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1 Introduction

In the aftermath of the 2008 financial crisis and the Great Recession, the interest of

economists and policymakers is markedly focused on the analysis of macroeconomic and

financial uncertainty and their effects on the economy. Reflecting such an interest, the

literature on the topic has mushroomed in the last few years. Econometric studies on

measuring uncertainty and its effects on the economy started with the seminal paper by

Bloom (2009), and other relevant contributions include, among others, Bachmann, Elstner,

and Sims (2013), Baker, Bloom and Davis (2016), Basu and Bundick (2015), Caggiano,

Castelnuovo and Groshenny (2014), Gilchrist, Sim and Zakrajsek (2014), Jo and Sekkel

(2015), Jurado, Ludvigson, and Ng (2015), and Ludvigson, Ma, and Ng (2016); Bloom

(2014) surveys related work.

As noted in Creal and Wu (2016), a common denominator of most of the contribu-

tions in the literature is the fact that some measures of uncertainty (either financial, or

macroeconomic, or both) are estimated in a preliminary step and then used as if they were

observable data series in the subsequent econometric analysis of its impact on macroeco-

nomic variables. For example, Bloom (2009) and Caggiano, Castelnuovo and Groshenny

(2014) use the VIX, Basu and Bundick (2015) the VXO, Bachmann, Elstner, and Sims

(2013) the disagreement in business expectations, Jurado, Ludvigson, and Ng (2015) an

average of the volatilities of the residuals of a set of factor augmented regressions, Jo and

Sikkel (2015) the common factor in the forecast errors resulting from the use of SPF fore-

casts for a few variables, Baker, Bloom and Davis (2016) an index based on newspaper

coverage frequency, and Gilchrist, et al. (2014) a sequence of estimated time fixed effects

capturing common shocks to (constructed) firm-specific idiosyncratic volatilities. They all

then include their preferred uncertainty measure, together with a small set of macroeco-

nomic variables, in a homoskedastic VAR model and compute the responses of the macro

variables to the uncertainty shock.

While the approach outlined above has the merit of bringing to the fore the effects that

uncertainty can have on the macroeconomy, the fact that the uncertainty measure is not

fully embedded in the econometric model at the estimation stage inevitably can complicate

the task of making statistical inference on its effects, for several reasons.

First, the two-step approach treats uncertainty — which is estimated in the first step —

as an observable variable in the second step. Therefore the inference heavily relies on the
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first-step estimates being consistent, which might or might not be the case, depending on

whether the size of the cross section is large enough, or whether the model used in the first

step is correctly specified.1 If consistency is not achieved, the second step can potentially

suffer from measurement errors in the regressors, which might lead to an endogeneity bias.2

A related problem is that the uncertainty around the uncertainty estimates can not be

accounted for in such a setup, since the proxy for uncertainty is treated as data.

Second, even if in the first step a large enough cross section of variables is considered in

estimating uncertainty, the second step invariably relies on rather small systems, typically

including a handful of macroeconomic variables. The use of small VAR models to assess the

effects of uncertainty can make the results subject to the common omitted variable bias and

non-fundamentalness of the errors, besides the obvious shortcoming of providing results on

the impact to just a few economic indicators.

Third, the models used in the first and second step are somewhat contradictory. While

the estimation of the uncertainty measure(s) in the first step is predicated on the assump-

tions that macroeconomic data feature time-varying volatilities, the vector autoregression

(VAR) used in the second step features homoskedastic errors. Moreover, in the first step

volatilities are assumed not to affect the conditional means of the variables (even though

the final goal is to actually assess the conditional mean effects of uncertainty on economic

variables), while in the second step the uncertainty measure only affects the conditional

means, but not the conditional variances (which as mentioned above are assumed to be

constant over time).

Fourth, most of the structural analyses carried out in the existing work rely on a

Cholesky scheme for identification. While such a scheme has some merits, it requires tak-

ing a stand on the appropriate ordering of the variables, a choice which is not obvious,

since it is unclear whether uncertainty is an impulse or propagation mechanism. Some re-

cent studies making use of financial data develop alternative approaches intended to better

address the impulse vs. propagation question. Using a two-step treatment of uncertainty

and its effects and a small VAR, Ludvigson, Ma, and Ng (2016) develop an instrumental

1One might worry less about this in a large cross-section approach such as that of Jurado, Ludvigson,
and Ng (2015). However, the formal analytics underlying the consistency of factor estimates are based on
cases in which the dependent variables are data series rather than (stochastic volatility) estimates from a
model. Even if one is not concerned with such complications, it is preferable to have an approach which
works well in not-large cross sections.

2Carriero et al. (2015) provide a Monte Carlo experiment showing that the attenuation bias stemming
from measurement error in the uncertainty measures can be sizable.
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variables estimator that makes use of synthetic external variables. Berger, Dew-Becker,

and Giglio (2016) make use of a distinction between realized stock market volatility and

expected future volatility, also with small VARs.

Motivated by these considerations, in this paper we develop an econometric model and

method for jointly and coherently (1) constructing measures of uncertainty (macroeconomic

and financial) and (2) conducting inference on its impact on the macroeconomy in a way

that avoids all of the issues highlighted above. Specifically, we build a large, heteroskedastic

VAR model in which the error volatilities evolve over time according to a factor structure.

The volatility of each variable in the system is driven by a common component, and an

idiosyncratic component. Changes in the common component of the volatilities of the

VAR’s variables provide contemporaneous, identifying information on uncertainty.

In our setup, uncertainty and its effects are estimated in a single step within the same

model, which avoids both the estimated regressors problem and the use of two contradictory

models typical of the two-step approach. The model uses a large cross section of data

and allows for time variation in the volatilities, which avoids problems of misspecification,

omitted variable bias, and non-fundamentalness. Finally, the fact that uncertainty is defined

as the common component of the time-varying volatilities allows us to uniquely identify

uncertainty shocks without having to resort to a Cholesky (or other) identification scheme.

In the discussion so far we have generically referred to uncertainty. More specifically,

we consider both macroeconomic and financial uncertainty. Each of these measures of

uncertainty is modeled as the common component of the volatilities of macroeconomic and

financial variables, respectively. The vector containing the two measures of uncertainty is

assumed to depend on its own past values as well as past values of macroeconomic variables.

Hence, macroeconomic uncertainty can affect financial uncertainty and vice versa, and both

can be affected by the business cycle and financial fluctuations. Moreover, the vector of

macro and financial uncertainty enters the conditional means of the large VAR equations.

As a consequence, macro and financial uncertainty are allowed to contemporaneously affect

the macroeconomy and financial conditions.

The model is estimated via a new MCMC algorithm, which is computationally efficient

and makes tractable estimation of large models with stochastic volatility (SV). Since uncer-

tainty is explicitly treated as an unobservable random variable, the estimation procedure

returns its entire posterior distribution, which is readily available for inference and allows us
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to measure uncertainty around uncertainty. The model can be also interpreted as a factor

model, or a factor augmented VAR (FAVAR), in which the factor affects not only the levels

but also the conditional volatility of the variables. As such, it relates to the vast literature

on factor models; see, e.g., Stock and Watson (2015) for an overview.

Our proposed modeling framework extends the seminal work of Jurado, Ludvigson, and

Ng (2015) [hereafter, JLN] in several ways. In the JLN approach, individual measures of

uncertainty are built for each variable, using an augmented factor model for each variable as-

suming that uncertainty does not affect the conditional mean, and an aggregate uncertainty

measure is formed as an average of these individual estimates. Then, in a second step, the

uncertainty estimate is treated as data and inserted into a separate small VAR to compute

its effects on the macroeconomy. This approach relies on an identification assumption about

structural shocks, and it rules out an assessment of the uncertainty around uncertainty in

conducting inference on uncertainty’s macroeconomic effects. In our VAR-based framework,

the estimate of uncertainty is obtained from a joint model in which uncertainty affects the

conditional mean and variances of each variable in the VAR, there is no need to resort to

standard VAR based procedures to identify the uncertainty shock, and the estimates of the

effects of uncertainty reflect the uncertainty around the measure of uncertainty.

In light of research and practical interest in the interaction of macroeconomic and finan-

cial uncertainty, and their effects on the economy, Ludvigson, Ma, and Ng (2016) [hereafter,

LMN] develop a model featuring both financial and macroeconomic uncertainty. LMN esti-

mate financial uncertainty using the methodology of JLN, applied to a large set of financial

indicators. They then model financial uncertainty, GDP growth and JLN-type macroeco-

nomic uncertainty first in a 3-variable VAR and then in a slightly larger VAR, and study

the transmission of financial and macroeconomic uncertainty shocks, using a novel identifi-

cation procedure that avoids a Cholesky ordering of the variables. Their findings indicate

that “higher uncertainty about real economic activity in recessions is fully an endogenous

response to business cycle fluctuations, while uncertainty about financial markets is a likely

source of them.” However, in their approach the uncertainty measures are still both es-

timated in a preliminary step (using a model that assumes volatilities do not affect the

conditional means of variables) and then plugged into a small scale homoskedastic model.

Creal and Wu (2016) develop a model of bond yields and a small set of macroeconomic

variables that extends a typical term structure model to allow uncertainty about monetary

4



policy to affect economic activity and bond yields. Their model, like ours, jointly treats

uncertainty as a factor in volatility and in conditional means of macroeconomic variables

and interest rates. To borrow their wording, the model internalizes the uncertainty. Their

estimates show a total of four volatility factors to be important, capturing uncertainty

about macroeconomic variables, monetary policy, and the term premium. At a high level,

our approach differs in that it permits a relatively large data set, allows uncertainty to affect

the levels and volatilities of the variables of interest contemporaneously rather than with a

lag, and allows volatility to respond to lagged variables.

Our approach also significantly extends some other, previous econometric work on mod-

eling uncertainty, all using small models. Alessandri and Mumtaz (2014) develop a small

nonlinear VAR in four variables that allows volatility to enter the conditional means. How-

ever, in order to estimate the common factor they adopt the common volatility specification

of Carriero, Clark and Marcellino (2016a), which is more restrictive than the formulation

we present here, because there cannot be idiosyncratic volatility and the loadings on the

common volatility factor must be all equal across variables. Moreover, their model cannot

handle a large dataset, which is instead key for a proper estimation of aggregate uncertainty,

a result which was emphasized by JLN and that is also confirmed by the empirical evidence

we will provide.

Other contributions in the literature have also proposed the inclusion of volatility in

the conditional mean of a VAR, without resorting to a common factor specification for the

volatilities. Jo (2014) studies the effects of oil price uncertainty on global real economic

activity using a VAR model with stochastic volatility in mean and finds that the effects

are sizable. While these results on oil price uncertainty are useful, the VAR is for a small

set of variables and the volatilities for each variable are treated as independent processes.

Shin and Zhong (2015) introduce a new small VAR model with stochastic volatility, also

allowing for volatility-in-mean, in order to study the real effects of uncertainty shocks,

which are identified by imposing restrictions on the first and second moment responses of

the variables to the uncertainty shock. They provide theoretical methods for estimation

and inference for the new model, with the more general structural identification procedure;

empirically, they find evidence that an increase in uncertainty leads to a decline in industrial

production only if associated with a deterioration in financial conditions. With respect to

their specification, we can model a much larger number of variables and allow for a factor
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structure in the volatilities, permitting us to define uncertainty as the common factor in

volatility.

