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1. INTRODUCTION

This paper studies a network model of intermediation in markets. The network perspective,

which puts the structure of connections between trading parties at the heart of the analysis, is

particularly appropriate for the study of markets in which existing relationships matter for the

interaction of economic agents. Many settings can be usefully thought of as networked markets,

including markets explicitly relying on transport networks (pipelines, rail networks, ports) as well

as markets where the connections are less tangible such as financial markets, in particular when

traded over-the-counter (OTC), international trade and complex consumer goods including for

example real-estate and insurance. In the latter markets connections take the form of relationships

built on trust, a history of previous interaction or having sufficient information about trading

partners. In the financial markets setting a relationship helps traders to manage their counterparty

risk exposure, overcome reputational concerns or ensure that collateral provisions are in place.

In these relationship-based markets we often find intermediaries in the form of dealers, brokers

and market makers that provide intermediation services for actors that do not trade directly with

each other. The need for such intermediation arises naturally in network settings whenever there

are opportunities for trade involving two parties that do not have a direct relationship, preventing

them from direct interaction. They may then nonetheless exploit their opportunities for mutual

trade by engaging indirectly, involving one or more intermediaries that provide the necessary

chain of relationships that makes the trade feasible.

In this paper I employ a modeling approach that explicitly incorporates a network perspective

on intermediation activity. The approach brings into focus the role and value of relationships used

by third parties to facilitate transactions between players that otherwise might lack the opportu-

nity to conduct trade directly. Specifically, I present a dynamic model of multilateral bargaining

and exchange in a network setting with intermediation. Each period, a random matching process

selects a route, that is, a group of players connecting two trading parties via connecting interme-

diaries in the network. One – randomly selected – player on the route can make a proposal to

the other players. If it is accepted, the trade is implemented. If at least one player on the route

rejects, a new route and proposer are drawn. I show that the model has a stationary subgame

perfect equilibrium in which payoffs are characterized through an intuitive set of value function

equations and use this to study efficiency and the sharing of surplus between parties. The equi-

librium payoffs illustrate the effect that competition between intermediation routes has on the

payoffs traders can expect. Efficiency considerations come into play when different routes may

offer different levels of surplus, resulting for example from variation in buyer valuations or trade

costs. The question is then to find the correct routes to trade on. I show that whilst in equilibrium
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players never unduly delay trade, there can exist instances where players agree to trade at times

when delay would be efficient. The inefficiency arises from the strategic advantage for players

that can trade across multiple routes with alternative players. They can increase their own payoffs

relative to those who are in competition with each other. Players thus have an incentive to keep in

play multiple routes, even if not all of them are efficient for trade. The same reasoning also sug-

gests that traders in these markets have an incentive to (over)invest in creating competing routes

(see also Elliott, 2014).

That markets for financial assets may be thought of as networks is startlingly exposed by look-

ing at the data on trades in such markets. Early work in this direction includes Upper and Worms

(2004) and Craig and von Peter (2014) who analyze the German interbank market. Their data re-

veal a network in a core-periphery structure with many peripheral banks that do not trade directly

with others but only through the well-connected intermediaries at the center of the network. The

model in this paper can be usefully seen to capture a market with such a core-periphery configura-

tion: The seller in the model represents a bank in the periphery trying to access another periphery

bank acting as the buyer. As no direct connections exist between banks in the periphery, inter-

mediaries from the core of the network are required to facilitate the trade. The model then offers

useful predictions concerning the trade pattern across the network as well as incentives for the

banks to position themselves in the network.

I study a model with a single trade opportunity specific to a given seller, reflecting the notion of

a thin market. Once trade concludes, the game is over and there is no replacement. This assump-

tion approximates trade in highly customized products such as the complex financial securities

commonly traded in OTC markets. This is in contrast to markets of more generic assets such as

commodities or standard financial products where there may be many buyers and sellers in the

market at the same time.

Note also that whilst I refer to buyers and sellers throughout the paper, the model may use-

fully be applied to study other value adding interactions between two parties, such as liquidity

provision between banks, R & D cooperation between firms, the formation of joint companies by

multiple entrepreneurs, coalition formation in political economy settings, etc.

The paper is structured as follows. The next Section 2 provides the literature context for the

research questions investigated. Section 3 sets out the model and Section 4 characterizes equilib-

rium payoffs. An analysis and key results of the paper concerning efficiency and the relationship

between structural features and payoffs are presented in Sections 5 and 6. Section 7 concludes.
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2. LITERATURE CONTEXT

This paper presents a contribution to the fast-growing literature on trade in networks and in

particular the analysis of intermediation in such networks.

The provision of intermediation services and middlemen activities which this paper investi-

gates in a network setting has been investigated in other non-structural frameworks by several

authors, with overviews provided in Bose (2001) and Spulber (1999). Intermediaries have been

credited with a number of different functions, including the provision of immediacy (Demsetz,

1968) or acting as a screening device between different types of traders that might be prevented

from engaging directly with each other as in Bose and Pingle (1995) or Brusco and Jackson (1999).

