injection Control Well Data

Wastewater injection into underground injection control (UIC) wells is understood to be the

cause of earthquakes in Oklahoma, though the spatial relationship between well locations

and earthquakes is not exact: considering a hypothetical case in which only one well in a

region is capable of inducing earthquakes, the epicenters of induced earthquakes may be as

far as 35km away from that well (Keranen et al. (2014)). Given that well locations and

earthquake epicenters are not identical, it is possible to control for any noxious impacts

that wells may have on surrounding properties (e.g., noise and traffic from trucks used to

transport water nearby).

We use data on the locations of Class II UIC wells in Oklahoma (excluding Osage County)

from annual well catalogs available at the Oklahoma Corporation Commission’s (OCC) web-

site.13 Wells are uniquely identified by American Petroleum Institute (API) well numbers,

and the well catalog lists wells by their latitude and longitude coordinates, as well as their

annual injection volumes for 2006-2010 and monthly injection volumes for 2011-2014. We

drop wells listed without coordinates, entries with errors (e.g., coordinates located outside of

Oklahoma), and wells with zero annual injection volume to construct a measure of “active”

wells for each year (consistent with Murray (2014)). Although classifications for wells are

present for some years, the full dataset does not classify whether wells are used for enhanced

oil recovery (known as “2R wells,” a class which does not include fracking wells) or for salt

water disposal wells (known as “2D wells”). We drop wells with duplicate coordinates and

different API numbers (duplicates within a year imply that a 2R and a 2D well are active at

the same site). As high volume wells may have larger or otherwise distinct noxious effects,

we construct a separate measure of wells with annual injection volumes in excess of 1,000,000

13Regulation of Class II UIC wells in Osage County has not been delegated by the US Environmental
Protection Agency to the OCC, so the OCC does not maintain data on their wells. Class II wells are
injection wells strictly associated with oil and natural gas activity.
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MMbbl (approximately half the threshold used by Murray (2014) in defining high volume

wells, though still a relatively high threshold).

Figure 4 displays the locations of all active UIC wells in Oklahoma over the 2006-2014

period. As a 2014 position statement from the Oklahoma Geological Survey notes, 80 percent

of Oklahoma is within 15 kilometers of a UIC well.14 To construct a more granular measure of

UIC wells, and also be consistent with the distances used to measure fracking-well exposure in

Muelenbachs, Spiller, and Timmins (2015), we construct measures of property well exposure

equal to the number of wells within 2km of a property.15 This measure assumes that the

noxious effects of wells are not spatially dependent and did not change over time, except

through earthquake-related effects.

3.4 Demographic Data

We obtain census-tract-level data from the American Community Survey (ACS) to control

for possible demographic impacts on regional housing prices. Tract-level data for all tracts in

Oklahoma are only available from the ACS 5-year estimates. These are useful as estimates of

demographic levels over a longer time period but poor for understanding short-term trends.

The 2010-2014 estimates, combined with the 2005-2009 estimates, create the first possible

set of 5-year estimates without overlapping time periods. As the household data in this

study span 2006-2014, and as no major earthquakes had occurred as of the end of 2009 (and

so there is little reason to expect that earthquakes would have affected demographics in the

2009 portion of the sample), we assign tract-level demographic data from the ACS 2005-2009

5-year estimates to properties sold from 2006 to 2009, and demographic data from the ACS

2010-2014 5-year estimates to properties sold from 2010 to 2014. We utilize data on the

median income (adjusted to 2014 dollars using the consumer price index), the percentage

of adults who graduated from high school, and the percentages of African American and

Native American residents for each census tract. We further include data on school district

14The position statement is available at
http://www.ogs.ou.edu/pdf/OGS POSITION STATEMENT 2 18 14.pdf

15We considered the 20km measure also used in Muehlenbachs, Spillter, and Timmins (2015), though the
measure adds very little information: properties tended to be either close to many wells or close to none at
all.
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boundaries from the 2010 Census Topologically Integrated Geographic Encoding and Ref-

erencing website. We create a measure of relative urbanity and rurality by calculating a

house’s distance to the nearest of the central business districts of Oklahoma City or Tulsa.

3.5 Tornado Data

Risk preferences for earthquakes and tornadoes may be similar for a given individual in the

housing market, and tornado risk may also be capitalized into house prices. Ewing et al.

(2007) find temporary, 0.5 to 2.0 percent decreases in local housing prices following large

tornado events. Simmons and Sutter (2007) find house sale price premiums in excess of

tornado shelter costs for houses with shelters in Oklahoma City. Given these findings, we

construct a county-level measure of tornado risk using data from the National Oceanic and

Atmospheric Administration on all tornadoes occurring in Oklahoma from 1950 to 2014. We

sum the number of F3 and higher tornadoes whose central paths at some point enter a given

county, then scale by county land area to yield a measure of severe tornadoes per 10 square

miles.16 Tornadoes occur most frequently in Oklahoma, Cleveland, and Tulsa Counties after

accounting for land area. Although the recentness of tornadoes may influence any price

impacts, the purpose of our control variable is to establish a long-run measure of tornado

risk.

3.6 Mining Employment Data

Although earthquakes may be expected to have negative local welfare impacts, related in-

creases in local economic activity from increasing oil and gas development and related activity

may have significant, offsetting positive impacts on local housing prices. County-level data

on employment in mining industries is available from the County Business Patterns data

series.17 In many counties, the exact employment figure is suppressed to maintain confiden-

16The Fujita (F) scale is used from 1950-1/31/2006; The Enhanced Fujita (EF) is used from 2/1/2007
forward. F3 and EF3 are used as cutoffs for likely severe property damage. Differences between the two
scales are outlined in Doswell et al. (2009).

17County Business Patterns data is available at http://www.census.gov/programs-surveys/cbp.html. Ac-
cessed 12 December, 2016.
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tiality. Where this was the case, we replaced the value with the midpoint of the range that

corresponds to the suppression code. We calculated the difference between the 2013 and

2008 values as a measure of the increase in mining activity over the study period. For the

estimates, we included the growth in employment value.18

4 Models

With the above datasets, we specify a log-linear functional form for a model of house sale

price dependent on earthquake exposure:

ln(Pht) = τ0 + τ1D
3
ht + τ2D

4
ht + τ3D

5
ht + τ4D

6
ht + αX + γY + ωZ + ϵht

where subscripts h,t denote a unique property h sold at time t, measured in months from

January 2001. ln(Pht) is the natural logarithm of the sale price of a house in 2014 dollars.

DZ
ht is an indicator equal to 1 if the most intense earthquake experienced by the property

through the month before the month of sale was at MMI level Z. No more than one of the

DZ
ht indicators can equal one for an observation.