We apply our proposed model to monthly US data for the period 1959-2014, finding

substantial evidence of commonality in volatilities, as well as not-negligible idiosyncratic

movements in the volatilities. Uncertainty around estimated uncertainty is sizable. Yet, a

clear and significant pattern of time variation emerges, with increases in macro uncertainty

associated with economic recessions. However, we find less evidence of the “Great Mod-

eration.” This is mainly due to the use of a large information set, as already pointed out

by Giannone, Lenza and Reichlin (2008), and to the monthly frequency of the variables we

analyze, as indeed we find somewhat stronger evidence of a moderation in volatility after

the mid 1980s when repeating the analysis with quarterly data.

As noted above, we separately identify a macroeconomic uncertainty measure and a

financial uncertainty measure. In impulse response analysis, we document sizable effects of

uncertainty shocks on many macroeconomic and financial variables. Shocks (surprise in-

creases) to macroeconomic and financial uncertainty both lead to significant and persistent

declines in economic activity. But a shock to financial uncertainty does not affect some

measures of economic activity (notably, the response of the housing market and consump-

tion expenditures to financial uncertainty is insignificant) as much as a shock to macro

uncertainty does. Both types of shocks also cause the credit spread in the model to rise

(modestly but significantly). However, for other financial variables, results are more mixed:

we find that surprise increases to financial uncertainty reduce measures of aggregate stock

prices and returns, whereas the effects of increases in macro uncertainty are not significant.

Therefore, the overall picture emerging from our empirical application is that macroeco-

nomic uncertainty has large, significant effects on real activity, but has a limited impact on

financial variables, whereas financial uncertainty shocks directly impact financial variables

and subsequently transmit to the macroeconomy, a finding in line with, e.g., LMN.

The paper is structured as follows. Section 2 discusses model specification and estima-

tion. Section 3 presents the data. Section 4 presents our estimates of aggregate uncertainty.

Section 5 studies its effects on the economy. Section 6 summarizes our main findings and

concludes.
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2 A joint model of uncertainty and business cycle fluctua-
tions

In this section we present the model that we use to estimate aggregate uncertainty and

its effects on the economy. We start by summarizing the main features of the model,

highlighting the relation and differences with other approaches. Then we discuss, in turn,

model specification and estimation. We also detail the univariate autoregressive (AR) model

with stochastic volatility we use in some comparisons.

2.1 The model

The model for the macroeconomic and financial variables of interest — collected in the vector

yt — is a heteroskedastic VAR, similar to those widely used in macroeconomic analysis

since the contributions of Cogley and Sargent (2005) and Primiceri (2005). However, rather

than using a small cross section and assuming that volatilities for each variable evolve

independently, we use a large cross section of variables, and we assume that volatilities follow

a factor structure, i.e. have a common and an idiosyncratic component.3 Our measures of

macroeconomic and financial uncertainty are defined as the common components in the

volatility of either macroeconomic or financial variables. These common components are

state variables of the model, and they are assumed to follow a bivariate VAR augmented

with lags of the macroeconomic and financial variables of interest. Hence, the economic and

financial variables of yt are allowed to have a feedback effect on uncertainty. The measures of

uncertainty enter the conditional mean of the VAR in yt. Therefore, our modeling approach

allows for uncertainty to contemporaneously affect the macroeconomy, through both first

(means) and second order (variances) effects. Actually, the latter is the key idea in this

literature, but often the relationship is only imposed in a separate auxiliary model and not

used at the uncertainty estimation level, so that the estimated measure of uncertainty only

reflects the conditional second moments of the variables. In our specification, instead, the

measure of uncertainty reflects information in the levels of the variables.4 Finally, it is

3The literature on forecasting with large datasets — see, e.g., Banbura, Giannone and Reichlin (2010)
and Stock and Watson (2002) — has shown that typically the size of the information set matters and can
reduce forecast errors and their volatility, even though there is a debate on how “large” large is, with studies
such as Koop (2013) and Carriero, Clark and Marcellino (2015) suggesting that about 20 carefully selected
macroeconomic and financial variables could be sufficient.

4Conditional heteroskedasticity in-mean was introduced by French, et al. (1987) with the GARCH-in-
mean model. Macroeconomic applications include Elder (2004) and Elder and Serletis (2010) for, respec-
tively, inflation and oil price uncertainty. Koopman and Uspensky (2002) and Chan (2015) introduce uni-
variate stochastic volatility-in-mean models, and Jo (2014) and Shin and Zhong (2015) consider multivariate
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worth emphasizing that our model features time variation in the volatilities, and this time

variation is driven in part by the uncertainty measures, which means that shocks to the

measures of uncertainty are uniquely identified, without resorting to a Cholesky or other

identification scheme.

2.2 Model specification

Let yt denote the n × 1 vector of variables of interest, split into nm macroeconomic and

nf = n − nm financial variables (we discuss below evidence that supports two uncertainty

factors). Let vt be the corresponding n×1 vector of reduced form shocks to these variables,

also split into two groups of nm and nf components. The reduced form shocks are modeled

as:

vt = A−1Λ0.5
t εt, εt ∼ iid N(0, I), (1)

where A is an n × n lower triangular matrix with ones on the main diagonal, and Λt is a

diagonal matrix of volatilities with generic j-th element

λjt =

{
m
βm,j

t · hj,t, j = 1, . . . , nm

f
βf,j

t · hj,t, j = nm + 1, . . . , n
, (2)

which implies that the log-volatilities follow a linear factor model:

lnλjt =

{
βm,j lnmt + lnhj,t, j = 1, . . . , nm
βf,j ln ft + lnhj,t, j = nm + 1, . . . , n

. (3)

We discuss below the rationale for the block specification of (3), in which only the factor

m enters the λ process of macro variables, and only the factor f enters the λ process of

financial variables. The variables hj,t — which do not enter the conditional mean of the

VAR, specified below — capture idiosyncratic volatility components associated with the

j-th variable in the VAR, and are assumed to follow (in logs) an autoregressive process

(in the estimates, the AR specification captures serial correlation that is sizable for some

variables):

lnhj,t = γj,0 + γj,1 lnhj,t−1 + ej,t, j = 1, . . . , n, (4)

with νt = (e1,t, ..., en,t)
′ jointly distributed as i.i.d. N(0,Φν) and independent among them-

selves, so that Φν = diag(φ1, ..., φn). These shocks are also independent from the conditional

errors εt.

VAR extensions with independent volatility processes.
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The variable mt is our measure of (unobservable) aggregate macroeconomic uncertainty,

and the variable ft is our measure of (unobservable) aggregate financial uncertainty. Al-

though our specification does not rule out the inclusion of additional uncertainty factors,

we believe two factors to be appropriate. One reason is that we are interested in aggregate

uncertainty, which suggests the use of a single macro factor and a single financial factor,

in keeping with the concepts of studies such as JLN. A second reason is that two dynamic

factors appear sufficient. Carriero, Clark, and Marcellino (2016b) estimate a BVAR with

stochastic volatility with 125 variables (including macroeconomic indicators, an array of

interest rates, some stock return measures, and exchange rates). Their factor analysis of

innovations to volatility indicates two components to account for the vast majority of inno-

vations to volatilities.

Together, the two measures of uncertainty (in logs) follow an augmented VAR process:[
lnmt

ln ft

]
= D(L)

[
lnmt−1

ln ft−1

]
+

[
δ′m
δ′f

]
yt−1 +

[
um,t
uf,t

]
, (5)

where D(L) is a lag-matrix polynomial of order d. The shocks to the uncertainty factors

um,t and uf,t are independent from the shocks to the idiosyncratic volatilities ej,t and the

conditional errors εt, and they are jointly normal with mean 0 and variance var(ut) =

var((um,t, uf,t)
′) = Φu =

[
φn+1 φn+3

φn+3 φn+2

]
. The specification in (5) implies that the uncer-

tainty factors depend on their own past values as well as the previous values of the variables

in the model, and therefore they respond to business cycle fluctuations. The inclusion of

yt−1 in the volatility factor processes can be seen as a version of the leverage effect some-

times included in stochastic volatility models of financial returns. Importantly, financial

uncertainty affects macro uncertainty and vice-versa, and the error terms um,t and uf,t are

allowed to be correlated, with correlation φn+3, reflecting the idea that a common shock

can affect both uncertainties.

For identification, we set βm,1 = 1 and βf,nm+1 = 1 and assume lnmt and ln ft to have

zero unconditional mean. In addition, for identification, we deliberately include the block

restrictions of factor loadings in the volatilities specification of (2) in order to allow the

comovement between uncertainties captured in the VAR structure and correlated innova-

tions of (5). Conceptually, we believe these block restrictions to be consistent with broad

definitions of uncertainty: macro uncertainty is the common factor in the error variances

of macro variables, and finance uncertainty is the common factor in the error variances

of finance variables. However, these uncertainties are not necessarily independent; they

9



can move together due to correlated innovations to the uncertainties, the VAR dynamics

of uncertainty captured in D(L), and responses to past fluctuations in macro and finance

variables (yt−1).

The uncertainty variables mt and ft can also affect the levels of the macro and finance

variables of interest yt, contemporaneously and with lags. In particular, yt is assumed to

follow:

yt = Π(L)yt−1 + Πm(L) lnmt + Πf (L) ln ft + vt, (6)

where p denotes the number of yt lags in the VAR, Π(L) = Π1 −Π2L− · · · −ΠpL
p−1, with

each Πi an n × n matrix, i = 1, ..., p, and Πm(L) and Πf (L) are n × 1 lag-matrix polyno-

mials of order pm and pf . The specification above ensures that business cycle fluctuations

respond to movements in uncertainty (macro and financial), both through the conditional

variances (contemporaneously, via movements in vt) and through the conditional means

(contemporaneously and with lag, via the coefficients collected in Πm(L) and Πf (L)). The

model above differs some in timing with respect to Creal and Wu (2016) and some models

of stochastic volatility with leverage in finance (e.g., Omori, et al. 2007). In our model,

volatility and uncertainty are contemporaneous with yt, in line with some other studies of

macroeconomic uncertainty (e.g., Alessandri and Mumtaz 2014 and Shin and Zhong 2015)

and the volatility-with-leverage specification of Jacquier, Polson, and Rossi (2004). In con-

trast, in Creal and Wu (2016), the volatility that affects the size of shocks to yt and the

conditional mean of yt is from period t−1, and in finance applications such as Omori, et al.

(2007), volatility is similarly lagged. We find our approach natural for assessing the effects

of macro and financial uncertainty, but other approaches are certainly feasible.

