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1 Introduction

Recent macroeconomic research has argued that housing market movements are the source of—

rather than the consequence of—business cycle fluctuations.1 For example, housing was the key

instigating component of the recent financial crisis (see Bernanke, 2008) and Leamer (2007) argues

that, at a national level, housing is the business cycle.2 While business cycles are typically mea-

sured at a national level, housing markets are generally believed to be highly localized.3 At the

subnational level, the relationship between housing and the business cycle is less clear. Indeed,

Ghent and Owyang (2010) find that, while housing cycles exist at disaggregate levels, the rela-

tionship between business cycles and housing appears to break down at subnational levels.4 The

disconnect generated between the two levels of granularity can present problems for macroeconomic

analysis and policy making.5

What produces the disconnect between housing and business cycles at different levels of dis-

aggregation? One hypothesis is that a national cycle exists across all housing markets, but this

more pervasive cycle is lost in the heterogeneity once the data is disaggregated. In other words,

housing cycles may have both a national and regional element (Del Negro and Otrok, 2007). Local

deviations from the national cycle can be small timing differentials (i.e., cities are just out-of-sync

enough that the average cycle does not match the national cycle) or major departures. In the

former case, a pervasive national cycle could be detected once we account for the deviations. If

the latter case, city-level cycles could be viewed as idiosyncratic—completely independent of the

national cycle.

1Housing wealth effects lead to a correlation between housing and consumption expenditures and are typically
accompanied by changes in housing investment in the same direction. For example, Davis and Heathcote (see 2005)
find that residential fixed investment leads non-housing investment and is more than twice as volatile see .

2These empirical regularities have prompted macroeconomic researchers to consider the theoretical underpinnings
of housing and the business cycle in general equilibrium models (see Iacoviello, 2005; Iacoviello and Neri, 2010).

3A few papers have modeled subnational business cycles (e.g., Carlino and Sill (2001) for regions, Owyang et al.
(2005) for states, and Owyang et al. (2008) for cities).

4Several papers study housing at the subnational level with mixed results. Glaeser et al. (2011); Del Negro and
Otrok (2007) show that the variation in house prices is primarily driven subnational factors rather than national
factors, while Moench and Ng (2011) find that national shocks have larger effects on the housing cycle than regional
shocks. Stock and Watson (2010) show that although building permits co-move across states, housing market can be
uncorrelated across regions. Other studies find that housing markets have become more integrated in the last decade
(see Cotter et al., 2012; Kallberg et al., 2014; Landier et al., 2013).

5Ghent and Owyang (2010) implies that models need to account for regional differences in U.S. housing cycles,
as regional differences may influence optimal policy conduct. Identifying regions with similar housing characteristics
would help policymakers more accurately predict cross-regional effects, and identify regions to target with particular
policies.
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In this paper, we consider city-level construction permits to analyze housing cycles at the re-

gional level. We adapt the model from HO, who identify national and regional business cycle phases.

The approach in HO is to allow the data to group states into regions that have the same business

cycles. In our model, during the national phases, all of the cities will be in expansion or con-

traction, respectively. Furthermore, cities in the same region (or cluster) experience simultaneous

idiosyncratic contractions, which could lead, lag, or occur separately from national contractions.

An advantage of the HO model is that it determines the key factors in the grouping of cities—i.e.,

it generates endogenous (possibly overlapping) clusters or regions. Cities may cluster for economic

(e.g., similar industrial composition), geographic (e.g., inability to increase the housing stock due

to geographic constraints), or other inherent reasons (e.g., weather). We consider nine covari-

ates in determining our clusters: housing density, population growth, the share of manufacturing

employment, average winter temperature, the average unemployment rate, Saiz’s (2010) index of

undevelopable land and elasticty of land supply, as well as two financial variables reflecting the

incidence of subprime mortgages across cities.

We find evidence of a national housing cycle that appears to be linked to the national business

cycle. We also find 4 clusters of cities that experience their own idiosyncratic contractions. These

contractions can occur before and lead into a national downturn, occur after and prolong a national

downturn, or occur completely independently of a national downturn. In addition, our method

allows us to determine some of the factors that affect cluster composition. These factors appear to

be proxies of city-level housing demand characteristics rather than housing supply characteristics,

factors that influence business cycle, or factors related to the similarity of financial conditions.6

Our finding that housing cycles may depend on local factors in addition to national factors

has implications for policy implementation, as monetary policy may be transmitted in different

ways throughout the set of clusters. In fact, Füss et al. (2012) find that MSA-specific demand and

supply characteristics, such as population growth and the elasticity of housing supply, are crucial

links that transmit national monetary policy and sentiment into housing price inflation at the local

6Traditionally, the main driver of house price co-movement is geography. Pollakowski and Ray (1997); Can
(1990); Ioannides and Zabel (2003) find positive feedback effects on house prices between contiguous regions and
within neighborhoods. Stevenson (2004); Oikarinen (2006) show that co-movements or regional housing markets are
driven by substitution effects, where changes in one region’s prices generate a time-lag movement in another region’s
prices. Brady (2011); Holly et al. (2011) also explore the spatial and temporal diffusion of house price shocks in a
dynamic system.
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level. Therefore, identifying regional clusters of housing cycles represents relevant information for

the optimal conduct of monetary policy. We also find a cluster in which financial variables are more

important, which suggests that regional differences may influence the conduct of macroprudential

policies as well. Our results open up a new line of research to explore whether fiscal policy or

macroprudential policies should consider regional differences in attempting to balance out housing

cycles across regions and evaluating the heterogeneity in the monetary transmission mechanism.

The rest of the paper is outlined as follows: Section 2 describes the data construction. Section

3 describes the model. Section 4 provides a brief overview of the estimation of the model. Section

5 presents the results and discusses the implications for the determination of the national cycle.

Section 6 offers some conclusions.

2 The Data

While much of the recent work has focused on house price dynamics, we are interested in housing

as it relates to the business cycle rather than house price dynamics alone. Saiz (2010) argues that

housing volumes may be a better indicator of business cycle dynamics than house prices. Indeed,

comparing the data on permits and prices reveals important differences in how the two series are

connected to the business cycle. Price growth slows during many of the previous downturns but

only becomes negative during the 2007-2009 recession. Permits, on the other hand, exhibit clear

negative growth rates in all NBER recessions, and therefore represent a more reliable indicator of

business cycles. Thus, we show results using city-level permits as our housing indicators; results

using prices are available upon request.

In the next subsections, we describe the collection and transformation of the permit data used

to construct the cycles and city-level covariates used to form the clusters.