X is a vector of property characteristics consisting of the building and land plot square

footage, the year of the property’s construction, and the type of property.19

Y is a vector of indicators of the year of sale.

Z is a vector of spatial characteristics, including census-tract fixed effects, school-district

fixed effects, exposure to UIC wells, distance to the nearest of Oklahoma City or Tulsa, the

county-level measure of tornado exposure, and neighborhood demographics.20

ϵht is an error term, clustered at the census-tract level to account for spatial autocorre-

lation.21

18We also tested the levels of employment and the growth in mining establishments and mining payroll
totals. The levels from the base year were not significant, while there were significant positive relationships
between the 2013 values and house prices. These estimates are available upon request.

19Construction years are indicators for 10-year ranges, with a single range for before 1950.
20Census tracts from the 2014 ACS are used. There are only small, insignificant differences between 2014

tracts and those used in the 2009 ACS.
21We considered both heteroskedastic errors and the implementation of a spatial autoregressive model,

though clustering produces more conservative results than the former, and computational constraints prevent
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We focus more on the peak-exposure-indicator models because the experience of an earth-

quake at a higher level of intensity than previously experienced may cause a shift in the

expectation of a region’s relative earthquake risk. For instance, the experience of the M5.6

Prague earthquake at the MMI5 level may have indicated that the local area was at a higher

risk for intense earthquakes now relative to any prior point in time. This is commensu-

rate with USGS’ seismic hazard maps, which record the level of ground motion that will be

exceeded with some probability within some time frame.22

When we estimate the cumulative models, CZ
ht is the cumulative earthquake exposure

at MMI level Z from January 2001 until the month before the house’s sale month. The

specification is

ln(Pht) = β0 + β1C
3
ht + β2C

4
ht + β3C

5
ht + β4C

6
ht + αX + γY + ωZ + ϵht

β1, β2, β3 and β4 are the coefficients of interest, interpretable as the percentage change

in a house’s sale price attributable to each additional earthquake at the corresponding MMI.

Each is estimated conditional on the exposure to the counts at other levels of intensity. All

the other variables as defined for model (1).

5 Descriptive Statistics

Table 2 provides summary statistics for the data that will be used for the main models. The

mean home sale price is $130,665, and the standard deviation is $101,678. Nine percent of

homes have experienced an MMI5 earthquake before they are observed to sell. One percent

have experienced an MMI6 event. The average cumulative count of exposures to MMI3

earthquakes is 14.83. Exposures to hundreds of MMI3 quakes is common, while maximum

exposures to MMI4 and above events remain below 25. Ninety six percent of the observations

are single family homes. The vast majority, over 97 percent, are not close enough to UIC

us from using the latter.
22For instance, maps from 2008 list the region with the highest earthquake risk in Oklahoma as having a

2 percent probability of the peak ground acceleration caused by an earthquake exceeding 26 percent g in 50
years. 26 percent g approximately corresponds to an MMI7 earthquake.
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wells to experience direct negative externalities.

Table 2 provides the equivalent summary statistics for properties in the most affected

counties and those with data in the MLS records. We define the most affected counties as

those with 10 or more MMI3 earthquakes and/or at least one high-volume UIC well. Both

subsamples are more heavily weighted toward urban areas, which results in higher home

prices than are seen in the full county recorder data set. Earthquake exposure is moderately

higher in the subsamples. Time on market was truncated at three years, which is above the

99th percentile, to exclude some implausibly large values. The mean value is 3.80 months,

with a standard deviation of 3.08 days. We utilize 14 additional MLS house characteristic

variables, with architectural style, exterior material, flooring, bathrooms, bedrooms, and

garages categorized. We investigated whether there was a difference in the value response

of homes with slab foundations versus basements. This could reflect actual or perceived

differences in vulnerability to earthquake damage. However, slab homes are 93 percent of

the sample, and there are not enough homes with basements to allow the estimation of an

interaction.

6 Results

The first set of results presented in table 3 builds up the model relating earthquake expo-

sure to house prices by sequentially adding control variables. The first column presents the

coefficients from a regression of indicators of the highest MMI earthquake that the property

had experienced by the month before its sale on the log of the sale price. With no con-

trols present, the coefficients are positive and significant. However, this is reflecting that

more earthquakes have been experienced in areas of the state with higher property values,

specifically more urbanized areas. Similarly, the year-of-sale coefficients in column two are

implausibly large and negative. In the case of the year-of-sale indicators, this is reflecting

that most of the data in the omitted year of 2006 is from urbanized counties, and more rural

counties were added to the data each subsequent year.

When we force the model to use within-census-tract variation by introducing census-tract
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fixed effects (table 3, column 3), the coefficients on the earthquake indicators become small

and negative. In columns 4 and 5, property characteristics and neighborhood measures are

introduced. The standard errors on the earthquake coefficients decline as the additional

controls are added. Column 5 represents our best estimate of the earthquake impacts.

Controlling for tract, school district, year fixed effects, and property and neighborhood

characteristics, an MMI4 or MMI5 earthquake reduces a property’s sale price by 3 to 4

percent. The impact of ever having experienced an MMI3 earthquake is less than one

percent and not statistically significant. The impact of ever having experienced an MMI6

event is a 9.7 percent reduction in a home’s sale price.

Among the control variables, the square footage and lot size are also significantly predic-

tive of price, as we would expect. Among neighborhood characteristics, UIC wells appear to

exert an independent negative externality of 2.4 percent per well. Growth in mining employ-

ment at the county level has a strong positive price impact. It is notable that introducing

the local-area controls in column 5, including wells and mining employment, does not greatly

reduce the earthquake indicator coefficients relative to their values in column 4.

In the final column of table 3, one set of results is presented in which the observations

represent what we will refer to as the “most affected counties.” These are limited to Okla-

homa County and the thirteen other counties that had ten or more magnitude 3.0 or higher

earthquakes over the period of study and at least one high-volume disposal well.23 In addi-

tion to the census-tract fixed effects, this sample limitation further reduces the possibility

that the estimated earthquake impacts are reflecting a contrast between low-value areas

that were more exposed to earthquakes and higher value areas that were less exposed. In

the most-affected counties the estimated impact of any MMI3 exposure is not significantly

different from zero. The impacts of MMI4 and MMI5 exposure are between 4 and 5 percent

price reductions, but the reduced sample size prevents them from being statistically signif-

icant. The impact of an MMI6 exposure is over a percentage point higher in the restricted

sample, at 11 percent, and remains highly significant. The coefficients on the various control

23The other counties, in descending order of observed sales, are: Garfield, Payne, Pottawatomie, Logan,
Lincoln, Woodward, Seminole, Okfuskee, Woods, Noble, Pawnee, Grant, and Alfalfa.
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variables remain similar in magnitude and significance in most cases. One exception is the

coefficient on mining employment growth. It seems that the strong positive price impact of

the employment growth is being estimated with the contrast between the most earthquake-

impacted counties and all other counties. In the restricted-sample estimate the coefficient

on mining employment growth is very imprecisely measured.