In the latter, an intermediary arises endogenously to overcome inefficiencies in trade across com-

petitive markets. A seminal paper in this literature is Rubinstein and Wolinsky (1987). They

investigate a setting with three types of players: buyers, sellers and middlemen. Trade is con-

ducted on the basis of stochastic pairwise matching and a steady state equilibrium is derived.1 A

key insight of that paper is that the outcome of trade and the terms of trade depend on whether

the middleman takes ownership of the good from sellers or work on a consignment basis. In the

first case, the market is biased in favor of buyers, whereas in the second case symmetry between

parties is restored. Duffie et al. (2005) study a search and matching model for OTC markets. They

analyze a model in which trading opportunities arise endogenously and study amongst others

the implications of greater competition for intermediation services. As in Rubinstein and Wolin-

sky (1987), the model does not capture heterogeneity in the connections that traders may have to

the intermediaries and amongst the intermediaries itself.

In contrast to the work cited above, structural features are at the core of a fast-growing lit-

erature on exchange in networks with numerous recent contributions. Seminal early works in

this field include Corominas-Bosch (2004) on bargaining in networks and the exchange model in

Kranton and Minehart (2001). Both adopt a bipartite networks approach, precluding an analysis

of intermediation. More recent contributions in this direction include Manea (2011), Elliott (2014),

Polanski (2007) and Polanski and Vega-Redondo (2013). Models which allow for multiple steps in

trading come in two distinct flavors. Gale and Kariv (2007), Manea (2013) and Gofman (2011) all

consider a trading protocol in which the good travels from seller to buyer in a step-wise fashion,

with traders interacting bilaterally at each step. The paper by Nava (2015), which studies quan-

tity competition instead of an explicit bargaining setting, arguably also falls into this category as

intermediaries benefit from double marginalization.

1In steady state equilibrium the outflow of pairs of traders who conclude a trade is exactly balanced by an exogenously
given inflows of players.
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In contrast Blume et al. (2009), Polanski and Lazarova (2014) and Nguyen (2012) allow for si-

multaneous multilateral interaction, which is also the approach I adopt in this paper. The key

distinction of the current work is that contrary to Blume et al. (2009) I consider an explicit bar-

gaining protocol whereas they consider price-setting intermediaries (whom they call “traders”).

Furthermore, contrary to Nguyen (2012) and Polanski and Lazarova (2014) I focus on a setting

without replacement, that is, an environment where parties that conclude a trade are not replaced

by replica players. My model is therefore more suitable to study markets where “trade opportuni-

ties” are just that: opportunities that ought to be taken and that carry an opportunity cost via the

risk of missing out as players cannot expect to get the same opportunity again.2 The model thus

offers a better match for real world markets where trade opportunities are not limitless, which

arguably is the case in many relationship based markets, including for financial and non-financial

assets as well as interactions in which players collaborate to conduct a joint project, e.g. an R & D

joint venture. The assumption of no replacement has significant implications on equilibrium pre-

dictions. For example competition between multiple intermediaries is significantly tougher than

in model with replacement.

The literature on financial networks employs network tools to analyze various aspects of finan-

cial markets, including risk sharing and contagion amongst financial institutions. An overview is

provided in Allen and Babus (2009). Recent contributions in Babus (2012) and Farboodi (2014) pro-

vide a network perspective to OTC trading and investigate the incentives for financial institutions

seeking to exchange assets to form relationships for trading and intermediation.

Finally, at a technical level, this paper employs the framework of stochastic bargaining games

with perfect information analyzed in detail in Merlo and Wilson (1995, 1998) and extends it for use

in analyzing games on networks. One contribution of my paper to this literature is to identify a

new source of inefficiency in such stochastic bargaining settings, which does not arise in the setting

of Merlo and Wilson (1995, 1998) as their model does not allow for the set of players bargaining

changing each period. These changes are crucial in the network setting I study as they correspond

to different routes and also introduce the notion of players being excluded from the bargaining

table.

3. MODEL

This section presents a model in which players bargain over a surplus on a network. We con-

sider a setting in which a network of relationships describes the possibilities for players to interact.

2Even if a new opportunity were to arise, the opportunity cost applies as long as players are not prevented from taking
part in more than a single trade.
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Players have access to an opportunity that generates surplus, e.g. generated by transferring an as-

set from a seller to a buyer. Players are matched along the network of existing relationships and

bargain over the allocation of the available surplus within groups that form feasible trade routes.

The bargaining protocol allows for the random selection of trade routes as well as the identity of

proposer, incorporating the notion of competition between different alternative trade routes.

The model I present here includes a number of stark simplifying assumptions, e.g. concerning

the underlying matching and bargaining protocol. These have been imposed in order to make the

exposition as clean and transparent as possible. The same general insights would remain valid

under less restrictive assumptions on many elements of the model.

Players: Players are denoted by the set N = {1, 2, ..., n}. There is one player A ∈ N – the

seller – who holds a single, indivisible good that she can sell to each of a set of m buyers

B = {B1, B2, . . . Bm} and Bi 6= a.3

Network: Players interact according to an undirected network denoted by g = (N, E) where

the set of edges E ⊂ {(i, j) : i 6= j ∈ N} describes the set of feasible bilateral interactions.

