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1 Introduction

Facing the global financial crisis and the associated recession, many central banks around
the world cut their short-term interest rates and many of these rates among the developed
countries hit the zero lower bound (ZLB). The ZLB puts a nonlinearity in the otherwise
linearized models that central banks and academics use to describe the evolution of the
economy. Such linearized models are also used widely for analyzing the term structure
models in affine models. There have been many attempts to deal with ZLB and the

associated nonlinearity.

The first paper to deal with the ZLB and optimal monetary policy is Krugman (1998).
That paper and the influential Eggertson and Woodford (2003) consider monetary policy
when there is always a chance to be stuck at the ZLB. However, once out of the ZLB the
lower bound can never be hit again. Although these papers provide important insights
for monetary policy, recent papers study more realistic cases. For example, Fernandez-
Villaverde et al. (2012) consider a medium-scale DSGE model and uses global projection
methods to deal with the ZLB.

There are two other strands of literature that also study the ZLB problem. In the
forecasting literature, there are papers such as Clark and McCracken (2014), which as-
sess the predictive ability of conditional forecasts. However, these papers only consider
forecasts for the case in which interest rate is zero; they do not explicitly consider that
the case in which the short rate is zero because of an explicit lower bound. In the term-
structure literature, there has been a wide interest in analyzing the effect of the ZLB for
the yield curve. Black (1995) first proposes that the short-term rate can be thought of
as an option since the arbitrage opportunity with cash creates the ZLB. Filipovic et al.
(2014) and Andreasen and Meldrun (2014) use models where the interest rates cannot
take values lower than a threshold via parameter restrictions. There are also papers an-
alyzing what is called "shadow interest rate models". In those models, it is the shadow
rate that is the driver of the short rate (along with other latent or observable variables)
and thus the term structure. This shadow rate can take any value. As long as it is above
a threshold, the actual/observed interest rate is equal to this shadow rate. However, if
it is less than the threshold, the observed interest rate takes the threshold value. Under
such a system, Kim and Singleton (2012) uses simulations to come up with conditional
expectations. Krippner (2012), Wu and Xia (2014), and Priebsch (2013) instead compute

analytical expressions to compute those expectations.

However, economic relationships such as the investment—interest rate or asset pricing

relationships are about the actual interest rate, not an artificial shadow rate. Accordingly,



in this paper I use a setting where the actual/observed interest rate is endogenous. In
other words, it is the actual (observed) short-term interest rate that directly affects other
variables, and it is the actual (observed) short interest rate that is directly affected by
other variables and shocks. In such a forecasting exercise, one has to pay attention to all
of the previous interest rate forecasts, not only the forecast in the previous period in order
to compute the exact moments of the future values of the variables. However, this causes
the number of state variables to grow exponentially as the forecast horizon increases.
The contribution of this paper is therefore twofold: First, it computes the exact moments
of the variables for the first n 4+ 1 periods when n previous periods are tracked. However,
this does come at the cost of tracking 2" different states of binding and no-binding ZLB
constraint. The second contribution of the paper is to find an approximation method to

deal with the exponentially growing number of states.

In its simplest form, the proposed method tracks the ZLB only in the previous pe-
riod and uses an approximation originally proposed by Kim (1994) for regime-switching
state space models. I show that the method works pretty well for a moderate degree
of persistence. However, the method’s accuracy worsens as the persistence of the VAR
system increases. I also show that we can improve the approximation by keeping track
of more periods than just the previous one. As we track more periods, the algorithm
gets numerically more complicated and more costly in terms of computational time but
results show that the method where we track two or three periods can compete with the

Monte Carlo simulations in terms of computational time and accuracy.