2.1 City-level Building Permits

While city-level building permit data are available for various time periods for the majority of cities,

MSA definitions have changed a number of times over the years. These definitional changes can

present a problem for business cycle analysis, which requires longer time series to detect switching

between phases. Using current MSA-level data for our analysis would limit the number of cities with
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available data and the length of the time series which only go back to the mid-1990s. Therefore, we

construct MSA-level permits by aggregating county-level permits data using the counties included

in the December 2009 MSA definitions.7

County-level building permits are released monthly as year-to-date levels that accumulate the

monthly changes. Although differencing would yield a monthly flow of permits, the year-to-date

data are constantly revised, confounding identification of an actual change versus a revision. In

addition, the noise in the monthly data affects our filter’s ability to detect switches in cycle phase.

To mitigate these two problems, we use the band-pass filtered, year-over-year growth rate of the

monthly building permits series. This transformation also has the benefit of smoothing outliers that

would not be considered business cycle phase changes but could be misidentified by our estimation

algorithm.

Our sample consists of data from 1989:01 to 2012:11. We select 135 cities with population

greater than 250,000 residents (based on 1990 populations computed with the 2009 MSA definition)

for which all covariates and permits data are available. We limit our sample size to large cities

because the data for the small cities are inherently noisier, and clustering in larger panels is more

computationally-intensive and more likely to be imprecisely estimated.

Figure 1 depicts the building permits growth series for a few of the cities in our sample. The

national data are included for comparison; shaded areas represent NBER recession dates. The

national data have a clear cyclical pattern that is roughly coincident with the timing of the NBER

contractions. The U.S. permits data experience some fluctuations apart from the business cycle

dates but the largest downturns begin just before an NBER-defined peak.8 City-level experiences

vary widely: Chicago, for example, behaves very similarly to the nation, while Los Angeles has the

same broad features as the nation but has more small, non-national housing contractions. Reno-

Sparks NV experiences even more small, non-national housing contractions than LA, such that the

series almost appears to exhibit seasonality. Table 8 contains the full list of cities in our sample

and summary statistics of the permits growth series.

7December 2009 MSA definitions are available from the Census Bureau website http://www.census.gov/

population/metro/files/lists/2009/List4.txt.
8As evidenced by the 2001 recession, permit growth does not always fall with the business cycle. Of course, we

have only three national recession experiences in our sample so the results should be extrapolated with caution.
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2.2 Covariate Data

In addition to the panel of permits data, we require a set of time-invariant covariates to parameterize

the prior that defines the clusters. Our choice of covariates is meant to represent factors that affect

housing cycles: demand, supply, geography, economic, and financing conditions. Meen (1999)

suggest that co-movements may be caused by factors that affect the demand or the supply of

housing. In particular, Meen (1999) finds that co-movements are mainly caused by migration,

equity transfers, spatial arbitrage, and local economic development.

Average population growth over the period 1970 to 1990 proxies the average change in housing

demand, as higher average population growth suggests a higher average demand for new housing. In

addition, the city-level average unemployment rate represents long-run differences in local economic

conditions that may also affect the demand for housing.9 Average winter temperature may be

another proxy for housing demand, especially for a higher income demographic.

Housing density is a proxy for the supply of housing, and Saiz’s (2010) indexes of undevelopable

land reflects geographic constraints on the elasticity in the supply of housing.10 We also include

the share of manufacturing employment because prior studies have shown that it is a determinant

of business cycle similarity and may also influence housing cycle similarity.

Finally, we include two measures of credit availability: the change in the proportion of subprime

mortgage loans relative to total mortgage loan volume and the growth in the loan volume of

subprime mortgages over the period 2002 to 2005.

One limitation of the algorithm described below is that the covariate data used to populate the

prior must be time invariant as the model assumes time-invariant clusters. Thus, the cross-sectional

covariates are all computed either as long-run averages or by taking a snapshot at some point in

the sample. For example, to represent the industrial composition of cities we use the share of

manufacturing employment in 1990. Table 1 presents summary statistics of the cross-section of

covariates.11

9Clayton et al. (2010) find evidence that housing demand, in particular, is the main determinant of housing cycles.
They find that both house prices and trading volumes are significantly affected by changes in the labor market, which
include changes in total non-agricultural employment, average household income, and the unemployment rate.

10Expansion of the population away from central urban areas into rural and remote areas (i.e., urban sprawl) is
another factor identified in the literature as affecting house price comovement. Rising incomes, growing population,
and low commuting costs boost demand for space in distant locations where land is relatively cheap, causing urban
expansion. See, for instance Brueckner (2000), Couch and Karecha (2006), and O’Sullivan (2009).

11The average population growth is taken from the Census and represents the percent increase in the population
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3 The Empirical Model

The model is a first-order Markov-switching model in the mean growth rate of each city’s building

permits series. We allow for two regimes at the city level: an expansion regime with higher av-

erage growth rate and a contraction regime with lower average growth rate. In the most general

framework, each city building permit series could have an independent, unobserved 2-state Markov-

switching process. In the most degenerate case, each city would have the same business cycle, a

national cycle. Each of these models yields a regime process that can be summarized in a single

national Markov state variable. In the former case, the Markov variable has N2 possible regimes;

in the latter case, the aggregate variable is a 2-state variable.

We are interested in an intermediate model which simultaneously limits the possible regimes to

a tractable number, estimates a national regime, and allows some heterogeneity across cities. This

framework can be obtained by assuming that a national regime—subject to some restrictions—

exists, but that departures from this national regime (i.e., idiosyncratic contractions) must be

relatively pervasive (i.e., experienced by a group of cities). Thus, our model has both national

cycles and periods during which groups of cities have contractions by themselves. Let κ represent

the number of (possibly overlapping) groups of cities; the aggregate Markov variable has K =

κ + 2 regimes (one for each idiosyncratic contraction, the national expansion, and the national

contraction).12

3.1 Clustered Markov-switching

Formally, let yt denote an (N × 1) vector of observed city-level building permit growth rates at

date t and Yt = (y
′
t,y

′
t−1, ...,y

′
1)′. Denote St as an (N × 1) vector of contraction indicators (so

of the counties in the 2009 definition of the MSA between 1970 and 1990. The share of manufacturing employment
is computed from Census county-level data from County Business Patterns. Average winter temperature represents
long-run typical temperatures obtained for each city. The unemployment rates were computed aggregating the
number of the unemployed and the labor force at the county level with data from the Bureau of Labor Statistics, and
subsequently averaging over the period 1988:1–2012:12. Housing density is total housing units in 1990 divided by
the land area of the MSA. Loan volumes are aggregated from ZIP code level data on loan volumes from the Federal
Reserve Bank of New York Equifax Consumer Credit Panel Data. Subprime loans are defined as those granted to
individuals with an Equifax Risk Score of 660 or less. (This score is a internal generic risk score that ranges between
280 and 850.) Saiz’s (2010) index of undevelopable land represents the proportion of area in each city that cannot
be developed because of geographic constraints.