A group of players can trade with each other if and only if there exists a path in g be-

tween them. As will be described in greater detail below, trade between two nodes that are

only indirectly connected is feasible through intermediaries if there exists at least one path

between them. I assume that the network is connected.4

Routes: A path R ⊆ N between a pair of nodes i and j is a sequence of nodes (i1, . . . , iK)

with (ik, ik+1) ∈ E ∀ k = 1, 2, . . . , K, i1 = i, iK = j and each node in the sequence distinct.

A path is therefore acyclic. As the network is connected there exists at least one path in

the network g between each buyer/seller pair. We call such an acyclic path connecting A
and a given buyer Bi a route. Each route Rj has a surplus vj attached to it reflecting buyer

valuation less any costs. Depending on the network g for each given buyer-seller pair there

may be multiple routes.5

Matching and bargaining protocol: The model operates in discrete time. In each period

traders are matched and bargain under a stochastic route selection and bargaining pro-

tocol building on Merlo and Wilson (1995) as follows.

3The labels of buyers and sellers can be reversed without consequence for further analysis. The key simplification of
the model is that there is just one trade opportunity and one node is involved in all possible coalitions that can realize
the opportunity.
4This assumption is without loss of generality here as disconnected players simply cannot trade.
5One may restrict attention to shortest paths or geodesics only, but this restriction is not essential for the analysis.
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Each period one trade route is activated and an order of play for players on this route is

randomly determined. Based on this draw, players that are on the route bargain according

to the order prescribed within the state, with the first acting as proposer.

Formally, in each period a state s from finite state space S is selected by a Markov process

σ = (σ0, σ1, σ2, . . .). A state s contains information about three elements of the model:

i. The active buyer B(s) ∈ B.

ii. The route R(s) ⊆ N connecting the pair of players who have the trade opportunity

with associated valuation v(s), representing the surplus available in state s if there is

agreement.

iii. A permutation ρ(s) on R(s) which denotes the order in which players move through

the bargaining protocol. ρi(s) ∈ N denotes the player moving in ith position. Follow-

ing Merlo and Wilson (1995) we denote by κ(s) ≡ ρ1(s) the first mover in the order.

We take the set of states S to span all feasible trade routes in g as well as for each route

all permutations of players on that route. Furthermore, to simplify the exposition I assume

that σ is time homogeneous, such that σt = σt′ ∀ t, t′ and each period’s draw is independent

of the previous period’s state. The independent ex ante probability of state s is denoted

π(s). Finally, we assume each s ∈ S is drawn with strictly positive probability. Thus, every

route is selected and every player is called upon as proposer with positive probability.6

On realization of state s, trader κ(s) may propose an allocation or pass. If a proposal is

made, this takes the form of a vector x ∈ Rn such that xi ≥ 0 and ∑i∈N xi ≤ v(s). x thus

represents a split of available surplus amongst all players, allocating a nonnegative share xi

of the surplus to each trader in N. The other traders on the route then respond sequentially

in order given by ρ(s) by accepting or rejecting the proposal. This process continues until

either (i) one player rejects proposal x or (ii) all players in R(s) have accepted it.

If all responders accept x, the proposed split is implemented and the game ends. If the

proposer passes or at least one responder rejects the proposed split, the bargaining round

ends and the game moves to the next period in which a new state s′ consisting of both a

route R(s′) and a new order of play ρ(s′) is drawn and the bargaining process is repeated.

This sequence is continued until an allocation is accepted by all players.

Information Structure: All players observe the realized states and all actions taken by other

players.

6The assumption of independence allows me to dispense with conditioning on the current state whenever expectations
about future realizations are formed and follows standard random proposer bargaining games. However, a general
Markov process would leave general results unaffected as long as it is ergodic.
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Payoffs: Payoffs are linear in the share of surplus allocated, with common discount factor

δ ∈ (0, 1). If proposal x is accepted in period t, player i receives utility:

ui(x) = δtxi

We assume that the surplus to be allocated is bounded above such that ui(x) → 0 as as

agreement time t→ ∞.

The model forms an infinite horizon dynamic game of complete information. Players take a

decision in two distinct roles: as proposer and as responder. As proposer, a player either passes

or suggests a split of surplus on a given route conditional on the route selected and being selected

as proposer. As responder, players have to decide whether to accept or reject a proposed surplus

division. A responder’s decision is conditioned on the selected route and proposer as well as the

surplus division on the table.

A history is defined by a sequence of realized states and actions taken by players. A strategy

specifies a feasible action at every possible history when a player must act.

Note that bargaining in the model is multilateral and follows a unanimity rule: the good re-

mains with the seller unless agreement with all intermediaries on the selected route to the buyer has

been reached. Thus the model is applicable to markets in which intermediators act as a “broker”

rather than ones in which they take possession of the good and act as a “market-maker”.7 Con-

siderations which arise in markets described by a good “traveling” along the route, with interme-

diaries assuming ownership, such as questions of hold-up (intermediaries being in possession of

the good but not intrinsically valuing it) or counterparty risk associated with disappearing resale

opportunities, thus remain outside the model.8

Example State Space. To illustrate the model and in particular the workings of the matching and

bargaining protocol, consider the network displayed in Figure 1. There is just one feasible trade

routes generating a surplus of 1. The trade route consists of the seller A, one intermediary I and

one buyer B. There are six feasible permutations of the three players on the route. In total, there

are thus six states as enumerated in the adjacent table.

