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The recent financial crisis has spawned a great deal of interest in financial regulation generally 

and macro-prudential policy more specifically.  Much of the focus has been on the efficacy of lender-

based restrictions such as countercyclical bank capital requirements, a prominent issue in the Dodd-Frank 

legislation.  There is an interesting complementary question left largely unexamined:  is there a role for 

cyclical borrower-based credit standards? For example, Claessens (2014) provides evidence that 

restrictions on loan-to-value (LTV) ratios are one of the most commonly used macro-prudential tools in 

emerging markets and developed countries.   

Any theory of regulation begins with an assessment of market imperfections that would motivate 

government action.  Such an assessment requires the use of a model.  To examine the cyclical nature of 

credit policies we need a model where these frictions also feed into the macro-economy.  We use the 

financial accelerator model of Bernanke, Gertler, and Gilchrist (1999), hereafter BGG, because it is 

widely used as a convenient mechanism for integrating financial factors into DSGE models, and the 

agency friction in BGG arises from private information on the borrower side.    

A principal result of the analysis is that there is a pecuniary externality present in the BGG 

model.1  Individual agents do not internalize the effect their actions have on the price of capital, and this 

price has a first order effect on welfare.  The pecuniary externality arises because the price of capital 

determines the borrower’s net worth, and thus their ability to finance activity.  This is a familiar source of 

pecuniary externalities in models with borrowing constraints, eg., Bianchi (2012) and Jeanne and Korinek 

(2012).  One novelty in the present analysis is that the asset price also affects the allocation of 

consumption between borrowers and lenders.  Since the marginal consumption utilities of these two 

                                                           
1 “A pecuniary externality is an externality that operates through prices rather than through real resource effects….  
Under complete markets pecuniary externalities offset each other….However, when markets are incomplete or 
constrained, then pecuniary externalities are relevant for Pareto efficiency… [as] the welfare effects of a price 
movement on consumers and producers do not generally offset each other…. When some agents are subject 
to financial constraints, then changes in their net worth or collateral that result from pecuniary externalities may 
have first order welfare implications….This is an important welfare-theoretic justification for macroprudential 
regulation..” Wikipedia, 2015. 

 

https://en.wikipedia.org/wiki/Externality
https://en.wikipedia.org/wiki/Complete_market
https://en.wikipedia.org/w/index.php?title=Financial_constraints&action=edit&redlink=1
https://en.wikipedia.org/wiki/Macroprudential_regulation
https://en.wikipedia.org/wiki/Macroprudential_regulation
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agents are typically different, this allocation effect has a first order effect on welfare.  Consequently, the 

competitive equilibrium price of capital is sub-optimal from the planner’s perspective.  This is true for 

both the steady state asset price and the dynamic behavior of capital prices in the wake of business cycle 

shocks.    

There are many ways to decentralize the planner’s choices.  Motivated by the literature on macro-

prudential regulation, we consider taxes (or subsidies) on leveraged-lending.  The leveraged-lending tax is 

a tax levied on lending, but where the tax rate is proportional to the degree of borrower leverage, i.e., the 

LTV ratio.  We find that the efficacy of such a tax depends upon the underlying financial contract.  

Carlstrom, Fuerst and Paustian (2015), hereafter CFP, show that the financial contract imposed by BGG 

is not the privately optimal contract implied by the model.  Instead, the privately optimal contract (POC) 

is a debt contract with equity-like features in which the promised repayment varies with observable macro 

variables.  We consider both the BGG and POC contracts in the analysis below.  For the case of the BGG 

contract, we find that there are significant welfare gains to a macro-prudential policy in which the lending 

tax is strongly pro-cyclical. In contrast, for the case of the POC contract, the contract is already indexed to 

macro variables so there is little role for cyclicality of the tax.   

The paper proceeds as follows.  The next section outlines the competitive equilibrium of the 

model for both the POC and BGG contracts. Section II introduces the planner and focuses on the 

pecuniary externality.  Section III shows how to decentralize the planner’s allocation.  The quantitative 

analysis, including welfare implications, is carried out in Section IV.  Concluding comments are provided 

in Section V. 

 

I. The Model. 
A. Households   

The typical household consumes the final good Ct and sells labor input Lt to the firm at real wage 

wt.  Preferences are given by  
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 𝑈(𝐶𝑡,𝐿𝑡) ≡  𝐶𝑡
1−𝜎

1−𝜎
− 𝐵 𝐿𝑡

1+𝜂

1+𝜂
.         

The household budget constraint is given by 

 𝐶𝑡 + 𝐷𝑡 ≤ 𝑤𝑡𝐿𝑡 + 𝑅𝑡𝑑𝐷𝑡−1 + Π𝑡 

The household chooses the level of deposits 𝐷𝑡 which are then used by the lender to fund the capitalists 

(more details below).  As developed below, the lender’s return on its portfolio of loans is realized at time-

t, and this return is passed on one-for-one to the depositors.  Hence, the gross real return on time t-1 

deposits (𝑅𝑡𝑑) is realized at time-t is conditional on aggregate shocks.2  The household owns shares in the 

final goods firms, capital-producing firms, and the lender.  Only the capital-producing firms will generate 

profits (Π𝑡) in equilibrium.  The household’s optimization conditions are given by: 

 −𝑈𝐿(𝑡)/𝑈𝑐(𝑡) = 𝑤𝑡         (1) 

 1 = 𝐸𝑡𝑀𝑡+1𝑅𝑡+1𝑑            (2) 

where 𝑀𝑡+1 ≡ 𝛽 𝑈′(𝑐𝑡+1)
𝑈′(𝑐𝑡)

, which is the pricing kernel. 

B. Final goods firms 

Final goods are produced by competitive firms who hire labor and rent capital in competitive 

factor markets at real wage 𝑤𝑡 and rental rate 𝑟𝑡. The production function is Cobb-Douglass where 𝐴𝑡 is 

the random level of total factor productivity: 

𝑌𝑡 = 𝐴𝑡�𝐾𝑡
𝑓�

𝛼
(𝐿𝑡)1−𝛼         (3) 

                                                           
2 This is isomorphic to assuming that the deposit rate is pre-determined, and the dividend flow from the lenders is 
conditional on aggregate shocks.   
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The realization of total factor productivity is publicly observed at the beginning of time-t.  The variable 

𝐾𝑡
𝑓 denotes the amount of capital available for time-t production.  This is different than the amount of 

capital at the end of the previous period since some is lost because of monitoring costs. The optimization 

conditions are: 

 𝑚𝑚𝑚𝑡 = 𝑤𝑡          (4) 

 𝑚𝑚𝑚𝑡 = 𝑟𝑡          (5) 

where 𝑚𝑚𝑚𝑡 and 𝑚𝑚𝑚𝑡 denote the marginal products of labor and capital, respectively. 

C. New Capital Producers 

 The production of new capital is subject to adjustment costs.  In particular, investment firms take 

𝐼𝑡 consumption goods and transform them into 𝐼𝑡𝜗 �
𝐼𝑡
𝐼∗
�  new capital goods that are sold at price 𝑄𝑡, where 

the function 𝜗 is concave.  Variations in investment lead to variations in the price of capital, which is the 

key to the financial accelerator mechanism.   

D. Lenders 

 The representative lender accepts deposits from households and provides loans to the continuum 

of capitalists. These loans are intertemporal, with the loans made at the end of time t being paid back in 

time t+1.  Each individual loan is subject to idiosyncratic and aggregate risk, but since the lender holds an 

entire portfolio of loans only aggregate risk remains.  We assume free entry into the lending market so 

that lenders make zero profits. This implies that the gross real returns on deposits (𝑅𝑡+1𝑑 ) must equal the 

gross real return to the lender’s loan portfolio (𝑅𝑡+1𝑙 ).   In some sense, the lender is merely a passive pass-

through entity, whose primary function is to hold on behalf of depositors a diversified portfolio of loans 

across the many capitalists. 
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E. Capitalists and the Loan Contract 

There are a continuum of risk-neutral capitalists who discount the future at rate β, and are the sole 

intertemporal holders of physical capital. As demonstrated in CFP (2015), the linearity in preferences and 

technologies implies that the decisions of capitalists will aggregate so we need only track a representative 

capitalist.  As in BGG we assume all capital must be liquidated and all capital repurchased each period. 