In table 4, the same six models are presented with a count of earthquake exposures in

place of the maximum MMI exposure indicators. As in the first set of models, the coefficients

change dramatically when the census-tract fixed effects are added. The coefficient on the

count of MMI3 exposures remains positive and significant in all specifications. The coefficient

on the indicator of any MMI3 exposure was negative, but the indicators take the value of

one only if no higher-level earthquake was experienced. They are exclusive and therefore

negatively correlated. The count measures have positive correlations between 0.11 and 0.81.

The positive coefficient on the MMI3 count estimates the impact conditional on the higher

MMI counts. An additional MMI4 exposure is estimated to reduce the sales price by 1.5

percent. The impact of an MMI5 exposure is negative but not significant. Finally, the

estimate of the price impact of an MMI6 exposure is a discount of approximately 10 percent.

The count and the indicator values are the same for MMI6 properties because there was

only one MMI6 event during the study period. Conditioning on the counts of smaller quakes

does not change the estimated impact of an MMI6 exposure. Restricting the sample to the

fourteen counties with the most earthquake activity changes the coefficient substantially only

on the MMI5 counts. It becomes positive but remains insignificant.

Koster and van Ommeren (2015) offer a precedent for positive coefficients on earthquake

measures, arguing that the weaker earthquakes in their sample were not spatially independent

in the presence of other factors in their model and so could be capturing spatially correlated

effects otherwise unaccounted for in their model. The analysis in this paper is particularly

susceptible to such arguments, as we are unable to construct Koster and van Ommeren’s

measure of weak earthquakes from a separate sample of earthquakes. The relatively high

magnitude of completeness in Oklahoma indicates that earthquakes below M2.0 are likely to

be endogenously recorded. That is, regions experiencing larger earthquakes are more likely

20



to receive additional instrumentation with which to better record all earthquakes, leading

to the systematic under-recording of small earthquakes in regions experiencing relatively

few earthquakes. An alternate explanation for the positive coefficient may be housing price

increases due to regional growth in oil and gas industrial activity and thereby economic

activity in regions experiencing frequent earthquakes, though not necessarily the regions

impacted by the largest earthquakes. Our mining-employment-growth measure may not be

sufficiently precise to control for the positive impact of fracking on economic activity.

As discussed in the data section, we have the option of incorporating MLS data in the

analysis. The advantages of the MLS data are the availability of a time-on-market measure

and a richer set of property characteristics. The disadvantage is a more limited set of

observations.

The first regression result in table 5 presents the estimate of the main model (table 3,

column 5) using the MLS-merged observations, but not the MLS-provided variables. The

coefficients on the MMI3, MMI4, and MMI5 maximum exposure indicators are smaller and

less precisely measured. In the second model in table 5, the time-on-market measured in

months is introduced. The measure is not significant, and it makes only slight changes

in the estimates of the earthquake impacts. Previously, when we introduced property and

neighborhood characteristics, the coefficients and standard errors both changed substantially,

and this occurs again when the MLS property characteristics variables are introduced in the

third model. Having a maximum exposure of MMI3 before the sale is estimated to reduce

the sale price by 1.8 percent in the third column of table 5. The negative impact of an

MMI4 exposure is estimated to be 2.8 percent, which is significant at the 0.05 level. MMI6

exposure is estimated to reduce the sales price by 8.2 percent when the MLS controls are

included.

In table 6, three additional models are presented with outcomes other than price. The

first model allows time-on-market to be the dependent variable. The estimates suggest

there is a statistically significant increase in marketing time associated with a property’s

exposure to MMI3 and MMI6 earthquakes. However, the economic significance is not as

evident. The units of the dependent variable are months, so a property that has a maximum
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earthquake exposure of MMI3 takes an additional nine days to sell. Exposure to an MMI6

earthquake corresponds to an additional 21 days of marketing time. This is only one-fifth

of a standard deviation. If one prorated a month’s carrying cost to 21 days, it would very

likely be less than the one-half of one percent of the home value. That is comparable to

the price models’ suggested losses due to MMI3 exposure and far below that of MMI4 and

above exposure. So while the time-on-market estimates are consistent in direction with the

price-model estimates, it appears that more of the losses are realized through the price than

through carrying costs. The second model in table 6 is an alternate specification, the Cox

proportional hazard model. The dependent variable is the instanteous odds that the property

will sell given that it is on the market. The hazard results are very consistent with the OLS

model. Exposure to MMI3 or MMI6 earthquakes moderately reduces the probability that a

property will sell at any given point in time.

The final model in table 6 investigates whether earthquake exposure increased or de-

creased the pace of sales overall.24 The observations in this model are tract-years, with the

count of sales divided by the count of housing units in the tract from the 2010 decennial

Census. The property characteristics are aggregated to the tract level. The observation

count is much smaller due to the aggregation, so we opted to aggregate the full set of sales

rather than only the MLS-merged sales. Of the four coefficients on the earthquake-exposure

measures, three are associated with a faster pace of sales. For context, the average pace of

sales observed in the data is 2.8 percent of housing units transacting in a year (0.028), with

a standard deviation of 2 percentage points. The model implies that exposure to an MMI4

or above earthquake would increase the pace of sales by 0.7 to 1.1 percentage points. To be

consistent with the price reductions and extended marketing times, this would imply that the

earthquake activity induces a supply shock. After experiencing an earthquake, more home-

24We tested some other specifications that had precedent in the literature. We specified models that
allowed the price impact of earthquakes to vary by how many months had passed between the quake and
the sale. The hypothesis is that more recent quakes are more salient and have a larger impact. There was
no discernable pattern in the coefficients, and we believe this is because earthquake activity was increasing
throughout the study period, so buyers and sellers did not have the opportunity to “forget” past events.
We also tried a specification that interacted a post-Prague-sale indicator with an indicator of the MMI
experienced by the property in the Prague event. This specification gave similar results to the main model
(table 3, column 5) because the Prague earthquake sequence drives much of the MMI4 and MMI5 exposure
and all of the MMI6 exposure.
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owners come to market than otherwise would be the case. If demand remains unchanged,

prices should decline and quantities rise. If demand dropped because some buyers became

wary, then both quantity and price would have dropped.