7Reporting of corporate bond markets suggests that in the wake of the 2008 financial crisis brokers increasingly showed
the behavior implied in the model: “In the wake of the financial crisis and ahead of tighter regulatory constraints, large Wall
Street dealers have become far less willing to hold the risk of owning corporate bonds, known in market parlance as ‘inventory,’ in
order to facilitate trading for their clients. Instead, they are increasingly trying to match buyers and sellers, acting more as a pure
intermediary, rather than stockpiling bonds and encouraging a liquid market for secondary trading.” Source: Financial Times,
November 8, 2011.
8See the discussion in Rubinstein and Wolinsky (1987) concerning the difference between middlemen taking ownership
of the good and acting on consignment. Models exploring trade in networks in which the good travels on a bilateral
basis from seller to buyer are analyzed in Gofman (2011) and Condorelli and Galeotti (2012).



INTERMEDIATION IN NETWORKS 9

I1

A

B

v = 1

s π(s) R(s) ρ1(s) ρ2(s) ρ3(s) κ(s)

1 1/6 {A, I, B} A I B A
2 1/6 {A, I, B} A B I A
3 1/6 {A, I, B} I A B I
4 1/6 {A, I, B} I B A I
5 1/6 {A, I, B} B A I B
6 1/6 {A, I, B} B I A B

FIGURE 1. Example Network and State Space with a Single Trade Route

4. EQUILIBRIUM PAYOFFS

This section develops the equilibrium analysis of the model. We restrict attention to station-

ary subgame perfect equilibria (SSPE), that is, subgame perfect equilibria consisting of strategies

which condition on payoff relevant histories only: the state (selected route and order of proposals),

and the offer on the table in the given period.

Stationary equilibrium payoffs are characterized as a fixed point to an intuitive set of recursive

equations using results derived in Merlo and Wilson (1998) and extending the analysis to the

setting of networked markets. All proofs in this as well as subsequent sections are collected in the

appendix.

Let f be an expected payoff where f (s) ∈ Rn denotes the vector of expected payoffs for players

in state s. Define an operator A on payoff f which maps from R
n·|S|
+ to R

n·|S|
+ such that:

a. If v(s) > δ ∑j∈R(s) E
[

f j(s′)
]

(Agreement):

Ai( f )(s) =


v(s)− δE

[
∑j∈R(s)\i f j(s′)

]
for Proposer i = κ(s)

δE [ fi(s′)] for Responder i ∈ R(s) \ κ(s)

0 for Excluded i /∈ R(s)

b. If v(s) < δ ∑j∈R(s) E
[

f j(s′)
]

(Delay):

Ai( f )(s) = δE
[

fi(s′)
]
∀ i ∈ N
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c. If v(s) = δ ∑j∈R(s) E
[

f j(s′)
]

(Mixing):

Ai( f )(s) =

δE [ fi(s′)] ∀ i ∈ R(s)

φ(s)δE [ fi(s′)] with φ(s) ∈ [0, 1] ∀ i /∈ R(s)

where φ(s) is the probability of disagreement in state s.

The payoff operator A( f ) distinguishes three cases depending on v(s), the surplus in state s.

These can be interpreted as follows:

a. (Agreement) If the available surplus v(s) exceeds the total expected value of moving to the next

stage for players on the selected route (δE
[
∑j∈R(s)\i f j(s′)

]
), then A( f ) assigns to the proposer

a payoff that extracts from responding parties on the selected route all surplus over and above

their endogenously determined outside option value given by δE [ f (s′)], leaving zero to traders

not included on the route.

b. (Delay)If the available surplus v(s) is less than the expected value of moving to the next stage

for players on the selected route, then A( f ) assigns that payoff to each player.

c. (Mixing) If the available surplus v(s) is equal to the expected value of moving to the next stage

for players on the selected route, A( f ) for players on the route is equal to their outside option.

For excluded players the payoff is between zero and their outside option. Their exact payoff is

a share of their outside option equal to the probability of disagreement in the state.

A stationary equilibrium payoff of the bargaining game is a fixed point of this correspondence.

The proof follows standard approaches and is presented in the appendix.

Proposition 1. There exists an SSPE payoff f . f is an SSPE payoff if and only if A( f ) = f .

The equilibrium payoff is supported by a strategy profile in which every player adopts a strat-

egy with the following standard properties. When responding a player accepts any offer which

gives her at least the discounted expected next period payoff and reject otherwise. If proposing,

she offers every responder their outside option if the residual amount is strictly larger than the

proposer’s discounted expected next period payoff. If the residual is strictly less, the proposer

passes with probability one. In case of indifference the proposer makes an offer as above with

probability between zero and one. We discuss the role of such “mixed agreement” states further

below. Here it suffices to note that the agreement probabilities may not be uniquely pinned down

for each state as different combinations of agreement probabilities may support the same vector

of expected equilibrium payoffs.