The market price of capital is 𝑄𝑡.  The sale of capital generates net worth 𝑁𝑡.  All of this capital is then 

immediately re-purchased, along with any net additions to the capital stock, by the collection of 

capitalists.  The time t purchase of capital is given by 𝐾𝑡+1.  This purchase is financed with capitalist net 

worth and external financing from a lender.  This external finance takes the form of an intertemporal loan 

with repayment occurring in time t+1.   

The capitalist’s ability to repay the loan will be dependent upon the intertemporal return to 

capital.  This return is a product of two factors, the aggregate return to capital and the idiosyncratic return 

of each capitalist.  The aggregate return to capital (𝑅𝑡+1𝑘 ) is publicly observed and is given by: 

𝑅𝑡+1𝑘 ≡ 𝑟𝑡+1+(1−𝛿)𝑄𝑡+1
𝑄𝑡

.         (6) 

where 𝑟𝑡+1 is the rental rate and δ is the capital depreciation rate.  That is, a unit of capital costs 𝑄𝑡 at the 

end of time t, while a unit of capital generates rental rate 𝑟𝑡+1 and re-sale value (1 − 𝛿)𝑄𝑡+1 in period 

t+1.  As for the idiosyncratic return, one unit of capital purchased at the end of time-t is transformed into 

𝜔𝑡+1 units of capital in time t+1, where 𝜔𝑡+1 is an idiosyncratic random variable with density 𝜙(𝜔), 

cumulative distribution Φ(𝜔), and a mean of one.  We assume that 𝜔𝑡+1 is uncorrelated with 𝑅𝑡+1𝑘 .  The 

total return on the capital project is thus a product of two independent random variables, 𝜔𝑡+1𝑅𝑡+1𝑘 .   

In contrast to the common aggregate return to capital, the idiosyncratic realization of 𝜔𝑡+1 is 

directly observed only by the capitalist.  The lender can observe the realization only if a costly monitoring 

occurs, a cost that destroys part of the capital produced by the project.  We assume that this monitoring 
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cost is linear in the project outcome, 𝜇𝜔𝑡+1 𝑅𝑡+1𝑘 𝐾𝑡+1.  In this costly state verification environment, the 

optimal contract between the capitalist and lender is risky debt in which monitoring only occurs if the 

promised payoff is not forthcoming.3  The debt contract specifies a promised gross loan rate of 𝑍𝑡+1, and 

is risky because of the possibility of default.  The contract is characterized by a reservation value of the 

idiosyncratic shock that separates repayment from default.  Debt repayment does not occur (i.e., 

“bankruptcy”) for sufficiently low values of the idiosyncratic shock, 𝜔𝑡+1 ≤ 𝜛𝑡+1.  Note that 𝜛𝑡+1 is 

realized in time t+1 and thus can be contingent on the observed aggregate shock 𝑅𝑡+1𝑘 .  The relationship 

between the promised repayment rate and this reservation value is given by   

 𝑍𝑡+1(𝑄𝑡𝐾𝑡+1 − 𝑁𝑡) ≡ 𝜛𝑡+1𝑅𝑡+1𝑘 𝑄𝑡𝐾𝑡+1.       (7) 

We find it convenient to express this in terms of the borrower’s leverage ratio 𝜅𝑡 ≡ �𝑄𝑡𝐾𝑡+1
𝑁𝑡

� such that (7) 

becomes 

 𝑍𝑡+1 ≡ 𝜛𝑡+1𝑅𝑡+1𝑘 𝜅𝑡
𝜅𝑡−1

           (8) 

Let 𝑓(𝜛𝑡+1) and 𝑔(𝜛𝑡+1) denote the expected shares of the project outcome being earned by, 

respectively, the capitalist and lender:  

 𝑓(𝜛) ≡ ∫ 𝜔𝜙(𝜔)𝑑𝜔∞
𝜛 − [1 −Φ(𝜛)]𝜛       (9) 

 𝑔(𝜛) ≡ [1 −Φ(𝜛)]𝜛 + (1 − 𝜇)∫ 𝜔𝜙(𝜔)𝑑𝜔𝜛
0  .     (10) 

Conditional on the aggregate return on capital 𝑅𝑡+1𝑘 , the expected capitalist’s payoff and lender return are 

thus given by: 

 𝐶𝐶𝑚𝐶𝑡𝐶𝑚𝐶𝐶𝑡 𝑚𝐶𝑝𝑝𝑓𝑓 =  𝑅𝑡+1𝑘 𝑄𝑡𝐾𝑡+1𝑓(𝜛𝑡+1) = 𝑅𝑡+1𝑘 𝑓(𝜛𝑡+1)𝜅𝑡𝑁𝑡   (11) 

                                                           
3 See Townsend (1979). 
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 𝐿𝐿𝐿𝑑𝐿𝑟 𝑟𝐿𝑡𝑟𝑟𝐿 =  𝑅𝑡+1𝑙 = 𝑅𝑡+1
𝑘 𝑔(𝜛𝑡+1)𝑄𝑡𝐾𝑡+1

(𝑄𝑡𝐾𝑡+1−𝑁𝑡)
= 𝑅𝑡+1𝑘 𝑔(𝜛𝑡+1) 𝜅𝑡

𝜅𝑡−1
.   (12) 

In the neighborhood of the steady state, 𝐸𝑡𝛽𝑅𝑡+1
𝑚 𝑓(𝜛𝑡+1)𝜅𝑡 > 1, so that each capitalist postpones 

consumption indefinitely.   

To avoid self-financing in the long run, we assume that each capitalist faces probability (1-γ) of 

death each period. Capitalists receive the news at the beginning of the period whether they will die at the 

end of the period.  Dying capitalists will thus choose to consume all of their net worth before exiting the 

economy. The dead are then replaced by an equal number of new capitalists.  New capitalists need a 

trivial amount of initial net worth to begin activity.  We assume that this comes from a lump sum transfer 

from the existing capitalists.  Since this transfer can be arbitrarily small, and since only aggregate net 

worth matters in this setting, we neglect these transfers in what follows.   

In summary, a typical capitalist sets 𝐶𝑡𝑘 = 𝑁𝑡  with probability (1-γ), or with probability γ 

consumes nothing and uses all his net worth to finance capital purchases so that 

 𝑁𝑡+1 = 𝑅𝑡+1𝑘 𝑓(𝜛𝑡+1)𝜅𝑡𝑁𝑡.  Following CFP (2015), the Bellman equation is given by: 

 𝑉𝑡𝑁𝑡  = (1 − 𝛾)𝐶𝑡𝑘 + 𝛽𝛾𝑚𝐶𝑚𝜅𝑡,𝜛𝑡+1𝐸𝑡𝑉𝑡+1𝑁𝑡+1     (13) 

where the maximization is subject to the lender’s participation constraint (equation (16) below).  

Substituting in the consumption decision of the dying capitalists, 𝐶𝑡𝑘 = 𝑁𝑡 , and the savings decision of the 

surviving capitalists, 𝑁𝑡+1 = 𝑅𝑡+1𝑘 𝑓(𝜛𝑡+1)𝜅𝑡𝑁𝑡, the Bellman equation can be rewritten as 

𝑉𝑡 = (1 − 𝛾) +𝑚𝐶𝑚𝜅𝑡,𝜛𝑡+1  𝛽𝛾𝐸𝑡𝑉𝑡+1𝑅𝑡+1𝑘 𝑓(𝜛𝑡+1)𝜅𝑡                                                                   (14) 

The optimal contract maximizes the return to the capitalist subject to the lender’s return being equal to the 

deposit rate.   

