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1 Introduction

Beliefs are a critical feature of economic models of choice. Consider a proposition, or a statement

that is true or false. How does a population’s beliefs regarding the proposition evolve over time?

How individuals learn from the experiences of others, or social learning, is likely to be a key

mechanism determining the answer to this question.

Models of social learning typically include a learning rule and a network structure. Learn-

ing rules determine how individuals interpret the information contained in the choices of others,

and network structures determine which choices an individual observes. A wide literature stud-

ies opinion dynamics for rule of thumb learning rules, as fully Bayesian learning can require the

decision-maker to make unrealistically complex computations (Molavi et al. (2015)). A key result is

that beliefs updated by the canonical DeGroot (1974) learning rule, which updates opinions based

on weighted averages of neighbors’ opinions, converge for connected network structures (Jackson

(2008), Chapter 8).1

The empirical evidence, however, suggests that there can be persistent disagreement even on

connected networks. Individuals are exposed to many sources of information contradicting their

beliefs (Gentzkow and Shapiro (2011)), and yet we still observe persistent disagreement regard-

ing propositions like Iraq had an active WMD program, President Obama was born in the US, or

global warming is occurring. This evidence suggests that differences of opinions arise not only from

access to different information, but also from differential processing of the same information.

This paper studies how a non-degenerate distribution of beliefs can be sustained over time,

even on connected networks, when agents process the same information differently depending on

the sender. As one motivation for the differential assimilation of social information, I first present a

model that can explain the biased assimilation of private information. In the model, uncertainty is

slow to resolve, and the expected utility an agent receives from previous decisions changes with her

current beliefs about the state of the world due to pride. This backward-looking utility is consistent

with the large literature in social psychology on self-affirmation, a model in which individuals have

an objective of maintaining a positive view of themselves and their past decisions (Steele (1988),

Sherman and Cohen (2006)). If the utility gained from evaluating past decisions under false beliefs

that justify those decisions outweighs the utility gained from making future decisions under unbiased

beliefs, the agent will process private signals in a biased manner.

I then consider an agent’s optimization problem in which she must determine her beliefs about

a set of propositions subject to scarce private information. Taken as exogenous are the agent’s

weight on her prior, the private signals she observes (including the weights she attaches to them),

and the social signals to which she is exposed (ie, the network structure). The agent’s endogenous

decision is how to interpret and then weight the social signals of others in her network, knowing

that some agents may process or report their information in a biased way.2 The agent in the model

extrapolates “scientifically,” interpreting signals based on the sender’s past performance on their

1Time to convergence, however, is not invariant to the network structure (Golub and Jackson (2012)).
2The agent is not allowed to coarsen the sets of propositions over which she determines her beliefs.
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common observation set, and placing more weight on her interpretation of signals from sources for

which she has more evidence.

The possibility of biased assimilation or strategic revelation is sufficient for agents to process

social signals differently depending on the sender. The solution to the agent’s problem is then

a heterogeneous confidence learning rule that is distinct from bounded confidence learning rules

in that the agent may actually move her beliefs away from, and not only discard, signals from

untrustworthy senders. I present simulations showing that the learning rule solving the agent’s

problem can generate persistent disagreement and polarization for a connected network even when

all individuals process their private signals in an unbiased way and truthfully reveal their beliefs.

The level of distrust individuals have in the signals they receive from others in the network is

shown to be a key parameter in determining whether a distribution of beliefs will ultimately reach

a consensus.

Generalizing the DeGroot rule in a way that delivers persistent or even increasing disagree-

ment over time has been the goal of a large literature (Acemoglu and Ozdaglar (2011)). Lorenz

(2005) demonstrates that models of bounded confidence, in which individuals only weight sig-

nals close to their own, can generate a distribution of opinions for certain network structures.3

Dandekar et al. (2013) show, however, that convergence still obtains on connected networks for

many existing generalizations of DeGroot in the absence of biased assimilation. Biased assimila-

tion can also be motivated by its widespread empirical documentation (See Sherman and Cohen

(2006) or Kandel and Pearson (1995).), although it should be stressed that the results in this paper

can be generated in the absence of biased assimilation through strategic revelation of information.

The dimensionality of the learning problem is central to the model in this paper, if slightly

different in nature from the related issues studied in Al-Najjar (2009) and DeMarzo et al. (2003).

Solving the analogue to the agent’s problem might be thought of as an alternative when case-based

or coarse decision making is not sufficient for the agent’s purposes (Gilboa and Schmeidler (2001),

Mohlin (2014), Al-Najjar and Pai (2014)). The models in this paper are also related to Fryer et al.