Proposition 1 allows the analysis of equilibrium outcomes and payoffs for all possible trade

networks and buyer valuations on the basis of a set of equations describing value functions in a
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recursive manner. We will exploit the characterization to study efficiency and the impact of net-

work structure on equilibrium outcomes in subsequent sections. At this point it is worthwhile to

emphasize the implications of the “no replacement” assumption on equilibrium payoffs. Propo-

sition 1 implies that excluded players receive a zero payoff in states of agreement whilst they can

have a positive expected payoff in states of disagreement. This reflects the fact that they may

be included in successful negotiations in a future period. The zero payoff for excluded players

in case of agreement presents a significant difference to models with replacement (e.g. Nguyen

(2012) and Polanski and Lazarova (2014)) in which players who do not take part in a trade that

is concluded simply wait for the next period to be offered an essentially unchanged environment

opportunity. It significantly intensifies the competition between different trading routes as they

vie to be included in the group that reaches agreement. Section 6 provides further analysis on this

topic.

Example Equilibrium Payoffs. To illustrate the equilibrium payoff characterization of Proposi-

tion 1, we return to the example in Figure 1. First given in every state the available surplus is 1, we

conjecture that agreement will take place in every state, compute the resulting payoffs and verify

the agreement decision later. Under the conjecture buyer A will receive a “responder” payoff of

δE [ fA(s′)] in four out of six states (3− 6). Thus, fA(s) = δE [ fA(s′)] for s ∈ {3, 4, 5, 6}. When

proposing, A will receive the residual surplus after offering just enough to I and B to make them

accept. Thus fA(1) = fA(2) = 1− δE [ f I(s′)] − δE [ fB(s′)]. Plugging these expressions into the

expansion of E [ fA(s′)] yields:

E
[

fA(s′)
]
=

4
6

δE
[

fA(s′)
]
+

2
6
{

1− δE
[

f I(s′)
]
− δE

[
fB(s′)

]}
(1)

By symmetry, identical expressions characterize E [ f I(s′)] and E [ fB(s′)] and in equilibrium all

three players receive the same payoff. Thus we can solve Equation 1 for E [ fA(s′)] = 1
3 . Finally,

the solution is consistent with our conjecture about agreement behavior: ∑i∈R(s) δE [ fi(s′)] = δ <

1 ∀ s ∈ S and thus agreement in all states is indeed optimal.

5. EFFICIENCY

This section discusses the efficiency properties of the equilibrium of the bargaining game. Ef-

ficiency is achieved by adopting an optimal stopping rule which implements agreement in states

which offer sufficiently high surplus and delays otherwise.

Let φ(s) : S → [0, 1] describe a function that for each state s ∈ S denotes the probability of

“stopping”. Stopping implies that the surplus v(s) is collected and the game end. Not stopping

implies that one period passes and a new state is drawn. Given independence of the realizations
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of s across time, the total surplus w(φ) associated with a stopping rule φ is computed recursively

by the expression

w(φ) = ∑
s∈S

π(s) {φ(s)v(s) + [1− φ(s)] δw(φ)}

The optimal stopping rule φ∗ is defined as:

φ∗ = arg max
φ

w(φ)

Denote w∗ the ex ante expected total surplus that can be derived under the optimal stopping

rule φ∗. By the principle of optimality the efficient stopping rule φ∗ satisfies a threshold rule for

all s ∈ S that collects the available surplus v(s) if it is larger than w∗ and passes otherwise:

φ̃(s) =


1 if v(s) > δw∗

φ ∈ [0, 1] if v(s) = δw∗

0 if v(s) < δw∗

The efficiency benchmark suggests two possible sources of inefficiency: there may be too much

trade or too little. Too much trade is conducted if the parties involved in bargaining on a route

agree to an allocation in a state in which it would be efficient to delay. There is too little trade if

the parties do not agree on an allocation in a state where trade would be strictly efficient in the

sense that available surplus strictly exceeds what could be gained from waiting. I will show that

the SSPE of the game specified does not exhibit the latter type of inefficiency but is subject to the

former.

Proposition 2. In any SSPE players reach agreement with probability one in all states in which agreement
is strictly efficient.

Proposition 2 implies a corollary for the baseline case where all feasible routes generate the same

surplus v. In this case, w∗ = v and thus efficiency demands that trade be concluded immediately

without delay.

Corollary 3. If v(s) = v ∀ s ∈ S, in any SSPE trade is conducted immediately and the equilibrium
outcome is efficient.

A necessary condition for delay in this model is thus the heterogeneity of surplus across differ-

ent routes.

Proposition 2 also implies that trade is concluded even along intermediation routes which may

involve relatively large numbers of intermediaries when shorter, more direct routes are available.
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Thus, an intuitive prediction that it might be better for buyer and seller to delay trade in such

situations to avoid splitting the surplus with additional parties does not hold. This is due to the

fact that payoffs for intermediaries on the longer route are endogenously adjusted downwards

in equilibrium, reflecting the constraint exerted by the presence of the shorter route. Thus, in this

model there is no “strategic” cost from additional intermediaries per se. What matters for whether

a route is actively traded over is the surplus it generates. This feature is an important implication

of the model which recently has received experimental support in Choi et al. (2014).