As discussed by CFP, BGG do not analyze the optimal contract but instead impose a contract that 

creates a financial accelerator.  We first present the optimal contract between the lenders and capitalists, 

and then turn to the contract imposed by BGG.  The end of time-t contracting problem is given by:  
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𝑚𝐶𝑚𝜅𝑡,𝜛𝑡+1  𝛽𝛾𝐸𝑡𝑉𝑡+1𝑅𝑡+1𝑘 𝑓(𝜛𝑡+1)𝜅𝑡       (15) 

subject to 

 𝐸𝑡𝑀𝑡+1𝑅𝑡+1𝑘 𝑔(𝜛𝑡+1)𝜅𝑡 ≥ (𝜅𝑡 − 1)       (16) 

The lender’s participation constraint (16) comes from combining the definition of the lender’s return (12), 

the household’s pricing kernel (2), and  𝑅𝑡+1𝑙 = 𝑅𝑡+1𝑑 .  The first order conditions to this problem are given 

by: 

 𝛽𝛾𝑉𝑡+1𝑓′(𝜛𝑡+1) + Λ𝑡𝑀𝑡+1𝑔′(𝜛𝑡+1) = 0      (17) 

 𝛽𝛾𝐸𝑡𝑉𝑡+1𝑅𝑡+1𝑘 𝑓(𝜛𝑡+1) + Λ𝑡�𝐸𝑡𝑀𝑡+1𝑅𝑡+1𝑘 𝑔(𝜛𝑡+1)− 1� = 0    (18) 

 𝐸𝑡𝑅𝑡+1𝑘 𝑀𝑡+1𝑔(𝜛𝑡+1) 𝜅𝑡
𝜅𝑡−1

= 1        (19) 

where Λ𝑡 denotes the multiplier on the constraint (16).   The privately optimal contract (POC) is thus 

described by the 𝜛𝑡+1 that satisfies:  

 Λ𝑡𝑀𝑡+1
𝛽𝛽[1−𝛽+Λ𝑡+1] = −𝑓′(𝜛𝑡+1)

𝑔′(𝜛𝑡+1) ≡ 𝐹(𝜛𝑡+1),       (20) 

where we have used (18) and (14) to link the value function and Λ𝑡.  The second order condition for a 

maximum implies 𝐹′(𝜛𝑡+1) > 0.  From the perspective of time t, the conditional mean behavior of 𝜛𝑡+1 

is constrained by (18)-(19).  But (20) indicates that the default cut-off is indexed to time t+1 variables in a 

natural way. The promised repayment rate is given by 𝑍𝑡+1 ≡ 𝜛𝑡+1𝑅𝑡+1𝑘 𝜅𝑡
𝜅𝑡−1

, so that state-dependence in 

the cut-off rate implies state-dependence in the repayment amount.  When 𝐶𝑡+1 is low (𝑀𝑡+1 is high), the 

optimal 𝜛𝑡+1 and thus 𝑍𝑡+1 increase as a form of consumption insurance to the household.  Similarly, 

when the cost of external finance is high (Λ𝑡+1 is high), the contract calls for a lower 𝜛𝑡+1 and 𝑍𝑡+1 such 

that the capitalist holds on to more net worth.   
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In contrast, BGG assumed that the lender’s return is pre-determined, ie., constraint (19) is 

assumed to hold state-by-state.  The BGG contract is thus given by: 

𝛽𝛾𝑉𝑡+1𝑓′(𝜛𝑡+1) + Λ𝑡+1𝑀𝑡+1𝑔′(𝜛𝑡+1) = 0      (21) 

 𝛽𝛾𝐸𝑡𝑉𝑡+1𝑅𝑡+1𝑘 𝑓(𝜛𝑡+1) + 𝐸𝑡Λ𝑡+1�𝑀𝑡+1𝑅𝑡+1𝑘 𝑔(𝜛𝑡+1) − 1� = 0    (22) 

 𝑅𝑡+1𝑘 𝑔(𝜛𝑡+1) 𝜅𝑡
𝜅𝑡−1

= 𝑅𝑡𝑑        (23) 

From (23), the BGG contract has the default cut-off 𝜛𝑡+1 independent of all innovations in aggregate 

variables except for the return to capital 𝑅𝑡+1𝑘 .  

The differences in the two contracts are transparent if we look at the log-linear approximation to 

the promised repayment rate: 

 𝑧𝑡𝑃𝑃𝐶 = 𝐸𝑡−1𝑟𝑡
𝑙,𝑃𝑃𝐶 + �1−Θg�[1−𝜈(𝜅𝑠𝑠−1)]

Θg(𝜅𝑠𝑠−1)
�̃�𝑡−1 + (𝑟𝑡𝑘 − 𝐸𝑡−1𝑟𝑡𝑘) + 1

𝛹 (𝑚𝑡 − 𝐸𝑡−1𝑚𝑡) −
𝛽
𝛹

(𝜆𝑡−𝐸𝑡−1𝜆𝑡)      (24) 

𝑧𝑡𝐵𝐵𝐵 = 𝑟𝑡−1
𝑙,𝐵𝐵𝐵 + �1−Θg�[1−𝜈(𝜅𝐶𝐶−1)]

Θg(𝜅𝐶𝐶−1)
𝜅�𝑡−1 + �Θg−1

Θg
� �𝑟𝑡𝑘 − 𝐸𝑡−1𝑟𝑡𝑘�         (25) 

where Ψ ≡  𝜛𝑠𝑠𝐹′(𝜛𝑠𝑠)
𝐹(𝜛𝑠𝑠) > 0,  Θg ≡

𝜛𝑠𝑠𝑔′(𝜛𝑠𝑠)
𝑔(𝜛𝑠𝑠) , 0 < Θg < 1 , Θf ≡

𝜛𝑠𝑠𝑓′(𝜛𝑠𝑠)
𝑓(𝜛𝑠𝑠) < 0, and 𝜈 ≡ � Ψ

(𝜅𝑠𝑠−1)Ψ−𝜅𝜅𝑓
� .  

The lower case letters denote log deviations of the corresponding endogenous variables, and �̃�𝑡 denotes 

the log deviation of 𝜅𝑡. 

Since the POC and BGG contract differ only by (19) and (23), the linearized repayment rates 

differ only by innovations. The innovations in the POC are a form of indexation to aggregate shocks.  

First, the promised repayment is scaled one-for-one by innovations in 𝑟𝑡𝑘 such that the default cut-off is 

sterilized from these innovations.  Indexing the promised repayment to the return to capital is quite 

natural.  There are two sources of uncertainty within the underlying CSV problem: unobserved 

idiosyncratic shocks, and the observed aggregate return on capital.  Bankruptcy and costly monitoring are 
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part of the optimal debt contract as the mechanism to ensure truthful revelation of the idiosyncratic shock.  

But there is no need for such a deterrent for observed aggregate shocks. A second key feature of the POC 

is that it provides consumption insurance to the household in that the repayment rate is increasing when 

the marginal utility of consumption is unexpectedly high (𝑚𝑡 is high).  The higher lender return is then 

passed on to the household via increases in the return on deposits.  Third, the POC provides for a hedge to 

the capitalist in that when the return to internal funds is high (𝜆𝑡 is high), the repayment to the lender 

declines so that the capitalist can build up net worth.  

 In sharp contrast, the BGG repayment rate (25) depends only upon innovations in 𝑟𝑡𝑘.  For typical 

calibrations Θg < 1, so that the BGG repayment rate falls with innovations in 𝑟𝑡𝑘 .  This is a natural 

implication of the BGG assumption that the lender’s return is pre-determined.  All else equal, a positive 

innovation in the return on capital lowers the default rate, so that a pre-determined lender return is 

possible only if the promised repayment rate declines.  The previous discussion suggests this is peculiar 

for two reasons.  First, the innovation in the return to capital is publicly observed, so there is no reason for 

the CSV contract to respond to these movements.  Second, the BGG contract is missing the household 

and capitalist hedging motives of the POC.  