(2013)’s theory of biased assimilation when an agent must (coarsely) categorize ambiguous signals,

as well as Jadbabaie et al. (2012)’s generalization of DeGroot to allow for the arrival of new private

information over time.

The paper is organized as follows: Section 2 presents an economic model of biased assimilation.

This model is then used to motivate key features of an agent’s maximization problem subject to

scarce information developed in Section 3. Section 4 presents simulation results, and Section 5

concludes. The Appendices work out some simple special cases of the model and discuss their

relation to previous literature.

3Hegselmann and Krause (2002) developed the original bounded confidence model; a recent version closer to the
model in this paper is in Sotiropoulos et al. (2015).

3



2 A Model of Biased Assimilation

2.1 Backward-Looking Utility with Pride and Slow-to-Resolve Uncertainty

Suppose there are two states of the world, s ∈ {0, 1}, and a decision-maker has beliefs at time t,

λt ∈ {0, 1}. Given a signal σ ∈ {0, 1} that is informative about the true state of the world (in the

sense that Pr(s = 1|σt = 1) > 0.5 and Pr(s = 0|σt = 0) > 0.5), a decision-maker forms beliefs as

λti = fi(σt). Why would two decision-makers i and j process the same signal differently and reach

different beliefs λti 6= λtj? In other words, what could justify decision-makers i and j choosing

fi 6= fj?

The following model can generate such biased assimilation of new information. Assume that

there is a decision between one of two choices, d ∈ {0, 1}, and suppose there are two time periods,

t ∈ {1, 2}. The decision-maker forms beliefs in the first sub-period, and makes choices based on her

beliefs using expected utility where utility is a function of decisions and states of the world, u(d, s).

Expected utility given beliefs is defined as

U(d, λ1) = Eλ1
[u(d, s)] =

∑

s∈{0,1}

λsu(d, s)

= λ1u(d, 1) + (1− λ1)u(d, 0)

In the first sub-period, the agent chooses beliefs λ1, knowing that if uncertainty is resolved, the

realized value of those beliefs in the second sub-period will be:

V (λ1) = su(d⋆1, 1) + (1− s)u(d⋆1, 0)

where

d⋆1 = max
d1

U(d1, λ1) = max
d1

[λ1u(d1, 1) + (1− λ1)u(d1, 0)] .

The realized value of correct beliefs will be:

V (λ1|λ1 = s) = su(d∗1, 1) + (1 − s)u(d∗1, 0)

where

d∗1 = max
d1

U(d1, λ1 = s) = max
d1

[su(d1, 1) + (1− s)u(d1, 0)] .

Note that V (λ1|λ1 = s) ≥ V (λ1), and so there is an incentive for beliefs to be correct. At the very

least, λ1 is constrained so that d⋆1 = d∗1. Formally, λ∗
1 = s always solves the problem

λ∗
1 =max

λ1

V (λ1) (1)

s.t. λ1 ∈ {0, 1}. (2)

Given an informative signal σ1 about the true state s, the decision-maker will process the
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information in an unbiased way. Formally, if f+(σt) = σt, f−(σt) = 1 − σt, fT (σt) = 1, and

fF (σt) = 0, then f+ will solve

f∗
1 = max

f1∈{f+,f−,fT ,fF }
V (λ1)

s.t. λ1 = f1(σ1).

Moving on to period 2, suppose that the uncertainty about s has unexpectedly not resolved,

and so the decision maker must make the same decision again. We assume that the decision maker

will now get utility in period 2 from current beliefs based on her past decisions, as well as expected

future utility from decisions based on those beliefs:

V (λ2, d1) = α

(
[λ2u(d1, 1) + (1− λ2)u(d1, 0)]

)
+ β [su(d⋆2, 1) + (1− s)u(d⋆2, 0)] . (3)

This backward-looking utility is consistent with the large literature in social psychology on self-

affirmation, a model in which individuals have an objective of maintaining a positive view of

themselves and their past actions (Steele (1988), Sherman and Cohen (2006)).

Note that in the first sub-period of period 2, it is now possible for V (λ2, d1|λ2 = s) < V (λ2, d1) or

V (λ2, d1|λ2 = s) ≥ V (λ2, d1), whereas in period 1 it was always the case that V (λ1|λ1 = s) ≥ V (λ1).

