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1 Introduction

Diversification is one of the core principles behind the development of effective asset allocation

strategies. The debate between Warren Buffet, who promotes careful selection of few investments,

resulting in concentrated portfolios (Buffet, 1979), and the use instead of diversified strategies,

which allocate capital among a variety of assets, is still far from its end (Boyle et al., 2012).

In fact, the simplest diversification strategy, namely the equally weighted portfolio (EW), which

assigns the same weight to each security, is known to be a tough benchmark to beat, given its

remarkable out-of-sample performance due to its shrinkage properties (De Miguel et al., 2009b).

However, despite the simplicity and the absence of estimation errors, the EW strategy only allows

for naive diversification, based on equal asset weights. It completely ignores the risk and the cor-

relation between assets, which instead are the fundamentals of Markowitz’s mean-variance theory

(Markowitz, 1952). In the mean-variance framework, portfolio components are chosen according

to their risk-return profile and their correlation with other securities. Optimal portfolios minimize

the expected risk, given a minimum level of expected return, subject to a budget constraint. As

proved by Carrasco and Noumon (2012), errors in estimating the expected return and risk sig-

nificantly affect the composition and the stability of the optimal portfolios, especially when the

pool of candidate assets is large and the problem is high dimensional (the number of observations

is much lower than the number of assets). Furthermore, it has been shown that after reaching a

certain portfolio size, portfolio risk cannot be further decreased by adding new components, as

systematic risk cannot be diversified away (Jagannathan and Ma, 2003; De Miguel and Nogales,

2009; Brodie et al., 2009; Fan et al., 2012; Fastrich et al., 2015), suggesting that diversification,

interpreted as an increasing number of active positions, is not always beneficial, as also discussed

later in Section 3.

As Merton (1980), Chopra and Ziemba (1993) and Jagannathan and Ma (2003) have suggested

long ago, estimation errors in the expected returns are much larger than those in the covariance

matrix and result in portfolios sensitive to changes in assets means. Hence, as a first step, here we

exclude such inputs from the objective function and focus on the well-known minimum variance

(MV) and risk-parity frameworks. One important drawback of the MV allocation is that the
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portfolio is highly concentrated with extreme weights in few low volatile stocks, due to the fact that

the only objective is to obtain the portfolio with the lowest risk possible. The risk-parity framework

instead is a risk budgeting strategy, which allows for risk diversification in allocating wealth among

different asset classes according to some risk targets (Maillard et al., 2010). In particular, the equal

risk contribution strategy (ERC) selects portfolio weights inversely proportional to the estimated

riskiness and can be shown to be equivalent to the mean-variance problem, in which all pairwise

correlations and Sharpe Ratios of the assets are equal. Recently, risk-parity strategies have become

increasingly attractive in portfolio allocation, as they provide benefits from reduced turnover and

risk diversification (Bruder and Roncalli, 2012). On the other hand, in periods of financial distress

and extreme losses, diversification strategies might not be robust to high levels of volatility and

correlation among financial assets, leading to underperforming investment strategies. For this

reason, in practice, many portfolio managers rather invest in concentrated portfolios, claiming

that focusing on few securities yields better risk-returns performance, with lower trading and

monitoring costs (Kacperczyk et al., 2005; Brands et al., 2005; Ivkovic et al., 2008).

Portfolio sparsity (i.e. a small number of non-zero weights) may be enhanced by means of

the so-called regularization techniques, which allow to prevent data overfitting through a penalty

term on the asset weights. One of the most popular methods nowadays is the so-called Lasso

or `1-regularization, which relies on constraining the `1-norm of the asset weights1 (Brodie et al.,

2009; De Miguel et al., 2009a; Carrasco and Noumon, 2012; Fan et al., 2012). De Miguel and

Nogales (2009) showed that portfolios with constraints on the `1 and `2-norms of the asset weights

can outperform the EW strategy. In particular, the `1-regularization not only leads to sparse and

stable portfolios, but also constraints their gross exposure, i.e. limits the amount of short-selling

by shrinking the covariance matrix of asset returns. Indeed, when the penalty is included in

the objective function, it can be shown that the approximation error is bounded and does not

accumulate, resulting in more robust portfolio estimates (Fan et al., 2012). Still, even before the

`1-method was formally introduced in portfolio selection, Jagannathan and Ma (2003) had already

1The `q-norm of a vector w of n elements is defined here, for 0 < q < ∞, as `q = ‖w‖qq =
∑n

i=1 |wi|q, with

slight abuse of terminology. In fact, the `q-norm would be ‖w‖q = (
∑n

i=1 |wi|q)
1/q

. Note that for 0 < q < 1, the
q-norm ‖w‖q is a pseudo-norm.
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discussed why no short-selling in presence of the budget constraint (i.e. the `1-norm is equal to

1) would allow to prevent overfitting and reduce the out-of-sample portfolio risk. However, the

Lasso portfolios might provide biased estimates for large absolute weights and still might result

in many active positions (Gasso et al., 2009). For these reasons, different regularization methods

have been applied to portfolio selection recently, such as the elastic net (Zou and Hastie, 2005;

Yen and Yen, 2014), which is a weighted sum of the `1 and `2-penalties, the `∞-norm2 and other

non-convex penalties, which are able to overcome this bias and obtain remarkable out-of-sample

performance (Fastrich et al., 2014, 2015; Xing et al., 2014).

Alternatively, portfolio sparsity may be imposed by means of a cardinality constraint, which

leads to select an optimal portfolio with a given (maximum) number of active positions and it is

equivalent to constraining the `0-norm2 of the asset weights. Numerous optimization approaches

have then been proposed in the literature to deal with such non-convex constraints, even in high

dimensions. Still, estimating the optimal number of active weights to use as upper bound for the

`0-norm might be difficult, and other types of penalties might offer a better alternative to naturally

deal with the trade-off between diversification and sparsity. Probably, one of the most interesting

penalties is the so-called `q-norm with 0 < q ≤ 1. Recently, Chen et al. (2016) have introduced an

optimization approach including the `q-norm constraint in the mean-variance framework, which

allows to trade-off between portfolio sparsity and good out-of-sample performance, measured by

the level of Sharpe Ratio. The resulting portfolios obtain comparable performance to cardinality

constrained portfolios, even when accounting for transaction costs.

Here, we provide a financial interpretation of the `q-norm as diversification constraint and

discuss its effectiveness when compared to other types of penalties. Moreover, we show that the

approximation error bound is tighter for 0 < q < 1 than for q ≥ 1. Furthermore, we interpret the

`q-approach in a Bayesian framework, by pointing out explicitly the prior on the distribution of

portfolio weights. Also, we analyse the behavior of the `q-penalty in terms of sparsity, amount of

shorting and diversification, and show that it better deals with the trade-off between number of

active components, amount of shorting, size of asset weights and portfolio diversification compared

2 Given a vector w of n elements, `∞ = ‖w‖∞ = max(|w1|, . . . , |wn|) and `0 = ‖w‖0 =
∑n

i=1 1(wi 6= 0).

4



to other regularization methods, by penalizing both concentrated solutions with extreme short

positions and fully diversified allocations. Finally, we observe empirically that this characteristic

is especially beneficial in periods of financial distress and bear markets, i.e. in presence of extreme

losses and high positive correlation between assets.