Although BGG and POC differ only by innovations, the inertial dynamics of net worth imply that 

these differences will have persistent consequences.  The evolution of aggregate net worth is given by  

 𝑁𝑁𝑡+1 = 𝛾𝑅𝑡+1𝑘 𝑓(𝜛𝑡+1)𝜅𝑡𝑁𝑁𝑡.          (26) 

In response to an aggregate shock, the behavior of repayment rates and thus bankruptcy cut-off rates 

𝜛𝑡+1differ by innovations, but these differences persist for a long time.   

 

F. Market Clearing and Equilibrium 

In equilibrium household deposits fund the capitalists’ projects, 𝐷𝑡 = 𝑄𝑡𝐾𝑡+1 − 𝑁𝑁𝑡 .  Net of 

monitoring costs, the amount of capital available for production is given by 𝐾𝑡
𝑓 = ℎ(𝜛𝑡)𝐾𝑡 , where  
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ℎ(𝜛𝑡) ≡ 𝑓(𝜛𝑡) + 𝑔(𝜛𝑡) = 1 − 𝜇 ∫ 𝑚𝜙(𝑚)𝑑𝑚𝜛𝑡
0 .  As noted earlier, the deposit rate is tied to the return on 

loans, such that 𝑅𝑡𝑙 = 𝑅𝑡𝑑 .  The POC is defined by the variables {𝐶𝑡,𝐿𝑡 , 𝐼𝑡,𝐾𝑡+1,𝜛𝑡,Λ𝑡,𝜅𝑡 ,𝐶𝑡𝑘 ,𝑄𝑡} that 

satisfy     

 −𝑈𝐿(𝑡)/𝑈𝑐(𝑡) = 𝑚𝑚𝑚𝑡         (27)  

 𝐸𝑡𝑀𝑡+1𝑅𝑡+1𝑘 𝑔(𝜛𝑡+1) 𝜅𝑡
(𝜅𝑡−1)

= 1        (28) 

 Λ𝑡−1𝑀𝑡
𝛽𝛽[1−𝛽+Λ𝑡] = 𝐹(𝜛𝑡)         (29) 

 Λ𝑡 = 𝛽𝛾𝐸𝑡[(1− 𝛾) + Λ𝑡+1]𝑅𝑡+1𝑘 𝑓(𝜛𝑡+1)𝜅𝑡      (30) 

 𝑄𝑡𝐾𝑡+1 = 𝛾[𝑄𝑡(1− 𝛿) + 𝑚𝑚𝑚𝑡]𝑓(𝜛𝑡)𝐾𝑡𝜅𝑡      (31) 

  𝐾𝑡+1 = (1 − 𝛿)ℎ(𝜛𝑡)𝐾𝑡 + 𝐼𝑡𝜗 �
𝐼𝑡
𝐼∗
�       (32)  

  𝐶𝑡 + 𝐼𝑡 + 𝐶𝑡𝑘 = 𝐴𝑡(ℎ(𝜛𝑡)𝐾𝑡)𝛼(𝐿𝑡)1−𝛼       (33) 

 𝐶𝑡𝑘 = (1 − γ)[𝑄𝑡(1− 𝛿) +𝑚𝑚𝑚𝑡]𝑓(𝜛𝑡)𝐾𝑡      (34) 

   𝑄𝑡 = �𝜗 �𝐼𝑡
𝐼∗
� + 𝐼𝑡

𝐼∗
𝜗′ �𝐼𝑡

𝐼∗
��
−1

        (35) 

where 𝑀𝑡+1 ≡ 𝛽 𝑈′(𝑐𝑡+1)
𝑈′(𝑐𝑡)

, 𝜅𝑡 ≡ �𝑄𝑡𝐾𝑡+1
𝑁𝑊𝑡

�, 𝐹(𝜛𝑡) ≡ −𝑓′(𝜛𝑡)
𝑔′(𝜛𝑡) , and 𝑅𝑡+1𝑘 ≡ 𝑚𝑚𝑘𝑡+1+(1−𝛿)𝑄𝑡+1

𝑄𝑡
.  The marginal 

products are defined as 𝑚𝑚𝑚𝑡 ≡ (1 − 𝛼)𝑌𝑡/𝐿𝑡 , and 𝑚𝑚𝑚𝑡 ≡ 𝐶𝑌𝑡/(ℎ(𝜛𝑡)𝐾𝑡) , with 

𝑌𝑡 ≡ 𝐴𝑡(ℎ(𝜛𝑡)𝐾𝑡)𝛼(𝐿𝑡)1−𝛼.  The BGG equilibrium is similar, but with the relevant change in (28) and 

equation (29) is replaced with (23). 

 

II. The Constrained Social Planner. 
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In this section we consider the social planner’s problem and compare it to the BGG and POC 

equilibria. The planner is assumed to maximize a weighted sum of the lifetime utility flow of the 

representative household and capitalist.  The linearity in the model implies that we can aggregate 

capitalist consumption.  With a utility weight of 𝜖 on the aggregate consumption of capitalists, the planner 

maximizes: 

 𝐸𝑡 ∑ 𝛽𝑗∞
𝑗=0 �𝑈�𝐶𝑡+𝑗, 𝐿𝑡+𝑗� + 𝜖𝐶𝑡+𝑗𝑘 �       (36) 

subject to the resource constraints and private optimality.4  We assume that the planner is constrained by 

the social resource constraints (32)-(33), and must respect the private information barrier on observing 

capitalist payoffs.  In particular, the planner is able to redistribute consumption only by varying the terms 

in the debt contract that links households and capitalists.  These terms are entirely summarized by the 

bankruptcy cut-off 𝜛𝑡 , and its effect on the allocation of consumption.  Hence, the planner is also 

constrained by (34).  The presence of the price of capital in (34) is a manifestation of the pecuniary 

externality in the model.  The planner will internalize the effect of his choices on this price, an 

internalization that is absent in the competitive equilibrium of BGG and POC.   

The planner’s problem is thus to maximize (36) subject to (32)-(34).  Let Λ1𝑡 , Λ2𝑡 , and Λ3𝑡 , 

denote the multipliers on (32)-(34), respectively.  Equation (35) implicitly is a constraint, but we treat the 

price of capital parametrically as defined by (35) so that 𝑄𝐼(𝑡) denotes the response of the price of capital 

to investment. The FOC to the planner’s problem are given by: 

 𝑈𝑐(𝑡) = Λ2𝑡          (37) 

Λ2𝑡 = 𝛬1𝑡
𝑄𝑡
− 𝛬3𝑡(1− 𝛿)(1 − 𝛾)𝑓(𝜛𝑡)𝐾𝑡𝑄𝐼(𝑡)       (38) 

Λ3𝑡 = Λ2𝑡 − 𝜖          (39) 

                                                           
4 An equivalent formation of the problem is to assume that the planner weights the two utilities equally, but the 
capitalist has linear preferences given by 𝜖𝐶𝑡𝑘. 
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−𝑈𝐿(𝑡) = Λ2𝑡𝑚𝑚𝑚𝑡 − Λ3𝑡𝛼𝑚𝑚𝑚𝑡𝑚𝑡       (40) 

  Λ1𝑡 = 𝛽𝐸𝑡ℎ(𝜛𝑡+1) �
Λ1𝑡+1(1 − 𝛿) + Λ2𝑡+1𝑚𝑚𝑚𝑡+1

−𝛬3𝑡+1𝑚𝑡+1[𝛼𝑚𝑚𝑚𝑡+1 + (1 − 𝛿)𝑄𝑡+1]�     (41) 

ℎ′(𝜛𝑡)
𝑓′(𝜛𝑡) = Λ3𝑡(1−γ)[𝑄𝑡(1−𝛿)+𝑚𝑚𝑘𝑡]

[Λ1𝑡(1−𝛿)+Λ2𝑡𝑚𝑚𝑘𝑡+Λ3𝑡𝑥𝑡(1−𝛼)𝑚𝑚𝑘𝑡]      (42) 

where we define 𝑚𝑡 ≡ (1 − γ) 𝑓(𝜛𝑡)
ℎ(𝜛𝑡).  From (39), the multiplier Λ3𝑡 denotes the difference in the marginal 

utilities between the capitalist and the household.  The planner wants to equate these two (and thus set Λ3𝑡 

= 0) by redistributing consumption. The agency problem, however, constrains the planner as these 

transfers can only be carried out through the debt contract.  Since 𝑓′(𝜛𝑡) and ℎ′(𝜛𝑡) are both negative, 

(42) implies that Λ3𝑡   is positive (assuming an interior solution). 5   The planner thus tolerates the 

deadweight loss of positive bankruptcy rates only because on the margin he desires to transfer 

consumption units from the capitalist back to the household. The positive monitoring costs imply that the 

planner is ultimately frustrated and does not achieve equal marginal utilities (𝑈𝑐(𝑡) > 𝜖).   