The key is that this inequality now depends on the decision-maker’s past action d1, her level of

“pride” or “ideology” as expressed by α, and the potential loss in period 2 utility from choosing

d2 incorrectly. Thus, depending on the previous signals they received, and the resulting differences

in their choice of d1, two decision makers could have an incentive to process the information in σ2

differently, or to choose different f∗
2 to solve:

f∗
2 = max

f2∈{f+,f−,fT ,fF }
V (λ2, d1)

s.t. λ2 = f2(σ2).

2.1.1 Example: Weapons of Mass Destruction and the Invasion of Iraq

Consider an example in which the states of the world are s = 1 if Saddam Hussein has/had an

active program to produce Weapons of Mass Destruction (WMD) as of March 2003 - or s = 0 if

he does/did not. The related decision would be d = 1 to invade/occupy Iraq - or d = 0 not to.

Suppose that a decision was already made to invade Iraq in March of 2003, and so that considering

the problem of signal processing at some later date can be interpreted as period 2 in the model.

Given the decision to invade, getting it right would have had a very high payoff u(d1 = 1, s =

1) = 1, but getting it wrong would have had a very low payoff u(d1 = 1, s = 0) = −1. Similarly,

given the decision not to invade, getting it right would have had a very high payoff u(d1 = 0, s =

0) = 1, but getting it wrong would also have had a very low payoff u(d1 = 0, s = 1) = −1.

Suppose that the utility for period 2’s decision to continue to occupy Iraq does not depend on
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the state s, or that u(d2, 1) ≈ u(d2, 0). Then recalling Equation 3, the processing of period 2’s

signal would depend heavily on the past decision to invade or not invade:

V (λ2, d1) = α

(
[λ2u(d1, 1) + (1− λ2)u(d1, 0)]

)
+ β [su(d⋆2, 1) + (1− s)u(d⋆2, 0)]

≈ α

(
[λ2u(d1, 1) + (1− λ2)u(d1, 0)]

)
.

Those who had advocated for invasion would now choose f∗
2 = fT , and those who had advocated

against the invasion would now choose f∗
2 = fF . What could align incentives for unbiased processing

of informative signals (f∗
2 = f+), even given decision-makers with different past actions, would be

if the decision-makers either were not too “proud” or “ideological” (ie, α ≈ 0), if the stakes from

biased assimilation in terms of foregone utility were too high (ie, u(d∗2, s) >> u(d⋆2, s)), or some

combination of the two.

This theory matches empirical observations well. There was contentious disagreement about

whether Saddam Hussein had an active WMD program prior to the US-led invasion of Iraq in

March 2003. Over a decade later, 42 percent of Americans believed that US forces found an active

WMD program in Iraq after the invasion. Furthermore, such sustained “uncertainty” about the

state of the world matters not only for current and future decisions, but also for our evaluation of

past decisions. Most Americans’ opinion about the decision to invade Iraq depends on whether it

had an active WMD program.

One can imagine many additional scenarios in which the psychic costs of evaluating past actions

in light of the true state are too high relative to the payoffs from biased assimilation.

3 A Model of Social Learning

3.1 The Agent’s Problem and Its Analogue

Now suppose there is a network of J + 1 individuals. We focus on the way agent i processes

information received from the J other individuals in the network. For a set of K statements, the

agent considers the truth value of the simple proposition pk ∈ {0, 1} for k = 1, . . . ,K = card(K).4

At time t agent i has beliefs λk
it = Pr(pk = 1), receives her own private signal σk

it ∈ [0, 1] of relative

strength θkit ∈ [0, 1], and interprets the signal as

σ̂k
it = fk

i (σ
k
it) ∈ [0, 1].

Ideally, the agent would have experience with respect to every proposition pk ∈ K, so that all beliefs

would be based on information processed according to her rule fk
i . In this case, she would receive

an ideal stream of information {σk∗
it }

T
t=1 with informative signals θk∗it = 1 for all t and for all pk ∈ K.

4Simple means that pk cannot be generated as a compound proposition from pm and pn in K.
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If she gave δt weight to her prior beliefs, she would arrive at λk∗
iT+1

after updating according to

λk∗
it+1 = (1− δt)λ

k
it + δtθ

k∗
it σ̂

k∗
it

= (1− δt)λ
k
it + δtσ̂

k∗
it . (4)

While general δt might be of interest in non-stationary environments, by setting δt = 1/t, λk∗
it is

just the average of agent i’s signals. Assuming the σk∗
it are iid draws, and fk

i is continuous, the

uniform law of large numbers ensures that λk∗
it converges in probability. We can think of λk∗

iT+1

as the agent’s truth, and note that a distribution of fk
i could be generated by a model of biased

assimilation like the one presented in Section 2, strategic revelation of information, or simply due

to adopting different axioms.5

The agent’s objective is to approximate λk∗
iT+1

subject to the constraint that she does not have

access to an ideal stream of information. That is, the sequence of private signals {σk
it}

T
t=1 observed

by the agent has exogenous quality {θkit}
T
t=1, with θkit < 1 for at least one t ∈ {1, . . . , T}. It is

possible that no private signals will be observed for some propositions, making θkit = 0 for some k.