The paper is structured as follows. Section 2 introduces the diversification and regularization

strategies in the minimum-variance framework and discusses their main characteristics. Section 3

shows the out-of-sample performance of the different strategies on real-data and points out the

trade-off between diversification and sparsity in low and highly volatile markets. Section 4 con-

cludes.

2 Methods

2.1 Risk Diversification Strategies

Markowitz (1952) is considered the pioneer of the concept of diversification in asset allocation, i.e.

the idea that the overall portfolio risk can be reduced by investing in different assets, based on

their volatilites and correlations. Let w = [w1, . . . , wn]′ be the n × 1 vector of portfolio weights

and Σ = [σij] with i, j = 1, . . . , n, the n×n covariance matrix of asset returns. Then, the so-called

minimum variance portfolio can be computed by solving the following optimization problem

min
w

w′Σw = σ2
p (1)

1′w = 1

where 1 is a n× 1 vector of ones and σ2
p is the portfolio variance. Here, asset returns are assumed

to be normal and the dependence can then be fully captured by linear correlation. The minimum

variance portfolio is then a quadratic optimization problem, which requires an estimate Σ̂ of the

covariance matrix Σ. If no constraint on the weights is imposed, the problem has an analytic

solution with no element equal to zero. However, this optimal solution, characterized by extreme

weights, highly sensitive to correlation and estimation errors, can hardly be implemented in prac-
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tice (Michaud, 1989). The EW strategy might then be preferred (De Miguel et al., 2009b), but

it still implies to hold positions in a large number of assets, which is often unrealistic for many

investors. Recently, Brodie et al. (2009), De Miguel and Nogales (2009) and Fan et al. (2012)

pointed out that diversifying risk does not necessarily imply investing in a large number of assets,

but identifying the ones that do not move together and are less risky. This may be particularly

challenging in a period of financial distress, in presence of extreme losses, which result in an in-

creased volatility and higher level of positive correlation between assets. Therefore, investors may

not be able to fully exploit risk diversification when they need it most.

Understanding that the EW strategy allows diversifying the investment in terms of capital,

but not necessarily in terms of risk (i.e. assets may contribute differently to the overall portfolio

risk), Maillard et al. (2010) introduced the risk-parity portfolio, also called equal risk contribution

(ERC). Such portfolio allows for risk diversification by allocating capital so that each asset con-

tributes equally to the overall portfolio risk (see A for more details). In particular, the authors

proposed an optimization framework to find risk-parity portfolios that minimizes the variance of

the risk contributions between assets, i.e. minimizes deviations from the so-called risk-parity, such

that

min
n∑
i=1

n∑
j=1

(wi(Σw)i − wj(Σw)j)
2 (2)

wi ≥ 0, i = 1, . . . , n

1′w = 1

where (Σw)i =
∑n

i,j=1 σijwj represents the marginal contribution of asset i to the overall portfolio

risk σ2
p. One of the problems arising from this formulation is that we need to minimize a non-convex

function of the asset weights, which might be time-consuming and present some convergence issues

for problems with a large number of assets. Interestingly, Kolm et al. (2014) showed that in the

long-only case the risk-parity portfolio can be computed by solving the following optimization
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problem:

min w′Σw − log(w) (3)

wi ≥ 0, i = 1, . . . , n

1′w = 1

where log(w) represents a logarithmic penalty on the vector of non-negative portfolio weights.

Notice that then problem (3) can be interpreted as a penalized minimum variance problem, with

penalty equal to − log(w), which does not promote sparsity as pre-multiplies by −1 (see Sec-

tion 2.2).

2.1.1 Diversification Measures.

The concept of diversification in portfolio allocation might be difficult to capture by a single

definition. Hence, different measures have been introduced to quantify it. The number of active

positions, the concentration of the weights (i.e. from 1/n for EW to 1 for a portfolio totally

invested in one asset) and different risk functions play a role in assessing diversification. In order

to evaluate the diversification performance of a portfolio composed of n assets, we consider four

measures: D`0 , Dw, Dr and Der, defined as

D`0 =

∑n
i=1 1(wi 6= 0)

n
, Dw =

1

n
∑n

i=1w
2
i

, Dr =
1

n
∑n

i=1RC
2
i

, Der =
1

n
∑n

i=1CES
2
i

,

where wi is the weight of the i-th asset and RCi and CESi are its risk contributions to the overall

portfolio risk and Expected Shortfall, respectively (see A). The concentration index D`0 measures

the proportion of active weights in a portfolio. Typically, the `0-norm or number of active positions

is reported. Here, we build the D`0 index to be consistent with the other diversification measures

by having the maximum value for a portfolio invested in all n assets (D`0 = 1) and the minimum

value for a portfolio totally concentrated in one position (D`0 = 1/n). The weight diversification

measure Dw relies on the popular Herfindal Index H(w) =
∑n

i=1w
2
i to assess the level of weight

concentration in a portfolio. Dw takes the value of 1/n if the portfolio is totally concentrated in one
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asset and the value of 1 if the portfolio is equally weighted. Starting from this index, Cazalet et al.

(2014) introduced the risk diversification measure Dr, which has value of 1/n if the portfolio risk

is completely determined by one asset and the value of 1 if portfolio risk is equally spread among

assets. From a risk budgeting perspective, it may be useful to understand the composition of a

portfolio also in terms of extreme risk. For this reason, we consider the extreme risk diversification

measure Der, where risk is quantified by the Expected Shortfall.3 Similar to the other measures,

Der will take a value of 1/n if portfolio extreme risk is totally concentrated in one asset and a

value of 1 if it is equally spread among assets.
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Figure 1: Diversification indices Dw (panel (a)), Dr (panel (b)) and Der (panel (c)) with respect
to correlation coefficients ρ in EW, ERC and MV portfolios when σ1 = 0.6, σ2 = 0.8. Returns are
simulated from a multivariate t-Student distribution with 6 degrees of freedom, for a total of 500
simulations with T = 2000 observations. D`0 is constant and equal to 0.5 for each ρ and strategy.

To better understand the differences between these measures, let’s consider a small investment

universe of only two assets, with volatilities σ1 and σ2. Figure 1 shows how the diversification

measures change when the correlation between assets, ρ increases. We set σ1 = 0.6 and σ2 = 0.8.

To compute Der, returns are simulated from a multivariate t-Student distribution with six degrees

of freedom, for a total of 500 simulations with T = 2000 observations. From Figure 1a, we notice

that, as expected, the EW portfolio is the most disperse in terms of weight, as it assigns an equal

position to both assets. The ERC portfolio reaches analogous results by selecting similar positions

for the two assets.4 On the contrary, the MV strategy returns more concentrated portfolios as ρ

3See Bauer and Zanjani (2016) for a discussion about risk exposures based on different risk measures.
4In the two-asset case, the ERC strategy selects the assets weight according to their volatilities. As the difference
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increases, since it estimates larger absolute weights for the asset with the lowest volatility (σ1 in

our examples).