To frame these price changes in practical terms, reconsider the same five properties A,

B, C, D, and E in figure 5, and assume that each of them was sold in December 2014 at the

mean price of $130,665. Figure 6 shows each of these houses on maps depicting the three

earthquake exposure gradients generated by summing regional exposure over the full period

from 2001 to 2014. Exposure is defined such that the MMI3 map only shows earthquakes

experienced above MMI3 but below MMI4, and so on. Note that although Property A was

unexposed to the M 5.6 Prague earthquake, as well as most seismicity within Oklahoma

over this period, it was still exposed to the several of the large earthquakes occurring near

Trinidad, Colorado.

Table 7 lists the cumulative earthquake exposure of each of the five properties over the

14-year period, as well as the expected price change for each house attributable to earthquake

exposure. Note that properties D and E are only 16km away from each other, and both are

within a region experiencing large amounts of seismic activity. However, according to the

cumulative model, only property E is expected to sell at a lower price, all else equal, due to

earthquake exposure.

In the second column of estimates, the results are those implied by the model with an

indicator of the maximum earthquake experienced. All of the coefficients on exposure are

negative in this model, so all properties are expected to sell for lower prices. The discounts

range from under $1,000 to several thousand dollars. A single MMI6 exposure increases the

discount to $12,805. The third column of table 7 gives the estimates of impacts based on

the models using MLS data. This is an indicator model similar to that underlying column

two, and all the coefficients are negative. The price decreases are approximately three times

as large for properties A and B, which have minor MMI3 exposure only. The MLS model-

implied decreases are smaller for properties C, D, and E, with peak MMIs at 4 and above. As

in the indicator model, each estimate is determined by a single coefficient, and the coefficient

on the MMI5 indicator is not statistically significant.
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7 Conclusion

This study intends to demonstrate the potential welfare impacts of induced earthquakes, as

part of a larger literature examining the costs and benefits of oil and natural gas extraction.

A risk which had not existed in the past came into existence, and all sellers have been

forced to re-evaluate the value of their properties given their best estimate of the losses their

property could experience or the cost of insuring against them.

Oklahoma provides an exceptional case study as the state most affected by sudden

changes in seismic frequency and intensity. With the expectation that the welfare costs of

earthquakes may be capitalized into housing prices, we examine housing-sale-price changes

in response to earthquake exposure across four levels of intensity. In contrast to literature

finding substantial price impacts of small earthquakes, we find substantial price effects for

properties affected by the strongest earthquakes in the region. We also find small negative

price responses, and even positive price responses, to smaller earthquakes that are unlikely

to cause damage. This suggests that the capitalization of earthquake risks into housing may

be relative to regional seismic risk. Sale price decreases for the properties affected by the

most intense earthquakes are estimated in the 3.4-9.8 percent range.

The price changes reported in this paper, however, are attributed to all seismicity in

the region, as no catalog exists categorizing all earthquakes in the region as either induced

or natural. Although the Oklahoma Geological Survey has recognized that the majority of

earthquakes are likely to be induced, the extent of this majority is unknown.25 Given this,

estimates should be treated as an upper bound on the potential impacts of strictly induced

seismicity. Nevertheless, the recent change in seismicity rates, induced or not, has inflicted

substantial costs on homeowners in Oklahoma.

Although the cause of these earthquakes is well-known, the safest way to reduce earth-

quakes is still being investigated. The Oklahoma Corporation Commission (OCC), the

regulatory body responsible for the underground injection control wells known to induce

earthquakes, has publicly noted that sudden moratoriums on wastewater injection, such as

25See their Statement on Oklahoma Seismicity from April 21, 2015, accessible at
http://wichita.ogs.ou.edu/documents/OGS Statement-Earthquakes-4-21-15.pdf
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those adopted in Kansas, Arkansas, and Ohio under similar circumstances, may increase

earthquake risk more than inaction. The OCC began taking substantive action towards

understanding and mitigating earthquake risk in 2013, with the adoption of a “traffic light”

system for well permitting that increased scrutiny for new well permitting in areas with

established seismic risk. Increased reporting requirements for disposal wells injecting into

the Arbuckle formation were implemented in September 2014. Directives implemented from

March 2015 to present have focused on reducing injection volume and plugging back injec-

tion wells active below the Arbuckle formation. Whether these measures will be effective in

reducing earthquakes is yet to be seen: although reducing injection volumes reduced seis-

micity in Paradox Valley, Colorado (where changes in injection regimes led to a decrease in

seismic activity from over 1,100 events per year to 60; see Ake et al. (2005)), and moratorium

measures have worked to eliminate most seismicity in central Arkansas, factors specific to

Oklahoma’s geology may lead to different responses altogether.26 Additionally, accumulated

pore pressure takes substantial time to diminish even given no further injections occurring

in a region: the largest earthquake at Rocky Mountain Arsenal occurred over a year after

injection ceased (Horton (2012)), so in Oklahoma seismic response to policy action will likely

be lagged.

Wastewater injection does not necessarily lead to harmful seismic activity, and so care-

ful and responsive regulatory practices may prove as effective in seismic risk mitigation as

banning wastewater injection outright. Although regulatory procedures will likely entail

additional direct costs for injection-well operators, they should diminish the externalities

imposed on homeowners that we have identified here.

26Reducing injection depth reduces the risk of injected fluids from contacting basement rock.
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Figure 1: Housing Sales in Oklahoma, 2006-2014. Data source: CoreLogic Deeds Data.

Modified Mercalli Intensity 1 2-3 4 5 6 7
Perceived Shaking Not Felt Weak Light Moderate Strong Very Strong

Potential Structural Resistant Structure None None None Very Light Light Moderate
Damage Vulnerable Structure None None None Light Moderate Moderate/Heavy

Table 1: Modified Mercalli Intensity Scale. Adapted from Wald et al. (2010).
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Figure 2: Monthly Earthquake Totals in Oklahoma, 2001-2016. Vertical line denotes the
month 11/2014, the last month of exposure used in this study. Data sources: Oklahoma
Geological Survey and United States Geological Survey.

Figure 3: Modified Mercalli Intensity Attenuation function, select magnitudes.
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Figure 4: Underground Injection Control (UIC) Wells, 2006-2014. High volume wells are
displayed as large orange circles. Osage County is highlighted. Data source: Oklahoma
Corporation Commission.