Can trade occur too early in equilibrium? Yes, as long as δ < 1 as I will illustrate in a variation

of the example seen above. Consider the setting with a single seller and two possible routes, each

with one intermediary and one buyer, illustrated in Figure 2. The low valuation route generates

a surplus of 1 whilst the high valuation route generates a surplus of v ≥ 1. Assume as above

a uniform stochastic process such that each route is selected with probability 1
2 and along each

route each player is selected with equal probability. Thus, each route is played half of the time and

conditional on a route being selected each of the three players is proposing with equal probability.

I1

A

B1

I2

v1 = 1 v2 = v ≥ 1

B2

FIGURE 2. Network with Two Asymmetric Intermediation Routes

The efficient outcome in this case involves either trade along both routes or trade along the high

value route with valuation v only, depending on the discount factor δ. Specifically, comparing

expected total payoffs we can derive a critical discount factor of δ∗ = 2
1+v at which delay and

agreement on the low value route generate the same payoff. For δ > δ∗ efficiency requires trade

to take place only along the high value route.

In contrast, the vector of equilibrium payoffs is such that agreement takes place in low value

states with positive probability for a range of δ > δ∗. To see why consider payoffs in a hypothetical

equilibrium in which indeed trade takes place with the low valuation buyer with probability zero.

In this case, E [ fB1(s)] = E [ f I1(s)] = 0 as this route would never be involved in trade agreement.
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For the players on the high value route (seller as well as the buyer and intermediary) the payoff

equations would then be symmetric similar to the example in Figure 1 and can be solved for

E [ fA(s)] = E [ fB1(s)] = E [ f I1(s)] =
v

6−3δ . However, for δ < δ̃ = 6
3+v this solution would imply

δE [ fS(s)] < 1. The seller would have a profitable deviation to offer some ε > 0 to the other players

on the low value route (who would accept it). Thus for δ < 6
3+v there is no stationary equilibrium

in which trade occurs on the low value route with zero probability.

Note that δ∗ < δ̃ and thus there is an interval of discount factors δ with strictly positive measure

in which equilibrium payoffs will be such that they imply trade with positive probability with the

low valuation buyer – despite this being inefficient. Indeed as δ increases within [δ∗, δ̃] we observe

that starting from δ > 2
5

(
5−
√

10
)
≈ 0.735 the equilibrium involves mixed strategies such that

trade occurs on the low value route with a probability that is positive but strictly less than one. We

can interpret this equilibrium as the seller keeping the low value route in play in order to maintain

her strategic advantage relative to the high value route.

Two following two figures summarize the workings of the example with v = 4 by plotting

equilibrium expected payoffs for all players (Figure 3), the probability of agreement in low valua-

tion states (Figure 4) and the total surplus (Figure 5). The critical discount factor δ∗ above which

trade on the low value route become inefficient is 2
5 in this case. As Figure 4 illustrates, in equi-

librium trade occurs with probability one for an interval above this and then declines smoothly

towards zero, hitting zero at 6
7 . In between these two values, the expected total surplus realized in

equilibrium is below the efficient one (Figure 5).

Two further points are worth noting about the expected payoffs of the seller and the down-

stream players (buyer and intermediary). First, for δ > 6
7 we see the payoffs for the seller and the

downstream traders on the high value route overlapping, reflecting the “strategic symmetry” of

the three players whenever only the high value route is traded on. Second, for 2
5 < δ < 6

7 the chart

shows higher payoffs for the seller, which illustrates the “strategic asymmetry” that results from

the seller making active use of her outside option of trading on the low value route.

The source of the “too much trade” inefficiency identified here is a hold-up problem: from an

efficiency perspective the seller should “invest” by delaying in the low surplus state, accessing

the surplus of higher expected valuation. However, in the resulting configuration the symmetry

between the seller and the high valuation buyer would result in equal payoffs for both players

which leaves the seller worse off. Efficiency could be restored were the high valuation buyer

able to commit to compensate the seller for the delay decision by promising a higher share of the

surplus in the high value states. However, an SSPE does not permit strategies implementing such

promises.
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0 2
5 0.735 6

7 1
δ

1

Expected

Payoff

A I2 / B2 I1 / B1

FIGURE 3. Example – Expected Payoffs

Looked at from another perspective, the inefficiency can be regarded as the result of the seller’s

privileged position and her unwillingness to give up the payoff benefits that result from having

alternative sources of supply. If there were only a single buyer, then the trading outcome would

be efficient, even if we hold constant at one half the probability of the high valuation route being

activated in each period. Thus the addition of a trade route, a “thickening” of the market, can lead

to a less efficient outcome. Even worse, the equilibrium payoffs are such that there are incentives

for the seller to create such connections to additional buyers, even if these have a lower valuation

and lead to a lower total surplus in equilibrium. The bargaining model thus exhibits incentives

for over-investment in connections.