Figure 1b shows that the ERC strategy returns, as expected, the most disperse portfolio in

terms of risk, since the two assets contribute equally to the overall portfolio volatility. Similar

results are achieved by the EW portfolio. On the other hand, as ρ increases, the MV strategy

concentrates the risk of the portfolio once again in the asset with the lowest volatility. Figure 1c

shows how the average Der changes with ρ in 500 simulations. We notice that the EW portfolio

is also the most disperse in terms of extreme risk. As the correlation between assets increases,

the Expected Shortfall of both EW and ERC portfolios become more diversified. The opposite is

true for the MV portfolio. However, despite the good diversification properties, investing in these

portfolios implies selecting an active position for each asset. D`0 would then be always equal to

1/n for each strategy and correlation level.

2.2 Regularization Strategies

One natural way to select optimal portfolios with few active weights, typically not extreme in

size, is to include some penalty functions on the asset weight vector and then solve the following

penalized minimum variance problem

min
w

w′Σw + λ
n∑
i=1

g(wi) (4)

where w′Σw is the portfolio variance and λ is the scalar that controls the intensity of the penalty

g(w). Two interesting penalties are the `q with 0 < q < 1 and the log-penalties specified below

`q = ‖w‖qq =
n∑
i=1

|wi|q (5)

log =
n∑
i=1

(log(|wi|+ φ)− log(φ)) (6)

σ1 − σ2 is not large in our examples, w1 ' w2.
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where 0 < φ < 1 is a constant such that the logarithmic function is defined also for wi = 0.

Notice that the limq→0+
∑n

i=1 |wi|q = ‖w‖0 5. Moreover, it can be shown that when q → 0+,

the `q-penalty converges to the log-penalty. Here, we will focus mostly on the `q-penalty as the

results might be extended to the log-penalty as well. The `q with 0 < q < ∞ was introduced

in the statistical literature as Bridge regression (Frank and Friedman, 1993). Since then, many

well-known penalties that belong to the `q-regularization framework have been studied, such as

the well-known Lasso when q = 1 (i.e. `1-penalty). Knight and Fu (2000) and Huang et al. (2008)

investigated the asymptotic properties of Bridge estimators in terms of sparsity, normality and

consistency. In finance, Brodie et al. (2009), De Miguel et al. (2009a) and Fan et al. (2012) show

that portfolios constructed by using `1 and `2-penalties achieve higher Sharpe Ratios than their

benchmarks, such as EW and MV, and reduce the sensitivity of the weights to estimation errors.

Such results have attracted recently further research on the use of regularization methods in

finance. Most studies (e.g. Xing et al., 2014) point out that `1 and `2-norms still have shortcomings,

such as the fact that the `2-norm does not encourage sparsity, but typically assigns an active weight

to all securities (De Miguel et al., 2009a). Selecting a larger number of assets though does not

necessarily yield to lower risk. On the other hand, the Lasso penalty, despite promoting sparsity

when λ > 0, provides often impractical solutions with large absolute positions, due to the bias on

large coefficients, and it is ineffective when the no-short-selling constraint is imposed. As pointed

out by Gasso et al. (2009) and Fastrich et al. (2014, 2015), non-convex penalties are able to reach

much sparser allocations and overcome this bias. Chen et al. (2016) showed recently that the

`q-penalty can achieve lower risk than the `1 with a smaller amount of shorting. Here, we focus

on the `q-penalty with 0 < q < 1 as it promotes sparsity by controlling for the trade-off between

concentration and diversification.

Figure 2 displays the behavior of the `q-norm with respect to `1, `2 and `1 − `∞-penalty

(Xing et al., 2014), for portfolios of two and three assets in presence of the budget constraint.

So far, most of the literature on regularized portfolios focuses on plotting the penalties without

5Imposing an upper bound on the 0-norm, such that ‖w‖0 ≤ k, results in the well-studied cardinality constraint,
which is known to make the optimization problem NP-hard when n and k are large. Indeed, such constraint would
require computing

(
n
k

)
number of estimators, which grows exponentially with k.
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Figure 2: Geometric interpretation of the regularized portfolios with `q with q = 0.5, `1, `2 and
`1 − `∞-penalties, for 2 (panel (a)) and 3 assets (panel (b)) in presence of the budget constraint
(i.e.

∑n
i=1wi = 1). The grey area represents solutions with short-selling, while the vertical blue

line indicates the EW portfolio.

explicitly incorporating the budget constraint. Instead, we believe that Figure 2 allows to better

understand the effect of such penalties in portfolio settings, where asset weights have to sum up

to 1 and typically have values between -1 and 1. In the no-short-selling case (white area), we

notice that the `q-penalty with 0 < q < 1 reaches its maximum value (`q = n1−q) for the equally

weighted portfolio, corresponding to the vertical blue line, and minimum value (`q = 1) for a

portfolio totally invested in only one asset, becoming then a natural way to control for weight

diversification. The opposite is true for the `1 − `∞- and `2-penalties, which assign higher values

to more concentrated positions, such as w = [-1 0] or w =[0 1], than the EW w =[0.5 0.5]

(see Figure 2a). As weights are larger than zero and sum to one, the `1-penalty is constant and

therefore ineffective. When short positions are allowed (grey area), we notice that the `1, `2 and

`1 − `∞-norms increase approximately linearly with the amount of shorting, while the `q-norm

assigns a lower penalty to large absolute weights.

Finally, we can see that, constraining the norms to be smaller than a value c > 0, sparsity is

preferred only with `1 and `q-norms, while `1 − `∞ and `2-norms reach their minimum for EW
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portfolios, as sparser solutions represent only local optima. However, notice that `1 is ineffective

when no-short-selling is imposed. Furthermore, as shown in Figure 2b, the `q-penalty takes the

same value for the EW portfolio and for solutions with small short positions. In such situations,

the portfolio that minimizes Eq. (4) will be the one with the lowest variance, i.e. the one which

invests in the least volatile assets by setting to zero, with equal strength, both positions with

limited shorting and small positive weights. We will see that this is relevant especially in situations

characterized by similar level of correlation, as typical during crisis (see Section 3). Sparse solutions

are always local minima for the `q-approach, with at least one of them being global optimum.

Then, a strong penalty for large amount of shorting is applied with the same intensity for EW and

moderate shorting. Note that `q is the only approach that strongly penalizes both concentrated

portfolios with extreme shorting (i.e. with low Dw) and fully diversified solutions, such as the

EW (i.e. with high D`0). This is an interesting property as, typically, portfolio managers want to

avoid EW and large amount of shorting. Moreover, empirical results in Section 3 point out how

the `q-sparsity property is useful to automatically select few assets, which are robust to the high

volatilities and correlation settings typical of financial crises.

By trading-off between approximation and estimation errors, i.e. errors in selecting the optimal

assets and in estimating the optimal weights, respectively, the `q-penalty is able to construct

sparse portfolios that perform well out-of-sample. When the number of active positions increases,

the approximation error monotonically decreases, since more assets are included. However, the

estimation error increases because of overfitting. Following Leung and Barron (2006), we can link

sparsity and approximation error of the estimates w, obtained with `q-regularization strategies,

with 0 < q ≤ 2, and show that the approximation error is more tightly bounded for 0 < q < 1.