In the next section I set up the forecasting problem: I show the nonlinearity induced
by the lower bound and the way this setting differs from the setting of the shadow rate
models. In Section ITI, I develop the algorithm of this paper. I first show how to compute
the exact moments for the first n 4 1 periods. I then present the approximation method
that keeps the number of states constant. Section IV goes over some numerical examples
showing the performance of the algorithm in terms of the accuracy of the approximation
and computational speed. The method is quite suitable for VAR(1) models, which is
also commonly used in the affine term structure models. In Section V, I show the results
for such a numerical example. On the other hand, by increasing the number of periods
tracked we can at the same time have a better ability to make the method work for VAR
systems with more lags. In Section VI, I present the results for a VAR model with 2
lags. Section VII provides further possible avenues to increase computational accuracy

and concludes.



2 Forecasting from the VAR under a lower bound

In this section, I present the forecasting problem and introduce how the existence of
the zero-lower bound introduces a nonlinearity and brings about complexity in the fore-
casting and simulations for an otherwise ordinary reduced-form VAR. Throughout the
presentation, I work with a VAR of order one. Note that in finance term-structure mod-
els (such as affine term structure models), the law of motion for the state is typically a
VAR of order one. Thus, the method developed in this paper suits those models well.
VAR models for economic forecasting, however, typically have more than one lag. As
will be clear in the next section, the introduction of more lags will make the forecast-
ing /simulation problem more complex. Later in the paper, I present the case with higher

order VARs and suggest some ways to reduce the complexity.

Let X; be an n, x 1 column vector of endogenous variables including the nominal
interest rate, 7;. Without loss of generality we can order the variables such that ¢; is the
first variable. Let y; denote other endogenous variables. If there is no bound on any of

the endogenous variables, the endogenous variables will follow a VAR(1):
Xep1 = p+ PXy + Xegy.

Here, 11 is the constant, ® is a VAR (1) matrix of coefficients, ¥ is the volatility matrix,
and ¢; is the vector of errors (multi-) normally distributed with mean 0 and variance term
I, ;e ~ N(0,1, ). Let’s decompose the VAR system in a way that is helpful in the
exposition of this paper’s method. First, let e; denote the row vector that picks out i; from
Xy, ie e, =11,0,..,0]

that picks out other endogenous variables, v, from X, i.e. e, = | 0,,_1x1 I,,—1 | and

Ixny and i, = e;X;. Similarly, let e, denote the (n, — 1) x n, matrix

Y+ = €,X;. The introduction of a lower bound on the nominal interest rate, 7, makes the

law of motion for the endogenous variables as follows:

Xt - Xt7
Xip1 = p+ X, + Sepp,
Xit1 if €; X141 > 7
X — Z = Z ~
t+1 t+1 i if e, X0y <7
Yt+1 = €th+1

Note that if the lower bound does not bind, X, 1 = p + ®X; 4+ ¥e;,1. In addition, the
value of y;11 does not differ whether the lower bound binds or not. However, since the
next period’s value for the other variables depends on the nominal rate in the current
period, the value of those other variables in period ¢t + 2 will depend on whether the ¢t 41

lower bound binds or not.



The way I am modeling the ZLB and its effects on other endogenous variables seems
to be similar to the use of a shadow interest rate, as modeled in Krippner (2012), Wu and
Xia (2014), and Priebsch (2013) but it has quite different implications . In these models,
there is a shadow rate, s;, that is affected by the state vector, X, directly. X; follows
a VAR(1), and s; may take any value as dictated by the reduced-form model, including
values lower than 7. On the other hand, the nominal interest rate, i; is equal to s; if s,

is greater than 7 and equal to 7 otherwise:
iy = max (7, S¢) .