Figure 5: Property Earthquake Exposure from the M 5.7 event centered in Prague, OK.
Lettered properties are examples for discussion.
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Figure 6: Earthquake Exposure Counts, 1/2001-11/2014. Top: MMI3; Second: MMI4;
Third: MMI5; Bottom: MMI6. Data sources: Oklahoma Geological Survey and Unite
States Geological Service. Lettered properties are examples for discussion.
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Table 2: Summary Statistics. Data Sources: CoreLogic Deeds Data and Tax Data, CoreLogic Multiple Listing Service
data, Oklahoma Geological Survey, United States Geological Service, Oklahoma Corporation Commission, National Oceanic
and Atmospheric Administration, American Community Survey, County Business Patterns. Most affected counties: Oklahoma,
Garfield, Payne, Pottawatomie, Logan, Lincoln, Woodward, Seminole, Okfuskee, Woods, Noble, Pawnee, Grant, and Alfalfa
counties. These counties had 10 or more M 3.0 or above earthquakes during the study period and at least one high-volume
disposal well.

All Sales Most Affected MLS merged
Counties Sales

Mean SD Mean SD Mean SD
Sale Price 130,665 101,678 137,271 107,410 154,291 104,878
Log Sale Price 11.49 0.81 11.54 0.80 11.73 0.69
MMI3 peak exposure indicator 0.19 0.39 0.24 0.43 0.18 0.39
MMI4 peak exposure indicator 0.37 0.48 0.22 0.41 0.42 0.49
MMI5 peak exposure indicator 0.09 0.29 0.14 0.35 0.12 0.33
MMI6 peak exposure indicator 0.01 0.10 0.02 0.14 0.01 0.11
MMI3 exposure count 14.83 27.58 23.15 35.12 19.60 31.05
MMI4 exposure count 0.88 1.65 1.04 2.17 1.11 1.87
MMI5 exposure count 0.11 0.33 0.16 0.40 0.14 0.36
MMI6 exposure count 0.01 0.10 0.02 0.14 0.01 0.11
Thousand Square Feet, Building 2.00 0.84 2.04 0.89 2.19 0.87
Thousand Square Feet, Land Plot 9.61 1.18 9.41 0.98 9.42 0.97
Townhouse/Rowhouse 0.00 0.03 0.00 0.05 0.00 0.03
Duplex 0.01 0.08 0.01 0.11 0.01 0.08
Rural Homesite 0.03 0.17 0.02 0.12 0.02 0.15
Single Family Residence 0.96 0.19 0.97 0.17 0.97 0.18
Year built 1970.82 25.07 1968.59 24.93 1975.52 23.80
Mining Employment Growth 0.17 0.47 0.24 0.33 0.16 0.36
UIC Wells within 2km 0.02 0.18 0.04 0.23 0.03 0.19
High Volume UIC Wells within 2km 0.00 0.03 0.00 0.04 0.00 0.03
Percent African American (tract) 0.07 0.12 0.11 0.15 0.08 0.12
Percent Native American (tract) 0.05 0.05 0.04 0.04 0.04 0.04
Percent high school graduates (tract) 0.87 0.10 0.87 0.11 0.89 0.09
Median Age (tract) 36.76 5.80 35.81 6.02 36.50 5.62
Median Income ($10,000s) (tract) 5.34 2.28 5.51 2.59 5.90 2.50
Log distance (km) to OKC or Tulsa 3.32 1.20 2.81 1.07 2.85 0.93
Tornados within 10km, 1950-2006 18.13 10.60 22.11 11.72 20.06 10.39
Months on market 3.89 3.08
Association Fee 0.05 0.17
Traditional 0.64 0.48
Ranch 0.07 0.25
Bungalow 0.06 0.24
Contemporary 0.04 0.20
Dallas 0.07 0.25
Air Conditioning 0.94 0.23
Brick 0.24 0.43
Siding 0.07 0.25
Fireplace 0.69 0.46
Hardwood 0.22 0.42
Tile 0.38 0.49
Vinyl (floor) 0.12 0.33
Basement 0.07 0.26
1 Car Garage 0.17 0.38
2 Car Garage 0.57 0.49
3+ Car Garage 0.15 0.36
Electric Heat 0.15 0.35
Split Level 0.05 0.21
Second Story 0.32 0.46
2 Bath 0.61 0.49
3+ Bath 0.13 0.33
2 Bedroom 0.12 0.33
4+ Bedrooms 0.26 0.44
Septic System 0.11 0.31
Well Water 0.10 0.30
Obersvations 258,058 128,435 127,879
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Table 3: House price impacts of the highest level of earthquake experienced before sale. Dependent
variable is the log sale price. Standard errors are clustered by census tract and appear below in parenthe-
ses. Significance Key: *** p<0.01, ** p<0.05, * p<0.1. Data Sources: CoreLogic Deeds Data and Tax
Data, Oklahoma Geological Survey, United States Geological Service, Oklahoma Corporation Commis-
sion, National Oceanic and Atmospheric Administration, American Community Survey, County Business
Patterns.

Exposure Year Census Property Local Affected
Indicator Indicators Tracts Controls Controls Counties

MMI3 peak exposure 0.174∗∗∗ 0.305∗∗∗ −0.001 −0.006 −0.006 0.011
(0.020) (0.043) (0.009) (0.007) (0.007) (0.011)

MMI4 peak exposure 0.207∗∗∗ 0.445∗∗∗ −0.034∗ −0.039 ∗ ∗ −0.034 ∗ ∗ −0.043∗
(0.025) (0.060) (0.014) (0.013) (0.012) (0.019)

MMI5 peak exposure 0.232∗∗∗ 0.487∗∗∗ −0.042 −0.041∗ −0.037∗ −0.048
(0.046) (0.089) (0.022) (0.020) (0.019) (0.027)

MMI6 peak exposure −0.137 0.122 −0.041 −0.099∗∗∗ −0.097∗∗∗ −0.110∗∗∗
(0.086) (0.102) (0.029) (0.023) (0.022) (0.027)

Year of Sale 2007 −0.032 −0.026∗∗∗ 0.070∗∗∗ 0.069∗∗∗ 0.079∗∗∗
(0.019) (0.008) (0.008) (0.008) (0.008)

Year of Sale 2008 −0.279∗∗∗ −0.066∗∗∗ 0.033 ∗ ∗ 0.032 ∗ ∗ 0.037 ∗ ∗
(0.036) (0.011) (0.013) (0.012) (0.014)

Year of Sale 2009 −0.328∗∗∗ −0.056∗∗∗ 0.039∗∗∗ 0.039∗∗∗ 0.023
(0.044) (0.011) (0.011) (0.011) (0.013)

Year of Sale 2010 −0.262∗∗∗ −0.046∗∗∗ 0.038 ∗ ∗ 0.039 ∗ ∗ 0.026
(0.046) (0.012) (0.012) (0.013) (0.016)