Proposition 1. In presence of a no-short-selling constraint, i.e. 0 ≤ wi ≤ 1, with i = 1, . . . , n,

the `q-norm is maximum for the equally weighted portfolio and minimum for a portfolio totally

invested in one asset, with bounds

1 ≤ ‖w‖qq ≤ n1−q . (7)
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Proposition 2. Let {w(j)} be the j-th element of the vector of weights {w} sorted descendingly,

such that |w(1)| ≥ |w(2)| ≥ · · · ≥ |w(n)|, and k be the number of non-zero coefficients, i.e. k =∑n
i=1 1(wi 6= 0). Then, we can bound the approximation error as

∑
j>k+1

w2
(j) ≤

‖w‖2q
(k)(2−q)/q

. (8)

From this inequality, it is clear that the number of active components k plays an important role

in bounding the approximation error: the larger k, the lower the bound. Moreover, the decrease

in approximation error is much faster for 0 < q < 1 than for q = 1, and when q → 0, the error

vanishes. For example, for q = 1, we get an upper bound equal to ‖w‖21/k, while for q = 0.5 it is

‖w‖20.5/k3 (see proof in B).

2.3 Bayesian Interpretation

The `q-framework has a Bayesian interpretation by considering the maximum a posteriori (MAP)

estimation of portfolio weights with prior probability distribution for π(w) to be an exponential

power distribution:

π(wi|µ, a, q) =
q

2aΓ(1/q)
exp

[
−
(
|wi − µ|

a

)q]
, i = 1, . . . , n (9)

where µ is the location parameter, a the scale parameter and q the shape parameter controlling the

kurtosis of the distribution (Seeger, 2008; Murphy, 2012). Therefore, if q = 2, the resulting prior

would be a normal distribution, while if 0 < q < 2, π(w) would be leptokurtic, i.e. would present

fatter tails than the normal case, as shown in Figure 3a. An interesting example is the Laplace

distribution, obtained when q = 1, which is particularly important because it results in a convex

optimization problem in Eq. (4), with sparse solutions. Non-convex penalties, i.e. `q-penalties with

0 < q < 1, correspond to prior distributions with fat tails and assign higher probability to large

asset weights, ensuring the selection of relevant coefficients while still inducing strong sparsity.

Figure 3b shows the isocurves of the prior (first row) and posterior (second row) distributions,

corresponding to the `q-penalties with q = 2, 1, 0.5, for a portfolio of two assets. In the first row, we
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notice that the normal density function (q = 2) distributes the probability homogeneously around

the axes, while the other two priors (q = 1 and q = 0.5) attach more probability to solutions on

the axes (i.e. where w1 = 0 or w2 = 0), resulting in sparse portfolios. This behavior is confirmed

by the posterior density functions in the second row, obtained by multiplying the likelihood and

the prior distribution. In particular, we notice that, while the normal posterior is symmetric, with

its mode lying away from both axes, the Laplace posterior is slightly skewed and its mode lies

on the vertical axis, corresponding to w1 = 0. Interestingly, the exponential posterior is bimodal

when q = 0.5 and shows a higher shrinkage towards the axes. In this case, as suggested by Seeger

(2008) and Mazumder et al. (2011), the number of posterior modes may increase exponentially

with the number of assets for 0 < q < 1, typically ending up with sparser solutions than q = 1

with superior model selection properties while retaining similar prediction accuracy.
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Figure 3: Panel (a): Exponential power distributions for MAP estimation corresponding to `q-
penalties with q = 0.5, 1, 2, µ = 0 and a = 1. Panel (b) - First row: Isolines of the generalized
normal distributions (priors) with different values of q, µ = 0 and a = 1. Panel (b) - Second row:
Isolines of the posterior distributions, obtained by multiplying the prior and the likelihood, for
q = 0.5, 1, 2, µ = 0 and a = 1. The areas between isocurves are filled according to the distribution’s
density, i.e. the brighter the color, the higher the density.
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3 Empirical Results

In the following empirical analysis, we compare the behavior of the regularization and diversifica-

tion strategies within the MV framework and evaluate their performance in terms of risk, sparsity

and diversification in low and highly volatile markets. The investment goal is to obtain an opti-

mal portfolio with a low level of risk and a good balance between weight and risk diversification.

Therefore, the MV optimization problem with regularization and diversification criteria can be

described by the penalized objective function in Eq. (4), subject to a budget constraint. In par-

ticular, we consider the following penalties: `2 (Ridge), `1 (Lasso), logarithmic (Log) and `q with

q = 0.5 (`q).

We test the performance of the different strategies on two dataset including the daily returns

of the Standard and Poor’s 100 (S&P 100) and 500 (S&P 500) components, from 01.01.2005 to

29.05.2015. We leave out few minor constituents that do not belong to the indices throughout the

whole sample period. Therefore, the dataset involves T = 2734 observations of n = 93 assets for

the S&P 100 and n = 452 assets for the S&P 500. We divide the sample in two sub-periods of

T1 = 1304 observations from 01.01.2005 to 31.12.2009 including the financial crisis of 2007-2008,

and T2 = 1430 observations from 01.01.2010 to 29.05.2015 in the post-crisis period. Table 1 shows

the average descriptive statistics of S&P 100 and S&P 500 components in the two sub-samples.

The first period is characterized by high volatility and extreme losses, quantified by high levels of

drawdowns (around 0.6 in both dataset) and large Values-at-Risk (VaR) and Expected Shortfalls

(ES), as shown in Figure 4a. We estimate the covariance matrix Σ̂ with the shrinkage estimator

introduced by Ledoit and Wolf (2004), with rolling windows of 500 in-sample observations. The

condition number of Σ̂ indicates that our estimate is highly sensitive to small changes in the

inputs, in particular during and immediately after the financial crisis (see Figure 4b), implying

high level of correlation between assets returns in such periods. Figure 5 displays the correlation

matrices between asset returns during (left panels) and after (right panels) the financial crisis.

We notice that assets tend to behave more similarly during the crisis, indicating the presence of a

global market movement (Kotkatvuori-Örnberg et al., 2013). This characteristic may be crucial for

our analysis, because the effect of diversification is reduced when the correlation rises (Choueifaty
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and Coignard, 2008; You and Daigler, 2010). On top of that, data are far from being normal: the

average skewness and kurtosis show that log-returns are leptokurtic, i.e. with higher peaks at the

mean and fatter tails than normally distributed data. Indeed, the Jarque-Bera test rejects the null

hypothesis that asset returns are normally distributed in both periods at 99% confidence level.

Period T n µ̂ σ̂ Skew Kurt DD
S&P 100

2005 - 2009 1304 93 3.4957e-05 0.0230 -0.0517 14.0324 0.6008
2010 - 2015 1430 93 4.6708e-04 0.0145 -0.1916 8.3050 0.3186

S&P 500

2005 - 2009 1304 452 7.5578e-05 0.0259 -0.1564 13.8196 0.6519
2010 - 2015 1430 452 4.7523e-04 0.0166 -0.1541 11.4972 0.3621

Table 1: Descriptive statistics of S&P 100 and S&P 500 components in the two sub-periods:
number of observations T , number of constituents n, mean µ̂, standard deviation σ̂, skewness
Skew, kurtosis Kurt, maximum drawdown DD of the returns.
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Figure 4: Panel (a): Evolution of Value-at-Risk (VaR) and Expected Shortfall (ES) of S&P 500
index, estimated by using a window of 500 days. Panel (b): Condition Number of the covariance
matrix of S&P 500 components, estimated by using a window of 500 days.