There are a number of differences between that modeling choice and mine. The endoge-
nous relationship is between the shadow rate and the other variables in those models, not
with the nominal interest rate and the other variables. Importantly, there is no feedback
loop from the actual interest rate to the other endogenous variables or to the shadow
rate. This seems to be in contrast with a) how the economy works or b) the monetary
models that analyze the effects of the ZLB on the economy and optimal policy. As for
the first point, for example, the level of investment in the economy is a function of the
nominal interest rate. Similarly, the aggregate demand relationship (i.e., the relation-
ship between the level of output gap, the short rate and the inflation rate) and asset
pricing relationships are all about the nominal interest rate, not an artificial variable
like the shadow rate. Second, imposing the ZLB constraint via shadow rate modeling
does not lead to any of the concerns that Krugman (1998), and Eggertson and Wood-
ford (2003)have raised. If the nominal rate is only an indicator and does not directly
affect other variables, there would be no need to worry about whether there is a lower
bound on it. As a final note, the ZLB is a recent phenomenon in the US and most other
developed economies, so we don’t really know much about the relationship between a
shadow rate and other variables. For these reasons, I model the ZLB differently than in

the term-structure papers cited above.

It can be argued that a longer duration of the nominal interest rate at zero (i.e., the
persistence of a binding ZLB constraint) can easily be satisfied in a shadow rate model.
If a large enough shock moves the shadow rate far away from the lower bound and if
the process is persistent enough, no further large shocks are needed in order to be stuck
at the ZLB. In contrast, since the VAR model is mean-reverting and the main driving
variable for the interest rate is its own lag!, which is at least zero, the tendency to stay at
the ZLB is relatively smaller in my model. However, the approach chosen should relate
to the kind of force one thinks causes a binding ZLB. If a persistent shock (like a discount

rate shock in macro models) is thought to be responsible, not a big one-time shock, it can

'Either because of persistence or because of a monetary policy rule with a lagged interest rate.
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easily be modeled within the framework I introduce. Or if one thinks that other variables,
such as a big and persistent negative output gap, causes the ZLB constraint to bind (via
a Taylor-type policy rule), that, too, can easily be modeled within my framework. In
contrast, the main mechanism that shadow rate papers propose is that the nominal short
rate is zero today because it was zero yesterday because of an underlying shadow rate at

a very low level .

Let’s continue with the decomposition of the variables. First, note that we can de-
1/
compose the error term into €;; and &; as ¢, = [ €141 & | - Next we define following

the submatrices for the decomposition:

Xy = Zt],atzlgf’t],uzlui ;
| Yt €t Hy |
%
7®:|:)\1 )\y]7E:[ ]
Ey

With this decomposition at hand we can write the system as

o =

Yer1 = €y (0 + PXy + Bey1) = py + @ X + Byeipa.
{ 1271 + q)th —+ Eigt—l—l if i + (I)ZXt + 2@6}4_1 Z 7

7 =
o lty1 =1 if p; + Xy + Bigp <7

i1
Xy =
Yi+1

In the next section, we use these decompositions to come up with a solution for the

computation of forecast moments under a lower bound.

3 Simulations and forecasts under a lower bound

In this section, I explain how we can simulate the VAR system under a lower bound
period by period. Then, I explain how we can compute the exact moments of the system
for the first 2 periods when we track 1 previous period. I go over the main steps and
leave the details to Appendix A. Although I do not go over the general case of tracking
n previous periods, Appendix B provides the constraints for tracking different number of

previous periods.



3.1 The ZLB constraint at ¢t + 1

3.1.1 Simulations

Consider the case of the ZLB at t + 1. We have:
If p; + X, + XNigp1 > 1= 1 = p; + Y, Xy + Xieraq, and
Ifp+0,X; + X <1= 14 =1.
We can equivalently write these two cases as:
If Yigpr1 > 71— pi — O Xy = 4y = py + ©;.X + Xigqq, and
fXen<i—pu—9,X, =1 =1
Accordingly, we have two sets of €,,1 on the realization of which the interest rate takes

either the minimum value (7) or the value dictated by the VAR dynamics. These sets

are:
Fra={em1]Sieem > 71— i — 90X},
]:152+1: {etm| Bicryr <7—pi — 0, X} = an\ftlJrl = (ftlJrl)c‘
Whether the constraint binds or not, the value of other endogenous variables at time
t + 1 is given by the VAR law of motion:
Y1 = py + Py Xy + Dyeria.