The model in (1)-(6) is related to Carriero, Clark and Marcellino (2016a), who impose

Πm(L) = Πf (L) = 0 and consider a small model for computational reasons. However, as dis-

cussed in the introduction, when measuring uncertainty it appears to be important to allow

n to be large and to permit direct effects of uncertainty on the endogenous macroeconomic

and financial variables (Πm(L) 6= 0, Πf (L) 6= 0).5

The model is also related to Cogley and Sargent (2005) and Primiceri (2005), who also

impose Πm(L) = Πf (L) = 0 and, in addition, assume that there is no factor structure in the

5Although other work, noted above, has emphasized the importance of a large cross section, it is not
the case that estimation error surrounding our factor vanishes as the cross-section becomes very large. As
a check, we estimated a single-factor macro model with different numbers of variables. Precision of the
uncertainty estimate increased as the number of variables went from relatively small to mid-sized but didn’t
change much as the number went from mid-sized to large. Therefore, a methodology which takes into account
such estimation error is needed in order to make proper inference on uncertainty and its effects.
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volatilities, which amounts to setting βj = 0.6 Finally, the model is related to Alessandri

and Mumtaz (2014), who assume that βj = 1 for all j, and lnhj,t = 0. Augmented by

allowing the common volatility factor to affect the conditional mean of yt, this corresponds

to the CSV specification of Carriero, Clark and Marcellino (2016a), which, however, is not

suited in this context, as with n large both restrictions are not likely to hold in the data

(and indeed Alessandri and Mumtaz (2014) analyze four variables only).

The model in (1)-(6) is also related to parametric factor models, such as Stock and

Watson (1989), where Π(L) = 0 and vt ∼ iid N(0,Σ), or Marcellino, Porqueddu and

Venditti (2015), who allow for stochastic volatility both in vt and in the error driving the

common factor, ut.

It is worth mentioning that our model could be applied in a variety of other contexts

where volatilities are likely to follow a factor structure and affect the levels of the variables,

for example models for stock returns or the term structure of interest rates.

Working with a model as general as (1)-(6) substantially complicates estimation, as

we discuss in the next subsection. The reader not interested in technicalities can skip to

Section 3. In implementation, we set the VAR lag order at p = 6 in monthly data (we

use p = 4 in some supplemental results with quarterly data). We set the lag order for

the uncertainty factors in the VAR’s conditional mean (pm and pf ) at 2, so that, for both

uncertainty measures, the model includes the current value and two lags. We also conduct

a robustness check with a model in which the current value of uncertainty is zeroed out, so

that there are no contemporaneous effects of uncertainty on the conditional means of the

VAR. Finally, we set the lag order of the bivariate VAR in the uncertainty factors (d) to 2.

2.3 Triangularization for estimation

In a Bayesian setting, estimation and inference on the model parameters and unobservable

states are based on their posterior distributions. The latter can be obtained by combining

the likelihood of the model with prior distributions for the parameters and states. Often,

analytical posteriors are not available but draws from them can be obtained by MCMC

samplers. However, this is in general so computationally intensive for models with stochastic

volatilities that practical implementation of these models has been limited to a handful of

variables, with n typically in the range of 3 to 5. To make estimation feasible in a model with

6However, Primiceri’s (2005) model permits the innovations to the volatilities to be correlated across
variables, while in our specification they are not, and any correlation among volatilities are forced onto the
common factor, a restriction that is standard in factor model analysis.
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a large number of variables and stochastic volatility, we exploit the VAR triangularization

of Carriero, Clark and Marcellino (2016b), who consider the case Πm(L) = Πf (L) = 0 and

stochastic volatilities without a common factor structure. With the triangularization, our

estimation algorithm will block the conditional posterior distribution of the system of VAR

coefficients in n different blocks. In the step of the typical Gibbs sampler that involves

drawing the set of VAR coefficients Π, all of the remaining model coefficients are given.

Consider again the reduced form residuals vt = A−1Λ0.5
t εt:

v1,t

v2,t

...
vn,t

 =


1 0 ... 0
a∗2,1 1 ...

... 1 0
a∗n,1 ... a∗n,n−1 1



λ0.5

1,t 0 ... 0

0 λ0.5
2,t ...

... ... 0
0 ... 0 λ0.5

n,t



ε1,t
ε2,t
...
εn,t

 , (7)

where a∗j,i denotes the generic element of the matrix A−1 which is available under knowledge

of A. The VAR can be written as:

y1,t =

n∑
i=1

p∑
l=1

π
(i)
1,lyi,t−l +

pm∑
l=0

π
(m)
l,1 lnmt−l +

pf∑
l=0

π
(f)
l,1 ln ft−l + λ0.5

1,t ε1,t

y2,t =
n∑
i=1

p∑
l=1

π
(i)
2,lyi,t−l +

pm∑
l=0

π
(m)
l,2 lnmt−l +

pf∑
l=0

π
(f)
l,2 ln ft−l + a∗2,1λ

0.5
1,t ε1,t + λ0.5

2,t ε2,t

...

yn,t =
n∑
i=1

p∑
l=1

π
(i)
n,lyi,t−l +

pm∑
l=0

π
(m)
l,N lnmt−l +

pf∑
l=0

π
(f)
l,N ln ft−l + a∗n,1λ

0.5
1,t ε1,t + · · ·

...+ a∗n,n−1λ
0.5
n−1,tεn−1,t + λ0.5

n,tεn,t,

with the generic equation for variable j:

yj,t − (a∗j,1λ
0.5
1,t ε1,t + · · ·+ a∗j,,j−1λ

0.5
j−1,tεj−1,t)

=

n∑
i=1

p∑
l=1

π
(i)
j,l yi,t−l +

pm∑
l=0

π
(m)
l,j lnmt−l +

pf∑
l=0

π
(f)
l,j ln ft−l + λj,tεj,t. (8)

Consider estimating these equations in order from j = 1 to j = n. When estimating the

generic equation j the term of the left hand side in (8) is known, since it is given by the

difference between the dependent variable of that equation and the estimated residuals of

all the previous j − 1 equations. Therefore we can define:

y∗j,t = yj,t − (a∗j,1λ
0.5
1,t ε1,t + · · ·+ a∗j,,j−1λ

0.5
j−1,tεj−1,t), (9)

and equation (8) becomes a standard generalized linear regression model for the variable in

equation (9) with Gaussian disturbances with mean 0 and variance λj,t.
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Accordingly, drawing on results detailed in Carriero, Clark and Marcellino (2016b), the

posterior distribution of the VAR coefficients can be factorized as:

p(Π|A, β, f1:T ,m1:T , h1:T , y1:T ) = p(π(n)|π(n−1), π(n−2), . . . , π(1), A, β, f1:T ,m1:T , h1:T , y1:T )

×p(π(n−1)|π(n−2), . . . , π(1), A, β, f1:T ,m1:T , h1:T , y1:T )

×p(π(1)|A, β, f1:T ,m1:T , h1:T , y1:T ),

where the vector β collects the loadings of the uncertainty factors and f1:T , m1:T , h1:T =

(h1,T , ..., hn,T ), and y1:T denote the history of the states and data up to time T . As a result,

we are able to estimate the coefficients of the VAR on an equation-by-equation basis. For

reasons discussed in Carriero, Clark and Marcellino (2016b), this greatly speeds estimation

and permits us to consider much larger systems than we would otherwise be able to consider.

Below we provide further details on the estimation algorithm, allowing for the presence of

the unobservable uncertainty factors f1:T and m1:T in the conditional means and variances.

Importantly, although the expression (7) and the following triangular system are based

on a Cholesky-type decomposition of the variance Σt, the decomposition is simply used

as an estimation device, not as a way to identify structural shocks. The ordering of the

variables in the system does not change the joint (conditional) posterior of the reduced

form coefficients, so changing the order of the variables is inconsequential to the results.7

Moreover, since a shock to uncertainty is uncorrelated with shocks to the conditional mean

of the variables, the ordering of the variables in the system has no influence on the shape

of impulse responses in our application.

We now discuss in turn the general organization of the MCMC algorithm, estimation of

the model coefficients, unobservable states, and the details of the MCMC algorithm used to

draw from the joint posterior of coefficients and states. Note that all results in the paper are

based on a sample of 5,000 retained draws, obtained by sampling a total of 30,000 draws,

discarding the first 5,000, and retaining every 5th draw of the post-burn sample.

7This statement refers to drawing from the conditional posterior of the conditional mean parameters,
when Σt belongs to the conditioning set. One needs also to keep in mind that the joint distribution of the
system might be affected by the ordering of the variables in the system due to an entirely different reason:
the diagonalization typically used for the error variance Σt in stochastic volatility models. Since priors are
elicited separately for A and Λt, the implied prior of Σt will change if one changes the equation ordering, and
therefore different orderings would result in different prior specifications and then potentially different joint
posteriors. This problem is not a feature of our triangular algorithm, but rather it is inherent to all models
using the diagonalization of Σt. As noted by Sims and Zha (1998) and Primiceri (2005), this problem will
be mitigated in the case (as the one considered in this paper) in which the covariances A do not vary with
time, because the likelihood information will soon dominate the prior.
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2.4 General steps of MCMC algorithm

Our exposition of priors, posteriors, and estimation makes use of the following additional

notation. The vector aj , j = 2, . . . , n, contains the jth row of the matrix A (for columns

1 through j − 1). We define the vector γ = {γ1, ..., γn}, which collects the coefficients

appearing in the conditional means of the transition equations for the states h1:T , and

δ = {D(L), δ′m, δ
′
f }, which collects the coefficients appearing in the conditional means

of the transition equations for the states m1:T and f1:T . The coefficient matrices Φv and

Φu defined above collect the variances of the shocks to the transition equations for the

idiosyncratic states h1:T and the common uncertainty factors m1:T and f1:T , respectively.

In addition, we group the parameters of the model in (1)-(6), except the vector of factor

loadings β, into

Θ = {Π, A, γ, δ,Φv,Φu}. (10)

Let s1:T denote the time series of the mixture states used in the Kim, Shephard, and Chib

(1998) algorithm (explained below) to draw h1:T .

We use an MCMC algorithm to obtain draws from the joint posterior distribution of

model parameters Θ, loadings β, and latent states h1:T , m1:T , f1:T , s1:T . Specifically, we

sample in turn from the following two conditional posteriors (for simplicity, we suppress

notation for the dependence of each conditional posterior on the data sample y1:T ):

1. h1:T , β | Θ, s1:T , m1:T , f1:T

2. Θ, s1:T , m1:T , f1:T | h1:T , β.