Year of Sale 2011 −0.352∗∗∗ −0.038 ∗ ∗ 0.030∗ 0.031∗ 0.016
(0.049) (0.013) (0.013) (0.014) (0.018)

Year of Sale 2012 −0.520∗∗∗ −0.016 0.050 ∗ ∗ 0.048 ∗ ∗ 0.048
(0.074) (0.018) (0.017) (0.017) (0.025)

Year of Sale 2013 −0.423∗∗∗ −0.035 0.034 0.033 0.058∗
(0.075) (0.018) (0.018) (0.018) (0.024)

Year of Sale 2014 −0.429∗∗∗ −0.017 0.042∗ 0.040∗ 0.072 ∗ ∗
(0.075) (0.019) (0.018) (0.018) (0.025)

Square Feet (thousands) 0.419∗∗∗ 0.413∗∗∗ 0.393∗∗∗
(0.006) (0.006) (0.011)

Land Plot (ln(sqft)) 0.104∗∗∗ 0.108∗∗∗ 0.100∗∗∗
(0.004) (0.004) (0.006)

Townhouse/Rowhouse 0.021 0.022 0.002
(0.058) (0.059) (0.060)

Duplex −0.101∗ −0.102∗ −0.098∗
(0.046) (0.046) (0.046)

Rural Homesite −0.101∗∗∗ −0.100∗∗∗ −0.099∗∗∗
(0.017) (0.016) (0.028)

Mining Employment Growth 0.178∗∗∗ −0.211
(0.050) (0.222)

UIC Wells −0.024 ∗ ∗ −0.028 ∗ ∗
(0.008) (0.009)

High Volume UIC Wells −0.033 −0.044
(0.032) (0.030)

Percent African American −0.137 −0.063
(0.130) (0.149)

Percent Native American −0.287 −0.329
(0.151) (0.227)

High school graduates −0.028 0.002
(0.109) (0.142)

Median Age 0.000 0.000
(0.001) (0.002)

Income (thousands) 0.007 0.008
(0.006) (0.007)

Distance to OKC or Tulsa −0.008 0.082
(0.061) (0.091)

Tornados 0.003 −0.000
(0.002) (0.003)

Decade of Construction FE Y Y Y
Census Tract FE Y Y Y Y
School District FE Y Y
Constant 11.360∗∗∗ 11.556∗∗∗ 11.022∗∗∗ 9.887∗∗∗ 9.866∗∗∗ 9.496∗∗∗

(0.029) (0.036) (0.009) (0.042) (0.413) (0.522)
N 258,058 258,058 258,058 258,058 258,058 132,954
R2 0.02 0.03 0.48 0.68 0.69 0.72
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Table 4: House price impacts of an additional earthquake experienced at indicated level before sale.
Dependent variable is the log sale price. Standard errors are clustered by census tract and appear below
in parentheses. Significance Key: *** p<0.01, ** p<0.05, * p<0.1. Data Sources: CoreLogic Deeds Data
and Tax Data, Oklahoma Geological Survey, United States Geological Service, Oklahoma Corporation
Commission, National Oceanic and Atmospheric Administration, American Community Survey, County
Business Patterns.

Cumulative Year Census Property Local Affected
Exposure Indicators Tracts Controls Controls Counties

MMI3 exposures count 0.006∗∗∗ 0.006∗∗∗ 0.000∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

MMI4 exposures count −0.044 ∗ ∗ −0.051 ∗ ∗ −0.010∗ −0.015∗∗∗ −0.015∗∗∗ −0.013 ∗ ∗
(0.016) (0.016) (0.004) (0.004) (0.004) (0.004)

MMI5 exposures count −0.076 −0.087 −0.001 −0.007 −0.008 0.009
(0.048) (0.050) (0.013) (0.009) (0.009) (0.011)

MMI6 exposures count −0.559∗∗∗ −0.563∗∗∗ −0.022 −0.097∗∗∗ −0.098∗∗∗ −0.088∗∗∗
(0.104) (0.106) (0.029) (0.020) (0.019) (0.019)

Year of Sale 2007 −0.032 −0.026∗∗∗ 0.068∗∗∗ 0.067∗∗∗ 0.079∗∗∗
(0.018) (0.008) (0.008) (0.008) (0.008)

Year of Sale 2008 −0.265∗∗∗ −0.069∗∗∗ 0.026∗ 0.025∗ 0.036 ∗ ∗
(0.035) (0.011) (0.012) (0.012) (0.014)

Year of Sale 2009 −0.180∗∗∗ −0.060∗∗∗ 0.025∗ 0.026 ∗ ∗ 0.028 ∗ ∗
(0.032) (0.009) (0.010) (0.010) (0.010)

Year of Sale 2010 −0.040 −0.053∗∗∗ 0.018 0.020 0.027∗
(0.026) (0.009) (0.010) (0.011) (0.012)

Year of Sale 2011 −0.115∗∗∗ −0.053∗∗∗ 0.001 0.003 0.005
(0.031) (0.010) (0.011) (0.012) (0.014)

Year of Sale 2012 −0.089 ∗ ∗ −0.046∗∗∗ 0.009 0.010 0.007
(0.034) (0.011) (0.012) (0.012) (0.015)

Year of Sale 2013 −0.011 −0.068∗∗∗ −0.016 −0.013 0.011
(0.039) (0.011) (0.012) (0.012) (0.015)

Year of Sale 2014 −0.087 −0.049∗∗∗ −0.013 −0.012 0.031
(0.049) (0.013) (0.013) (0.014) (0.023)

Square Feet (thousands) 0.419∗∗∗ 0.414∗∗∗ 0.393∗∗∗
(0.006) (0.006) (0.011)

Land Plot (ln(sqft)) 0.104∗∗∗ 0.109∗∗∗ 0.100∗∗∗
(0.004) (0.004) (0.006)

Townhouse/Rowhouse 0.017 0.019 0.004
(0.057) (0.058) (0.060)

Duplex −0.108∗ −0.109∗ −0.102∗
(0.046) (0.046) (0.046)

Rural Homesite −0.106∗∗∗ −0.105∗∗∗ −0.101∗∗∗
(0.016) (0.016) (0.028)

Mining Employment Growth 0.181∗∗∗ −0.211
(0.050) (0.221)

UIC Wells −0.025 ∗ ∗ −0.027 ∗ ∗
(0.008) (0.008)

High Volume UIC Wells −0.038 −0.050
(0.031) (0.030)

% African American −0.166 −0.061
(0.130) (0.151)

% Native American −0.290 −0.326
(0.148) (0.229)

% high school graduates 0.017 0.017
(0.111) (0.143)

Median Age −0.000 0.000
(0.001) (0.002)