We can summarize the simulation for ¢ 4+ 1 as follows: Given €;,1, y;11 takes the value
given by VAR. If the lower bound does not bind, that’s the case for the short rate; if not,

the short rate is 7.

3.1.2 Computing the moments

The conditional expectation of X;.; at time ¢ can be decomposed into the expectations

coming from two mutually exclusive sets of g;,1:
E/ X, =Pr (€t+1 € j:tlJrl) X Ey [Xt+1‘ Ety1 € ft1+1]
+ Pr <€t+l < f‘t2+l) X Et |:Xt+1| 41 € E2+1:| .

Since the value of y; does not depend on whether the lower bound binds or not the
one-period expectation is equal to that of a model without a lower bound. Formally,

By [yrs1|e1 € Fioy] = py + @, X0 + By [Syeria| g1 € Fl]

E; [yt+1\ Ety1 € ft2+1] = py + Py X; + Ey [Eyeﬂrl‘ i1 € ‘7:152+1] ’

Ewyi1 = py + @, X5



The variance of y;,4 is

/
VarYpi1 = EyEy.

Thus, y;4+1 is normally distributed with NV (uy + Oy Xy, EyE;) . On the other hand, since

Ey [irs1| €141 € Fliq] = i + 80Xy + By [Sigrn| €141 € Fliq]

By lig|en € Fiyyl =7,
the conditional expectation of ;.1 at ¢ is:

Epiger = Pr (ei41 € Fiyy) x {®i Xy + By [Sicea| e € Fhyl}
+7[1=Pr(e1 € FLy)l-

Thus, we have to compute moments such as:

Pr (g1 € Fl) s Ei [ra1] €141 € Flq]  vary [ra1| €141 € Flq]

Pr(ei01 € Frhi) s Br [esa| €1 € FRal, vare [era| e € F] -
Remember that the set ]ilﬂ is defined by a single linear constraint, ;g1 > 17— u; — 9; Xy;
thus, it is the combination of shocks, not the value of a particular shock, that determines
whether the lower-bound constraint binds or not. This constraint leads to a truncated
normal distribution, as the lowest value of the short rate is 7. In order to find this
truncated distribution, I follow Tallis (1965), who proposes an exact solution to compute
moments under linear constraints for multivariate normal settings. His method uses a
transformation of the original shock process into another shock process, which turns the
single constraint consisting of a combination of shocks into one that consists of only one

shock. The derivation of his method for a single constraint is given in Appendix A.

With some abuse of notation, let E;Z},, denote E; [Zy k|1 € FLy ] and E,Z7,
denote £, [Zt+k| €11 € ~7:t2+1] . Given the expectation and the variance of the shocks con-
ditional on whether the lower bound binds or not, the conditional and the unconditional

expectation and the variance of the short-rate is straightforward:

1
By = pi +9:X + By (Xiers]
S R
By, =1,
1 » . FLil %
vardy = variy (XS] = Sivary | €] €41 € Friq| X

vargi: 1 =0.
The unconditional (time ¢-conditional) expectation of i;,; is then
Eyivy1 = p1Eygieer + (1 —p1) Eoyigyga,

where p; = Pr (5t+1 € -7';1“) Appendix A shows the moments for y; as well.
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3.2 The ZLB constraint at ¢ + 2
3.2.1 Simulation

Now consider the simulation of X;,».

Yo = py + Py Xip1 + Yyeryo,
; { pi + QX1+ Bigpo | i py + @i X + i > 7
t+2 —

lpy1 =1 if pg + @ Xy + Ligro <7

The constraint y1; + ®; Xy 1 + X;er2 > 7 defines a set F},, and its complement F7,,

-7:tl+2= {eia] Bigrio > 7 — iy — ®i Xy},
Frio={ el Sicryn <7— pi — ®Xep1} = R\Flyy = (FL,)°