This incomplete consumption redistribution illuminates the remaining differences between the 

planner and the competitive equilibrium.  The total differential of capitalist consumption is given by:  

    

ΔCtk = 𝜕𝐶𝑡
𝑘

𝜕𝐼𝑡
𝑑𝐼𝑡 + 𝜕𝐶𝑡

𝑘

𝜕𝐿𝑡
𝑑𝐿𝑡 + 𝜕𝐶𝑡

𝑘

𝜕𝐾𝑡
𝑑𝐾𝑡       (43) 

where  

𝜕𝐶𝑡
𝑘

𝜕𝐼𝑡
= (1 − γ)𝑄𝐼(𝑡)(1 − 𝛿)𝑓(𝜛𝑡)𝐾𝑡       (44) 

𝜕𝐶𝑡
𝑘

𝜕𝐿𝑡
= (1 − γ) 𝑑𝑚𝑚𝑘𝑡

𝑑𝐿𝑡
𝑓(𝜛𝑡)𝐾𝑡 = 𝛼𝑚𝑚𝑚𝑡𝑚𝑡      (45) 

𝜕𝐶𝑡
𝑘

𝜕𝐾𝑡
= (1 − γ)𝑓(𝜛𝑡) �𝑄𝑡(1− 𝛿) + 𝑚𝑚𝑚𝑡 + 𝑑𝑚𝑚𝑘𝑡

𝑑𝐾𝑡
𝐾𝑡�     (46) 

                                                           
5 The appendix discusses the case in 𝜖 is sufficiently large so that the planner is pushed to the corner and sets 
bankruptcy equal to zero. 
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        = ℎ(𝜛𝑡)𝑚𝑡[𝑄𝑡(1− 𝛿) + 𝛼𝑚𝑚𝑚𝑡] 

The first term arises because changes in investment alter the price of capital and thus the consumption of 

capitalists.  This term enters into the planner’s investment choice (38).  Since changes in the price of 

capital lead directly to a redistribution from the capitalist to the household, the planner typically prefers a 

different capital price than that implied by the competitive equilibrium.   The remaining two terms come 

from the planner’s desire to change the marginal product of capital (and thus the rental rate).  Again, since 

all capital income flows to the capitalist, the planner internalizes the effect of labor choice (equation (40) 

and capital accumulation on the rental rate (equation (41)).   

 In summary, the planner’s allocations differ from the competitive equilibrium because the planner 

internalizes the effect of the household’s decisions on the price of capital and the rental rate of capital.  

These prices directly affect the distribution of consumption between the agents. These are pecuniary 

externalities:  the planner prefers a different rental rate and price of capital than those implied by the 

competitive equilibrium.   

 

III. Decentralizing the planner allocation. 
After accounting for the three Lagrange multipliers in (37)-(42), the planner needs three 

instruments to decentralize the desired allocation.  Here we demonstrate a set of distortionary taxes (with 

proceeds redistributed to households in a lump-sum manner) that can be used to achieve this end.  There 

are many ways of decentralizing the allocation.  Our focus will be on choosing taxes that when possible 

can be interpreted as a borrower-based macro-prudential policy. 

  We assume that the planner has access to the following set of taxes: (i) a tax of 𝜏𝑡𝑙𝑙𝑙 on lending, 

(ii) a tax of 𝜏𝑡
𝑑𝑙𝑓on the average level of defaults on the lender’s loans, and (iii) a tax of of 𝜏𝑡𝐿 on household 

labor income. The labor tax alters the labor margin:   

 −𝑈𝐿(𝑡)/𝑈𝑐(𝑡) = 𝑚𝑚𝑚𝑡(1 − 𝜏𝑡𝐿)        (47)  
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The planner sets 𝜏𝑡𝐿 to coincide with (40).  The taxes on lending and default affect the return to savings 

and the default decision which is necessary from (41) and (42).  With these taxes the lender’s payoff on 

its loan portfolio is given by: 

 𝐿𝐿𝐿𝑑𝐿𝑟 𝑚𝐶𝑝𝑝𝑓𝑓 = 𝑔�(𝜛𝑡+1)𝑄𝑡𝑅𝑡+1𝑘 𝐾𝑡+1 − 𝜏𝑡𝑙𝑙𝑙𝜅𝑡(𝑄𝑡𝐾𝑡+1 − 𝑁𝑁𝑡)   (48) 

where  

 𝑔�(𝜛𝑡+1) ≡ 𝑔(𝜛𝑡+1)− 𝜏𝑡+1
𝑑𝑙𝑓Φ(𝜛𝑡+1)       (49) 

The default tax/subsidy (𝜏𝑡+1
𝑑𝑙𝑓) is a fee paid (or rebate received) by the lender based upon the average 

default rate of its loan portfolio.  The leveraged-lending tax 𝜏𝑡𝑙𝑙𝑙 is a tax on loan size (𝑄𝑡𝐾𝑡+1 − 𝑁𝑁𝑡), 

but scaled by the level of borrower leverage 𝜅𝑡. We divide the lender’s payoff by loan size to convert this 

to a return: 

  𝑅𝑡+1𝐿 = 𝑔�(𝜛𝑡+1)𝑄𝑡𝑅𝑡+1
𝑘 𝐾𝑡+1

(𝑄𝑡𝐾𝑡+1−𝑁𝑊𝑡) − 𝜏𝑡𝜅𝜅𝑡 = 𝑅𝑡+1𝑘 𝑔�(𝜛𝑡+1) 𝜅𝑡
𝜅𝑡−1

− 𝜏𝑡𝑙𝑙𝑙𝜅𝑡    (50) 

The leverage tax can be equivalently interpreted as a tax on the loan-to-value (LTV) ratio which is given 

by 𝐿𝐿𝑉 ≡ �𝑄𝑡𝐾𝑡+1−𝑁𝑊𝑡
𝑄𝑡𝐾𝑡+1

� = 𝜅𝑡−1
𝜅𝑡

.   With these taxes, the POC contract optimization conditions are now 

given by: 

 𝛽𝛾𝑉𝑡+1𝑓′(𝜛𝑡+1) + Λ𝑡𝑀𝑡+1𝑔�′(𝜛𝑡+1) = 0      (51) 

𝛽𝛾𝐸𝑡𝑉𝑡+1𝑅𝑡+1𝑘 𝑓(𝜛𝑡+1) + Λ𝑡�𝐸𝑡𝑀𝑡+1�𝑅𝑡+1𝑘 𝑔�(𝜛𝑡+1)− 𝜏𝑡𝑙𝑙𝑙(2𝜅𝑡 − 1)� − 1� = 0  (52) 

𝐸𝑡𝑀𝑡+1 �𝑅𝑡+1𝑘 𝑔�(𝜛𝑡+1) 𝜅𝑡
𝜅𝑡−1

− 𝜏𝑡𝑙𝑙𝑙𝜅𝑡� = 1      (53) 

The planner uses the default tax 𝜏𝑡+1
𝑑𝑙𝑓 to achieve the desired default cut-off in (42). The leveraged-lending 

tax alters the return on savings and thus achieves the planner’s desired level of investment and capital 

accumulation implied by (41).  Recall that the BGG and POC contracts differ only by innovations. Since 

the leveraged lending tax is assessed at the time of the loan, it does not respond to subsequent innovations 

so that the supporting lending tax is identical for BGG and POC in the impulse response functions below. 
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 To provide a quantitative sense of the importance of the two taxes on lending, it is instructive to 

express the lender’s return on its loans as a function of the promised repayment rate.  Tedious algebra 

implies the following:   

  𝐿𝐿𝐿𝑑𝐿𝑟′𝐶 𝑟𝐿𝑡𝑟𝑟𝐿 = {[1 −Φ(𝜛𝑡+1)]𝑍𝑡+1 − 𝜏𝑡𝑙𝑙𝑙𝜅𝑡} + 𝑍𝑡+1
𝜛𝑡+1

{(1 − 𝜇)∫ 𝜔𝜙(𝜔)𝑑𝜔𝜛
0 − 𝜏𝑡+1

𝑑𝑙𝑓Φ(𝜛𝑡+1)} (54) 

The steady-state probability of default is small, so that quantitatively the default tax has a trivial effect on 

the lender’s return.  In contrast, the tax on leveraged-lending, 𝜏𝑡𝑙𝑙𝑙𝜅𝑡, reduces the return one-for one.  In 

the steady-state the lender’s return is given by 1/β, so that a higher leveraged-lending tax maps one-for-

one into an increase in the required loan repayment, thus dampening capital accumulation.     