12The model is taken from Hamilton and Owyang (2012) and is also similar to Kaufmann (2010). These papers use
clustering algorithms similar to Frühwirth-Schnatter and Kaufmann (2008) to reduce the dimension of the aggregate
Markov-switching process. Other papers with multivariate Markov-switching models include Paap et al. (2009) and
Leiva-Leon (2012).
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Snt = 1 when city n is in contraction and Snt = 0 when city n is in expansion). Suppose that

yt = µ0 + µ1 � St + εt, (1)

where the nth element of the (N ×1) vector µ0 +µ1 is the average building permit growth in city n

during contraction, the nth element of the (N×1) vector µ0 is the average building permit growth in

city n during expansion, and � is the Hadamard (element-by-element) product. For identification,

we assume that µ0n > 0 and µ0n + µ1n < 0; that is, contractions are defined by strictly negative

mean growth rates. Let E(εtε
′
t) = Σ, and we assume that the covariance matrix is diagonal with

representative element σ2
n. The diagonality restriction is made for parsimony and implies that the

correlation across cities is driven primarily through simultaneity in their cycles.

We can summarize the individual Snt with a scalar aggregate regime indicator Zt that represents

the time-t aggregate regime. Let H denote an (N×K) matrix whose elements are all zeros and ones

and where K is the allowed number of possible aggregate permutations (regimes), including both

idiosyncratic contractions and national expansion and contraction. The row n, column k element

of H is 1 if city n is in a contraction when the aggregate regime is k. In a model in which all cities

enter and exit contractions at the same time, K = 2, with the first column being all zeros and

the second column is all ones. As an example, suppose that K = 3; this indicates three regimes:

national-level expansion, national-level contraction, and one idiosyncratic contraction.

For exposition purposes only, consider the example of a cluster consisting of cities with manu-

facturing sectors larger than some predefined threshold. When k = 1, all cities are in expansion,

by definition. When k = 2, all cities are in contraction, by definition. When k = 3, only the

cities with manufacturing sectors above a certain threshold are in contraction; all other cities are in

expansion. For purposes of this discussion, we refer to the regimes in which all cities move together

as national regimes and refer to regimes in which some cities are in contraction but others are not

as idiosyncratic contractions.13

The aggregate regime follows a polychotomous K-state Markov process with (K ×K) transition

kernel P. In principle, we could model a world in which Zt is allowed to transition to and from

any aggregate regime. HO impose additional restrictions for identifying the clusters. They assume

13We do not refer to idiosyncratic expansions as these are simply idiosyncratic recessions for the complement set
of states.
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that the aggregate regime is free to transition to and from national-level expansions or contractions

at any time. That is, if we label the first two regimes as national-level expansions or contractions,

the first two rows and columns of P are unrestricted. However, HO impose the restriction that

the aggregate regime cannot transition from one idiosyncratic cluster contraction to another. That

is, if K = 4 and Zt−1 = 4, Zt can take on only values of 1, 2, or 4. This aspect presents as zero

restrictions on the transition kernel P and is described in more detail in the estimation section

below.

The model can alternatively be depicted as a mixture of distributions for the mean growth

rate of permits. The distribution of the growth rate of permits conditional on being in (aggregate)

regime k is

yt|zt = k ∼ N(mk,Σ),

where

mk = µ0 + µ1 � hk

for hk, the kth column of H. It is important to note here that our setup allows cities to belong

to more than one cluster. One could impose that cities belong to only one cluster, but given the

variation that we observe in the data, we felt this was overly restrictive. The advantage of allowing

membership in only one cluster is that cities would form unique regions but the restriction would

also likely require a larger number of clusters.14

One might wonder what the advantage of using the clustered panel approach is compared with

estimating each city separately. In the univariate Markov switching model, the posterior regime

probability tends to identify a recession whenever the growth rate begins to turn negative. Thus,

the model can pick up very short-lived, idiosyncratic negative growth periods. When the data are

noisy, this sensitivity can lead to a large number of turning-points. In the panel, we require a

significant number of cities in the cluster to exhibit negative growth rates before the algorithm

identifies a turning point. Thus, our cluster recessions will tend to be less idiosyncratic than those

identified by a collection of univariate Markov switching models.

14In our framework, the regions would not necessarily be geographic but would depend on the cyclical similarity
of the member cities.

8



3.2 Logistic Clustering

One of the main features of the model is that it can be used to explain why cities’ housing cycle

experiences are correlated. To do this, we can model the cluster indicators hnk as functions of a

vector of fixed city-level covariates xnk that influences whether city n is in a contraction when Zt =

k. Following Frühwirth-Schnatter and Kaufmann (2008) and HO, we assume that the probability

that a city is in cluster k is defined by:

p(hnk) =


1

1+exp(x′nkβk)
if hnk = 0

exp
(
x
′
nkβk

)
1+exp(x′nkβk)

if hnk = 1

(2)

for n = 1, ..., N ; k = 1, ..., κ. Note that (2) resembles the probability that we would obtain from a

logistic regression model.

For implementation, we consider p(hnk) as the prior probability that city n belongs to cluster

k conditional only on the observed covariates. The business cycle data in conjunction with the

prior probability will determine the posterior probability through an application of Bayes’ rule. As

explained in HO, we can take the βs as population parameters even though p(hnk) represents a

form of the prior probability. We can estimate the βs as we would other model parameters and

they will determine which and to what extent the covariates are important for clustering.

4 Estimation

The model presented above is straightforward to estimate in a Bayesian environment. Given a

prior, the joint posterior of the model parameters including the regimes can be generated by the

Gibbs sampler (see Gelfand and Smith, 1990; Casella and George, 1992; Carter and Kohn, 1994).

The Gibbs sampler iterates over draws from each parameter’s conditional posterior distribution.

After discarding a number of initial draws to achieve convergence, the remaining draws form the

full joint posterior distribution of all of the model parameters.

Let Θ represent the full set of parameters. Then, Θ includes the regime growth rates, µ0 and

µ1; the covariance matrix, Σ; the transition probabilities, P; the time series of aggregate regimes,

ZT; the matrix defining the clusters H; and the logistic parameters, β, ψ, and ξ. The number
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of clusters, κ, is assumed to be fixed to estimate the other model parameters and is discussed

further below. For now, we will assume that the number of clusters κ is determined exogenously

and is suppressed in the notation. There are four blocks of parameters to be sampled: each city’s

parameter set, θn =
(
µ0n, µ1n, σ

2
n

)
; the aggregate business cycle, ZT, and its associated transition

matrix, P; the matrix H determining the cluster membership; and the logistic parameters, β, ψ,

and ξ.

4.1 Priors

The Bayesian environment requires a set of prior distributions for the model parameters. The

distributional assumptions for the priors will, in turn, yield distributional assumptions on the

posteriors. The city cycle parameters θn are assumed to have a normal-inverse Gamma prior

distribution. The transition probabilities for the aggregate regime process are assumed to have

a Dirichlet prior distribution given the fixed number of regimes. The cluster indicators have the

logistic prior discussed above with population parameters β that are normal. Prior hyperparameters

are shown in Table 2.