Relevant for her objective, the agent also observes the set of signals reported by others in some

set J k with cardinality Jk, where

σk
jt = fk

j (σ
k
jt) ∈ [0, 1] for j ∈ J k and j 6= i.

Note that whereas fk
i is just about processing, fk

j is about both processing and truthful revelation.

Throughout the analysis σ̂ will denote a signal interpreted by agent i, σ will denote a signal

interpreted and reported (possibly strategically or mistakenly) by individual j, and σi or σj will

denote the true signals. We restrict belief processing fk : [0, 1] → [0, 1] to be in

{
fk(σk) = mkσk + bk

∣∣∣∣ (mk, bk) ∈ [0, 1]2 and mk = (1− bk) if bk ∈ (0, 1]

}

The agent engages in social learning by choosing how to interpret and weight others’ reported

signals. The interpretation agent i gives to j’s reported signal is denoted by

σ̂k
jt = gjt(σ

k
jt, · )

and the weight she places on this information is denoted by θkjt ∈ R. Note here that the domain of

gjt is also considered to be a choice when specifying the function. The agent updates her prior as

λk
it+1 = (1− δt)λ

k
it + δt


θkitσ̂k

it +
∑

j∈J k

θkjtσ̂
k
jt


 . (5)

5For example, fk
i might capture whether the agent accepts or rejects Euclid’s Fifth Postulate, and therefore

whether she interprets information in terms of Euclidean or non-Euclidean geometry, and the associated representa-
tions of physical space.
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Suppose that the weight the agent places on her prior is exogenous, as is the stream of private

and social signals. However, only the weight she attaches to the private signals is exogenous, and

her problem is to determine how to interpret and weight the social signals she receives. Given the

loss function L, the agent chooses the functions gjt and the endogenous weights θkjt to solve the

problem

min
{gjt}

T,J
t=1,j=1

, {θ1jt,...,θ
K
jt}

T

t=1,j∈Jk

K∑

k=1

L
(
λk∗
iT+1 − λk

iT+1

)

s.t. {fk
i }

K
k=1

{θkit, σ
k
it}

T
t=1 for k = 1, . . . ,K

{λk
jt, σ

k
jt}

T
t=1 for k = 1, . . . ,K and j ∈ J k

{δt}
T
t=1 = 1

t
for t = 1, . . . , T

θkit +
∑

j∈J k

θkjt = 1 for k = 1, . . . ,K and t = 1, . . . , T.

Alternatively, Equations 4 and 5 can be combined to state the agent’s problem recursively:

min
{gj}Jj=1

, {θ1j ,...,θ
K
j }

j∈Jk

K∑

k=1

L


σ̂k∗

i −


θki σ̂k

i +
∑

j∈J k

θkj gj(·)




 (6)

s.t. {fk
i }

K
k=1

X

θki +
∑

j∈J k

θkj = 1 for k = 1, . . . ,K

where the private and social information sets available to the agent at a given point in time are

defined as

Xi ≡

{(
λ1
i , . . . , λ

K
i

)
,
(
θ1i , . . . , θ

K
i

)
,
(
σ1
i , . . . , σ

K
i

)}
,

Xj ≡

{
{λ1

j , σ
1
j}j∈J 1 , . . . , {λK

j , σK
j }j∈JK

}
,

andX = {Xi,Xj}. Because the ideal information stream {θk∗it , σ
k∗
it }

T
t=1 is not observed by the agent,

she does not know σ̂k∗
it , and so (6) does not represent a well-posed problem. For a given model

m generating predictions sk∗it of σ̂k∗
it based on X, the following analogue to the agent’s problem is
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well-posed:

min
{gj}Jj=1

, {θ1j ,...,θ
K
j }

j∈Jk

K∑

k=1

L


sk∗i −


θki σ̂k

i +
∑

j∈J k

θkj gj(·)




 (7)

s.t. {fk
i }

K
k=1

X

θki +
∑

j∈J k

θkj = 1 for k = 1, . . . ,K

sk∗i = m(X).