  It is important to emphasize the taxes to which the planner does not have access.  If the planner 

could choose the price of capital directly, she could achieve an efficient consumption allocation (𝑈𝑐(𝑡) =

𝜖) with no resource cost, ie., Φ(𝜛𝑡) = 0, and the CSV problem would disappear from the model.  It is for 

this reason that we assume the planner cannot levy a tax on the sale of new capital for this would allow 

the planner to choose the price of capital independently of the level of investment (a similar argument 

applies to the capital rental rate).  For example, suppose the new-capital producer maximized: 

𝑄𝑡(1− 𝜏𝑡
𝑞)𝜗 �𝐼𝑡

𝐼∗
� 𝐼𝑡 − 𝐼𝑡         (55) 

where 𝜏𝑡
𝑞 is a tax on new capital levied on the seller.  This implies the following price of capital: 

  𝑄𝑡 = (1 − 𝜏𝑡
𝑞)−1 �𝜗 �𝐼𝑡

𝐼∗
� + 𝐼𝑡

𝐼∗
𝜗′ �𝐼𝑡

𝐼∗
��
−1

       (56) 

By varying 𝜏𝑡
𝑞, the planner could achieve any capital price that is desired, and thus, via (34), any desired 

level of capitalist consumption.  This means that (34) will no longer be a constraint, Λ3𝑡 = 0, and the 

planner sets Φ(𝜛𝑡) = 0.  As noted, this is the (uninteresting) case of perfect consumption sharing, and the 

informational friction drops from the model.  A similar result holds in Jeanne and Korinek (2010) and 

Bianchi (2011):  a time-varying subsidy on assets (Jeanne and Korinek) or non-tradeable consumption 

(Bianchi) can eliminate the borrowing constraint and achieve the frictionless allocation.  We ignore such a 

capital tax because it makes things too simple for the planner.  That is, since capitalists are inelastic savers 
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and are the only holders of capital in the BGG model, a capital tax effectively gives the planner a lump 

sum means of redistributing consumption.6   

 

IV. Quantitative Analysis 
We set parameters to values familiar from the literature. The discount factor 𝛽 is set to 0.99. 

Utility is assumed to be logarithmic in consumption (σ = 1), and the elasticity of labor is assumed to be 3 

(η = 1/3).  We choose the constant B to normalize steady-state labor in the competitive equilibrium to 

unity.  The production function parameters include α = 1/3, and quarterly depreciation is δ = .02.  The 

investment adjustment cost function is given by 

𝜗 �
𝐼𝑡
𝐼∗
� ≡ 𝑋𝑡 �1 −

𝜓
2

(
𝐼𝑡
𝐼∗
− 1)2� 

where 𝑋𝑡 is an exogenous shock to the marginal efficiency of investment (MEI).  We set 𝜓 = 0.50, 

and choose 𝐼∗ such that in the steady state the price of capital in the competitive equilibrium is equal to 

unity.   

As for the credit-related parameters, we calibrate the model so that the steady state of the 

competitive equilibrium is consistent with: (i) a spread between 𝑍 and 𝑅𝑑 of 200 bp (annualized), (ii) a 

quarterly bankruptcy rate of .75%, and (iii) a borrower leverage ratio of κ = 2.  These values imply a 

survival rate of γ = 0.94, a standard deviation of the idiosyncratic productivity shock of 0.28, and a 

monitoring cost of μ = 0.63.  Since the BGG and POC contracts differ only by innovations their steady 

states are identical.  However, the planner’s steady state will depend upon the welfare weight placed on 

capitalist consumption.  We will conduct sensitivity analysis on this variable.    

 
                                                           
6 In a model such as Carlstrom and Fuerst (1997), where both households and capitalists hold capital, the capital tax 
could not be used so effectively.  More generally, in more elaborate models it is surely not the case that a capital tax 
is isomorphic to a lump sum tax. 
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Steady state analysis. 

Given the calibration outlined above, Figures 1-3 plot the planner’s allocation as a function of the 

utility weight placed on capitalists.  We restrict ourselves to 𝜖 ≤ 0.72, at 𝜖 = 0.72 the marginal utility of 

consumption for the household and capitalist are equalized so that the planner chooses a bankruptcy rate 

of zero (see Figure 3).   

The size of the capital stock and the level of lending can be above or below the competitive 

equilibrium level depending upon the welfare weight.  Since capitalist consumption is proportional to the 

capital stock, the level of the capital stock chosen by the planner is strictly increasing in the welfare 

weight.  For 𝜖 < 0.26, the planner prefers less capital than that implied by the competitive equilibrium.  

Capital accumulation is partly funded by lending so that the level of lending chosen by the planner is 

increasing in 𝜖 . The planner’s ratio of lending-to-GDP crosses the competitive equilibrium level at 

𝜖 = 0.47.  In summary, if the weight on capitalists is small (large) enough, the competitive equilibrium 

has too much (little) capital and too much (little) lending.  For all values of 𝜖, the planner prefers a lower 

level of borrower leverage than that implied by the competitive equilibrium, ie., LTV ratios are too high 

in the competitive equilibrium.   

Figures 2-3 show how other features of the credit market are altered by the planner’s weight on 

capitalists.  The annual default rate is always below the level implied the competitive equilibrium (3%), 

and is decreasing in the welfare weight.  Bankruptcy involves a deadweight loss of resources so it is not 

surprising that the competitive equilibrium has too much default.  Further, lower levels of default increase 

the consumption levels of capitalists so that the default rate is strictly decreasing in 𝜖. Through the link 

between 𝜛𝑡 and 𝑍𝑡, these lower levels of default map into a smaller risk premium,  𝑍𝑠𝑠 −
1
𝛽

.  For 𝜖 > 0.3, 

the risk premium actually becomes negative.  Figure 4 plots the leveraged-lending tax that supports this 

planner behavior (the figure plots 𝜏𝑡𝑙𝑙𝑙𝜅𝑡� ).  For small levels of 𝜖, the planner taxes loans to lower lending 

and the capital stock below the levels implied by the competitive equilibrium.  As the planner weight 

increases, this gives way to a subsidy that compensates the lenders for the negative risk premium.   
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Dynamic analysis. 