Finally note that as δ → 1, the equilibrium outcome realigns with efficiency as trade takes

place along routes other than those with the highest value with probability zero. However, the

incentives to over-invest by connecting to lower valuation routes may remain in place as players

still gain from creating a strategic alternative for themselves and appropriating a larger share of

the surplus. If such alternatives have a cost ε > 0 attached to them, such investment would be

wasteful even if in equilibrium trade occurred only on the efficient route.
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2
5 0.735 6

7 1
δ

1

p

Agreement Probability on Route {A,I1,B1}

FIGURE 4. Example – Agreement Probability

0 2
5 0.735 6

7 1
δ

2.5

4

Expected

Total Surplus

Efficient Equilibrium

FIGURE 5. Example – Total Surplus

6. NETWORK STRUCTURE AND EQUILIBRIUM PAYOFFS

This section considers the relationship between structural features of the trade network and

equilibrium payoffs. One implication of Proposition 1 is that players excluded in a state where
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I1

A

B

IkI2 . . .

vi = 1 ∀ i

FIGURE 6. A setting with k intermediaries

agreement is struck receive a zero payoff. As a consequence, players who find themselves in such

situations may be expected to have their bargaining power reduced. I investigate this question

first by considering the way in which payoffs change as the number of competing intermediaries

increases before deriving a more general result by considering the impact of being “essential” to

a trade on payoffs. I restrict attention in the following to a setting in which all routes generate the

same surplus in all states such that v(s) = 1 ∀ s to focus attention on the strategic competition

between otherwise comparable routes.

6.1. Additional Intermediation Routes. To investigate the impact the number of intermediaries

has on payoffs, consider first a simple setting with a single buyer and a set of k intermediaries that

directly link to both the seller and the single buyer for the asset (see Figure 6), each generating a

surplus of 1. Expected equilibrium payoffs for the end-nodes A and B and any intermediary Ii are

then given by E[ fA], E[ fB] and E[ f Ii ], respectively:

E[ fA] = E[ fB] =
k− δ

k (3− δ)− 2δ

E[ f Ii ] =
1− δ

k (3− δ)− 2δ

As expected, payoffs for end-nodes increase with the entry of additional intermediaries. Also

as δ → 1, payoffs for intermediaries go to zero. The ratio of the payoffs is given by fB
f I
= 1 + k−1

1−δ .

At k = 1, the relative shares are equal and as k increases the ratio increases linearly at rate 1
1−δ .

6.2. Limit Payoffs on a Network with Competing Routes. The analysis in the previous section il-

lustrates the impact of competition in a simple setting with single-step, competing intermediaries.
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One result of this analysis is that as trade frictions vanish in the limit intermediaries receive an

expected payoff of zero. This section shows how the intuition derived from this simple example

carries through to general structures.

Definition 1. A player i is essential to a trade opportunity if i ∈ R(s) ∀ s ∈ S.

The definition reflects the approach adopted in Goyal and Vega-Redondo (2007) applied to the

present model. Structurally speaking, a player is essential if he is located on all possible trade

routes between the buyer and the seller of the good. As such, non-essential traders are competing

for the business of intermediating the trade opportunity.

Proposition 4. In an SSPE of the game with equal surplus in all states, the limit payoff of trader i as δ→ 1

is strictly greater than zero if and only if the trader is essential.

Intuitively, the key distinction between essential and non-essential players is that the latter have

a positive probability of being excluded. This means that in the limit their implicit discount factor

remains strictly below one whilst for essential players it converges to one.

Proposition 4 provides microfoundations for an analysis of competing intermediaries on net-

works and maps the intuitive Bertrand outcome into the bargaining setting investigated here. As

such it provides a justification for the payoff structure used in Goyal and Vega-Redondo (2007),

who investigate incentives for network formation in a setting with intermediation rents. Whilst

they assume that non-essential players receive zero payoff, justifying it as the kernel and core in a

cooperative bargaining setup, the present analysis may provide some grounding for this assump-

tion in a non-cooperative bargaining setting.

7. CONCLUSION

In this paper, I study a model of bargaining and exchange with intermediation on networks, ex-

tending the Merlo and Wilson (1995) framework as a tool to analyze stochastic bargaining games

into a network setting. I characterize payoffs with a simple set of value function equations allow-

ing the analysis of efficiency and the impact of structure on payoffs in equilibrium outcomes. I

find that trade in settings with homogeneous valuations across all routes, trade is efficient. How-

ever, with heterogeneity of surplus across routes, there can be too much trade in the shape of

inefficiently early agreement in equilibrium, arising from a potential hold-up problem. Compe-

tition between intermediaries is shown to reduce payoffs for this type of player. In the limit as

bargaining frictions disappear, all players who are not essential to a trade opportunity receive

equilibrium payoffs of zero. I have imposed a number of simplifying assumptions to offer a clean

and transparent exposition of the effects in my model. The same insights would remain if the
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model were generalized in a number of possible directions, including a more general stochastic

process of selecting routes and proposers.

The present analysis suggests there is scope for future research in a number of directions. These

include in particular a more explicit study of the implications of the bargaining model for network

formation identifying the incentives for players to invest in connections. The resulting predictions

can then be compared to those in models with different payoffs structures including for example

Babus (2012) and Goyal and Vega-Redondo (2007).
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8. APPENDIX

8.1. Proof of Proposition 1.

Characterization. This section presents the proof of Proposition 1. The approach taken employs a

standard argument adapted from Merlo and Wilson (1998). The proof of the proposition requires

demonstrating that f is an SSPE payoff if and only if A( f ) = f .