The first step relies on a state space system. Defining the rescaled residuals ṽt = Avt,

taking the log squares of (1), subtracting out the known (in the conditional posterior)

contributions of the common factors, and using (3) yields the observation equations (c̄

denotes an offset constant used to avoid problems with near-zero values):{
ln(ṽ2

j,t + c̄)− βm,j lnmt = lnhj,t + ln ε2j,t, j = 1, . . . , nm
ln(ṽ2

j,t + c̄)− βf,j ln ft = lnhj,t + ln ε2j,t, j = nm + 1, . . . , n.
(11)

For the idiosyncratic volatility components, the transition and measurement equations of

the state-space system are given by (4) and (11), respectively. The system is linear but

not Gaussian, due to the error terms ln ε2j,t. However, εj,t is a Gaussian process with unit

variance; therefore, we can use the mixture of normals approximation of Kim, Shepard and

Chib (1998) [hereafter, KSC] to obtain an approximate Gaussian system, conditional on
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the mixture of states s1:T . To produce a draw from h1:T , β | Θ, s1:T , m1:T , f1:T we then

proceed as usual by (a) drawing the time series of the states given the loadings using (h1:T |

β, Θ, s1:T , m1:T , f1:T ), following Primiceri’s (2005) implementation of the KSC algorithm,

and by then (b) drawing the loadings given the states using (β | h1:T , Θ, s1:T , m1:T , f1:T ),

using the conditional posterior detailed below in (22).8

The second step conditions on the idiosyncratic volatilities and factor loadings to pro-

duce draws of the model coefficients Θ, common uncertainty factors m1:T and f1:T , and the

mixture states s1:T . Draws from the posterior Θ, s1:T , f1:T | h1:T , β are obtained in three

sub-steps from, respectively: (a) Θ | m1:T , f1:T , h1:T , β; (b) m1:T , f1:T | Θ, h1:T , β; and (c)

s1:T | Θ, m1:T , f1:T , h1:T , β. More specifically, for Θ | m1:T , f1:T , h1:T , β we use the posteri-

ors detailed below, equations (20), (21), (23), (24), (25), and (26). For m1:T , f1:T | Θ, h1:T ,

β, we use the particle Gibbs step proposed by Andrieu, Doucet, and Holenstein (2010). For

s1:T | Θ, m1:T , f1:T , h1:T , β, we use the 10-state mixture approximation of Omori, et al.

(2007) that improves on Kim, Shephard, and Chib’s (1998) 7-state approximation.

2.4.1 Coefficient priors and posteriors

This subsection details the priors and posteriors we use in the algorithm characterized

above. We specify the following (independent) priors for the parameter blocks of the model

(parameterization details are given in the appendix):

vec(Π) ∼ N(vec(µ
Π

),ΩΠ), (13)

aj ∼ N(µ
a,j
,Ωa,j), j = 2, . . . , n, (14)

βj ∼ N(µ
β
,Ωβ), j = 2, . . . , nm, nm+2, ..., n, (15)

γj ∼ N(µ
γ
,Ωγ), j = 1, . . . , n, (16)

δ ∼ N(µ
δ
,Ωδ), (17)

φj ∼ IG(dφ · φ, dφ), j = 1, . . . , n, (18)

Φu ∼ IW (dΦu · Φu, dΦu). (19)

8In drawing the loadings, we make use of the information in the observable ln(ṽ2j,t), with the following
transformation of the observation equations:

ln(ṽ2j,t + c̄) − lnhj,t =

{
βm,j lnmt + ln ε2j,t, j = 1, . . . , nm

βf,j ln ft + ln ε2j,t, j = nm + 1, . . . , n.
(12)

With the conditioning on h1:T and s1:T in the posterior for β, we use this equation, along with the mixture
mean and variance associated with the draw of s1:T , for sampling the factor loadings with a conditionally
normal posterior with mean and variance represented in a GLS form.
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Under these priors, the parameters Π, A, β, γ, δ, Φv, and Φu have the following closed

form conditional posterior distributions:

vec(Π)|A, β,m1:T , f1:T , h1:T , y1:T ∼ N(vec(µ̄Π), Ω̄Π), (20)

aj |Π, β,m1:T , f1:T , h1:T , y1:T ∼ N(µ̄a,j , Ω̄a,j), j = 2, . . . , n, (21)

βj |Π, A, γ,Φ,m1:T , f1:T , h1:T , s1:T , y1:T ∼ N(µ̄β, Ω̄β), j = 2, . . . , nm, nm+2, ..., n, (22)

γj |Π, A, β,Φ,m1:T , f1:T , h1:T , y1:T ∼ N(µ̄γ , Ω̄γ), j = 1, . . . , n, (23)

δ|Π, A, γ, β,Φ,m1:T , f1:T , h1:T , y1:T ∼ N(µ̄δ, Ω̄δ), (24)

φj |Π, A, β, γ,m1:T , f1:T , h1:T , y1:T ∼ IG

(
dφ · φ+

T∑
t=1

ν2
jt, dφ + T

)
, j = 1, . . . , n,(25)

Φu|Π, A, β, δ, γ,m1:T , f1:T , h1:T , y1:T ∼ IW (dΦu · Φu +

T∑
t=1

u2
t , dΦu + T ). (26)

Expressions for µ̄a,j , µ̄δ, and µ̄γ are straightforward to obtain using standard results from

the linear regression model. In the interest of brevity, we omit details for these posteriors;

the general solutions for these components are readily available in other sources (e.g., Cogley

and Sargent (2005) for the treatment of µ̄a,j). In the posterior for the factor loadings β,

the mean and variance take a GLS-based form, with dependence on the mixture states used

to draw volatility, as indicated above. In the case of the VAR coefficients µ̄Π, with smaller

models it is possible to rely on the GLS solution for the posterior mean given in sources

such as Carriero, Clark and Marcellino (2015). However, as discussed above, with larger

models, it is far faster to exploit the triangularization discussed above and estimate the

VAR coefficients on an equation-by-equation basis.9 Specifically, using the factorization in

(10) together with the model in (8) allows us to draw the coefficients of the matrix Π in

separate blocks. Again, let π(j) denote the j-th row of the matrix Π, and let π(1:j−1) denote

all the previous rows. Then draws of π(j) can be obtained from:

π(j)|π(1:j−1), A, β, f1:T ,m1:T , h1:T , y1:T ∼ N(µ̄π(j) ,Ωπ(j)), (27)

with

µ̄π(j) = Ωπ(j)

{
T∑
t=1

Xj,tλ
−1
j,t y

∗′
j,t + Ω−1

π(j)(µπ(j))

}
, (28)

Ω
−1
π(j) = Ω−1

π(j) +

T∑
t=1

Xj,tλ
−1
j,tX

′
j,t, (29)

9Since the triangularization obtains computational gains of order n2, the cross-sectional dimension of the
system can be extremely large, and indeed Carriero, Clark and Marcellino (2016b) present results for a VAR
with 125 variables.
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where y∗j,t is defined in (9) and where Ω−1
π(j) and µ

π(j) denote the prior moments on the j-th

equation, given by the j-th column of µ
Π

and the j-th block on the diagonal of Ω
−1
Π . Note

we have implicitly used the fact that the matrix Ω−1
Π is block diagonal, which is the case

in our application, as our prior on the conditional mean coefficients is independent across

equations, with a Minnesota-style form.

2.4.2 Unobservable states

For the unobserved volatility states ft, mt, and hj,t, j = 1, ..., n, we need to specify priors

for the period 0 values, detailed in the appendix. Given the priors and the law of motion

for the unobservable states in (4)-(5), draws from the posteriors can be obtained using the

algorithm of Kim, Shepard and Chib (1998, KSC) for the idiosyncratic volatilities and the

particle Gibbs step of Andrieu, Doucet, and Holenstein (2010) for the common volatility

factors. In the particle Gibbs sampler of the uncertainty factors, we follow Mumtaz and

Theodoridis (2016) in using 50 particles. Note also that Chan (2015) provides a sampler

designed to jointly sample the log-volatilities when they appear in the conditional means,

but his sampler is only viable in the case of independent log-volatilities, which is not the

case of this paper.

2.5 AR-SV model

To facilitate some comparisons to the uncertainty estimates of JLN and LMN, we use

an AR model with stochastic volatility (AR-SV) to form measures of uncertainty using a

methodology similar to theirs. The AR-SV model for a scalar series yt takes the following

form:

yt = π0 + π(L)yt−1 + λ0.5
t εt, εt ∼ iid N(0, 1), (30)

lnλt = γ0 + γ1 lnλt−1 + et, et ∼ iid N(0, φ). (31)

For each series, we estimate the model using the full sample of data. We follow the approach

of JLN in computing, at each moment in time t, the forecast error variance using the error

variance λt and the estimated AR coefficients, for horizons up to 12 months ahead. We

do so for each draw of the posterior distribution (using an MCMC algorithm that is a

simplification of that used for our multivariate model) and form the median estimate of

uncertainty at each horizon. Finally, we obtain a measure of uncertainty by averaging

uncertainty estimates across variables, for cross sections ranging from 8 through 129 series.
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3 Data

Our macroeconomic data (and some financial indicators) are taken from the FRED-MD

monthly dataset detailed in McCracken and Ng (2015) and available from the Federal Re-

serve Bank of St. Louis. The FRED-MD dataset is similar to that underlying common

factor model analyses, such as Stock and Watson (2005, 2006) and Ludvigson and Ng

(2011). Accordingly, the dataset is also similar to the one used by JLN. After dropping

out a few series with significant numbers of missing observations and dropping the series

non-borrowed reserves because it became extremely volatile with the Great Recession, the

total dataset comprises 129 series, over a sample of January 1959 through mid or late 2014,

depending on the series. Each series is transformed as in McCracken and Ng (2015) — the

McCracken-Ng transformations are very similar to those of JLN — to achieve stationarity.

For financial variables, we use the return on the S&P 500, the spread between the Baa

bond rate and the 10-year Treasury yield, and a set of additional variables available in

datasets constructed by Kenneth French and available on his webpage (LMN take their

financial variables from the datasets constructed by Professor French). Specifically, in our

baseline results, we use the French series on CRSP excess returns, four risk factors — for

SMB (Small Minus Big), HML (High minus Low), R15 R11 (small stock value spread),

and momentum — and sector-level returns for a breakdown of five industries (consumer,

manufacturing, high technology, health, other). We obtained similar results when, instead

of these 10 variables from Kenneth French, we used more detailed breakdowns of returns (by

industry and portfolios sorted on size and book-to-market) available from his datasets.10

This specification reflects some choice as to what constitutes a macroeconomic variable

rather than a financial variable. Reflecting the typical factor model analysis, the McCracken-

Ng dataset includes a number of indicators — of stock prices, interest rates, and exchange

rates — that may be considered financial indicators. In our model specification, the variables

in question are the federal funds rate, the credit spread, and the S&P 500 index. As the

instrument of monetary policy, it seems most appropriate to treat the funds rate as a

macro variable. For the other two variables, the distinction between macro and finance

is admittedly less clear. Whereas JLN and LMN treat these indicators as macro variables

10Although our main results are robust across the choices of the variable set considered, the set of financial
variables chosen has some effect on the responsiveness of financial variables to macro shocks (in some
specifications, we obtained larger effects on asset returns than we report for the baseline), as well as on
the correlation between the estimated macro and financial uncertainty factors (in some specifications, this
correlation was modestly higher than in the baseline).
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that bear on macroeconomic uncertainty and not directly on financial uncertainty (in LMN,

finance uncertainty is based on the volatilities of various measures of stock returns and risk

factors, we instead include the credit spread and the S&P 500 index in the set of financial

variables.

Our primary VAR results are based on a baseline specification given by 30 macroe-

conomic and financial variables of interest, which are listed in Table 1 below. Following

examples such as JLN, after transforming each series for stationarity as needed, we stan-

dardize the data (demean and divide by the simple standard deviation) before estimating

the model.

Table 3: variables in the baseline model

Macroeconomic variables Financial variables
All Employees: Total nonfarm S&P 500

IP Index Spread, Baa-10y Treasury

Capacity Utilization: Manufacturing Excess return

Help wanted to unemployed ratio SMB FF factor

Unemployment rate HML FF factor

Real personal income Momentum factor

Weekly hours: goods-producing R15 R11

Housing starts Industry 1 return

Housing permits Industry 2 return

Real consumer spending Industry 3 return

Real manuf. and trade sales Industry 4 return

ISM: new orders index Industry 5 return

Orders for durable goods

Avg. hourly earnings, goods-prod.