We consider the dynamic response to four shocks that are common in the business cycle 

literature: (i) TFP shocks, (ii) marginal efficiency of investment (MEI) shocks, (iii) idiosyncratic variance 

shocks, and (iv) net worth shocks (shocks to the death rate of capitalists).  These four shocks follow the 

following laws of motion: 

log(𝐴𝑡) = 𝜌𝐴 log(𝐴𝑡−1) + 𝜀𝑡𝐴 

log(𝜎𝑡) = (1 − 𝜌𝜎) log(𝜎𝑠𝑠) + 𝜌𝜎 log(𝜎𝑡−1) + 𝜀𝑡𝜎 

log(𝑋𝑡) = 𝜌𝑋 log(𝑋𝑡−1) + 𝜀𝑡𝑋 

log(𝛾𝑡) = (1 − 𝜌𝛽) log(𝛾𝑠𝑠) + 𝜌𝛽 log(𝛾𝑡−1) + 𝜀𝑡
𝛽 

We use the estimates of Christiano, Motto and Mostagno (2014) for the standard deviation and 

autocorrelation of these shocks:   

TFP:     𝜌𝐴 = 0.81,𝑆𝐷 = 0.46  

MEI:   𝜌𝑋 = 0.91,𝑆𝐷 = 5.5 

Variance: 𝜌𝜎 = 0.97,𝑆𝐷 = 7.0 

Net worth: 𝜌𝛽 = 0, 𝑆𝐷 = 0.81. 

The autocorrelation of net worth in Christiano et al. (2014) is assumed to be zero, 𝜌𝛽 = 0.  Christiano et 

al. (2014) have both unanticipated and anticipated shocks to idiosyncratic variance.  We use their 

estimates for the unanticipated shock as these are the only shocks in the model presented here.   



   Page | 20  
 

We consider three different models: POC, BGG, and the planner.  For the planner we set 𝜖 =

0.20.7  As noted earlier, this implies that the planner will choose different steady-state levels of capital, 

labor, bankruptcy, etc., than BGG and POC.  To focus on dynamic issues, we choose steady-state taxes in 

POC and BGG so that the non-stochastic steady-state of all three models are identical.  These choices 

imply a labor tax of 0.007, a leveraged-lending tax of 0.0033, and a bankruptcy tax of 0.062. As 

suggested earlier, the leverage-lending tax is the most important of these three taxes.  With a leverage rate 

of about 2, this implies an annualized tax on interest income of 260 bp.   

Table 1 reports the variance decomposition for the three models (planner, POC, BGG).  

Consistent with Christiano et al. (2014) who assume the BGG contract, the risk and MEI shocks are the 

primary drivers of real activity for the BGG contract.8  With the POC contract, risk shocks are not that 

important. With the BGG contract, 32 percent of the variance of output is explained by risk shocks. 

Consistent with the muted financial accelerator, this drops to 7 percent with POC.  

Figures 5-8 report IRFs to the four shocks.  The financial accelerator with the BGG contract is 

most clearly seen in the sharp movements in net worth in response to all four shocks.  The equity-type 

indexation in the POC contract disrupts this accelerator so that there are only modest movements in net 

worth.  Consider, for example, the iid net worth shock.  The BGG financial accelerator implies a virtuous 

feedback loop between net worth and the price of capital so that both rise sharply and persistently to this 

iid innovation.  In contrast, under the POC, net worth moves by only a trivial amount as the optimal 

contract has the observed net worth shock shared between the lender and the borrowers.   In comparison 

to POC, the presence of the financial accelerator in BGG magnifies the output and investment response to 

all shocks, with the exception being in the MEI shock.  A MEI shock causes a decrease in the price of 

                                                           
7 We have conducted sensitivity analysis on the IRFs to the planner for 𝜖 = 0.10, and 𝜖 = 0.30.  The results are 
only modestly affected quantitatively. 
 
8 Christiano et al. (2014) report the dominance of risk shocks over MEI shocks only if the risk shocks include 
anticipated or “news” shocks. 
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capital which under BGG decreases net worth and thus dampens the expansionary effect of the shock on 

investment spending.  But under the POC, the MEI shock has a large expansionary effect on investment.  

Recall that leverage is given by 𝜅𝑡 ≡ �𝑄𝑡𝐾𝑡+1
𝑁𝑡

� . The equity-like indexation under the POC dampens 

movements in leverage and net worth so that the drop in 𝑄𝑡 has to be matched by an increase in capital 

and thus a sharp increase in investment. 

There are two striking features of the planner. First for risk and net worth shocks the planner 

limits movements in investment. This not too surprising.  From the planner’s perspective both shocks 

transfer resources to the entrepreneur.  The net worth shock does this directly, while the risk shock 

increases 𝑓(𝜛𝑡) and decreases 𝑔(𝜛𝑡). The planner prefers to preempt this redistribution by limiting 

movements in investment and thus the price of capital. 

The second notable feature of the planner is the trivial movement in default rates.  The planner 

limits these movements because of the deadweight loss of bankruptcy, which is convex in the probability 

of default. Instead the planner uses the leveraged-lending tax to move the risk-premium (𝑍𝑡 − 𝑅𝑡𝑑) to the 

desired level while having only a trivial effect on the default rate.  The mechanism is via movements in 

the return on capital.   Suppose we combine equation (8) and (50):  

 𝑅𝑡+1𝐿 = 𝑅𝑡+1𝑘 𝑔�(𝜛𝑡+1) 𝜅𝑡���
𝜅𝑡���−1

− 𝜏𝑡𝑙𝑙𝑙𝜅𝑡� = 𝑍𝑡+1
𝜛𝑡+1

𝑔�(𝜛𝑡+1) − 𝜏𝑡𝑙𝑙𝑙𝜅𝑡�   

For a given required lender return and bankruptcy cut-off, movements in the leveraged-lending tax map 

directly into movements of 𝑍𝑡+1. Hence, the time-path of the leverage tax closely mirrors the planner’s 

choice for the risk spread.  Note that the risk premium reported in the graphs is the expected repayment 

spread for loans taken out in time-t, 𝐸𝑡(𝑍𝑡+1 − 𝑅𝑡+1𝑑 ), and thus does not include the contemporaneous 

movement of the repayment rate on loans from the previous period.  Again, this behavior is easily seen 

for the iid net worth shock. The planner does not vary bankruptcy (so that net worth increases 
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contemporaneously), but uses the lending tax and subsequent increase in the lending rate to transfer net 

worth back to steady state levels. 

 

Welfare costs. 

 Using the calibrated parameter and shock processes, we compute a second-order approximation 

to the model to compute lifetime utility for households, capitalists, and the planner (with 𝜖 = 0.20), under 

the three allocations.  Table 2 reports the welfare losses for individual shocks. Since household utility is 

logarithmic, the differences in total welfare can be interpreted as the perpetual percentage increase in 

household consumption needed to equate planner utility under the three different allocations. The thing 

that jumps out is how disastrous risk shocks are in the BGG contract. The welfare cost of the BGG 

contract is 1.35% into perpetuity versus 0.10% for the POC contract. This was anticipated in the impulse 

response functions. For risk shocks there is a strong financial accelerator mechanism present that is nearly 

absent in the POC contract. The welfare cost of net worth shocks is not as dramatic simply because they 

are assumed to be i.i.d. and have a small calibrated standard deviation.   

Table 3 reports the results with all the shocks present. The total welfare gains of the planner over 

POC and BGG are substantial, e.g., the welfare cost of the BGG contract is 1.86% of consumption into 

perpetuity and 0.34% for POC.  Neither the POC nor the planner are Pareto improvements over BGG.  In 

fact, capitalists strongly prefer the BGG contract for all four shocks because of its effect on average 

capitalist consumption. This preference is especially strong for risk and MEI shocks, quantitatively the 

two most important shocks.  The reason for this is because consumption for the capitalist (equation 34) 

consists of the product of the borrower’s share, 𝑓(𝜛𝑡) and the return to capital, [𝑄𝑡(1− 𝛿) + 𝑚𝑚𝑚𝑡].  

This correlation is reported in Table 3. This correlation is positive for BGG, negative for the planner, and 

essentially zero for POC.  In BGG, shocks that increase the price of capital set off a virtuous circle in 

which the higher price of capital increases net worth, which in turn increases the price of capital, etc. (this 
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is just the financial accelerator).  Since the BGG repayment rate is not indexed to aggregate shocks, this 

surge in net worth leads to a persistent decline in 𝜛𝑡 and persistent increase in 𝑓(𝜛𝑡).   

A Cyclical credit policy. 