Income (thousands) 0.007 0.008
(0.005) (0.007)

Distance to OKC or Tulsa −0.007 0.082
(0.061) (0.091)

Tornados 0.003 −0.000
(0.002) (0.003)

Decade of Construction FE Y Y Y
Census Tract FE Y Y Y Y
School District FE Y Y
Constant 11.447∗∗∗ 11.556∗∗∗ 11.026∗∗∗ 9.891∗∗∗ 9.830∗∗∗ 9.488∗∗∗

(0.024) (0.036) (0.009) (0.042) (0.414) (0.523)
N 258,058 258,058 258,058 258,058 258,055 132,954
R2 0.02 0.03 0.48 0.68 0.69 0.72
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Table 5: Multiple List Service Data models. Dependent variable is the log sale price. Standard errors are
clustered by census tract and appear to the right in parentheses. Significance Key: *** p<0.01, ** p<0.05,
* p<0.1. Data Sources: CoreLogic Deeds Data and Tax Data, Corelogic MLS data, Oklahoma Geological
Survey, United States Geological Service, Oklahoma Corporation Commission, National Oceanic and
Atmospheric Administration, American Community Survey, County Business Patterns.

MLS merged Time on Market MLS Characteristic
observations only Control Controls

MMI3 peak exposure −0.004 (0.009) −0.005 (0.009) −0.018∗ (0.008)
MMI4 peak exposure −0.020 (0.011) −0.020 (0.011) −0.028 ∗ ∗ (0.010)
MMI5 peak exposure −0.002 (0.016) −0.002 (0.016) −0.014 (0.015)
MMI6 peak exposure −0.078∗∗∗ (0.023) −0.079∗∗∗ (0.023) −0.082∗∗∗ (0.021)
Months on Market 0.001 (0.001) 0.000 (0.000)
Association Fee ($k) 0.204∗∗∗ (0.020)
Traditional −0.033∗∗∗ (0.005)
Ranch −0.025∗∗∗ (0.007)
Bungalow −0.010 (0.007)
Contemporary −0.012 (0.006)
Dallas −0.012 ∗ ∗ (0.004)
Air Conditioning 0.332∗∗∗ (0.009)
Brick 0.045∗∗∗ (0.007)
Vinyl Siding 0.026∗∗∗ (0.006)
Fireplace 0.092∗∗∗ (0.005)
Hardwood 0.093∗∗∗ (0.003)
Tile 0.068∗∗∗ (0.004)
Vinyl (floor) −0.029∗∗∗ (0.005)
Basement −0.058∗∗∗ (0.010)
1 Car Garage 0.066∗∗∗ (0.007)
2 Car Garage 0.158∗∗∗ (0.009)
3+ Car Garage 0.204∗∗∗ (0.010)
Electric Heat 0.009∗ (0.004)
Split Level 0.009 (0.006)
Second Story 0.038∗∗∗ (0.008)
2 Bath 0.081∗∗∗ (0.006)
3+ Bath 0.151∗∗∗ (0.008)
2 Bedroom −0.072∗∗∗ (0.005)
4+ Bedrooms 0.006 (0.004)
Septic System 0.060∗∗∗ (0.009)
Well Water −0.003 (0.008)
Year of Sale 2007 0.077∗∗∗ (0.008) 0.076∗∗∗ (0.008) 0.041∗∗∗ (0.007)
Year of Sale 2008 0.055∗∗∗ (0.009) 0.054∗∗∗ (0.009) 0.014 (0.008)
Year of Sale 2009 0.040∗∗∗ (0.012) 0.040∗∗∗ (0.012) 0.001 (0.011)
Year of Sale 2010 0.032∗ (0.012) 0.031∗ (0.012) −0.008 (0.012)
Year of Sale 2011 0.024 (0.013) 0.023 (0.014) −0.019 (0.013)
Year of Sale 2012 0.022 (0.015) 0.021 (0.015) −0.022 (0.015)
Year of Sale 2013 0.025 (0.015) 0.025 (0.015) −0.023 (0.014)
Year of Sale 2014 0.014 (0.015) 0.014 (0.015) −0.034∗ (0.014)
Square Feet, (thousands) 0.375∗∗∗ (0.007) 0.374∗∗∗ (0.007) 0.257∗∗∗ (0.007)
Land Plot (ln(sq ft)) 0.108∗∗∗ (0.005) 0.108∗∗∗ (0.005) 0.101∗∗∗ (0.004)
Townhouse/Rowhouse −0.055 (0.042) −0.055 (0.042) −0.088∗ (0.037)
Duplex −0.173∗∗∗ (0.030) −0.173∗∗∗ (0.030) −0.057∗ (0.025)
Rural Homesite −0.065∗∗∗ (0.017) −0.066∗∗∗ (0.017) −0.082∗∗∗ (0.014)
Mining employment growth −0.102 (0.152) −0.102 (0.152) −0.083 (0.139)
UIC Wells −0.022∗ (0.009) −0.021∗ (0.009) −0.023 ∗ ∗ (0.008)
High Volume UIC Wells −0.062 (0.034) −0.062 (0.034) −0.026 (0.031)
% African American −0.101 (0.111) −0.104 (0.111) −0.058 (0.098)
% Native American −0.066 (0.187) −0.062 (0.187) −0.034 (0.169)
% high school graduates 0.028 (0.113) 0.022 (0.113) −0.003 (0.104)
Median Age 0.002 (0.001) 0.002 (0.001) 0.001 (0.001)
Median Income 0.004 (0.005) 0.004 (0.005) 0.004 (0.005)
Distance to OKC or Tulsa −0.007 (0.061) −0.006 (0.061) −0.007 (0.047)
Tornados 0.001 (0.002) 0.001 (0.002) −0.000 (0.002)
Decade of Construction FE Y Y Y
Census Tract FE Y Y Y
School District FE Y Y Y
Constant 9.485∗∗∗ (0.338) 9.480∗∗∗ (0.337) 9.266∗∗∗ (0.268)
N 128,435 127,879 127,879
R2 0.76 0.76 0.80
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Table 6: Time on Market and Sales Pace models. The column headings indicate the dependent variable.
Standard errors are clustered by census tract and appear to the right in parentheses. Significance Key:
*** p<0.01, ** p<0.05, * p<0.1. Data Sources: CoreLogic Deeds Data and Tax Data, Corelogic MLS
data, Oklahoma Geological Survey, United States Geological Service, Oklahoma Corporation Commis-
sion, National Oceanic and Atmospheric Administration, American Community Survey, County Business
Patterns. (a) To represent the distribution of building and plot square footage, we create decile indicators
and collapse these to the percentage of properties within the tract that fall in each decile.