PPI, finished goods

PPI, commodities

PCE price index

Federal funds rate

In some additional results, we use all of the 129 macro series to fit AR-SV models and

form measures of macro uncertainty with an approach similar to that of JLN. We also

consider larger financial data sets that include more disaggregate industry breakdowns (of

43 and 93 sectors) of stock returns, constructed by Kenneth French. In considering how

the size of the dataset affects uncertainty estimates obtained with an approach like that of

JLN, we also report AR-SV-based macro uncertainty estimates based on 8 or 60 series and

AR-SV-based finance uncertainty estimates based on larger sets of series. We also make

some comparisons to the measures of uncertainty estimated by JLN and LMN, obtained

from the website of Professor Ludvigson.
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4 Measuring Aggregate Uncertainty

In the following results, we focus on estimates of our baseline model with 30 variables, in

monthly data. We discuss some aspects of robustness in the next section.

Table 2 provides posterior estimates of the factor loadings — the βm and βf coefficients

of equations (2) and (3). All of the posterior mean estimates are positive and clustered

around a value of 1 (as noted above, the loadings on employment and S&P returns are fixed

at 1). Some loadings are somewhat below 1 (e.g., orders for durable goods), and others

are modestly above 1 (e.g., industrial production). In all cases, the loadings appear to

be estimated with reasonable precision. However, the loadings on the finance factor have

posterior standard deviations that are noticeably lower than those for the loadings on the

macro factor (despite a prior that is the same for the macro and finance factors).

Table 2: Posterior estimates of factor loadings

Variable Posterior median (st. dev.)
Loadings of macro variables on macro factor

Employment 1.000 (NA)
Ind. prod. 1.255 (0.272)
Capacity utilization 0.685 (0.272)
Help wanted/unemployment 0.737 (0.290)
Unemployment rate 0.851 (0.239)
Real personal income 0.787 (0.306)
Weekly hours, goods 0.815 (0.325)
Housing starts 1.138 (0.246)
Housing permits 1.183 (0.306)
Real consumer spending 1.162 (0.266)
Real manuf. and trade sales 0.619 (0.260)
ISM index, new orders 0.704 (0.236)
Orders for durable goods 0.615 (0.280)
Avg. hourly earnings, goods 1.122 (0.301)
PPI, finished goods 1.172 (0.295)
PPI, commodities 0.734 (0.324)
PCE price index 1.139 (0.263)
Federal funds rate 1.303 (0.321)

Loadings of finance variables on finance factor
S&P 500 1.000 (NA)
Spread, Baa-10y Treasury 1.119 (0.165)
Excess return 1.002 (0.128)
SMB 0.931 (0.118)
HML 1.021 (0.115)
Momentum 1.521 (0.152)
R15-R11 0.771 (0.141)
Industry 1 0.833 (0.122)
Industry 2 0.781 (0.155)
Industry 3 0.825 (0.120)
Industry 4 0.802 (0.143)
Industry 5 0.903 (0.161)
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Figure 1 displays the posterior distribution of the measures of macro (top panel) and

financial uncertainty (bottom panel). In these charts, we define macro uncertainty as the

square root of the common volatility factor mt and financial uncertainty as the square

root of the common volatility factor ft, such that macroeconomic and financial uncertainty

correspond to a standard deviation. In order to facilitate comparability with other studies,

the figure also displays the measures (macro in the top panel and financial in the bottom

panel) obtained by JLN (macro) and LMN (financial). In the interest of brevity, we do not

compare our uncertainty measures with other proposals in the literature, such as the VIX

or the cross-sectional variation in SPF forecasts or in firms’ profits; studies such as JLN

and Caldara, et al. (2016) provide such comparisons.

The results indicate the correlation of our uncertainty estimates with the JLN and

LMN estimates are quite high, about 0.771 for macro uncertainty and 0.765 for financial

uncertainty. There are, however, some differences. One difference is that our estimates are

more variable. This variability stems in part from the inclusion of yt−1 in the VAR process

of the factors. The estimates of the coefficients δm and δf are generally small but not zero,

such that movements in yt−1 lead to movements in mt and ft. Another difference is that

the peak in the JLN measure around the early 1980s recession is quite higher than that

around the mid-1970s recession, while the two values are similar for our model. Figure 1

also reports the 15%-85% credible set bands around our estimated measures of uncertainty,

which, as mentioned, are correctly considered random variables in our approach. These

bands indicate that the uncertainty around uncertainty estimates is sizable.

The estimated macro and financial uncertainties are also somewhat correlated with each

other. Using the time series of the posterior median uncertainties (again, defined in this

section as standard deviations), the correlation between macro and financial uncertainty is

0.41. The uncertainty estimates of JLN (macro) and LMN (finance) are similarly correlated,

with a simple correlation of 0.56 (using their 1-step ahead uncertainty series).

From a broader macroeconomic point of view, it is interesting that our measures of

aggregate uncertainty do not present clear evidence of the sharp decline in volatility com-

monly referred to as the Great Moderation. This finding is in line with Giannone, Lenza

and Reichlin (2008), who stress that the Great Moderation appears smaller with models

based on larger datasets than with models based on smaller datasets. However, they do

not consider large models with SV, as methodology existing before our paper did not make
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it tractable. Yet their result seems to hold up even once stochastic volatility is allowed

in larger models. One possible explanation for weak evidence of a Great Moderation in

our uncertainty measure is the use of monthly rather than quarterly data. However, data

frequency does not seem to produce a significant difference in low frequency movements in

common volatility around the Great Moderation. The broad contours of the uncertainty

estimates obtained with quarterly estimates of our model, shown in Figure 2, are similar to

those obtained with monthly data. When we instead consider in Figure 3 the reduced form

volatilities of each variable — defined as the diagonal elements of Σt, which reflect both

the common uncertainty factors and idiosyncratic components — Great Moderation effects

become evident for some variables. Arguably, for some variables, typically real quantities

such as employment (PAYEMS), the Great Moderation effects appear larger in quarterly

data (supplementary appendix available upon request) than monthly data (Figure 3). In

either case, even in monthly data, the volatility of the federal funds rate (and related term

spreads) exhibits a major decrease after the early 1980s, suggesting that a more predictable

monetary policy contributed to the stabilization of the other volatilities.

Finally, about the financial uncertainty factor, it is worth noting that it increases during

recessions, as the macro uncertainty factor, but also in other periods of financial turmoil.

This different temporal pattern may help in disentangling macroeconomic and financial

uncertainty.

5 Measuring the impact of uncertainty

5.1 Identification

With our uncertainty measure(s) entering each of the equations of the VAR in yt, we can

easily compute impulse response functions to unexpected aggregate uncertainty shocks.

What we do is similar to shock identification in factor augmented VAR models, such as

Bernanke, Boivin and Eliasz (2005) or Marcellino and Sivec (2016), but also allowing for

(common) stochastic volatility.

Our approach features two important differences with respect to the existing structural

analysis exercises on the impact of uncertainty on the macroeconomy.

First, in our specification, a shock to uncertainty affects not only the conditional mean

of yt but also the conditional variance. In analyses such as Bloom (2009), JLN, or Caldara,

et al. (2016), it is common to conduct inference on the former while ignoring the latter.
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Moreover, our approach takes into account the uncertainty around uncertainty, while these

studies condition on the point estimates of uncertainty, thereby abstracting from the vari-

ance of uncertainty estimates. To avoid a similar practice, we are able to use our model

and impulse response functions to conduct inference on the effects of uncertainty shocks

to yt taking account of their effects on not only the conditional mean but also the condi-

tional variance. Our estimates also account for the variance of the uncertainty measure in

the sense that our estimates of the VAR’s coefficients reflect the fact that uncertainty is a

latent state and not an observed series.

Second, the specification of our model permits us to use the (common) volatilities of the

VAR’s variables to identify an uncertainty shock and its effects on the VAR’s conditional

mean, under an assumption of no contemporaneous correlation between factor shocks and

VAR shocks. Some other studies in the literature, such as Bloom (2009) and JLN, rely on

more restrictive recursive identification schemes.

In our approach, shocks to uncertainty are identified by the very fact that uncertainty

is time varying, and appears not only in the conditional means, but also in the conditional

variances of an heteroskedastic VAR. To clarify this point consider again the model:

yt = Π(L)yt−1 + Πm(L) lnmt + Πf (L) ln ft +A−1 ·


m
βm,j

t h1,t

. . .

f
βf,j

t hn,t


︸ ︷︷ ︸

Λt

0.5

·εt,

where we have explicitly written down the specification of Λt. The quadratic term appearing

in the likelihood is:

exp[−1

2
(yt −Π(L)yt−1 + Πm(L) lnmt + Πf (L) ln ft)

′ ·

·A′


m
βm,j

t h1,t

. . .

f
βf,j

t hn,t


−1

A ·
′

(yt −Π(L)yt−1 + Πm(L) lnmt + Πf (L) ln ft)︸ ︷︷ ︸
vt

],

which shows that the matrix A′Λ−1
t A is uniquely identified. Instead, if the elements of the

matrix Λt where constant (Λt = Λ) and not appearing in the terms vt, the matrix A′Λ−1A

would only be identified up to an orthogonal rotation, that is, the error term A−1Λεt would

be observationally equivalent to any other error term of the form A−1ΛQεt with Q an

orthogonal matrix. This happens because in the standard setup using a different rotation

matrix Q only impacts on the error variance part of the model: different Qs imply different
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structural errors, but identical reduced form errors, which only appear in the likelihood in

the form of their error variance. In our setup instead, the elements of Λt are both time

varying and related with the conditional mean of the model, so that Λt appears in the

conditional mean part of the likelihood, and this provides identification.

Note that in our setup the shocks to uncertainty contemporaneously affect yt and are

orthogonal to εt. The orthogonality between (um,t, uf,t)
′ and εt stems from our modeling

strategy that separates the total variance of the residual Avt = Λ0.5
t εt into three orthogonal

components: a common component, an idiosyncratic component, and a component due to

the conditionally independent shock εt, captured in equation (11). When a large shock

(represented by Λ0.5
t εt) hits the economy, we let the data distinguish whether this is a large

shock in the conditional error εt (so an outlier in a standard normal distribution, with a

variance that is not moving) or rather a relatively ordinary shock (in terms of size of εt)

accompanied by an increase in the variance Λ0.5
t . Hence these two components have to be

orthogonal to one another in order to be separately identified.11 However, by including

yt−1 in the process for the factor mt (and the factor ft), our model allows for previous ε

shocks to affect the factor and, in turn, Λ0.5
t . In general, our approach exploits the ability

to identify the uncertainty factors from observed volatilities and then identify the effects of

uncertainty from the first-moment relationship of yt to the uncertainty factors. In this sense,

there is some parallel between our identification and heteroskedasticity-based identification

approaches such as Rigobon (2003) and Lanne and Lutkepohl (2008).