4.2 Posterior Inference

As we noted above, the Gibbs sampler consists of iterative draws from the conditional distributions

of the model parameters. In this subsection, we describe the draws; details for the sampler’s

posterior distributions can be found in HO.

Conditional on the other model parameters, the set of city-level parameters, θ, are conjugate

normal-inverse Gamma and independent for all n. Thus, for each n, we first draw the µ0n and

µ1n from a normal posterior distribution that depends in part on the regime-dependent conditional

mean. We then draw the σ−2
n from a Gamma posterior distribution. These draws can be made

independently because the εnts are assumed to be uncorrelated.

Conditional on the other model parameters, the posterior distribution of ZT can be obtained

from a multi-regime extension of the Hamilton (1989) filter, a discrete-state modification of the

familiar Kalman filter. For the sampler, we compute the posterior regime probabilities for each

time period and draw each Zt recursively, starting with ZT . This draw is described in Kim and

Nelson (1999). Once we have obtained the regimes, we can compute the posterior distributions
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for probabilities in the transition kernel. These are conjugate Dirichlet distributions (the multi-

ple regime equivalent to the beta distribution) and depend on the observed number of transitions

from one regime to another. Because we are restricting the number of transitions between idiosyn-

cratic contractions to zero, the posterior distribution for these transition probabilities will also be

identically zero.

The cluster indicators can be drawn by an application of Bayes’ rule. We draw the value of

the cluster membership indicator for each city-cluster combination conditional on the memberships

of all of the other cities. The posterior probability is influenced by the logistic prior probability

(i.e., the covariates and the estimated βs) and the similarities of city n’s housing cycle to the cycles

of the cities in the cluster in question. Because we allow a city to have membership in multiple

clusters, we must draw a separate indicator for each city-cluster combination.

The logistic prior parameters are drawn in three steps. The marginal inclusion coefficient, βnk,

is drawn from a conjugate normal. The logistic prior requires two other parameters: a latent logistic

variable, ξnk, whose sign is determined by the value of hnk and the variance of this variable, λnk.

We follow Holmes and Held (2006) who generate ξnk from a truncated logistic and then generate

λnk conditional on ξnk.

4.3 Choosing the Number of Clusters

The model outlined in Section 3 is defined for a fixed number of clusters, K. HO use techniques

outlined in Chib (1995) and Chib and Jeliazkov (2001) to compute marginal likelihoods to determine

K. These methods use resampling techniques to compute the posterior ordinate – a component of

the marginal likelihood – and are accurate when computed with a large number of post-convergence

iterations. While simple to code, the methods of Chib (1995) and Chib and Jeliazkov (2001) use

Monte Carlo integration to compute the posterior ordinate and are computationally intensive when

the model has a large number of parameter blocks. The number of clusters is then chosen as the

model yielding the highest marginal likelihood which must be computed for each possible value of

K. Because HO considered states, the number of clusters was assumed to be small and only a small

number of marginal likelihoods were required to determine K.

In the present analysis, we have a large number of cities, which would require a larger number of

marginal likelihood computations. Because the methods used to compute the marginal likelihoods
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are time consuming, we opted instead for computing a modified version of the BIC for each K for

a number of clusters between 3 and 9. Computing the BIC has been shown to approximate the

marginal likelihood (e.g., Kass and Raftery (1995) and Raftery (1995)) and is faster to compute

because it does not require resampling. The modification attaches a prior to the model dimension,

putting more weight on parsimonious models. We thus compute the average of the BICs computed

at each draw of the Gibbs sampler. We then select the number of clusters that minimizes this

measure, which in our results corresponds to κ = 4 and K = 6.

5 Results

The results of the estimation are comprised of the growth rates and variances of permits for each

city, the regime processes for the nation and the subgroupings, and the cluster compositions.

5.1 Growth Rates

The model posits that the growth rate in city-level permits take on two average values over the

housing cycle. During expansions, the mean growth rate is µ0; during contractions, the mean growth

rate falls to µ0 + µ1, since µ1 < 0. Table 3 lists the cities with the highest and lowest average

expansion growth rates; Table 4 lists the cities with the highest and lowest average contraction

growth rates, and Table 5 lists the cities with the highest and lowest variances. Figure 2 maps the

means of µ0, µ0 + µ1, and σ2 for each of the cities in our sample.15

While there are large differences in the means across cities, there are surprisingly few geographic

patterns. A number of cities in Texas, for example, have high expansion growth rates but also have

large negative contraction growth rates. However, these combinations are not limited to Texas—or

even warm or southern cities. Some cities in upstate New York, for example, experience similarly

large expansion growth rates. Cities that have high expansion rates appear to be correlated with

cities that have large negative contraction rates: the correlation between µ0 and µ0 + µ1 is 35.4

percent.

Perhaps not surprisingly, cities with high growth rates also typically have a higher conditional

variance; the correlation between µ0 and σ2 is 44.8 percent. Because the model restricts the cycle

15Table 8 shows the mean growth rates and the city-level variances for all of the 135 cities in our sample and
includes the mean and sample standard deviation of each city’s raw building permits growth series.
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processes to achieve parsimony, idiosyncratic city-level fluctuations will manifest in the residuals.

This result then suggests that cities with a rapidly growing housing stock are likely to also experience

large, cycle-independent fluctuations.

5.2 National Housing Cycles

One of the main features of the HO model is that it estimates a pervasive national cycle, which

affects—by assumption—all of the cities simultaneously. Because of the restriction that the national

cycle includes all cities, one believing in abundant city-level heterogeneity might imagine that there

would not be much of a national cycle. On the other hand, one believing in pervasive cross-city

linkages might imagine that idiosyncratic cycles would be less common.

Figure 3 plots the posterior probabilities of a national -level housing contraction, Pr [Zt = 2|YT ].

The probabilities reflect the uncertainty around the polychotomous outcomes: a national housing

expansion, a national contraction, or one of the κ cluster contractions. We note a few key features of

the national housing contractions. First, the nation experiences two major housing downturns. The

first downturn is around the time of the 1991 NBER recession and the second is around the time

of the 2007-2009 NBER recession; the housing contraction lasts a little longer than the business

cycle contraction in both cases. This timing is not surprising for the 2007-2009 episode, as it was

an economic downturn specifically associated with a decline in the housing market.

Second, national housing contractions are identified with little uncertainty—that is, there are

very few periods for which the regime probability is between zero and one. Third, a few short-lived

instances national housing contractions are not associated with national recessions.