However, remember that the value of X;.; depends on whether ¢;,; belongs to .7-"t1Jr1 or

its complement, F7 ;, since

Dy Xi1 = Py (Nider1 + Ayley)
D, X1 = @i (Nideg1 + AyYet1)

and 4,41 =7 if g1 € FPy and i = p; + DX, + Xieeqq. Thus, FL, and F7, actually
depend on F},, and F2 . Thus, for the ¢ + 2 simulations we have four cases depending
on whether ;41 € F; or e,41 € F72,. We denote these cases by using one superscript
(7) for t + 1 variables and two superscripts in the variables (7, j), where i and j take 1
for the case in which the lower bound does not bind or 2 for the case in which the lower
bound binds. The superscript i is for the period ¢+ 1, and j is for the period ¢+ 2. Thus,
X}, is the (simulated) value of the variable at period ¢ + 1 when the lower bound does
not bind, and thilz is the (simulated) value of the variable at period t 4 2 where the lower
bound does not bind in both periods. Similarly, Xfo means the (simulated) value of the

variable where the lower bound binds in both periods. Our four cases are as follows:

1. Case 1:
yt1-7i-12 = &y (M + @Xt1+1 + E5t+2) )
ity = e (p+ X[ + Deyps) .
2. Case 2: s
Yero = €y (M +OX/), + 25t+2) ;
1,2 _
g1 = L



3. Case 3:

Yits = €y (n+ ®X7, + Terya)
’lfjrlQ =€ (/L + (bXt2+1 + E€t+2) .

4. Case 4:

Yits = ey (1 + XPy + Sersa)

22
b = 0

3.2.2 Computing the moments

Since there are four different cases depending on whether e, € F},; or not and e;5
€ F}l,, or not, we have conditional moments corresponding to those four cases. In this
section I go over the main steps to compute the conditional moments for these four cases.
I then aggregate them to find the conditional moment with less information, going all the
way to time t conditional moments. I present the method to compute only one particular
conditional probability, that of the event of a nonbinding ZLB constraint both in the
first and the second periods. Following our convention of using the superscripts above,
let p;1, denote this probability; i.e. piiy = Pr(ippe > 7 it > 7).

Remember that Pr (i;,2 > 7,41 > 7) is the probability that Pr (5t+2 € Flio,€te1 € ftlH).
Thus, there are two linear restrictions for this event.
Pr(Xigepe 27— pty — X410, Bigpn > 71— i — 9,.X4)
Pr((Zigire 27— pi — X 1) & (Bigpp1 27— py — 9, Xy))
We need to find the joint event of a no-binding restriction in both periods. To do that
write the time ¢ 4 2 restriction in terms of period ¢ variables along with time ¢ + 1 and
t + 2 shocks. For example, for the case of i;,9,7;11 > 7, we have
eiXeiro > 1 — € (u+ PXypiq)
6i2€t+2 2 17— €; [IM + @ (:U’ + ¢Xt + th-ﬁ-l)]
€; (‘I)Egt+1 + Eé‘p,.g) 2 71— € [/L + ‘I>,u + (I)2Xt + (I)E&TH_J
e;Con > 7 — e;az,
with 7, a; and C defined as
/
= [ehi1:Eraa)
as =+ du+ X, + DI
Ch = [ Y ¥ ] .



Hence our two restrictions are

e;Can > 1 — e;a,
Yigry1 21— pi — DX

Notice that these two restrictions are a linear combination of 2 xn, and n, shock variables,
respectively. Just as we reduce the dimensionality of the relevant errors to one for the
restriction at time ¢ + 1, using the method of Tallis (1965) for the multiple constraint
case, we reduce the dimensionality the problem to two in this case. Appendix A goes
over the derivation in detail. With this transformation we can find the exact values of
the conditional moments, say the expected value of the short rate at ¢ + 2 given the lower
bound not binding in periods ¢ + 1 and ¢ + 2. From these conditional moments we can
find other moments such as the expected value of the short rate at ¢t + 2 given the lower
bound not binding in ¢+2 or the unconditional (time ¢-conditional) expected value of the
short rate at ¢t + 2. Notice that these are exact as well. In the next section we consider

periods t + 3 and beyond.