As a consequence, we are able to allow uncertainty to contemporaneously affect the

macroeconomy and financial markets and contemporaneously respond to macroeconomic

and financial developments. The former effect is captured by the inclusion of the uncertainty

factors in the VAR’s conditional mean given in equation (6). The latter effect is captured

in the following way: when a large shock to the innovation vt of equation (6) occurs, and

it reflects a shift in volatility that is common across variables, the uncertainty factors will

move higher. That is, large surprises to yt can yield movements in uncertainty. In contrast,

under the more common approach in the literature of obtaining an estimate of uncertainty

from elsewhere (e.g., as an average of univariate volatilities as in JLN), and then adding the

uncertainty estimate to an otherwise standard VAR, identification requires an additional

step in the VAR, which is typically based on the use of a recursive identification scheme,

11In this sense, our specification builds on the standard, simpler stochastic volatility common in finance
and introduced into macroeconomics by Cogley and Sargent (2005) and Primiceri (2005).
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which is not immune to criticism, some of which is represented in studies such as Caldara,

et al. (2016) and LMN.12

While the vector of uncertainty measures ut = (um,t, uf,t)
′ is identified for the reasons

outlined above, in order to separately identify the effects of macro and financial uncertainty,

an identification assumption is needed for the system in (5). In line with common wisdom

that financial variables are “fast” while macroeconomic variables are “slow,” we assume a

Cholesky identification scheme in which financial uncertainty ft is ordered last, and hence

it contemporaneously responds to both um,t and uf,t, while macroeconomic uncertainty

responds contemporaneously to um,t but responds to uf,t with some delay.

We report impulse response functions computed in the usual way (the appendix elabo-

rates on these calculations, showing that the responses are driven by the constant coefficients

of the VAR and the log factor processes); we have verified that response functions computed

with the generalized approach of Koop, Pesaran, and Potter (1996) as implemented in stud-

ies such as Benati (2008) yield the same estimates. The equivalence — and the validity of

the simple approach — stem from the independence among the conditional VAR shocks ε,

the shocks to the volatility factors, and the shocks to the idiosyncratic volatility compo-

nents. For each of the j = 1, . . . , 5000 retained draws of the VAR’s parameters and latent

states, we compute impulse response functions. We report the posterior medians and 70

percent credible sets of these functions.

5.2 Results

5.2.1 Impulse responses

Figure 4 provides the impulse response estimates of a one-standard deviation shock to log

macro uncertainty (lnmt) in our 30 variable (monthly frequency) VAR specification. Note

that, although the model is estimated with standardized data, the impulse responses are

scaled and transformed back to the units typical in the literature. We do so by using the

model estimates to: (1) obtain impulse responses in standardized, sometimes (i.e., for some

variables) differenced data; (2) multiply the impulse responses for each variable by the stan-

dard deviations used in standardizing the data before model estimation; and (3) accumulate

the impulse responses of step (2) as appropriate to get back impulse responses in levels or

12In the interest of brevity, we provide in a supplementary appendix available upon request results for
a constant parameter/constant volatility BVAR in 31 variables — our 30 variables and the 1-step ahead
uncertainty estimate (logged, for consistency with our results) of JLN. These results have some similarity to
the baseline model results discussed below.
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log levels.13 Accordingly, the units of the reported impulse responses are percentage point

changes (based on 100 times log levels for variables in logs or rates for variables not in log

terms). As examples, the response of employment is the percentage point response (again,

100 times the log); the response of the unemployment rate is the percentage point change

in the unemployment rate; and the response of the federal funds rate is the percentage

point change in the annualized federal funds rate. However, there is one complication to

the reading of results on stock prices and returns, relating to the source data: for the S&P

500 variable, we display the response in percentage changes of the price level (the response

of 100 times the log level of the S&P index), but for the CRSP excess return, we display

the response of the return (computed as a monthly return), rather than a price level.

As shown in the penultimate panel of Figure 4, the shock to log macro uncertainty

produces a rise in uncertainty that gradually dies out, over the course of about one year.

As indicated in the last panel of Figure 4, financial uncertainty rises in response, also for

about a year, although the response of finance uncertainty is estimated less precisely than

the response of macro uncertainty.

Now consider the effects of the macro uncertainty shock on industrial production and

employment, which are both significantly negative, with a modestly larger response of pro-

duction than employment. The responses are qualitatively similar to those obtained by

JLN, who only focus on these two variables, but in their case the effects are more short-

lived, becoming not significant about one year after the shock (as noted above, some of this

difference in estimated persistence of effects may be due to our use of differenced data).

In the labour market, we also find that hours worked generally decrease (with peak

effect after about six months) and unemployment increases (with peak effect after about 20

months), in line with firms trying to avoid hiring adjustment costs, as, e.g., in Nickell (1986)

and Bloom (2009). Interestingly, there are no significant effects on hourly earnings (average

hourly earnings decline, but the estimate is too imprecise to be meaningful), suggesting

that wages are rather sticky in the face of uncertainty shocks.

The overall effects on real personal income, real personal consumption expenditures and

real M&T (manufacturing and trade) sales are significantly negative and persistent. The

13The fact that the model is estimated using some variables differenced for stationarity (e.g., employment
and industrial production) implies that, for some of these variables, the long run effects of transitory shocks
do not die out. This is in line with what typically happens when analyzing the effects of shocks within a
factor model. We have verified in somewhat smaller versions of the model that, without transformation of
the variables, we obtain similar results but with effects on activity levels that die out over time.
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fall in consumption is likely due to lower current and future expected income but also,

likely, to the need to increase precautionary savings (e.g., Bansal and Yaron (2004)) and

the preference to postpone buying durable goods until uncertainty declines (e.g., Eberly

(1994) and Bertola, Guiso and Pistaferri (2005)).

In terms of other indicators of production, we detect a significant, persistent decrease in

capacity utilization. Utilization bottoms out after about 15 months (with a peak response

of about 30 basis points) and then slowly rises, but remains below baseline for the full four

year horizon covered in the impulse responses. Orders of durable goods and the new orders

component of the ISM index also fall significantly, signaling a clear decrease in actual and

expected investment. This is in line with the presence of sizable investment adjustment

costs, e.g. Ramey and Shapiro (2001) and Cooper and Haltiwanger (2006), that firms try

to avoid in the presence of higher uncertainty. An even more significant effect emerges in the

building sector, where adjustment costs can be expected to be even higher, with prolonged

decreases in housing starts and building permits.

One other notable result in the responses of economic activity to the shock in macro

uncertainty concerns timing: for some, but not all indicators, the response to the shock is

immediate (contemporaneous) and sizable. Relatively quick and large responses occur for

housing starts and permits, the ISM index of new orders, and weekly hours worked (which

presumably reflects an intensive margin of adjustment, rather than the extensive margin

captured by employment). Slower, although eventually large and significant, responses

occur for variables such as employment, unemployment, and industrial production.

Despite the significant decline of economic activity in response to the macro uncertainty

shock, there doesn’t appear to be evidence of a broad decline in prices. The PPI for finished

goods does decline steadily and by as much as 2 percentage points, although the response is

estimated relatively imprecisely. Neither the PPI for commodity prices nor overall consumer

prices as captured by the PCE price index (in earlier versions of the model, we obtained

the same result for core PCE prices) display a significant change. Overall, this picture of

price responses is in line with New-Keynesian models, such as Leduc and Liu (2015), Basu

and Bundick (2015), and Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-

Ramirez (2015), which predict a small effect of uncertainty on inflation due to sticky prices

(and possibly wages), such that lower consumption does not stimulate investment.

In the face of this sizable deterioration in the real economy and absence of much move-
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ment in prices, the federal funds rate gradually falls. The reaction of the federal funds rate

is minimal for the first few months. Then, there is a steady, statistically significant decline

for about 20-22 months. The response of the funds rate reaches about -20 basis points, not

quite as large as the movement in employment but almost double the peak response of the

unemployment rate. Such a response appears to be about in line with the parameteriza-

tion of the Taylor (1999) rule, if one replaces the rule’s output gap with an unemployment

gap and assumes that Okun’s law justifies roughly doubling Taylor’s coefficient of 1 on the

output gap.

The responses of financial indicators to the shock to macro uncertainty are — collec-

tively speaking — muted and imprecisely estimated (however, as noted above, in other

specifications with different choices of financial variables, we obtained more notable re-

sponses of asset returns to macro uncertainty). The one exception is the credit spread,

between the Baa and 10 year Treasury yields, which displays a modest, but persistent and

significant, rise, with a hump-shape pattern. The substantial increase in the credit spread

likely increases borrowing costs for firms, further reducing their investment, as in studies

looking at the effects of uncertainty in models with financial constraints, such as Arellano,

Bai, and Kehoe (2012), Christiano, Motto, and Rostagno (2014), and Gilchrist, Sim, and

Zakrasjek (2014). Aggregate stock prices and returns as captured by the S&P 500 price

index and the excess CRSP return decline, in line with common wisdom and findings in the

finance literature (e.g., Bansal and Yaron 2004), but the estimated responses are sufficiently

imprecise that, in this dataset, they should not be judged meaningful. The responses of

the other financial indicators, including the risk factors and industry-level returns, are also

overall insignificant, signaling that financial variables are less sensitive to macroeconomic

uncertainty than they are to financial uncertainty. This brings us to the next point, to the

effects of surprise changes in financial uncertainty.

As we discussed above, in our setup financial uncertainty is estimated in a single step,

together with macroeconomic uncertainty, using the identification assumption that it rep-

resents the common volatility across a set of financial indicators. The effects of a shock to

financial uncertainty are displayed in Figure 5.

As reported in the last panel of Figure 5, the shock to log finance uncertainty produces

a rise in uncertainty that only gradually dies out, over the course of almost two years. In

response, macro uncertainty changes very little, by an amount that is not significant. Based
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on this and the corresponding result for a shock to macro uncertainty, our estimates and

identification attribute the comovement between macro and finance uncertainty to finance

uncertainty (relatively fast moving) moving in response to a change in macro uncertainty

(relatively slow moving).

As to broader effects of finance uncertainty, when compared to a macro uncertainty

shock, a finance uncertainty shock has similar, but sometimes smaller and more delayed

macroeconomic effects and larger financial effects. More specifically, the effect on indus-

trial production and employment follow a pattern similar to that obtained for the case of

macroeconomic uncertainty, with a significantly negative response, more persistent in the

case of employment. The effects on the labour market show an increase in unemployment

and a decrease in hours worked, but the reaction of the latter is smaller on impact and

in general slower than what happens in the case of the macroeconomic uncertainty shock.

Real personal income and real personal consumption expenditures show the same negative

response observed for a macro uncertainty shock, but the former is slower and insignificant

on impact with respect to the case of a macro uncertainty shock, while the latter is largely

insignificant. In perhaps the most notable difference with respect to results for a macro

uncertainty shock, a finance uncertainty shock does not have significant effects on the hous-

ing sector (starts and permits). Overall, the responses of prices to the finance uncertainty

shock are no more significant than the corresponding responses to the macro uncertainty

shock.

Turning our attention to the financial variables, on balance they respond more to the

finance uncertainty shock than the macro uncertainty shock, although in some cases the

responses are imprecisely estimated. The shock to finance uncertainty produces a persistent

and significant rise in the credit spread, with a hump-shape pattern. It also produces a

sizable falloff in aggregate stock prices and returns. The response of the S&P500 price level

is negative and significant, with no sign of a rebound after the forecast horizon (4 years).