We use a rolling-window scheme with window size WS = 500 to replicate the situation in which

the investor selects his portfolio using the last two years of information and holds it for one day

before re-balancing. Therefore, based on 500 in-sample observations, we revise the asset weights

daily, moving each time window ahead by one observation and discarding the oldest data point.

In total, we end up with M1 = 804 and M2 = 930 rolling windows and out-of-sample observations
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Figure 5: Correlation matrices of S&P 500 components during the crisis (left panel) and post-crisis
periods (right panel).

in the first and second period, respectively. We constraint the asset weights to vary between -1

and 1. For each window, we optimize the penalized minimum variance problem with the different

penalties by using the gradient projection algorithm developed by Figueiredo et al. (2007), which

has been shown to be more efficient than quadratic programming and coordinate-wise optimiza-

tion (Gasso et al., 2009). We use a vector of 10 λs and select for each strategy the portfolio with

the lowest value of the objective function (4) in the in-sample window.

Tables 2 and 3 compare the average in-sample (IS) and out-of-sample (OOS) results obtained

by the different strategies, including the equally weighted (EW), the risk-parity (ERC) and the

unconstrained minimum variance (MV) portfolios, during the crisis and post-crisis periods, re-

spectively. We report the in- and out-of-sample annual standard deviation, mean return and

Sharpe Ratio in Columns 2 to 6 to evaluate the average risk-return performance of the portfolios.

In particular, we are interested in comparing the average out-of-sample annual risk (Column 3).

Then, we evaluate the performance of the portfolios in terms of transaction and monitoring costs

by considering how many assets are selected and how much their weights vary over time. Column
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7 shows the portfolio turnover, which represents the average change in portfolio weights between

two consecutive windows (i.e. TO =
∑M

m=2 |wm − wm−1|/(M − 1)). This measure can be used

as a proxy for the transaction costs that an investor would pay to re-balance a certain strategy

every day: the higher the turnover, the larger the transaction costs. Column 8 reports the average

number of active positions, k̄ (i.e. sparsity of the portfolio) that an investor would need to moni-

tor. Therefore, the lower the turnover and k̄, the cheaper the strategy. Furthermore, we analyse

the diversification performance of the portfolios by calculating the weight and risk diversification

indices, D`0 (Columns 9), Dw (Columns 10), Dr (Columns 11) and Der (Columns 12). Finally,

we report for each strategy the annual Value-at-Risk (Column 13), defined as the maximum loss

not exceeded in 95% of cases, and the annual Expected Shortfall (Column 14), i.e. the expected

return on the portfolio in the worst 5% of cases.

As expected, the in-sample portfolio risk is minimized for the MV strategy and maximized

for the EW strategy. Furthermore, we find that `q, Log and `1-portfolios reach much lower in-

sample risk values than the ERC strategy in all dataset, while the `2 obtains risk values similar to

ERC and EW. As pointed out by Behr et al. (2013), the good in-sample performance of the MV

portfolio are not confirmed out-of-sample, where the regularization strategies, and in particular

the `q-portfolios, obtain the lowest risk values. This remarkable performance may be explained by

first decomposing the objective function (4) as

min
w

n∑
i=1

w2
i σ

2
i + 2

n∑
i=1

n∑
j=i+1

wiwjρijσij + λ
n∑
i=1

g(wi) , (10)

where the sum of the first two terms is equal to the portfolio variance w′Σw, and then looking

at the average risk of the assets selected by the `q-strategy (wi 6= 0, 1 ≤ i ≤ n), compared to the

risk of the assets not selected by the strategy (wi = 0, 1 ≤ i ≤ n). Figure 6 shows the boxplots of

the average in-sample variances, drawdowns and correlations within the two groups of securities,

during and after the financial crisis for the S&P 500 dataset. We notice that, since assets tend

to be highly correlated, especially during the crisis period (i.e. there are very large values of ρij),

the `q-strategy selects on average the lowest-volatile assets in order to minimize function (10),

discarding the securities that display extreme losses in-sample. Moreover, the `q-strategy leads
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to optimally select small amount of shorting rather than increasing the number of constituents,

which implies some negative values of the second term in function (10) (i.e. the average amount

of shorting of the `q-portfolio in the S&P 500 dataset is equal to 19% and 43% during the crisis

and post-crisis periods, respectively). With respect to the other strategies, the `q-approach adapts

automatically to the different market conditions and better deals with estimation error, achieving

also lower OOS Values-at-Risk and Expected Shortfalls than the other strategies and thereby

smaller exposure to extreme risk.

In general, during the crisis period (see Table 2), the performance of all strategies suffer from

the highly volatile market conditions, resulting in values of portfolio risk that are much higher

than the ones obtained in the post-crisis period (see Table 3). We are not able to compare the

risk-return performance of the strategies during the crisis because of their negative annual re-

turns; while, in the post-crisis period, the highest Sharpe Ratios are achieved by the `2 and the

`1-portfolios, respectively for the S&P 100 and S&P 500 dataset. The ERC and EW portfolios also

obtain good risk-return performance especially in the first dataset, as shown in Figure 7, which

plots the OOS compounded returns of the different portfolios over the two sub-periods.

The EW portfolio has by definition a turnover equal to zero, since we assume the vector of

weights to be constant over the windows. Similar performance are achieved by the `2 and ERC

portfolios, which are very stable over time. On the other hand, these three strategies do not

promote sparsity and assign a non-zero weight to all available assets, as shown by k̄ in Column

8. The Log and the `q-strategies instead achieve remarkable performance in terms of sparsity by

selecting the portfolios with the smallest number of active weights in all dataset. However, they

update their investment solutions more frequently or significantly than EW and ERC strategies,

thus suffering from high turnover, as reported by TO in Column 7. From Tables 2 and 3, we notice

that the EW and ERC portfolios are the most diversified investment solutions in all dataset, as

expected. Both strategies invest in all the available assets and distribute the weights and the risk

nearly equally among them. The `2-portfolio reaches similar performance, both in terms of weight

and risk diversification. The Log and `q-strategies show instead an opposite behavior: they are
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exposed to a few investments with larger weights, resulting in low D`0 , Dw and Dr, but allow

more diversification in terms of extreme risk than MV and `1-strategies. In fact, the MV portfolio,

despite investing in all assets, is the most concentrated in terms of weight and extreme risk since

it selects extreme positions in very few low volatile assets.

From the empirical results, we confirm the existence of a trade-off between out-of-sample risk,

sparsity and diversification of a portfolio. None of the strategies is able to reach all objectives

at the same time. EW, ERC and `2-portfolios achieve similar performance, as shown in Table 4,

which reports the correlation coefficients between the OOS returns obtained in the two dataset.

These portfolios are well-diversified in terms of weight and risk, they invest in all the available

assets and lead to high levels of out-of-sample risk. On the contrary, the MV portfolio can reach

satisfactory out-of-sample risk values, but it is neither diversified nor sparse. According to Table 4,

`1, Log and `q-strategies achieve similar risk performance to MV, but with much sparser portfolios.