If we restrict the model to the functional form

sk∗i = m(X) = θkit σ̂
k
i +

∑

j∈J k

wk
j (X)skj (X),

then the function skj (X) can be interpreted as the agent’s prediction of σ̂k∗
i based on source j’s

reported signal and X, and the weighting function wk
j (X) can be considered the relative confidence

in that prediction.

Assuming that the agent must make a decision based upon a choice of λk∗
T+1

, her options are

to set λk∗
T+1

either arbitrarily, using only her private information, using information other than the

social signals she has received, or by solving her problem’s analogue for a given model (7).6 λk∗
T+1

might be chosen to minimize an expected or maximum loss function over a set of models (Manski

(2011)), but here we focus on the first step of solving the analogue problem for one model. It

is worth noting that combining a model with observations to construct unobserved quantities is

a method used in causal inference to overcome the fundamental problem of evaluation (Holland

(1986)), and is at the heart of the problem of induction (Aliprantis (2015)).

3.2 Using the Agent’s Model to Interpret Signals

Since she does not observe fk
j , the agent must interpret signals by extrapolating from the signals

that are both privately and socially observed. For this reason, the interpretation functions gj have

a domain that is not simply the domain of the social signals σj (ie, [0,1]), but rather also include

the information inferred to be in the sender’s signal, as well as the agent’s current signal and prior

beliefs. Let Ki ⊆ K be the set of propositions with private signals at the given time period (ie,

θki ∈ (0, 1]), so that the agent does not receive private signals about propositions pm ∈ K \ Ki.

Define Kj ⊆ K to be the set of propositions for which the agent has observed j’s processed signal

6If the agent could make her decision based upon her choice of λm∗
T+1 for some pm 6= pk for which she had better

information, she could restrict her learning to a set of propositions not including pk and therefore coarser than K

(See Al-Najjar (2009), Mohlin (2014), or Al-Najjar and Pai (2014) for related discussions.). The assumption here is
that the agent must make a decision based on λk∗

T+1, and she must do so with the information she has, and not the
information she might want or wish she had.
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and prior (assuming priors and signals are always observed together), and Kij = Ki

⋂
Kj .

Define the average disagreement over Kij , the shared set of propositions between the agent and

sender j, as

△ij =

∑
k∈Kij

θ
k

i

∣∣λk
i − λk

j

∣∣
|Kij |

, (8)

where θ
k

i is the average signal quality the agent has received about proposition pk up to period t.

Note that the information about pm ∈ Kj is defined entirely over the space of propositions in Kij

(See Figure 1 below.).

K

Ki

K1

K2 K3

b

pm /∈ Ki

Agent i’s Privately Observed Propositions and Social

Signals from Senders j ∈ {1, 2, 3} where pm /∈ Ki

and |Ki2| > |Ki1| > |Ki3|

Figure 1: The Set of Propositions K

The inductive assumption made by the agent is that △ij is informative for
∣∣∣σ̂k∗

i − σk
j

∣∣∣. Specif-
ically, the agent extrapolates by assessing the credibility of sender j’s signal, using the observed

disagreement over their common information under the following assumptions:

Interpretation 1:

∣∣∣σ̂k∗
i − σk

j

∣∣∣ is increasing in △ij

Interpretation 2: △ij = 0 =⇒
∣∣∣σ̂k∗

i − σk
j

∣∣∣ = 0

Interpretation 3: △ij = 1 =⇒




σ̂k∗
i < λk

i if σk
j ≥ λk

i ;

σ̂k∗
i > λk

i if σk
j < λk

i .

The agent’s model predicts the value of σk∗
i based on source j’s signal and the other information

available to the agent using the function:

mj : [0, 1]
3 −→ [0, 1]
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defined by

skj = sj(σ
k
j ,△ij , λ

k
i ).

To summarize Interpretation 2, if the agent is in perfect agreement with the sender over their

common information set, then the agent will interpret their signal as being reliable irregardless of

her beliefs:

skj = mj(σ
k
j , 0, λ

k
i ) = σk

j .