Finally, a national housing contraction does not occur during the 2001 NBER recession in our

sample. This divergence in cycles is likely because there were localized housing downturns during

these periods but they were not pervasive enough to include all of the cities in our sample. Thus,

they can be characterized by cluster contractions instead of national contractions.16

16Indeed, this period is identified as a national housing contraction in models with a smaller the number of clusters.
However, as we will see below, the data prefer a model with a larger number of idiosyncratic clusters. This finding is
consistent with a large but not full set of cities experiencing a housing downturn in 2001.

13



5.3 City-level Housing Cycles

Before we can compare the city-level cycles, we must first determine the number of clusters preferred

by the data. We treat the number of clusters as a model selection problem and compute a modified

Bayesian information criterion (BIC) for various numbers of clusters. Our objective is to be as

parsimonious as possible, so the parameter penalty in the BIC helps reduce the chance that the

model becomes overparameterized.

We choose the model with κ = 4. It is important to note that our method does not create 4

mutually-exclusive housing regions. Because we allow cities to belong to multiple regions (or none

at all), two cities both belonging to the same cluster will not necessarily have identical housing

cycles.

Once we have determined the number of city-level idiosyncratic cycles, we can examine how

the aggregate regime process evolves. Recall that, while we have defined the national cycles as

the regimes for which all cities are either in or out of housing contractions, there will still be

idiosyncratic contractions for some cities that are realized when the aggregate regime is Zt = k ≥ 3.

Recall also that we have imposed the identifying restriction that disables transitions between these

idiosyncratic contractions. Thus, the (aggregate) economy must pass through either full expansion

or full contraction before transitioning into another idiosyncratic contraction.

Table 6 shows the estimated transition probabilities for the aggregate regime, Zt. Bold zeros

reflect the imposed restriction that Zt cannot transition from one idiosyncratic regime to another. In

addition to the imposed restrictions, we find that a few other transition probabilities are estimated

to be zero. For example, we find no transitions from Zt = 1 to Zt+1 = 2. How can this occur?

The data indicate that transitions from national expansions to national contractions can only occur

through one of the cluster contractions—that is, a group of cities always begins contracting before

it spreads to the entire country.

Figure 4 plots the posterior probabilities of the idiosyncratic clusters, Pr [Zt = k + 2|ΩT ]. We

also plot the probability of the national contraction in each panel for reference. The clusters can

take a number of forms; these include (i) cities that experience idiosyncratic contractions; (ii) cities

that stay in contraction after the nation exits; and (iii) cities that begin to contract before the

nation. The first type of cluster consists of cities that experience housing contractions unrelated to
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the national cycle, e.g., Clusters 1 and 2. Clusters 3 and 4 appear to be characterized by the third

type. Both of these groups of cities begin contracting before the national contraction are always

followed by a national contraction. In this case, we find no evidence of the second type of cluster

for housing cycles.

Figure 5 in panels (a) through (d) shows the posterior cluster membership probabilities. In

these maps, we display each city’s posterior probability of membership in each particular cluster.

As with the growth rates, we find only loose geographic patterns in the behavior of the city housing

cycles.

Cluster 1 contains cities all across the country without an obvious geographical or industrial

pattern, although primarily in the Midwest, South, and the East Coast, excluding larger cities such

as Chicago, New York, and Atlanta. The predominant feature of these cities’ housing experiences

is that they all contracted in the mid 1990s and early 2000s while the rest of the nation expanded.

Cluster 2 is also composed of cities that have idiosyncratic contractions but has a much smaller

membership. Again, there is no real geographic pattern to membership. Neighboring cities (e.g.,

Youngstown is in but Cleveland is out; Tulsa is out but Oklahoma City is in) do not appear

to influence each other’s membership in this cluster. These cities have a large number of short,

idiosyncratic contractions mostly in the mid 1990s and prior to the beginning of the national

contraction that preceded the Great Recession.

Cluster 3 does, to some extent, exhibit a more geographical pattern with cities along the East

Coast and in the South appearing to be more likely to be included. This cluster led the two national

downturns that were associated with the two NBER recessions in our sample. These results suggest

that national downturns begin in a large number of cities and eventually grow to affect all cities

(i.e., a transition from expansion to a Cluster 3 contraction to a national contraction).

Finally, the final panel of Figure 5 shows that Cluster 4 is another large group, containing cities

in California, New England, Arizona, Texas, the South, and the Midwest. This cluster precedes the

final national contraction in our sample, which occurs a few years subsequent to the contraction

associated with the Great Recession. It appears that the Great Recession’s affect on housing

persisted beyond the economic contraction but the effect was less pervasive. Some cities (those

excluded from Cluster 4) experienced a brief rebound before another short national contraction.

In general, we conclude that geography and size (population) do not appear to be the only key
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determinants of cluster composition. The larger clusters might appear regionally connected but

they are so large as to obscure any real patterns. In the next section, we formally investigate what

factors might determine cluster membership.

5.4 What Factors Affect the Comovements

To help determine the factors that might make city-level housing cycles comove, we included a set

of city-level covariates in the prior for the clusters.17 These variables are intended to characterize

differences and similarities in the supply and demand for the cities’ housing. Demand elements

include population growth (which could reflect migration or immigration to/from the city), average

winter temperature (which may suggest seasonal demand for housing), and the average unemploy-

ment rate. Housing density and the index of undevelopable land suggest how easily new housing

can be constructed in the metro area. We also include covariates related to subprime mortgages,

as an indicator of local financial conditions.

Table 7 shows the estimated values of the coefficients in the logistic prior, where bold indicates

values for which zero lies outside the interior 95-percent coverage interval of the posterior distribu-

tion of the βs. We find that housing demand covariates play an important role for determining most

of the clusters (1, 2 and 4). In general, the supply of land does not appear to play an important

role in synchronizing cities’ housing cycles. This result does not suggest that these factors are not

important for housing markets in general. They may play a role in determining similarities in the

trends in housing markets and may be more important for prices than for permits.18

Cluster membership is mainly driven by variables coming from the demand side. This pattern

is especially true for Clusters 1, 2, and 4. In particular, housing density, as measured by units

per square kilometer, and average population growth both had a negative and significant effect on

the probability of belonging to Cluster 1. Both demand-side and financial variables are important

covariates for determining membership in Cluster 2. The change in the share of subprime mortgages

has a positive and significant effect on the probability of being part of Cluster 2. Finally, housing

17The prior can be thought of as sorting a city into or out of a cluster when the cyclical data (the city’s cycle
compared to the cluster’s cycle) is inconclusive. The effect of the prior, in a sense, is to sort the city into the cluster
if the city has similar characteristics to the other cities in that cluster. The prior is only important if the likelihood
of the being in or being out of the cluster are about equal.

18In fact, the elasticity of land supply plays an important role in determining the clusters when we use house price
growth as indicators of housing cycles.
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units per square kilometer has a significant and negative effect on Cluster 4 membership, suggesting

that the cluster is composed of cities with lower housing density. Membership in Cluster 3, on the

other hand, is driven by economic and geographic factors. In particular, Cluster 3 is characterized

by warmer climates and lower cities with average unemployment rates.