Proof. ⇒ “ f is an SSPE payoff” implies “A( f ) = f ”
Consider an SSPE payoff f and fix a state s with i = κ(s). Given f , it is a best reply for responder

j to a given proposal x to reject if xj < δE
[

f j(s′)
]

and to accept if xj > δE
[

f j(s′)
]
. This implies

that i can earn v(s)− δE
[
∑j∈R(s),j 6=i f j(s′)

]
from making a proposal that is accepted and E [ fi(s′)]

from passing. Thus, if v(s) < δE
[
∑j∈R(s) f j(s′)

]
, the proposer will pass in a SSPE and fi(s) =

δE [ f (s′)] ∀ i. If v(s) > δE
[
∑j∈R(s) f j(s′)

]
, i will make a proposal in an SSPE that is accepted,

earning:

v(s)− δE

 ∑
j∈R(s),j 6=i

f j(s′)

 for i

δE
[

f j(s′)
]

for j ∈ R(s) \ i

0 for k /∈ R(s)

If v(s) = δE
[
∑j∈R(s) f j(s′)

]
, the proposer is indifferent with f (s) = δE [ f (s′)] again. This implies

that in an SSPE an agreement can be reached with any probability between zero and one, which

implies payoffs for any excluded player k that are in [0, δE [ fk(s′)]]. Thus A( f ) = f .

⇐ “A( f ) = f ” implies “ f is an SSPE payoff”
Assume A( f ) = f . We show that f is an SSPE payoff by defining a suitable strategy profile

and demonstrating that no player can be better off by unilaterally deviating. The strategy profile

instructs proposers to pass unless v(s) < δE
[
∑j∈R(s) f j(s′)

]
in which case the proposer offers each

responder j the
[

f j(s′)
]
. Responders will then accept, which yields δE [ fi(s′)]. Now, given payoffs

f there is no incentive for any j ∈ R(s) \ i to deviate and reject. For player i, there is no incentive

to deviate as fi(s) ≥ δE [ fi(s′)]. Finally, for k /∈ R(s), the rules are such that no action is taken

and thus there no possibility for deviation. Similarly, if v(s) > δE
[
∑j∈R(s) f j(s′)

]
given decision

rules by responders, proposer i cannot benefit from deviating to a proposal that is accepted with

positive probability. Finally, if v(s) = δE
[
∑j∈R(s) f j(s′)

]
the strategy profile instructs the proposer

to make an acceptable proposal with positive probability φ(s) such that for excluded players k
φ(s) · E [ fk(s′)] = fk(s) as required.



INTERMEDIATION IN NETWORKS 21

�

Equilibrium Existence. We prove existence of equilibrium by showing the existence of a fixed point

of the correspondence A. The argument is standard and makes use of Kakutani’s fixed point

theorem.

Proof. A is a self mapping on the space of payoffs which is a subspace X ⊆ Rn·|S|. X is non-empty,

closed, bounded and convex. Boundedness can be seen by recognizing that the maximum payoff

of any player in any state is the maximum valuation across all states.

Now, A is single valued for most of its domain. It is set valued for excluded players where

payoffs for active players are equal for agreement and delay. In those instances the correspondence

maps into a closed interval which implies that the correspondence is convex. Finally end-points

of the interval are such that A has a closed graph.

Then by Kakutani’s Fixed Point Theorem A() has a fixed point. �

8.2. Proof of Proposition 2. We proof by contradiction. Assume ∃ s̃ s.t. v(s̃) > δv∗ so that delay

is not efficient and no agreement is struck. Then by Proposition 1:

v(s̃) ≤ δ ∑
i∈R(s̃)

E
[

fi(s′)
]

As v∗ refers to the total expected payoff and thus the maximum that all players can jointly achieve,

we have:

∑
i∈R(s̃)

E
[

fi(s′)
]

≤ ∑
i∈N)

E
[

fi(s′)
]

≤v∗

Combining these terms we get:

v(s̃) ≤ δ ∑
j∈R(s̃)

E
[

f j(s′)
]

≤ δv∗

where the final step establishes the contradiction. �

8.3. Proof of Proposition 4. Consider first payoffs of essential players as δ→ 1. Let i be essential,

then by Proposition 1, for states s in which i is responding, fi(s)→ E [ fi(s′)]. Adding across states
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and noting that by being essential i is either proposing or responding, this implies equalization of

payoffs across states, i.e. fi(s̃)→ E [ fi(s′)] for states s̃ in which i is proposing.

Now consider a non-essential player k involved in two states s and s̃ that share the same route

such that R(s) = R(s̃) = R and k ∈ R. Furthermore, let k = κ(s) and i = κ(s̃) with i essential.

Then as δ→ 1, payoffs for i tend to the same amount across s and s̃. All other responding players

will receive equal payoff on the route by Proposition 1. This implies that also for k payoffs will be

equal, i.e. fk(s)→ E [ fk(s′)] and fk(s̃)→ E [ fk(s′)].
Finally, by Proposition 1 fk(s) = 0 for s in which k is excluded. As such states arrive with

positive probability, we deduce E [ fk(s′)] = 0 as required. �
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