3.3 The ZLB constraint at ¢t + 3 and beyond
3.3.1 Simulation

For simulations at period ¢ 4+ 3 and beyond, we can continue running the law of motion
period by period, given the realization of shock processes for different simulations, and
check whether the lower bound binds or not. If it does not bind, we can use that particular
draw and continue building the path further using those values. If the lower bound binds,
however, we set the short rate to the lower bound while keeping the values of the other
endogenous variables the same and then continue building the path further using these

revised values.

3.3.2 Computing the moments

Our analysis of ¢ + 1 shows that we have two cases for this period, depending on whether
the lower bound is binding or not at this period. There are four different ¢ 4+ 2 cases,
depending on whether the constraint binds in either of the two periods. Similarly, there
are eight different cases in period ¢ + 3, depending on whether the lower bound binds
in any of the t + 1,¢ + 2 or t + 3 periods. By the same token, the number of cases will
continue expanding at an exponential rate (it doubles every period), so that it becomes

impossible to manage even after a few periods.
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This problem of an increasing number of states is the same as Kim (1994) faces in
his state-space regime-switching model. He proposed to solve this problem by collapsing
the distributions for the different states so that the number of cases going forward does
not expand. I follow this idea of collapsing the number of states using his method. To
be concrete suppose at period ¢+ 1 we have the distribution for the endogenous variables
in the nonbinding state (X}, in the notation of the previous section) and the binding
state (X7, in the notation of the previous section). If we track n previous periods, for
period t + s 4+ n, we can use the distribution of X}, for states that has the nonbinding
state at period ¢ + s. These include the distributions of thi]; 4 €tc. For example, when
1 previous period is tracked, we use the distribution of X}, to find the distributions of
X, and X2, . Consider the first one" X! .| is the distribution of X;;,, that has
a nonbinding state in both ¢ + s and ¢ + s + 1. Since X/, | is random, I characterize it
with the following:

X}, =E (XL 4 T ws,

where I is the Cholesky decomposition of var, [X},,]. Thus, to find the distribution of

th—il-s+17 we will find the set of w;;, and 44,11 that satisfies
eXh, >ne (Wt X} + Seistn) >0

Similarly, the distribution of X7,  is associated with the set of wyys and €441 that
satisfies
eiXps > e (p+ X/ + Berpe) <7

Just as at time t+2, we have 2 restrictions, and transform the constraints on ;1 and ;o
using the method of Tallis (1965), following the same logic we transform the constraints
on wyys and g4, 441 here. One note for the cases that start with a binding state at period
t 4+ s is in order. Since the interest rate at period ¢t + s is always zero for those cases,
thus, nonrandom; we do not check whether it is less than the lower bound leading to one

less restriction compared to the case of a nonbinding starting value.

For n-previous period tracking at period ¢+ s+n we have 2" different cases. For ex-
ample, for one-period tracking we have the four cases of X}, |, X2 | X2 . X2 . However,
for period t + s + 2, we are going to use X ., and X7, ;. Hence, I use Kim’s idea
to collapse the mixture distribution of thjrls 41 and. Xta’_ls 41 into a normal distribution of

Xl

trs41- Appendix D computes the moments of the mixture of normals. This appendix
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gives the appropriate formulas for the new distributions such as:

1 11 2 21
Pivkt1 = PrykPisky1 T Piprlirt1

1 11
1 o . o P ikPiik+1 11
EtXt+k+1 =k [Xt+k:+1| Uitht1 = Z] = 1 1 T2 2t EtXt+k+1