The CRSP excess returns display a negative jump and recover only after 6 months. The

industry-level returns included in the model also decline, but the responses are estimated

very imprecisely (in some other variable sets, the responses of returns were more precisely

estimated). The responses of the risk factors included in the model are also insignificant.

5.2.2 Robustness

In this section we consider some robustness checks of our results.
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First, we consider the robustness of our results to the use of a quarterly, rather than

monthly, data frequency. Qualitatively, these quarterly results, provided in Figures 6 and

7, are very similar to our baseline estimates with monthly data. There are some differences,

such as the more significant response of macro uncertainty to finance uncertainty in the

quarterly estimates than the monthly estimates, but our key results from the monthly

frequency carry over to the quarterly case.

Second, we consider how estimates of uncertainty depend on the size of the cross section.

In this exercise, for simplicity we rely on estimates of SV from the AR-SV model described

in section 2, and we consider measures of uncertainty defined as the simple average of

the time-varying standard deviations obtained from the SV estimates, for cross-sections of

different size. We begin with macroeconomic uncertainty. In the upper panel of Figure 8,

we report AR-SV-based uncertainty measures resulting from averaging the SVs of 8, 18, 60

and 129 macroeconomics variables (all monthly data). The different subsets of variables

mainly differ for the level of considered disaggregation, as detailed in Table 3. Although

not shown directly, the measure of uncertainty obtained by averaging the SV estimates of

129 variables is highly correlated with the series of JLN. As indicated in the top of Figure

8, uncertainty estimates based on 129 and 60 variables are extremely similar; they can be

hardly distinguished in the figure. Compared to these estimates, the uncertainty estimates

based on 18 or 8 variables differ somewhat. For example, the measure based on just 8

variables presents a substantially higher peak around the recession of the early 1980’s and

lower values from the early 1990s onwards, particularly so from 2010 onwards. That said,

the estimates implied by the two smaller variable sets are still highly correlated (correlations

in excess of 0.9) with the estimates based on the two larger variable sets.

Now consider the measures of financial uncertainty obtained by averaging AR-SV es-

timates, shown in the lower panel of Figure 8. We consider two estimates obtained by

averaging volatilities of two different industry-breakdowns of returns from the Kenneth

French datasets, one (the most disaggregate) with 93 industries and the other (less disag-

gregate) with 43 industries. Although not shown directly in the chart, the series based on 93

returns is very highly correlated with the uncertainty estimate of LMN. The series based on

a smaller set of 43 returns is extremely similar. Using a smaller set of 12 financial variables

— either the set of 12 financial variables included in our baseline model (corresponding to

the N=12 set covered in chart) or the alternative set of 12 variables that replaces the five
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risk factors and 5 industry returns in the baseline set with 10 industry returns — yields

modestly different estimates. Again, though, these estimates are highly correlated (corre-

lations in excess of 0.9) with those obtained by using the large datasets. Overall, we view

these results as supporting our use of a model that has 18 macro variables and 12 financial

variables in order to reasonably capture uncertainty and its effects.

Finally, a relevant question is whether the recent financial crisis had a substantial impact

on the results we have obtained. For example, Alessandri and Mumtaz (2014), using a

nonlinear VAR model, find that uncertainty has a much stronger (negative) impact on

output in periods of financial stress than otherwise. To assess whether this is the case in

our baseline results, we recompute the impulse responses using estimates of the model with

data through just December 2007. Figures 9 and 10 provide the results. In the shorter

sample, it continues to be the case that shocks to both macro uncertainty and financial

uncertainty have significant effects on economic activity and some financial variables, with

patterns generally similar to those obtained for the full sample of data. However, in the

case of the shock to macro uncertainty, the effects are modestly smaller and less precisely

estimated than in the baseline case. In the case of the shock to financial uncertainty, the

effects for the 1960-2007 sample are quite similar to those for the 1961-2014 period. Overall,

we judge that the crisis period has provided useful information for assessing the effects of

changes in macro uncertainty but by no means drives it, whereas the crisis period has less

effect on the measurement of financial uncertainty and its effects.

6 Conclusions

This paper developed a new framework for measuring uncertainty and its effects on the

macroeconomy and financial conditions. Specifically, we developed a VAR model for a pos-

sibly large set of variables whose volatility is driven by two common unobservable factors,

which can be interpreted as the underlying aggregate macroeconomic and financial uncer-

tainty, respectively. These uncertainty measures reflect common changes in the volatility

of the variables under analysis, but can also influence their levels. Hence, contrary to most

existing measures, ours reflect changes in both the conditional mean and volatility of the

underlying variables, and they are estimated taking explicitly into account the existence

of aggregate uncertainty. Creal and Wu (2016) pursue a broadly similar idea of internal-

izing the treatment of uncertainty, but in a different, much smaller model with a different
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question.

Moreover, our approach allows simultaneous estimation of the uncertainty measures and

their impact on the economy, providing also a coherent measure of the uncertainty around

them, while most existing studies (with the notable exception of Creal and Wu 2016) rely

on a two-step approach with one model used to estimate uncertainty and a second one to

assess its effects. Finally, identification of the uncertainty shock is simplified with respect

to standard VAR based analysis, in line with the FAVAR approach and heteroskedasticity-

based identification.

We introduced a new Bayesian estimation method for the model, which can be also

applied in other contexts, is computationally efficient, and allows for estimation even of

large models, while previous VAR models with stochastic volatility could only handle a

handful of variables.

We applied the method to estimate uncertainty and its effects using US data, finding

that there is indeed substantial commonality in uncertainty, sizable effects of uncertainty

on key macroeconomic and financial variables with responses in line with economic theory,

and some uncertainty about uncertainty and its effects. We provided results separately for

macroeconomic and financial uncertainty, showing that macro uncertainty shocks have a

major impact on macroeconomic variables but their effects do not transmit substantially

to financial variables, while financial uncertainty shocks have significant effects on financial

variables but also substantially transmit to the macroeconomy.

A Appendix

In this appendix, we provide the details of the priors we use in the multivariate model

estimation and explain the computation of impulse responses.

A.1 Priors

For the VAR coefficients contained in Π, we use a Minnesota-type prior. With the variables

of interest transformed for stationarity, we set the prior mean of all the VAR coefficients to

0. We make the prior variance-covariance matrix ΩΠ diagonal. The variances are specified

to make the prior on the intercept, logmt, and log ft terms uninformative and the prior on

the lags of yt take a Minnesota-type form. Specifically, for the intercept, logmt, and log ft

terms of equation i, the prior variance is θ2
3σ

2
i . For lag l of variable j in equation i, the prior
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variance is
θ21
l2

for i = j and
θ21θ

2
2

l2
σ2
i

σ2
j

otherwise. In line with common settings, we set overall

shrinkage θ1 = 0.2, cross-variable shrinkage θ2 = 0.5, and intercept/factor shrinkage θ3 =

1000. With these settings, we have deliberately made the prior on the uncertainty terms

in the VAR uninformative (making the prior less uninformative by setting θ3 = 10 yielded

results very similar to the baseline estimates). Finally, consistent with common settings,

the scale parameters σ2
i take the values of residual variances from AR(p) models from the

estimation sample.

As to the volatility-related components of the model, for the rows aj of the matrix A,

we follow Cogley and Sargent (2005) and make the prior fairly uninformative, with prior

means of 0 and variances of 10 for all coefficients. For the coefficients (γi,0, γi,1) (intercept,

slope) of the idiosyncratic processes of equation i, i = 1, . . . , n, the prior mean is (log σ2
i ,

0.0), where σ2
i is the residual variance of an AR(p) model over the estimation sample. The

prior standard deviations (assuming 0 covariance) are (20.5, 0.4). For the factor loadings βj ,

j = 2, ..., n, we use a prior mean of 1 and a standard deviation of 0.4. For the coefficients

of the VAR process of the factors, the prior means are zero, except that the first-order lag

coefficients of each factor has a mean of 0.8. The prior standard deviations are set to 0.2

for the elements of D(L) and 0.4 for the elements of δm and δf . For the innovations to the

idiosyncratic components of volatility (φ1, ..., φn), we use a mean of 0.03, with 10 degrees of

freedom for each. For the variance-covariance matrix of innovations to the factor processes

(Φu), we use a mean of 0.01 times an identity matrix, with 10 degrees of freedom. For the

period 0 values of logmt and log ft, and log hi,t, we set the mean at 0 and in each draw

use the variance implied by the VAR representation of the factors (treating the δm and δf

coefficients as 0) and the draws of the coefficients and error variance matrix. Finally, for

the period 0 values of log hi,t, we set the mean and variance at log σ2
i and 2.0, respectively.

A.2 Impulse response computation

For the purpose of establishing the basis of our impulse response calculations, consider a

much simplified model with a single uncertainty factor and lag orders all set at 1:

yt = Πyt−1 + Γ1mt + Γ2mt−1 + Σ0.5
t εt

mt = δyt−1 + γmt−1 + ut,

where Σ0.5
t is a short-cut notation for the Choleski decomposition of Σt and εt and ut are

independent normals, with εt ∼ N(0, In) and ut ∼ N(0,Φ).
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To explain how we compute the impulse response, we will use as illustrative examples

the responses over periods t+ 1 and t+ 2 to an uncertainty shock in period t+ 1.

By iterative substitution, we can write out expressions for yt+1 and yt+2 as functions

of period t information, shocks in t + 1 and t + 2, and Σt+1, Σt+2. For simplicity, we can

just write things out using the general Σt+1, Σt+2 and not the decomposition into the time-

varying volatility components (factor and idiosyncratic) that drive it, in the general form

given in the paper with the richer two-factor model. Specifically, we can express yt+1 and

yt+2 as follows:

yt+1 = (Π + Γ1δ)yt + (γΓ1 + Γ2)ft + Γ1ut+1 + Σ0.5
t+1εt+1

yt+2 = (Π + Γ1δ)yt+1 + (γΓ1 + Γ2)(γft + δyt) + Σ0.5
t+2εt+2 + Γ1ut+2 + (γΓ1 + Γ2)ut+1.

For space, the expression for yt+2 takes the shortcut of including directly yt+1 rather than

replacing it with the expression for yt+1 from the first equation.

Now consider the impulse responses — specifically, the changes in yt+1 and yt+2 induced

by an uncertainty shock ut+1. Following textbook sources such as Hamilton (1994), we treat

the impulse response as the change in the forecast of y induced by the shock to uncertainty,

taking the shock to uncertainty as known. In general, the shock to uncertainty affects future

y through both the conditional mean terms Γ1mt + Γ2mt−1 and the error variance Σ0.5
t .