Interpretation 3 pertains to the other extreme in which the agent is in perfect disagreement with

the sender. In this case, she will actually move away from the sender’s signal:

σk
jσ
k
j

λk
i

skj

λk
i

σk
j ≥ λk

i

σk
j

λk
i

skj

λk
i

σk
j < λk

i

Figure 2: Interpretation under Perfect Disagreement

3.3 Using the Quantity of Empirical Evidence to Weight Interpreted Signals

Given a signal from sender j that has been interpreted, skjt, how much weight does the agent

attach to it? In other words, how confident is the agent that she has accurately interpreted the

information in sender j’s signal? In this context, an inductive assumption could be stated that as

the evidence on a sender increases, so does the relative confidence in their signal:

Confidence 1:

wk
j is increasing in

|Kij |∑
q∈J k |Kiq|

11



3.4 Solving the Analogue to the Agent’s Problem

Given the agent’s model defined by wk
j (X) and skj (X), the solution to the analogue to the

agent’s problem:

min
{gj}Jj=1

, {θ1j ,...,θ
K
j }

j∈Jk

K∑

k=1

L


sk∗i −


θki σ̂k

i +
∑

j∈J k

θkj gj(·)




 (9)

s.t. {fk
i }

K
k=1

X

θki +
∑

j∈J k

θkj = 1 for k = 1, . . . ,K

sk∗i = θkit σ̂
k
i +

∑

j∈J k

wk
j (X)skj (X)

is just

θkj (X) = wk
j (X)

gkj (X) = skj (X).

4 Simulations

For the sake of a concrete example, I now show some simulation results for particular specifi-

cations of the agent’s problem. I start by assuming that there is no strategic behavior on the part

of agents; they all truthfully their beliefs. Furthermore, all agents process their own signal in an

unbiased manner.

I use the continuous interpretation function satisfying Interpretation 1-3 defined by

skj = sj(σ
k
j ,△ij , λ

k
i ) = max

{
min

{
σk
j − 2△

γ

ij(σ
k
j − λk

i ) , 1
}

, 0

}
. (10)

Recall that average disagreement △ij ∈ [0, 1]. If disagreement is low (△ij ≈ 0), skj pulls λk
i towards

σk
j . On the other hand, if disagreement is high (△ij ≈ 1), skj pushes λk

i away from σk
j . The strength

of the attraction and repulsion depends on the distrust agent i has towards others, as set in the

parameter γ ∈ (0,∞).

Finally, I use the weighting function satisfying Confidence 1 defined by:

wk
j (X) =

|Kij |∑
q∈J k |Kiq|

(1− θki ). (11)

12



4.1 2-Agent Network with 1 Proposition

I begin with a very simple scenario: There are N = 2 agents in the network, and they must

each determine the truth value of 1 proposition.

In the first column of Figure 3, I consider a scenario in which Agent 1 initially has beliefs

tending toward false (λ11 = 0.4) and Agent 2 has initial beliefs tending toward true (λ21 = 0.6).

Furthermore, in this first column, I assume that the agents have low levels of trust in the other

agent’s processing or truthful revelation of information (γ = 0.1), and that the sequence of private

signals {σti}
100
t=1 is constant for all time periods. Finally, I assume that the quality of private signals

is also constant throughout all time periods, and that it is low (θt1 = θt2 = 0.1 for all t).

Figure 3a shows that in such a scenario, a constant stream of private signals equal to σti = 0.5

results in polarization, or increasing disagreement over time. Whereas the agents begin at 0.4 and

0.6, within 10 periods they have moved apart, and by 100 periods they are approximately 0.3 and

0.7. Now if the constant stream of private signals is σti = 0.6, the agents will move to similarly

polarized beliefs (Figure 3c). The social learning mechanism still has an influence on beliefs, even

when the private signals are constant at σti = 0.8 and σti = 1.0 (Figures 3e and 3g).

In the second column of Figure 3, I consider a scenario in which Agent 1 initially has strong

beliefs that the proposition is false (λ11 = 0.0) and Agent 2 has strong initial beliefs that the

proposition is true (λ21 = 1.0). I fix the sequence of private signals to be constant at 0.5, and vary

the trust parameter γ. At low levels of trust (γ = 0.2), the agents barely move toward their private

signals of 0.5. The remainder of the second column shows that as the level of trust increases, agents

move closer and closer to their sequence of private signals 0.5.

4.2 2,000-Agent Network with 2 Propositions

Now suppose that we complicate the scenario, allowing for a network of N = 2, 000 in which

each individual must determine beliefs for K = 2 propositions. I construct the initial distribution

of beliefs as

x ∼N
([

−0.50

0.50

]
,

[
1 1

1 1

])
, (12)

where agents’ initial beliefs are constructed using standard normal CDF applied to each vector:

λk
it=1 = Φ(xki ).