We find that the determinants of housing cycle similarity differ substantially from the deter-

minants of business cycle similarity, which supports Ghent and Owyang’s (2010) conclusion that,

at a subnational level, housing cycles and business cycles are not as connected as they appear

to be at the national level. In general, we find that housing demand is the main determinant of

similarities in the cyclical fluctuations in housing instead of housing supply. Perhaps this result is

not surprising as housing supply would tend to change slowly compared to housing demand, and

the cyclical features we emphasize in the model are measured at a medium frequency.

6 Conclusions

Despite the strong linkages often found between housing market cycles and business cycles at the

national level, the relationship between housing and the business cycle is less clear when considering

subnational data because housing markets are highly localized. In this paper, we examine the cross-

city linkages in housing cycles by estimating a cluster Markov-switching model of building permits.

We find that there does exist a national housing cycle which roughly coincides with the national

business cycle as determined by the NBER. In addition, cities experience idiosyncratic housing

contractions either through early entry into national contractions, prolonged exposure to national

contractions, or purely idiosyncratic contractions.

We find that the presence of regional housing cycles may depend on local factors in addition

to national factors. We estimate that idiosyncratic contractions occur in four clusters, for which

membership is primarily influenced by similarities in factors influencing housing demand as opposed

to factors influencing housing supply or factors influencing the similarity of business cycles. For the

most part, we also find that geography does not seem to be an important determinant of cluster

membership.

Finally, regional differences in housing cycles can have implications for the transmission of mon-

etary policy or for implementing macroprudential policies across regions in the U.S. The possibility
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of different reactions to a single national-level policy suggests that models should take heterogeneity

into account and consider, for example, differences in housing demand, the size of the population,

or different strengths of housing shocks across regions when designing policy. In light of our results,

housing demand heterogeneity could be an important consideration when assessing the relative

effectiveness of a policy across multiple regions.
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Table 1: Covariates Summary Statistics

Covariate Mean SD Median Min Max

Housing units per sq. km. 1990 56.5 53.2 39.7 4.1 380.7
Avg. population growth (%) 1970–1990 1.5 1.3 1.2 -0.6 6.0
Manufacturing employment share (%) 1990 21.3 8.5 20.0 3.2 58.5
Average winter temperature (◦ Celsius) 4.3 6.9 3.1 -9.6 19.6
Average unemployment rate (%) 1988–2012 6.0 1.8 5.6 3.3 14.2
Saiz’s (2010) index of undevelopable land (%) 27.1 21.0 21.9 0.9 79.6
Saiz’s (2010) elasticity of land supply 2.1 1.0 1.8 0.7 5.5
Change in share of subprime mortgages 2002-2005 -1.5 8.3 -1.9 -36.8 44.1
Growth in subprime mortgages 2002-2005 11.5 12.0 11.6 -20.3 50.4

Notes:
MSA population, housing units, and land area were aggregated from county-level data from the Census Bureau to match 2009 MSA
definitions available at http://www.census.gov/population/metro/files/lists/2009/List4.txt (Retrieved on 11 April 2013).
The manufacturing employment share was computed as the ratio of MSA manufacturing employment to total employment, aggregating
county-level data from the 1990 County Business Patterns from the Census Bureau.
Average winter temperatures represent long-run typical temperatures obtained for each city from the Department of Energy.
Unemployment rates were computed aggregating the number of the unemployed and the labor force at the county level with data from
the Bureau of Labor Statistics, and subsequently were averaged over the period 1988:1–2012:12.
Saiz’s (2010) index represents the percent of area in each city that cannot be developed because of geographic constraints, and was
graciously provided by the author.
The change in the proportion of subprime mortgage loans and the growth in mortgage loan balances were obtained from credit bureau
data at the zip code level aggregated at the metropolitan area.

http://www.census.gov/population/metro/files/lists/2009/List4.txt
http://dx.doi.org/10.1162/qjec.2010.125.3.1253


Table 2: Priors for Estimation

Parameter Prior Distribution Hyperparameters

[µ0n, µ1n]′ N
(
m, σ2M

)
m = [2,−1]′ ; M = I2 ∀n

σ−2
n Γ

(
ν
2 ,

δ
2

)
ν = 2 ; δ = 2 ∀n

P D (α) αi = 0 ∀i
βk N (b,B) b = 0p ; B =1

2Ip ∀k
Notes:
The table shows the prior distributions and their hyperparameters for all
model parameters.
D(·) is the Dirichlet distribution.



Table 3: Highest and Lowest Permit Growth Rates: Expansion

Cities with lowest µ0

CBSA MSA µ0

17460 Cleveland-Elyria-Mentor, OH 0.043
40380 Rochester, NY 0.046
39300 Providence-New Bedford-Fall River, RI-MA 0.047
33340 Milwaukee-Waukesha-West Allis, WI 0.047
25860 Hickory-Lenoir-Morganton, NC 0.049
28940 Knoxville, TN 0.055
37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.064
35300 New Haven-Milford, CT 0.073
44140 Springfield, MA 0.074
10420 Akron, OH 0.074

Cities with highest µ0

CBSA MSA µ0

14260 Boise City-Nampa, ID 0.283
18580 Corpus Christi, TX 0.283
21500 Erie, PA 0.293
41700 San Antonio-New Braunfels, TX 0.294
19780 Des Moines-West Des Moines, IA 0.298
12940 Baton Rouge, LA 0.311
13140 Beaumont-Port Arthur, TX 0.333
12420 Austin-Round Rock-San Marcos, TX 0.390
28660 Killeen-Temple-Fort Hood, TX 0.449
41940 San Jose-Sunnyvale-Santa Clara, CA 0.463

Notes:
The table shows the cities with the lowest (top panel) and highest (bottom panel)
growth rates in permits during expansion (µ0).
CBSA is the city’s Core-Based Statistical Area code.
Growth rates are the average year-over-year changes given in decimal points
(0.01 is one percent).



Table 4: Highest and Lowest Permit Growth Rates: Recession

Cities with lowest µ0 + µ1

CBSA MSA µ0 + µ1

15980 Cape Coral-Fort Myers, FL −0.455
33700 Modesto, CA −0.450
39900 Reno-Sparks, NV −0.449
38940 Port St. Lucie, FL −0.427
19820 Detroit-Warren-Livonia, MI −0.410
16980 Chicago-Joliet-Naperville, IL-IN-WI −0.407
33100 Miami-Fort Lauderdale-Pompano Beach, FL −0.397
44700 Stockton, CA −0.390
40140 Riverside-San Bernardino-Ontario, CA −0.379
12060 Atlanta-Sandy Springs-Marietta, GA −0.371

Cities with highest µ0 + µ1

CBSA MSA µ0 + µ1

36540 Omaha-Council Bluffs, NE-IA −0.059
12420 Austin-Round Rock-San Marcos, TX −0.053
21500 Erie, PA −0.051
21340 El Paso, TX −0.032
16620 Charleston, WV −0.023
30780 Little Rock-North Little Rock-Conway, AR −0.023
22180 Fayetteville, NC −0.016
33660 Mobile, AL 0.022
35380 New Orleans-Metairie-Kenner, LA 0.088
13140 Beaumont-Port Arthur, TX 0.131

Notes:
The table shows the cities with the lowest (top panel) and highest (bottom
panel) growth rates in permits during recession (µ0 + µ1).
CBSA is the city’s Core-Based Statistical Area code.
Growth rates are the average year-over-year changes given in decimal points
(0.01 is one percent).