Time on Market Time on Market Sales/Housing units
(Months) Hazard Model (Tract-Year)

MMI3 peak exposure 0.308∗∗∗ (0.064) −0.095∗∗∗ (0.019) −0.002∗ (0.001)
MMI4 peak exposure 0.205∗ (0.083) −0.057∗ (0.024) 0.008∗∗∗ (0.002)
MMI5 peak exposure 0.110 (0.114) −0.006 (0.037) 0.011∗∗∗ (0.003)
MMI6 peak exposure 0.698∗∗∗ (0.194) −0.226∗∗∗ (0.056) 0.007∗ (0.003)
Association Fee ($k) 0.527∗∗∗ (0.089) −0.157∗∗∗ (0.029)
Traditional 0.079 (0.044) −0.031∗ (0.013)
Ranch 0.050 (0.042) −0.019 (0.013)
Bungalow 0.178∗∗∗ (0.044) −0.065∗∗∗ (0.015)
Contemporary 0.304∗∗∗ (0.047) −0.117∗∗∗ (0.015)
Dallas 0.164 ∗ ∗ (0.053) −0.057∗∗∗ (0.016)
Air Conditioning 0.090 (0.052) −0.010 (0.017)
Brick 0.108∗ (0.043) −0.041 ∗ ∗ (0.014)
Vinyl Siding 0.068 (0.038) −0.034 ∗ ∗ (0.012)
Fireplace 0.023 (0.032) −0.011 (0.011)
Hardwood −0.028 (0.025) 0.015 (0.009)
Tile 0.079∗∗∗ (0.022) −0.022 ∗ ∗ (0.007)
Vinyl (floor) 0.116∗∗∗ (0.030) −0.041∗∗∗ (0.010)
Basement 0.057 (0.057) −0.019 (0.018)
1 Car Garage −0.229∗∗∗ (0.041) 0.081∗∗∗ (0.014)
2 Car Garage −0.284∗∗∗ (0.044) 0.104∗∗∗ (0.014)
3+ Car Garage −0.420∗∗∗ (0.062) 0.142∗∗∗ (0.019)
Electric Heat 0.134∗∗∗ (0.031) −0.050∗∗∗ (0.010)
Split Level 0.429∗∗∗ (0.053) −0.140∗∗∗ (0.015)
Second Story 0.494∗∗∗ (0.040) −0.160∗∗∗ (0.012)
2 Bath −0.008 (0.032) 0.002 (0.011)
3+ Bath 0.128∗ (0.053) −0.034∗ (0.017)
2 Bedroom 0.056 (0.034) −0.021 (0.012)
4+ Bedrooms 0.195∗∗∗ (0.030) −0.076∗∗∗ (0.009)
Septic System 0.222∗∗∗ (0.066) −0.055 ∗ ∗ (0.019)
Well Water 0.091 (0.057) −0.034∗ (0.017)
Year of Sale 2007 0.467∗∗∗ (0.049) −0.189∗∗∗ (0.018) −0.007∗∗∗ (0.001)
Year of Sale 2008 0.603∗∗∗ (0.055) −0.237∗∗∗ (0.021) 0.002 (0.001)
Year of Sale 2009 0.433∗∗∗ (0.066) −0.192∗∗∗ (0.022) −0.004 ∗ ∗ (0.001)
Year of Sale 2010 0.438∗∗∗ (0.072) −0.184∗∗∗ (0.024) −0.010∗∗∗ (0.001)
Year of Sale 2011 0.801∗∗∗ (0.079) −0.315∗∗∗ (0.026) −0.014∗∗∗ (0.001)
Year of Sale 2012 0.485∗∗∗ (0.102) −0.222∗∗∗ (0.034) −0.020∗∗∗ (0.002)
Year of Sale 2013 0.100 (0.109) −0.081∗ (0.036) −0.014∗∗∗ (0.002)
Year of Sale 2014 −0.137 (0.107) 0.017 (0.035) −0.014∗∗∗ (0.002)
Square Feet (thousands) 0.400∗∗∗ (0.030) −0.131∗∗∗ (0.009) (a)
Land Plot (ln(sq ft)) 0.021 (0.020) −0.009 (0.006) (a)
Townhouse/Rowhouse −0.640∗∗∗ (0.147) 0.328∗∗∗ (0.074) −0.034∗∗∗ (0.007)
Duplex 0.116 (0.150) −0.024 (0.044) −0.012∗ (0.006)
Rural Homesite 0.140 (0.099) −0.040 (0.028) −0.003∗ (0.001)
Mining employment growth −0.571 (0.377) 0.135 (0.102) −0.000 (0.002)
UIC Wells 0.037 (0.062) −0.020 (0.022) −0.002 (0.001)
High Volume UIC Wells −0.185 (0.197) 0.049 (0.067) 0.001 (0.005)
% African American 0.888 (0.645) −0.302 (0.203) −0.011∗∗∗ (0.002)
% Native American −1.087 (1.142) 0.287 (0.373) 0.009 (0.010)
% high school graduates 0.468 (0.683) −0.086 (0.242) 0.006 (0.006)
Median Age −0.001 (0.008) 0.000 (0.003) 0.000 (0.000)
Median Income −0.014 (0.060) 0.004 (0.020) 0.004∗∗∗ (0.000)
Distance to OKC or Tulsa 0.135 (0.151) −0.030 (0.051) 0.002 (0.002)
Tornados 0.006 (0.007) −0.002 (0.002) −0.000 (0.000)
Decade of Construction FE Y Y Y
Census Tract FE Y Y Y
School District FE Y Y Y
Constant 6.635∗∗∗ (1.056) 0.018 (0.016)
N 127,879 127,879 5,807
R2 0.09 0.52
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Property MMI3 MMI4 MMI5 MMI6 Price Decrease Price Decrease Price Decrease
(Increase) (Increase) (Increase)
Cumulative Indicator MLS, Indicator

A 5 0 0 0 ($653) $784 $2,352
(0.5%) 0.6% 1.8%

B 5 0 0 0 ($653) $784 $2,352
(0.5%) 0.6% 1.8%

C 110 6 0 0 ($2,613) $4,443 $3,659
(2.0%) 3.4% 2.8%

D 162 7 3 0 ($4,312) $4,835 $1,829
(3.3%) 3.7% 1.4%

E 134 11 3 1 $19,992 $12,805 $10,751
15.3% 9.8% 8.2%

Table 7: Expected sale price changes from earthquake exposure for properties depicted in
figures 6 and 5. Estimates are calculated using the results presented in table 3, column 5,
table 4, column 5, and table 5, model 3.
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