In fact, they also select on average the lowest volatile assets that do not suffer from extreme losses,

but differently from MV, they assign a zero weight to all other securities. However, for this reason,

they are not able to diversify their allocation in terms of weight and risk. Among the regularization

strategies, the `q outperforms `1, by achieving less OOS risk levels with much sparser portfolios.

In the S&P 500 dataset, for example, the `q-portfolio selects on average 93 and 90 assets during

the crisis and post-crisis periods, respectively, while the `1-portfolio selects an average of 365 and

331 assets, which results in much higher transaction and monitoring costs.

We confirm this behavior on simulated data, where we can further test the performance of

the `1 and `q-portfolios in terms of empirical and actual risk. In particular, we simulate 500

returns of 100 assets from a Fama-French Three-Factor Model with known covariance matrix Σ,

and we construct 50 `1 and `q-portfolios with different number of active positions, by increasing

the penalization parameter λ. Let w and wopt be the theoretical and empirical optimal allocation

vectors, solving the penalized optimization problems w = argmin1′w=1w
′Σw + λ

∑n
i=1 g(wi) and

wopt = argmin1′w=1w
′Σ̂w + λ

∑n
i=1 g(wi), where Σ and Σ̂ are the theoretical covariance matrix

and its estimate, respectively. Then, we denote the oracle, empirical and actual risks of such
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portfolios as R(w) = w′Σw, Rn(wopt) = w′optΣ̂wopt and R(wopt) = w′optΣwopt, respectively (Fan

et al., 2012). Figure 8a shows the empirical and actual risks of the 50 `1 and `q-portfolios. First of

all, we notice that increasing the number of active positions does not necessarily yield lower risk, as

also pointed out by Fan et al. (2012). On the contrary, both the empirical and actual risks increase

after a certain portfolio size. Furthermore, the risks of `q-portfolios are lower than the risks of

`1-portfolios with the same number of active positions, except for the most diversified solutions.

From Figure 8b, we also notice that the `q-penalty represents a stronger constraint on short-selling

than the `1-penalty, i.e. for a given number of active positions, the former yields portfolios with

less amount of shorting. This behavior is confirmed by looking at the regularization path of the

`1 and `q-portfolios, in Figures 8c and 8d. Here, we notice that increasing λ, the number of active

positions decreases with both penalties and as expected with faster rates for the `q-approach. Also,

the absolute value of the remaining weights increases much more for the `1 than for the `q-penalty,

resulting in more conservative extreme estimates for the `q-approach (Gasso et al., 2009).

Interestingly, our analysis suggests that diversifying the portfolio by increasing the number of

active positions does not lead to risk minimization out-of-sample, especially during crisis periods.

The benefits of diversification in terms of risk reduction rather decrease after reaching a certain

portfolio size, particularly when the volatility and correlation between assets increase and the dis-

tribution of asset returns is far from being normal (Doganoglu et al., 2007; Desmoulins-Lebeault

and Kharoubi-Rakotomalala, 2012; Mainik et al., 2015). Therefore, as shown in Figure 7, regular-

ization techniques that lead to more concentrated portfolio solutions, like the Log and `q-strategies,

can represent a better choice in bear markets.
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Method σp (%) µp (%) SR TO k̄ D`0 Dw Dr Der VaR ES
IS OOS IS OOS OOS

S&P 100, T1 = 1304 n = 93

EW 36.04 29.89 -7.72 -4.38 -0.147 - 93.000 1.000 1.000 0.885 0.504 -7.335 -12.181
ERC 30.96 26.34 -4.56 -3.87 -0.147 0.004 93.000 1.000 0.887 1.000 0.552 -6.527 -10.691
MV 12.01 14.81 6.24 -4.36 -0.294 0.102 93.000 1.000 0.062 0.062 0.016 -3.507 -6.273
`2 35.37 29.62 -7.17 -4.42 -0.149 0.001 93.000 1.000 0.999 0.899 0.515 -7.264 -12.071
`1 12.03 14.85 6.37 -4.42 -0.298 0.103 84.432 0.908 0.064 0.016 0.019 -3.449 -6.282

Log 12.14 14.90 6.92 -4.75 -0.319 0.128 46.012 0.495 0.063 0.015 0.019 -3.543 -6.347
`q 12.13 14.85 6.76 -4.32 -0.291 0.103 53.333 0.573 0.067 0.015 0.021 -3.539 -6.336

S&P 500, T1 = 1304 n = 452

EW 39.26 32.53 -6.43 -4.75 -0.146 - 452.000 1.000 1.000 0.883 0.496 -7.969 -13.295
ERC 33.80 28.64 -3.44 -5.04 -0.176 0.006 452.000 1.000 0.898 1.000 0.536 -6.984 -11.680
MV 4.19 14.68 1.76 -10.12 -0.689 0.406 452.000 1.000 0.015 0.015 0.002 -3.497 -5.935
`2 35.97 31.18 -4.38 -5.34 -0.171 0.001 451.759 1.000 0.988 0.930 0.525 -7.532 -12.740
`1 4.54 14.26 2.51 -9.03 -0.633 0.379 364.966 0.807 0.021 0.003 0.002 -3.440 -5.834

Log 6.12 14.37 4.42 -5.62 -0.391 0.456 85.580 0.189 0.018 0.003 0.002 -3.485 -6.167
`q 6.26 13.94 3.66 -6.36 -0.456 0.393 92.882 0.205 0.021 0.004 0.003 -3.204 -5.912

Table 2: Average statistics of the different portfolios in the period 01.01.2005 - 31.12.2009 on S&P
100 and S&P 500: IS and OOS annual risk, IS and OOS annual return, OOS annual Sharpe Ratio,
turnover (TO), number of active positions (k̄), concentration index (D`0), weight diversification
index (Dw), risk diversification index (Dr), extreme risk diversification index (Der), annual Value-
at-Risk, annual Expected Shortfall.

Method σp (%) µp (%) SR TO k̄ D`0 Dw Dr Der VaR ES
IS OOS IS OOS OOS

S&P 100, T2 = 1430 n = 93

EW 11.07 11.84 11.02 15.07 1.273 - 93.000 1.000 1.000 0.909 0.206 -3.070 -4.228
ERC 10.56 10.95 10.06 14.12 1.290 0.002 93.000 1.000 0.904 1.000 0.171 -2.744 -3.906
MV 7.47 9.33 -1.55 5.80 0.622 0.124 93.000 1.000 0.041 0.041 0.014 -2.261 -3.268
`2 10.86 11.00 10.66 14.37 1.306 0.001 92.147 0.999 0.930 0.965 0.176 -2.803 -3.930
`1 7.54 9.20 -1.20 5.68 0.618 0.112 84.881 0.913 0.047 0.011 0.015 -2.163 -3.218

Log 7.76 9.15 -0.22 6.76 0.739 0.136 39.869 0.429 0.047 0.011 0.017 -2.125 -3.237
`q 7.87 9.06 0.46 6.58 0.726 0.118 44.782 0.481 0.052 0.011 0.017 -2.147 -3.184