Table 5: Highest and Lowest Permit Volatility

Cities with lowest σ2

CBSA MSA σ2

41180 St. Louis, MO-IL 0.082
17140 Cincinnati-Middletown, OH-KY-IN 0.084
16980 Chicago-Joliet-Naperville, IL-IN-WI 0.089
17460 Cleveland-Elyria-Mentor, OH 0.090
39300 Providence-New Bedford-Fall River, RI-MA 0.092
38300 Pittsburgh, PA 0.094
37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.095
16860 Chattanooga, TN-GA 0.106
33460 Minneapolis-St. Paul-Bloomington, MN-WI 0.108
12060 Atlanta-Sandy Springs-Marietta, GA 0.109

Cities with highest σ2

CBSA MSA σ2

16620 Charleston, WV 0.429
28660 Killeen-Temple-Fort Hood, TX 0.437
22180 Fayetteville, NC 0.437
44060 Spokane, WA 0.485
21500 Erie, PA 0.486
46700 Vallejo-Fairfield, CA 0.599
13140 Beaumont-Port Arthur, TX 0.666
41500 Salinas, CA 0.689
41940 San Jose-Sunnyvale-Santa Clara, CA 1.095
28940 Knoxville, TN 1.394

Notes:
The table shows the cities with the lowest (top panel) and highest (bottom panel)
residulal volatility in permits

(
σ2

)
.

CBSA is the city’s Core-Based Statistical Area code.



Table 6: Transition Probabilities. Permits

To Exp To Rec To C1 To C2 To C3 To C4

Zt−1 = 1 Zt+1 = 2 Zt+1 = 3 Zt+1 = 4 Zt+1 = 5 Zt+1 = 6
From Exp Zt = 1 0.88 0 0.02 0.08 0.02 0.01
From Rec Zt = 2 0.07 0.93 0 0 0 0
From C1 Zt = 3 0.12 0 0.88 0 0 0
From C2 Zt = 4 0.32 0 0 0.68 0 0
From C3 Zt = 5 0 0.14 0 0 0.86 0
From C4 Zt = 6 0 0.11 0 0 0 0.89

Notes:
The table shows the transition probabilities (P) for the aggregate state variable (Zt) for K = 4 clusters.
Exp and Rec signify national contractions.
C1 through C4 signify the corresponding cluster contraction.
Bolded zeros represent ex ante identifying restrictions on the probabilities.



Table 7: Explaining Housing Clusters: Permits

Covariate β1 β2 β3 β4

Constant 0.415 -1.168 0.566 0.713

Housing units per sq. km. 1990 -0.158 -0.113 0.067 -0.343
Avg. population growth (%) 1970–1990 -0.313 -0.238 -0.074 -0.046
Manufacturing employment share (%) 1990 0.037 0.040 0.005 0.042
Average winter temperature (◦ Celsius) 0.144 0.029 0.213 0.113
Average unemployment rate (%) 1988–2012 -0.154 0.023 -0.317 -0.014
Saiz’s (2010) index of undevelopable land (%) 0.051 0.031 -0.080 0.026
Saiz’s (2010) elasticity of land supply 0.085 0.042 -0.099 0.151
Change in share of subprime mortgages 2002-2005 0.051 0.172 0.046 0.055
Growth in subprime mortgages 2002-2005 -0.048 0.012 0.017 0.033

Notes:
Coefficients other than the constant, c, have been scaled by Λ(c)(1−Λ(c)), where Λ(x) = (1+exp(−x))−1

is the logistic cdf. Because the covariates have been standardized to have mean zero and unit standard
deviation, the scaled coefficients can be interpreted as marginal effects evaluated at the means, and
represent the change in the likelihood of cluster membership in response to a one-standard-deviation
from the mean in the variable of interest.
Coefficients in bold indicate that zero lies outside the interior 95 percent coverage interval.



Table 8: List of Cities and Permits Growth Rate Statistics

Permits Growth Rate (%)