Figures 4-6 show belief dynamics for this initial distribution of beliefs when the quality of private

signals decreases, trust is low γ = 0.1, and the sequence of private signals is always constant at

σti = 0.5,. Assuming agents always have the same quality signal throughout time so that θti = θi for

all t, these Figures show the dynamics of beliefs when θi ∼ U [0, 1], θi ∼ U [0, 0.5], and θi ∼ U [0, 0.1].

The lower the quality of private signals, the quicker and the stronger is the polarization of beliefs.

Figures 7 and 8 illustrate the social learning mechanism by comparing what would happen under

the intermediate level of private signal quality (θi ∼ U [0, 0.5]) when beliefs about proposition 2 are

13



fixed. We see that a fixed distribution of beliefs regarding p2 can generate polarization with respect

to p1.
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Figure 3: Belief Dynamics when N = 2 and K = 1
for Various Levels of Trust γ and Private Signals σti
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Figure 7: Medium-Quality Private Signals: θi ∼ U [0, 0.5] with Updating of λ2
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5 Conclusion

This paper has made two contributions to the literature on social learning with rule of thumb

updating rules. First, I have presented a model of biased assimilation. I have shown that when

uncertainty is slow to resolve, backward-looking utility consistent with self-affirmation theory can

lead to biases in an agent’s processing of information about the state of the world.

This model of biased assimilation motivates key features of the second contribution of the paper,

a rule of thumb updating rule generalizing the DeGroot updating rule. The updating rule is the

solution to an agent’s optimization problem in which she must determine her beliefs about a set

of propositions subject to scarce private information. The possibility of either biased assimilation

or strategic revelation is sufficient for agents to process social signals differently depending on the

sender. This results in a heterogeneous confidence learning rule that is distinct from bounded

confidence learning rules in that the agent may actually move her beliefs away from, and not only

discard, signals from untrustworthy senders. This learning rule can generate both persistent dis-

agreement and polarization for a connected network in which all individuals process and report their

private signals in an unbiased way and extrapolate using social signals “scientifically,” interpreting

signals based on the sender’s past performance on their common observation set, and placing more

weight on her interpretation of signals from sources for which she has more evidence.
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A Appendix: Analytic Results for Special Cases

We now consider the agent’s behavior in tractable, special cases. We begin with the baseline

case of one agent and one sender (for a total network size of N = J + 1 = 2) and one proposition.

We then consider how the agent’s optimizing behavior changes when there is still a network size

of N = 2, but more propositions (K > 1). And we finish by considering how the agent’s behavior

changes when there is still only one proposition (K = 1), but the network has more than just two

individuals (N > 2).

This exercise illustrates that changes in agent i’s interpretation of sender j’s signal about any

given proposition can arise from growing or shrinking the entire space propositions. Similarly,

changes in the relative weights agent i gives to sender j’s signals once interpreted can be attributed

to changes in the size of the network. The basic idea is that information about more propositions

allows the agent to better interpret the sender’s signal relative to their ideal (ie, to determine the

degree of disagreement the two individuals tend to have), and that more individuals allow the

agent to better assess the relative reliability of their interpretation(s). Algebraically, comparing

Equations 13 and 16, we can see that adding more propositions increases the information available to

determine the average disagreement with a given sender (holding fixed the network structure). And

comparing Equations 15 and 21, we can see that adding more individuals to the network increases

the information available to determine the relative weight given to a given sender (holding fixed

the space of propositions).

A.1 Baseline Case: N = 2 and K = 1

Recall that K = card(K) is the size of the space of propositions, and J is the number of

individuals sending signals to the agent. Thus when J = 1 there are N = J + 1 = 2 individuals

in the network. From individual 1’s perspective as the agent, and assuming there is always some

public information, at a given t we have that

△12 = θ
1

1

∣∣λ1
1 − λ1

2

∣∣. (13)

Furthermore, agent 1 interprets sender 2’s signal about proposition 1 as

s12 = max

{
min

{
σ1
2 − 2△

γ

12(σ
1
2 − λ1

1) , 1
}

, 0

}
(14)

and weights that interpretation by

w1
2 = 1− θ11. (15)
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A.2 More Propositions: N = 2 and K ∈ N

Consider the case in which there are still N = J +1 = 2 individuals in the network, but K ∈ N

propositions over which they determine their disagreement. From individual 1’s perspective as the

agent, and assuming there is always some public information, at a given t we have that

△12 =

∑
k∈K12

θ
k

1

∣∣λk
1 − λk

2

∣∣
|K12|

, (16)

As before, agent 1 interprets sender 2’s signal about proposition k as

sk2 = max

{
min

{
σk
2 − 2△

γ

12(σ
k
2 − λk

1) , 1
}

, 0

}
(17)

and weights that interpretation by

wk
2 = 1− θk1 . (18)

What has changed here is the calculation of disagreement in Equation 16 relative to the baseline

calculation in Equation 13.