PiikPiiki1 T PrikPiiksa
2 .21
DikPiyk+1 12
+ EyXiiei

T i1 2 921
PivkPiikt1 T PiyrPisrs1

The first formula shows that the probability of the lower bound constraint not binding
at time t + k + 1, p} 4141 is equal to the sum of the two probabilities: The first term is
the probability of the lower bound constraint not binding at time ¢ + k£ + 1 given it does
not bind at time ¢ + k, p;i, , times the probability of the lower bound constraint not
binding at time ¢ + k. The second term is the probability of the lower bound constraint
not binding at time t + k 4+ 1 conditional on a binding constraint at time ¢ + k£ times
the probability of lower bound constraint binding at time ¢ + k. Similarly, the expected
value of a variable when the lower bound is not binding at time ¢t + k + 1 is the weighted
average of its expected value when the constraint does not bind in the previous period
and its expected value when the constraint binds in the previous period with the weights
computed by the Bayes formula. The collapse of the mixture of distributions induces an
inevitable approximation error. In the next section, numerical examples will show under
what conditions these approximations work best. Appendix B shows how we can find the
restrictions induced by different binding and nonbinding states for the case of tracking

more periods.

4 Numerical Examples

In this section I go over some numerical examples to show the performance of the method.
For the first three numerical examples, I consider a three-variable VAR with one lag.
These three variables are the interest rate (i;), the output gap (z;), and the inflation
rate (m;). Since the numerical examples serve the purpose of presenting the method and
the assessment of the approximation, I did not estimate a VAR using the historical data.
A VAR with historical data probably understates the importance of the ZLB because
there is only one case of the ZLB constraint binding in the postwar US data, typically
the longest span of data considered for empirical macro studies. Rather, I come up with
arbitrary but plausible coefficients to enable larger chances of long periods of binding
ZLB. In the VARs employed for the analysis of monetary policy shocks, the interest rate

is ordered after the inflation and output gap so that the shocks to the interest rate affect
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the inflation and output gap with a lag, whereas the reverse is not the case. I follow this
ordering. As the exposition above put the short rate as the first variable, I follow that as
/

well. Now, let X; = [ it T T ] , and the VAR coefficients and the steady-state and
the initial value for the first numerical example are:

0.8 —0.1 0.2 ] 1.5 0.3 0.2
d=1005 07 01|,2=] 0 08 0 |,
| 02 0.1 0.7 0 01 1

s N
X=10]|,Xo=| -3
1

I set the interest rate lower bound at zero. In Figure 1, I depict the probability of a
binding lower bound and the conditional and unconditional expectations of the three
endogenous variables. I compute the expectations using two different methods. The first
is the Monte Carlo simulation using 1076 different shock realizations for each period,
and the other is the method described in this paper. I use different numbers of tracking
periods to show a) how we can increase the number of periods and can get the exact
moments and b) how we can improve the approximation accuracy for the rest of the
periods. In particular, I track up to four previous periods. The way I use this paper’s
method relies on the Kim-style approximation after the second period for tracking one
previous period, after the third period for tracking two previous periods and so on. As
such, the results of the first two periods are exactly the same for the simulation method
and my method. Similarly, I get the third period moment exactly for the cases of tracking
two and more previous periods. The results from the following periods show that even the
simplest case produces approximations that are reasonable, and by tracking more periods
we reduce the approximation error quite a lot. Table I shows the average approximation
error at different periods when tracking different numbers of previous periods and a
comparison of the computational time. For example, by tracking two previous periods,
we will have a 5 basis point difference for the conditional expectation of the interest rate at
the nonbinding state and a 10 basis points of difference for the unconditional expectation
of inflation rates between the Monte Carlo method and the proposed analytical method
tracking at periods 20 and 40, respectively. We can further reduce the approximation
errors by tracking three and four previous periods. These come at a cost of complexity
and computational time as Table 1 shows. In particular, while two-period tracking takes

about 2 % of the computational time? that Monte Carlo exercise with a 1076 draws

2All computational time comparisons are done by running Monte Carlo simulation and cases of
tracking different numbers of periodsl0 times and averaging out the computational times of these 10

trials.
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takes, the same figures for the three and four-period tracking are 35% and 237%. Thus
tracking two or three periods is a serious contender in terms of approximation error and

computing time vis-a-vis Monte Carlo simulation.