CBSA MSA Mean SD

10420 Akron, OH -3.5 35.0

10580 Albany-Schenectady-Troy, NY 1.7 45.0

10740 Albuquerque, NM 4.9 42.9

10900 Allentown-Bethlehem-Easton, PA-NJ 1.1 36.9

11460 Ann Arbor, MI 0.7 75.6

11700 Asheville, NC 3.6 41.7

12060 Atlanta-Sandy Springs-Marietta, GA 2.4 35.7

12260 Augusta-Richmond County, GA-SC 5.2 40.6

12420 Austin-Round Rock-San Marcos, TX 23.7 67.3

12540 Bakersfield-Delano, CA 3.3 48.0

12580 Baltimore-Towson, MD 0.9 38.4

12940 Baton Rouge, LA 15.2 65.0

13140 Beaumont-Port Arthur, TX 27.2 88.9

13820 Birmingham-Hoover, AL 8.4 46.8

14260 Boise City-Nampa, ID 12.8 47.4

14460 Boston-Cambridge-Quincy, MA-NH 2.8 34.5

14860 Bridgeport-Stamford-Norwalk, CT 7.5 55.7

15180 Brownsville-Harlingen, TX 10.6 42.8

15940 Canton-Massillon, OH 2.5 41.5

15980 Cape Coral-Fort Myers, FL 7.0 47.6

16620 Charleston, WV 11.6 66.9

16700 Charleston-North Charleston-Summerville, SC 6.0 39.2

16740 Charlotte-Gastonia-Rock Hill, NC-SC 5.1 39.2

16860 Chattanooga, TN-GA 1.2 31.2

16980 Chicago-Joliet-Naperville, IL-IN-WI -0.4 31.3

17140 Cincinnati-Middletown, OH-KY-IN -1.9 27.1

17460 Cleveland-Elyria-Mentor, OH -1.4 27.4

17820 Colorado Springs, CO 13.1 52.4

17900 Columbia, SC 6.3 38.8

17980 Columbus, GA-AL 3.9 51.6
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18580 Corpus Christi, TX 14.0 62.7

19100 Dallas-Fort Worth-Arlington, TX 7.3 31.2

19340 Davenport-Moline-Rock Island, IA-IL 11.5 58.9

19380 Dayton, OH 5.3 56.0

19660 Deltona-Daytona Beach-Ormond Beach, FL -0.7 40.0

19740 Denver-Aurora-Broomfield, CO 11.6 46.6

19780 Des Moines-West Des Moines, IA 15.7 63.1

19820 Detroit-Warren-Livonia, MI 1.7 38.6

20260 Duluth, MN-WI 8.1 53.3

20500 Durham-Chapel Hill, NC 12.1 60.5

21340 El Paso, TX 12.8 61.0

21500 Erie, PA 17.6 78.8

21660 Eugene-Springfield, OR 12.4 65.0

21780 Evansville, IN-KY 4.7 46.2

22180 Fayetteville, NC 18.3 68.5

23060 Fort Wayne, IN 1.9 37.6

23420 Fresno, CA 4.6 46.3

24340 Grand Rapids-Wyoming, MI 1.6 36.5

24660 Greensboro-High Point, NC 5.5 45.8

24860 Greenville-Mauldin-Easley, SC 5.9 37.8

25420 Harrisburg-Carlisle, PA 2.9 40.8

25540 Hartford-West Hartford-East Hartford, CT -0.6 39.4

25860 Hickory-Lenoir-Morganton, NC -0.5 38.3

26420 Houston-Sugar Land-Baytown, TX 12.6 36.9

26620 Huntsville, AL 6.7 52.4

26900 Indianapolis-Carmel, IN 2.4 31.1

27140 Jackson, MS 7.8 51.9

27260 Jacksonville, FL 5.1 42.1

28020 Kalamazoo-Portage, MI 9.3 62.0

28140 Kansas City, MO-KS 6.0 50.8

28660 Killeen-Temple-Fort Hood, TX 26.8 99.9

28700 Kingsport-Bristol-Bristol, TN-VA 4.4 41.7

28940 Knoxville, TN -26.8 276.0
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29460 Lakeland-Winter Haven, FL 7.5 51.7

29540 Lancaster, PA 4.6 48.8

29620 Lansing-East Lansing, MI 3.1 53.8

29820 Las Vegas-Paradise, NV 4.1 45.9

30460 Lexington-Fayette, KY 6.7 47.4

30780 Little Rock-North Little Rock-Conway, AR 13.3 56.2

31140 Louisville/Jefferson County, KY-IN 4.7 39.0

31540 Madison, WI 6.0 44.1

31700 Manchester-Nashua, NH 0.1 44.5

32580 McAllen-Edinburg-Mission, TX 11.7 43.9

32820 Memphis, TN-MS-AR 7.8 55.0

33100 Miami-Fort Lauderdale-Pompano Beach, FL 1.1 40.5

33340 Milwaukee-Waukesha-West Allis, WI -1.2 35.7

33460 Minneapolis-St. Paul-Bloomington, MN-WI 2.2 36.3

33660 Mobile, AL 15.4 65.6

33700 Modesto, CA 1.5 60.7

33860 Montgomery, AL 7.5 65.0

34980 Nashville-Davidson–Murfreesboro–Franklin, TN 6.7 42.6

35300 New Haven-Milford, CT -1.9 44.6

35380 New Orleans-Metairie-Kenner, LA 22.1 97.4

35620 New York-Northern New Jersey-Long Island, NY-NJ-PA 3.4 33.2

35980 Norwich-New London, CT 0.3 49.1

36260 Ogden-Clearfield, UT 6.5 37.1

36420 Oklahoma City, OK 9.9 42.2

36540 Omaha-Council Bluffs, NE-IA 7.5 43.7

36740 Orlando-Kissimmee-Sanford, FL 5.4 43.6

37100 Oxnard-Thousand Oaks-Ventura, CA 7.5 69.6

37340 Palm Bay-Melbourne-Titusville, FL 0.0 39.4

37860 Pensacola-Ferry Pass-Brent, FL 6.7 49.8

37900 Peoria, IL 9.6 58.2

37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD -1.1 28.3

38060 Phoenix-Mesa-Glendale, AZ 4.8 37.4

38300 Pittsburgh, PA 1.2 28.9
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38860 Portland-South Portland-Biddeford, ME 1.0 34.6

38940 Port St. Lucie, FL 1.1 52.4

39300 Providence-New Bedford-Fall River, RI-MA -4.5 29.1

39340 Provo-Orem, UT 17.9 53.4

39740 Reading, PA 1.2 50.4

39900 Reno-Sparks, NV 11.1 66.0

40060 Richmond, VA -0.4 33.7

40140 Riverside-San Bernardino-Ontario, CA -1.3 37.6

40380 Rochester, NY -2.3 35.5

40420 Rockford, IL 1.5 49.3

41180 St. Louis, MO-IL -0.6 27.7

41420 Salem, OR 10.2 71.2

41500 Salinas, CA 13.2 90.5

41700 San Antonio-New Braunfels, TX 12.9 46.9

41740 San Diego-Carlsbad-San Marcos, CA 7.2 59.2

41860 San Francisco-Oakland-Fremont, CA 7.3 50.9

41940 San Jose-Sunnyvale-Santa Clara, CA 39.2 156.2

42220 Santa Rosa-Petaluma, CA 3.9 63.5

42340 Savannah, GA 8.3 51.9

42540 Scranton–Wilkes-Barre, PA 0.9 43.1

42660 Seattle-Tacoma-Bellevue, WA 3.9 36.7

43780 South Bend-Mishawaka, IN-MI 6.8 63.4

44060 Spokane, WA 13.2 71.1

44140 Springfield, MA -3.3 37.8

44180 Springfield, MO 7.9 47.8

44700 Stockton, CA 2.8 48.1

45060 Syracuse, NY 4.5 55.5

45300 Tampa-St. Petersburg-Clearwater, FL 4.8 42.1

45780 Toledo, OH 4.1 52.5

46060 Tucson, AZ 8.2 53.3

46140 Tulsa, OK 8.8 41.5

46700 Vallejo-Fairfield, CA 18.3 93.1

47260 Virginia Beach-Norfolk-Newport News, VA-NC -4.1 55.3
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47300 Visalia-Porterville, CA 1.9 38.2

47900 Washington-Arlington-Alexandria, DC-VA-MD-WV 2.9 34.9

48620 Wichita, KS 3.7 41.3

49340 Worcester, MA 3.4 44.9

49620 York-Hanover, PA -0.1 39.7

49660 Youngstown-Warren-Boardman, OH-PA 0.2 42.3



Figure 1: Building Permits. A Few Cities and the Nation



Figure 2: Model estimates

(a) µ0

(b) µ0 + µ1

(c) σ2



Figure 3: Posterior Probabilities of a National Level Housing Recession



Figure 4: Posterior Probabilities. National Cycle and Idiosyncratic Clusters

(a) Clusters 1 and 2

(b) Clusters 3 and 4
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