A.3 Larger Network: N ∈ N and K = 1

Consider the case in which there are N = J +1 individuals in the network for J ∈ N, but again

only one proposition with which the agent can calculate disagreement with each sender. From

individual 1’s perspective as the agent, and assuming there is always some public information, at

a given t we have that average disagreement for each sender j is

△1j = θ
1

1

∣∣λ1
1 − λ1

j

∣∣. (19)

Analogously to the K = 1 and J = 1 case, agent 1 interprets sender j’s signal about the only

proposition p1 as

s1j = max

{
min

{
σ1
j − 2△

γ

1j(σ
1
j − λ1

1) , 1
}

, 0

}
. (20)

What has changed relative to the baseline case in Equation 15 is that now for each sender j, the

agent (i = 1) weights their interpretation of j’s signal about the sole proposition p1 by

w1
j =

|K1j |∑
q∈J 1 |K1q|

(1 − θ11). (21)
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B Appendix: Relationship to the Literature

B.1 Al-Najjar (2009)

Al-Najjar (2009) uses Vapnik and Chervonenkis (1971) theory to describe how information

scarcity helps to determine the set of uniformly learnable propositions. Note that information

scarcity is the constraint faced by the agent in the model in this paper, but she cannot avoid

determining beliefs about pk, and so she is forced to break the impasse by solving her problem’s

analogue.

Let Ak be the event that pk = 1 and AC
k be the event that pk = 0. This paper is focused on

how an agent determines her beliefs for the elements of {A1, . . . , AK}, rather than the algebra A

generated by {A1, . . . , AK}. Since many different probability measures assigning the same proba-

bility to each Ak could be used to assign probability to elements of A, in this sense the problem

studied in Al-Najjar (2009) is more difficult than the one studied here.

B.2 Andreoni and Mylovanov (2012)

The special case where K ∈ N and J = 1 is related to the model in Andreoni and Mylovanov

(2012) when we consider compound propositions comprising simpler propositions in K (ie, assigning

a measure to elements of A). For example, suppose that there are two simple propositions in K,

p1 and p2, and let A1 be the event that p1 = 1, and A2 be the event that p2 = 1. Both individuals

receive an idiosyncratic private signal about the truth value of p1, and while both agents receive a

private signal about p2, it is the same (ie, σ2
i=1

= σ2
i=2

). Determining the realization of the state of

nature θ = (α, β) in Andreoni and Mylovanov (2012)’s model is equivalent to determining beliefs

about the truth value of the compound proposition

(p1 ∧ p2) ∨ (∼ p1∧ ∼ p2),

or the probability measure of the event

B = (A1 ∩A2) ∪ (AC
1 ∩AC

2 ).

In other words,

λ

(
(p1 ∧ p2) ∨ (∼ p1∧ ∼ p2)

)
= µ

(
(A1 ∩A2) ∪ (AC

1 ∩AC
2 )

)

= 1− µ(A1)− µ(A2)− µ(A1 ∩A2).

The insight from Andreoni and Mylovanov (2012) is that private information about one of the

simple propositions can lead to disagreement about a compound proposition even when the agents

receive the same information about the other simple proposition. The focus in this paper has been

on learning about the simple propositions {A1, . . . , AK}.

21


	Introduction
	A Model of Biased Assimilation
	Backward-Looking Utility with Pride and Slow-to-Resolve Uncertainty
	Example: Weapons of Mass Destruction and the Invasion of Iraq


	A Model of Social Learning
	The Agent's Problem and Its Analogue
	Using the Agent's Model to Interpret Signals
	Using the Quantity of Empirical Evidence to Weight Interpreted Signals
	Solving the Analogue to the Agent's Problem

	Simulations
	2-Agent Network with 1 Proposition
	2,000-Agent Network with 2 Propositions

	Conclusion
	Appendix: Analytic Results for Special Cases
	Baseline Case: N=2 and K = 1
	More Propositions: N=2 and K N
	Larger Network: N N and K = 1

	Appendix: Relationship to the Literature
	alNajjar2
	Andreoni