S&P 500, T2 = 1430 n = 452

EW 11.34 12.56 10.68 14.17 1.128 - 452.000 1.000 1.000 0.910 0.177 -3.364 -4.512
ERC 10.68 11.49 9.89 13.47 1.172 0.004 452.000 1.000 0.901 1.000 0.158 -3.132 -4.122
MV 2.45 8.79 -2.90 12.35 1.405 0.580 452.000 1.000 0.008 0.008 0.001 -2.139 -2.843
`2 11.31 12.42 10.65 14.09 1.134 0.001 452.000 1.000 0.999 0.927 0.177 -3.359 -4.461
`1 3.27 8.01 -1.29 11.69 1.459 0.484 331.344 0.733 0.014 0.002 0.002 -1.973 -2.633

Log 4.85 8.22 1.28 10.50 1.277 0.550 69.509 0.154 0.012 0.002 0.002 -2.013 -2.794
`q 4.75 7.97 2.50 9.79 1.229 0.397 90.031 0.200 0.015 0.002 0.003 -1.957 -2.736

Table 3: Average statistics of the different portfolios in the period 01.01.2010 - 29.05.2015 on S&P
100 and S&P 500: IS and OOS annual risk, IS and OOS annual return, OOS annual Sharpe Ratio,
turnover (TO), number of active positions (k̄), concentration index (D`0), weight diversification
index (Dw), risk diversification index (Dr), extreme risk diversification index (Der), annual Value-
at-Risk, annual Expected Shortfall.
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EW ERC MV `1 Log `q `2

EW 1.000 0.996 0.330 0.351 0.321 0.339 0.999
ERC 0.995 1.000 0.375 0.400 0.372 0.393 0.998
MV 0.438 0.498 1.000 0.972 0.846 0.852 0.345
`1 0.442 0.503 0.999 1.000 0.904 0.913 0.366

Log 0.458 0.519 0.981 0.985 1.000 0.997 0.469
`q 0.461 0.523 0.983 0.988 0.997 1.000 0.358
`2 0.999 0.996 0.449 0.454 0.469 0.473 1.000

Table 4: Correlation coefficients between the OOS returns of the different strategies in the whole
period for S&P 100 (below the diagonal) and S&P 500 (above the diagonal).

During Crisis Post Crisis

Figure 6: In-sample variance, maximum drawdown and correlation within the S&P 500 compo-
nents selected (wi 6= 0, 1 ≤ i ≤ n) vs discarded (wi = 0, 1 ≤ i ≤ n) by `q during the crisis (left
panel) and post-crisis periods (right panel).
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During Crisis Post Crisis
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Figure 7: Out-of-sample returns of S&P 500 portfolios in period 01.01.2005 - 31.12.2009 (left
panel) and in period 01.01.2010 - 29.05.2015 (right panel).

3.1 Properties

We summarize here the diversification and regularization strategies by comparing their main prop-

erties. In particular, Table 5 shows the different behaviors of the portfolios with respect to high

levels of correlation, out-of-sample performance, amount of shorting and diversification.

MV EW ERC `2 `1 `q

Robustness to correlation - ◦ ◦ + - +
Constraint on shorting - ◦ ◦ - + +
D`0 + + + + - -
Dw - + + + - -
Dr - + + + - -
Der - + + + - -

Table 5: Main properties of portfolio strategies: positive (+), neutral (◦), and negative(-).

Despite investing in all securities, the unconstrained MV strategy leads to portfolios with

large number of constituents and extreme positions. Furthermore, the stability of the resulting

weights may be strongly affected by high correlations and estimation errors in model parameters.

On the contrary, diversification strategies, such as the EW and ERC, select all the available as-

sets to exploit the potential weight and risk diversification effects. However, they fail to provide
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Figure 8: Panel (a): Empirical and actual risks of 50 portfolios obtained by varying the penalization
parameter λ in the `1 and `q-penalty function. We simulate 500 returns of 100 assets from a Fama-
French Three-Factor Model with known covariance matrix Σ. The empirical and actual risks are
computed by using the sample and the true covariance matrices. Panel (b): Actual risk and
amount of shorting of the 50 portfolios. Panels (c) and (d): Regularization path of the 50 `1 and
`q portfolios, respectively.
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sparse solutions, with the ERC portfolio still very sensitive to changes in parameter estimates.

Regularization techniques help to mitigate the effect of estimation errors, resulting in better OOS

properties, by shrinking the covariance matrix of asset returns. In particular, the `q with 0 < q < 1

strategy is able to better deal with estimation errors deriving from extreme observations and mul-

ticollinearity, by privileging sparse solutions characterized by low volatilities. These characteristics

have been shown to be especially useful in periods of high uncertainty, when assets tend to display

high levels of spurious correlation and volatility.

4 Conclusion

In this paper, we investigate the trade-off between diversification and concentration within a

risk minimization framework in portfolio selection. Ideally, investors target asset allocations,

characterized by few active positions, but still with the right amount of diversification. In the

minimum variance optimization problem, we consider the Log and the `q-norm as penalty terms

that can naturally deal with the trade-off between number of active components, size of the

asset weights and diversification level. Thus, imposing such constraints, we are able to control

the level of diversification of the portfolio. We show that the resulting investment solution has

a smaller number of active weights than EW, ERC and MV portfolios, which also results in a

lower risk exposure. Moreover, we study the relationship between the diversification constrained

optimization methods and risk-parity portfolios and discuss in detail their properties.

In the empirical analysis, we evaluate the out-of-sample performance of the different strategies

in terms of risk, sparsity and diversification, and compare the results obtained in low and highly

volatile markets. We observe that the Log and the `q-portfolios achieve lower OOS risk than

classical diversification strategies, like EW and ERC, with a much smaller number of active posi-

tions. Furthermore, we notice that the `q-strategy selects on average the lowest-volatile assets and

assigns a zero weight to the securities that display extreme losses in-sample. This behavior results

in better OOS Values-at-Risk and Expected Shortfalls with respect to other strategies, especially

during crisis and bear markets, when the benefits of diversification in terms of risk reduction are

decreased by the higher correlation between assets.
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Going back to our original question: is it a good idea to un-diversify during crisis? Our

results so far suggest “Yes”. Still, further research on how to better control the turnover of sparse

`q-portfolios is needed. One possible way to encourage the stability of the `q-estimates would

be to penalize both the portfolio weights and their differences in time, by extending the fused

Lasso approach (Tibshirani et al., 2005). This would require to find efficient ways to deal with

computational costs, especially when the dimensionality of the problem is high. Furthermore,

we plan to extend our analysis by explicitly considering not only risk minimization, but also

profitability of the investment strategies. Dealing with such issues is currently high on our agenda.
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A Risk Decomposition

In risk management, it is important to quantify the contribution of each asset to the overall

portfolio risk. One common indicator is given by the sensitivity of portfolio risk to a small change

in asset allocation. In this section, we derive this measure for the portfolio standard deviation and

Expected Shortfall.

Let w be the n× 1 vector of portfolio weights and Σ be the n×n covariance matrix of n asset

returns. Then, the risk of the portfolio, typically measured by the standard deviation of portfolio

returns σp, can be expressed as follows:

σp =
√
w′Σw.