Arguably the leveraged-lending tax is the easiest for a macroprudential policy to implement. Here 

we continue to assume that the three supporting taxes are set to achieve the planner’s steady-state, but the 

only cyclical instrument is the leveraged-lending tax. Furthermore, we assume a policy where the 

regulator cannot observe the individual shocks and instead introduces a simple policy rule for the lending 

tax that responds to aggregate output.  Suppose the leveraged-lending tax is given by:  

  𝜏𝑡𝑙𝑙𝑙 = 𝜏𝑠𝑠𝑙𝑙𝑙 + 𝜙𝑙𝑙𝑙 ∗ log � 𝑌𝑡
𝑌𝑠𝑠
�. 

Figure 9 plots the total welfare loss (compared to the planner) as a function of 𝜙𝑙𝑙𝑙 .  For the BGG 

contract, there are substantial gains to making the leverage tax pro-cyclical.  For example, at 𝜙𝑙𝑙𝑙 = 1, 

the improvement is substantial. The welfare loss drops from 1.86% to 1.29%.  Such a tax policy is 

preferred because it dampens the financial accelerator and over-response of investment under the BGG 

contract.  In contrast, there is only a trivial financial accelerator under the POC contract, so that there is a 

much smaller advantage to such a tax policy.  The optimal 𝜙𝑙𝑙𝑙 for the POC contract is around 0.1 with 

welfare losses dropping from 0.34% to 0.25%.   

This also illustrates the importance of knowing whether the financial structure is closer to the 

BGG benchmark or the POC benchmark. If 𝜙𝑙𝑙𝑙 is set to unity thinking the world is BGG the welfare loss 

drops from 1.89% to 1.29%, but with the POC contract the welfare loss would increase substantially from 

0.34% to 0.93%. A more robust level of 𝜙𝑙𝑙𝑙 would be 0.25, the welfare loss of the POC contract would 

be nearly identical (0.35 versus 0.34) but there would be a sizeable improvement in the BGG contract 

from 1.86% to 1.4%. 
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V. Conclusion 
 This paper has investigated an issue that has been relatively unexplored in the burgeoning macro 

prudential literature. This is the role for potential regulations to affect the borrower’s LTV ratios in 

macroprudential policy. For example, this analysis suggests that risk weights in a financial intermediary’s 

capital structure depend on the LTV ratio of the firms who are borrowing the money. Furthermore these 

weights should vary cyclically.  This is especially true for the model with BGG contracts. 

Left unanswered is whether we should view the contracting structure as BGG or POC. One 

potential way to look at this question is to observe the sophistication of the intermediary’s financial 

structure. For example, one may interpret the prevalence of hedging as a proxy for the sophistication of 

the financial structure, suggesting there is little role for cyclical macro-prudential policy. However, if the 

financial structure is more primitive there might be a sizable role for cyclical policies.  There is indirect 

evidence suggesting that something similar to a POC contract is more empirically relevant than one might 

initially think. Carlstrom, Fuerst, Ortiz, and Paustian (2014) use familiar Bayesian methods to estimate a 

medium-scale DSGE model with a BGG financial structure and an exogenous level of contract 

indexation.  The empirical estimate of this indexation parameter is large and significant, and essentially 

eliminates the financial accelerator.   
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Table 1:  Variance Decomposition 

 TFP NW Risk MEI 
Output 5, 4, 9 0, 0, 3 8, 7, 32 87, 89, 57 
Investment 0, 1, 2 0, 0, 2 17, 3, 50 83, 96, 47 
Default 0, 0, 0 0, 2, 1 94, 89, 82 6, 9, 16 
Ex ante 
risk 
premium 

1, 4, 1 35, 0, 2 9, 43, 58 54, 53, 38 

(Planner, POC, BGG) 
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Table 2:  Welfare Analysis, Individual Shocks 
Shock Welfare Planner BGG POC Planner-BGG Planner-POC POC-BGG 
TFP     %HH C %HH C %HH C 
 Total  -11.837 -11.848 -11.839 0.011 0.002 0.009 
 HHs -19.974 -19.986 -19.975 0.012 0.002 0.010 
 Capitalists 40.684 40.688 40.683 -0.004 0.001 -0.005 
MEI        
 Total  -11.653 -12.016 -11.888 0.363 0.236 0.127 
 HHs -19.867 -20.309 -20.015 0.442 0.148 0.294 
 Capitalists 41.070 41.466 40.632 -0.396 0.438 -0.834 
Risk        
 Total  -11.888 -13.331 -11.984 1.443 0.096 1.346 
 HHs -20.042 -21.625 -20.121 1.583 0.078 1.504 
 Capitalists 40.772 41.471 40.683 -0.700 0.089 -0.788 
NW        
 Total  -11.837 -11.880 -11.840 0.043 0.004 0.040 
 HHs -19.974 -20.040 -19.977 0.066 0.004 0.062 
 Capitalists 40.685 40.797 40.685 -0.112 0.000 -0.112 
 
The first three columns report expected lifetime utility evaluated at the non-stochastic steady-state.  Total welfare is 
the sum of lifetime utility of households and capitalists, with the latter weighted by 𝜖.  The final three columns 
report the differences in lifetime utility.   
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Table 3:  Welfare Analysis, All Shocks 

 Planner BGG POC 
Planner-
BGG 

Planner-
POC POC-BGG 

Total welfare -11.706 -13.566 -12.043 1.860 0.337 1.523 
Households -19.938 -22.040 -20.170 2.103 0.232 1.871 
Capitalists 41.160 42.371 40.632 -1.212 0.528 -1.739 
Mean 𝑪𝒕𝒌 0.4128 0.4260 0.4048    
Correlation 
{[𝑄𝑡(1 − 𝛿)
+ 𝑚𝑚𝑚𝑡], 𝑓(𝜛𝑡)} -0.1622 0.4453 -0.0277    
Mean 𝑲𝒕 13.479 12.655 13.002    
 
The first three columns report expected lifetime utility evaluated at the non-stochastic steady-state.  Total welfare is 
the sum of lifetime utility of households and capitalists, with the latter weighted by 𝜖.  The final three columns 
report the differences in lifetime utility.   
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Figure 5:  TFP Shocks 
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Figure 6:  NW Shocks 
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Figure 7:  MEI Shocks 
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Figure 8:  Risk Shocks 
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APPENDIX. 
 

The Planner at the Corner. 

Suppose 𝜖 = 𝜖 ̅so that Λ3𝑠𝑠 = 𝑈𝑐 − 𝜖 = 0.  Here we will characterize the planner’s allocation.  This 
implies that Φ(𝜛𝑠𝑠) = 0, and  ℎ(𝜛𝑠𝑠) = 1. 

𝛿𝐾𝑠𝑠 = 𝜗 �𝐼𝑠𝑠
𝐼∗
� 𝐼𝑠𝑠         (A1)  

𝐶𝑠𝑠 + 𝐼𝑠𝑠 + Csse = (𝐾𝑠𝑠)𝛼(𝐿𝑠𝑠)1−𝛼       (A2) 

(1 − γ)[(1 − 𝛿) + 𝑚𝑚𝑚𝑠𝑠]𝐾𝑠𝑠 = 𝐶𝑠𝑠𝑙        (A3) 

𝑄𝑠𝑠 = � 𝜗 �𝐼𝑠𝑠
𝐼∗
� + 𝐼𝑠𝑠

𝐼∗
𝜗′ �𝐼𝑠𝑠

𝐼∗
��
−1

        (A4) 

−𝑈𝐿 = 𝑈𝑐𝑚𝑚𝑚𝑠𝑠         (A5) 

  𝑄𝑠𝑠 = 𝛽[𝑄𝑠𝑠(1 − 𝛿) + 𝑚𝑚𝑚𝑠𝑠]         (A6) 

Note that there is something of an income effect on labor supply as capitalist consumption lowers 
household consumption.  For our benchmark calibration, the corner is given by 𝜖 = 0.720.  At that value 
the planner chooses  𝜛𝑠𝑠 = 0.17, 𝐿𝑠𝑠 = 1.67,𝐾𝑠𝑠 = 22.13,𝑄𝑠𝑠 = 1.98, 𝜅 = 1.26. 
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