However, the changes in Σt+1 and Σt+2 induced by the shock ut+1 are independent of εt+1

and εt+2. As a result, the point forecasts of yt+1 and yt+2 change due to the conditional

mean effects but not due to changes in the error variance matrix. So we compute the

impulse responses as follows, for a given value of the uncertainty shock ut+1:

IRt+1 = Γ1ut+1

IRt+2 = (Π + Γ1δ)Γ1ut+1 + (γΓ1 + Γ2)ut+1.
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Table 3: Variable Combinations

variable mnemonic included in included in included in included in
N = 60 set N = 40 set N = 18 set N = 8 set

Real Personal Income RPI Y Y Y
RPI ex. Transfers W875RX1
Real PCE DPCERA3M086SBEA Y Y Y Y
Real M&T Sales CMRMTSPLx Y Y Y
Retail and Food Services Sales RETAILx Y
IP Index INDPRO Y Y Y Y
IP: Final Products and Supplies IPFPNSS
IP: Final Products IPFINAL
IP: Consumer Goods IPCONGD
IP: Durable Consumer Goods IPDCONGD Y Y
IP: Nondurable Consumer Goods IPNCONGD Y Y
IP: Business Equipment IPBUSEQ Y
IP: Materials IPMAT
IP: Durable Materials IPDMAT Y
IP: Nondurable Materials IPNMAT Y
IP: Manufacturing IPMANSICS Y Y
IP: Residential Utilities IPB51222S
IP: Fuels IPFUELS
ISM Manufacturing: Production NAPMPI Y
Capacity Utilization: Manufacturing CAPUTLB00004S Y Y Y
Help-Wanted Index for US Help wanted indx HWI
Help Wanted to Unemployed ratio HWIURATIO Y Y Y
Civilian Labor Force CLF16OV
Civilian Employment CE16OV Y Y
Civilian Unemployment Rate UNRATE Y Y Y Y
Average Duration of Unemployment UEMPMEAN Y Y
Civilians Unemployed <5 Weeks UEMPLT5
Civilians Unemployed 5-14 Weeks UEMP5TO14
Civilians Unemployed >15 Weeks UEMP15OV
Civilians Unemployed 15-26 Weeks UEMP15T26
Civilians Unemployed >27 Weeks UEMP27OV Y
Initial Claims CLAIMSx Y Y
All Employees: Total nonfarm PAYEMS Y Y Y Y
All Employees: Goods-Producing USGOOD
All Employees: Mining and Logging CES1021000001
All Employees: Construction USCONS
All Employees: Manufacturing MANEMP
All Employees: Durable goods DMANEMP Y
All Employees: Nondurable goods NDMANEMP Y
All Employees: Service Industries SRVPRD Y
All Employees: TT&U USTPU
All Employees: Wholesale Trade USWTRADE
All Employees: Retail Trade USTRADE
All Employees: Financial Activities USFIRE
All Employees: Government USGOVT
Hours: Goods-Producing CES0600000007 Y Y Y
Overtime Hours: Manufacturing AWOTMAN Y Y
Hours: Manufacturing AWHMAN
ISM Manufacturing: Employment NAPMEI Y
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Table 3, continued: Variable Combinations

variable mnemonic included in included in included in included in
N = 60 set N = 40 set N = 18 set N = 8 set

Starts: Total HOUST Y Y Y
Starts: Northeast HOUSTNE
Starts: Midwest HOUSTMW
Starts: South HOUSTS
Starts: West HOUSTW
New Private Housing Permits (SAAR) PERMIT Y Y Y
New Private Housing Permits, Northeast (SAAR) PERMITNE
New Private Housing Permits, Midwest (SAAR) PERMITMW
New Private Housing Permits, South (SAAR) PERMITS
New Private Housing Permits, West (SAAR) PERMITW
ISM: PMI Composite Index NAPM
ISM: New Orders Index NAPMNOI Y Y Y
ISM: Supplier Deliveries Index NAPMSDI Y Y
ISM: Inventories Index NAPMII
Orders: Durable Goods AMDMNOx Y Y Y
Unfilled Orders: Durable Goods AMDMUOx Y
Total Business Inventories BUSINVx
Inventories to Sales Ratio ISRATIOx Y Y
Money Stock M1SL
Money Stock M2SL Y Y
Real M2 Money Stock M2REAL
St. Louis Adjusted Monetary Base AMBSL
Total Reserves TOTRESNS
Commercial and Industrial Loans BUSLOANS Y Y
Real Estate Loans REALLN
Total Nonrevolving Credit NONREVSL
Credit to PI ratio CONSPI Y
S&P: Composite S&P 500 Y Y
S&P: Industrials S&P: indust
S&P: Dividend Yield S&P div yield Y Y
S&P: Price-Earnings Ratio S&P PE ratio
Effective Federal Funds Rate FEDFUNDS Y Y Y Y
Month AA Comm. Paper Rate CPF3M Comm paper CP3M
3-Month T-bill TB3MS
6-Month T-bill TB6MS
1-year T-bond GS1 Y Y
5-year T-bond GS5
10-year T-bond GS10 Y Y
Corporate Bond Yield Aaa bond AAA Y
Corporate Bond Yield Baa bond BAA Y Y
CP - FFR spread CP-FF spread COMPAPFF
3 Mo. - FFR spread 3 mo-FF spread TB3SMFFM
6 Mo. - FFR spread 6 mo-FF spread TB6SMFFM
1 yr. - FFR spread 1 yr-FF spread T1YFFM Y Y
5 yr. - FFR spread 5 yr-FF spread T5YFFM
10 yr. - FFR spread 10 yr-FF spread T10YFFM Y Y Y
Aaa - FFR spread Aaa-FF spread AAAFFM Y
Baa - FFR spread Baa-FF spread BAAFFM Y Y
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Table 3, continued: Variable Combinations

variable mnemonic included in included in included in included in
N = 60 set N = 40 set N = 18 set N = 8 set

Switzerland / U.S. FX Rate EXSZUS Y
Japan / U.S. FX Rate EXJPUS
U.S. / U.K. FX Rate EXUSUK Y Y
Canada / U.S. FX Rate EXCAUS
PPI: Finished Goods PPIFGS Y Y Y
PPI: Finished Consumer Goods PPIFCG
PPI: Intermediate Materials PPIITM Y
PPI: Crude Materials PPICRM Y
Crude Oil Prices: WTI oilprice
PPI: Commodities PPICMM Y Y Y Y
ISM Manufacturing: Prices NAPMPRI Y
CPI: All Items CPIAUCSL Y
CPI: Apparel CPIAPPSL
CPI: Transportation CPITRNSL
CPI: Medical Care CPIMEDSL
CPI: Commodities CUSR0000SAC
CPI: Durables CUUR0000SAD
CPI: Services CUSR0000SAS
CPI: All Items Less Food CPIULFSL
CPI: All items less shelter CUUR0000SA0L2
CPI: All items less medical care CUSR0000SA0L5
PCE: Chain-type Price Index PCEPI Y Y Y Y
PCE: Durable goods DDURRG3M086SBEA Y Y
PCE: Nondurable goods DNDGRG3M086SBEA
PCE: Services DSERRG3M086SBEA Y Y
Ave. Hourly Earnings: Goods CES0600000008 Y Y Y
Ave. Hourly Earnings: Construction CES2000000008
Ave. Hourly Earnings: Manufacturing CES3000000008
MZM Money Stock MZMSL
Consumer Motor Vehicle Loans DTCOLNVHFNM
Total Consumer Loans and Leases DTCTHFNM
Securities in Bank Credit INVEST Y
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BVAR-GFSV and JLN macro uncertainty estimates
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1960 1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
correlation =  0.771

BVAR-GFSV and LMN finance uncertainty estimates
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Figure 1: Uncertainty estimates, monthly data: posterior median (black line) and 15%/70%
quantiles (blue lines), with macro uncertainty in the top panel and financial uncertainty in
the bottom panel. The green line represents the corresponding estimates from JLN (top)
and LMN (bottom). The gray bars indicate NBER recessions.
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BVAR-GFSV and JLN macro uncertainty estimates

GFSV median (left) 15%ile 85%ile JLN (right)
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BVAR-GFSV and LMN finance uncertainty estimates
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Figure 2: Uncertainty estimates, quarterly data: posterior median (black line) and 15%/70%
quantiles (blue lines), with macro uncertainty in the top panel and financial uncertainty in
the bottom panel. The green line represents the corresponding estimates from JLN (top)
and LMN (bottom).
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Figure 3: Reduced-form volatilities, 30-variable model, monthly data: posterior median
(black line) and 15%/70% quantiles (blue lines)
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Figure 3: Continued, reduced-form volatilities, 30-variable model, monthly data: posterior
median (black line) and 15%/70% quantiles (blue lines)
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Figure 3: Continued, reduced-form volatilities, 30-variable model, monthly data: posterior
median (black line) and 15%/70% quantiles (blue lines)
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Figure 4: Impulse responses, one st. dev. shock to macro uncertainty, 30-variable model,
monthly data: posterior median (black line) and 15%/70% quantiles (blue shading)
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Figure 4: Continued, impulse responses, one st. dev. shock to macro uncertainty, 30-variable
model, monthly data: posterior median (black line) and 15%/70% quantiles (blue shading)
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Figure 5: Impulse responses, one st. dev. shock to financial uncertainty, 30-variable model,
monthly data: posterior median (black line) and 15%/70% quantiles (blue shading)
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Figure 5: Continued, impulse responses, one st. dev. shock to financial uncertainty, 30-
variable model, monthly data: posterior median (black line) and 15%/70% quantiles (blue
shading)
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Figure 6: Impulse responses, one st. dev. shock to macro uncertainty, 30-variable model,
quarterly data: posterior median (black line) and 15%/70% quantiles (blue shading)
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Figure 6: Continued, impulse responses, one st. dev. shock to macro uncertainty, 30-variable
model, quarterly data: posterior median (black line) and 15%/70% quantiles (blue shading)
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Figure 7: Impulse responses, one st. dev. shock to financial uncertainty, 30-variable model,
quarterly data: posterior median (black line) and 15%/70% quantiles (blue shading)
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Figure 7: Continued, impulse responses, one st. dev. shock to financial uncertainty, 30-
variable model, quarterly data: posterior median (black line) and 15%/70% quantiles (blue
shading)
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AR-SV macro uncertainty estimates, alternative variable combinations
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Figure 8: Uncertainty obtained from AR-SV estimates, different variable sets. The top
panel of macro measures includes averages across different variable sets indicated in Table
3. The variable set N=18 corresponds to the set of macroeconomic variables included in the
baseline model. The bottom panel of financial measures includes averages across the N=12
financial variables included in the baseline model, an alternative set of 12 variables that
drop the Fama-French factors and use a 10-industry breakdown, a set of 43 industry-level
portfolio returns, and a set of 93 industry-level portfolio returns.
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Figure 9: Impulse responses, one st. dev. shock to macro uncertainty, 30-variable model,
monthly data ending in Dec. 2007: posterior median (black line) and 15%/70% quantiles
(blue shading)
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Figure 9: Continued, impulse responses, one st. dev. shock to macro uncertainty, 30-variable
model, monthly data ending in Dec. 2007: posterior median (black line) and 15%/70%
quantiles (blue shading)
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Figure 10: Impulse responses, one st. dev. shock to financial uncertainty, 30-variable model,
monthly data ending in Dec. 2007: posterior median (black line) and 15%/70% quantiles
(blue shading)
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Figure 10: Continued, impulse responses, one st. dev. shock to financial uncertainty, 30-
variable model, monthly data ending in Dec. 2007: posterior median (black line) and
15%/70% quantiles (blue shading)
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