In order to measure the contribution of each asset to the whole portfolio risk, we can compute the

Marginal Risk Contribution of asset i as the partial derivative of σp with respect to wi

MRCi =
∂σp
∂wi

=

∑n
i,j=1 σijwj

σp
.
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MRCi can be also expressed as a function of (Σw), the product of the covariance matrix and the

weights vector, as follows:

MRCi =
(Σw)i
σp

where (Σw)i =
∑n

i,j=1 σijwj represents the i-th component of the column vector (Σw). The risk

contribution of asset i is then defined as the weighted MRCi and represents the share of portfolio

risk corresponding to the i-asset:

RCi = wiMRCi = σi
n∑
i=1

RCi =
n∑
i=1

σi =
√
w′Σw

The sum of all RCi is the total portfolio risk, quantified by the standard deviation of the portfolio

returns. The relative risk contribution of asset i is defined as

RRCi =
RCi
σp

=
wi(Σw)i
σ2
p

=
wi(Σw)i
w′Σw

By construction, the risk-parity portfolio has a RCi = σp/n, which implies an RRCi = 1/n.

From a risk budgeting perspective, it may be useful to know the composition of a portfolio

also in terms of extreme risk. Let’s denote with µi the return of asset i (with i = 1, . . . , n) and

with µp the return of the portfolio obtained as the weighted return of its components:

µp =
n∑
i=1

wiµi .

Given a constant 0 ≤ α ≤ 1, we measure the extreme risk of a portfolio by the Expected Shortfall

ESp,α, which represents the expected return of the portfolio in the worst α% of the cases or

equivalently the expected return of the portfolio given that µp exceeds a threshold C:

ESp,α = E(µp|µp < C) = E

(
n∑
i=1

wiµi|µp < C

)
.

To compute the contribution of each asset to the whole portfolio ESp,α, we first calculate the
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Marginal Expected Shortfall of asset i as the partial derivative of ESp,α with respect to wi:

MESi,α =
∂ESp,α
∂wi

= E(µi|µp < C) .

MESi,α represents the increase in portfolio extreme risk caused by a marginal increase of the

weight of asset i. Then, as suggested by Benoit et al. (2013), the extreme risk contribution

of each asset CESi,α can be defined as the weighted MESi,α and indicates the share of ESp,α

corresponding to the i-asset:

CESi,α = wiMESi,α
n∑
i=1

CESi,α =
n∑
i=1

wiMESi,α = ESp,α .

The sum of all the Contributions to Expected Shortfall CESi,α is the total portfolio Expected

Shortfall.

B Risk Approximation

Let’s consider the risk minimization problem

min
w

w′Σw (11)

1′w = 1

‖w‖qq ≤ cq

where 0 < q ≤ 1 and cq > 0 is the threshold of the `q-norm. This optimization could be solved as

the following penalized problem (despite convergence to the global optimum is not guaranteed as

the `q-penalty is non-convex).

min
w

w′Σw + λ‖w‖qq (12)

1′w = 1
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with λ > 0 as a scalar controlling the intensity of the penalty. If c → n1−q, then the solution to

problem (11) converges to the EW portfolio, while if c→ 1, it converges to the most concentrated

portfolio with just one active weight, as q → 0+.

Proof. Proof of Proposition 1 To prove that the `q-norm, with 0 < q ≤ 1, is bounded by 1

and n1−q, under the no-short-selling and budget constraints, i.e. 0 ≤ wi ≤ 1,
∑n

i=1w1 = 1, we

compute its extreme values, corresponding to the most concentrated (i.e. totally invested) and

the EW portfolios. Let’s assume weights are sorted from the largest to the smallest such that

w(1) ≥ w(2) ≥ . . . w(n). Then, let w(1) be equal to 1 and therefore w(j) = 0, j = 2, . . . n. It follows

that for the totally invested portfolio

`q = ‖w‖qq =
n∑
i=1

|wi|q = 1q = 1 .

The other limit case is for the EW portfolio, when w1 = w2 = · · · = wn = 1/n. Then,

`q = ‖w‖qq =
n∑
i=1

|wi|q =
n∑
i=1

∣∣∣∣ 1n
∣∣∣∣q = n1−q .

As `1 = ‖w‖1 =
∑n

i=1 |wi| = 1, i = 1, . . . , n, the following relationship between norms holds true:

1 ≤ ‖w‖1 ≤ ‖w‖qq ≤ n1−q .

Proof. Proof of Proposition 2

As the minimum variance problem (4) can be restated as a regression problem (see Section 3.1

Fan et al. (2012) for details), we can use results from regression analysis to derive some bounds for

the approximation error of the minimum variance problem. Let’s consider the regression problem

with T observations and n regressors, where a dictionary of n predictions represents the initial

estimate of the unknown true regression function. Using this estimate, we construct a linearly

combined estimator that performs best among all linear combinations, i.e. the estimator with the

smallest approximation error ‖w‖22 =
∑n

i=1w
2
i .
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We know that the weights |w(j)|q sum to ‖w‖qq and are non-increasing. Therefore, the following

inequality holds

|w(j)|q ≤
‖w‖qq
j

.

Furthermore, we can write the approximation error as

∑
j>k+1

w2
(j) =

∑
j>k+1

|w(j)|2−q|w(j)|q

and by using the following inequality in the first sum

|w(j)| ≤
‖w‖q
(k)1/q

we have then

∑
j>k+1

w2
(j) ≤

‖w‖2−qq

(k)(2−q)/q
‖w‖qq ≤

‖w‖2q
(k)(2−q)/q

.

Let w and wopt be the theoretical and empirical optimal allocation vectors, solving the opti-

mization problems w = argmin1′w=1,‖w‖qq ≤cq w
′Σw and wopt = argmin1′w=1,‖w‖qq ≤cq w

′Σ̂w, where

Σ and Σ̂ are the theoretical covariance matrix and its estimate, respectively. Then, we define the

oracle, empirical and actual risks as Section 3.

Proposition 3. Let an represent the maximum componentwise estimation error, i.e. an = ‖Σ̂−

Σ‖∞. Then, under the assumptions in Fan et al. (2012), we have

|R(w)−Rn(wopt)| ≤ anc
2

|R(wopt)−Rn(wopt)| ≤ anc
2

|R(wopt)−R(w)| ≤ 2anc
2.
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These inequalities hold without any condition on the weights and show that the differences

between oracle, empirical and actual risks are very small as long as c is not too large and the

covariance estimate is precise.

Proof. Proof of Proposition 3 First, let’s recall Theorem 1 in Fan et al. (2012), which states

the following relationships between oracle, empirical and actual risk of a constrained minimum

variance portfolio w, with ‖w‖q ≤ c (i.e. q
√
`q ≤ c)

|Rn(w)−R(w)| ≤ anc
2

|R(w)−Rn(wopt)| ≤ anc
2

|R(wopt)−R(w)| ≤ 2anc
2 .

From norm inequalities, if 0 < q < p, we know

‖w‖p ≤ ‖w‖q ≤ n1/q−1/p‖w‖p .

Then, if p = 1 and 0 < q ≤ 1

‖w‖1 ≤ ‖w‖q

or, equivalently

`1 ≤ q
√
`q .

As we solve the optimization problem (11) for ‖w‖qq ≤ cq, then ‖w‖1 ≤ c. The bounds on the

differences between oracle, empirical and actual risks, reported in Theorem 1 in Fan et al. (2012),

still hold.
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