In Figure 2 and Table 2, I use the same VAR coefficients but start with a different
initial value, which is equal to the nonstochastic steady-state value. The coefficients, the
steady-state and initial value are given along with Figure 2. The figure shows that the
approximation is also reasonable for one-period tracking and much better for the cases of
tracking more previous periods. Next, I look at a system that is more persistent. I keep

the VAR coefficients of the first numerical example, except the VAR(1) term, where it is

NOW:
0.9 —-01 0.2
=1 005 09 0.1
-0.2 0.1 038

The maximum of the absolute value of the eigenvalues of the first two VAR systems is
0.76, whereas that of the last model is 0.96. As Figure 3 and Table 3 show, there is
a deterioration in the approximation in the case of tracking one previous period. The
approximations become better as we increase the number of previous periods tracked.
For example,. for the two-period tracking, the deviation of the unconditional value of
the inflation rate at period 5 is only 4 basis points, whereas at period 40 is higher at
19 basis points. However, the same figures for the three-period tracking are 3 and 11
basis points, respectively. Hence, a highly persistent VAR system requires more periods

tracked in order to produce a good approximation.

In Figure 4 and Table 4, T present the results for a larger model. We add three
more variables but keep the maximum of the absolute eigenvalue at 0.76. In general,
the approximation from the larger model seems a little worse for the case of one-period

tracking and quite good for the case of tracking two or more periods.

5 An affine term-structure model under the ZLB

constraint

We can use the algorithm described in this paper to compute the bond prices in an affine
term structure, where the underlying law of motion, the VAR(1) model contains the
short-rate. I still use the three-variable VAR(1) model that has been used so far in the
paper: VAR(1) with the short-rate, the output gap, and the inflation rate. Notice that

such a model can be used where the short-rate is governed not by latent factors but by
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a Taylor-rule with inertia. The state vector follows the same VAR with one lag. The

short-rate is an affine function of the state
it — 50 + 51Xt,

with
do =0 and 0] = €.

The nominal stochastic discount factor used for pricing nominal bonds is:
M1 = €ETP (—it - %A;)\t - )\;5t+1) )
where the market price of risk is also an affine function of the state.
At = Ao+ A Xy,

I assume that the market price of risk depends on the present variables; thus the first
column of \; is a vector of 0’s®>. We can still use the Q-measure for pricing the bonds
as the ZLB is about the short-rate’. The VAR system under the Q-measure has the

parameters:

The n-period bond price can be computed as:
0 n—1
P = E, {GXP (‘ zit+i):| .
i=0
Finally the (log-) yield for maturity n is:

. —log (P/
PR

If there is no ZLB constraint, we can use the usual bond-pricing recursion relationships,

expressing the n-period (log) bond prices as an affine function of the state:

log (P") = a, + B;Xt

3Notice that this assumption does not affect the method’s ability to compute the expected values of

the endogenous variables or that of the bond yields.
4One can argue that other nominal rates should also have a lower bound. However, no-arbitrage

assumption takes care of that constraint for other bond yields. In the numerical examples, we shall see
that if the ZLB constraint for the short-rate is satisfied, so is the ZLB constraint for the longer rates.
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Appendix E.1 shows that the bond-price coefficients are:

a1 = 076”’/1 = —€,
_ 1
Qp = Qp_1 + Béfllvl’ + éﬁéflzzlﬁn—la

B =—e+ 0, 0.

With the ZLB constraint, however, we can either use the simulation method or the
n—1

method described in this paper. We approximate the distribution of by, 1 = > i1,
i=0

which is a mixture of normals and truncated normals, with a normal approximation
where we use the expectation and the variance derived from the paper’s algorithm. In

other words, I approximate the n-period yield with

—1 n—1 1
— log {exp |:(— 2 Et'it+i + —UCLTtZ't+Z')‘| }
n =0 2

1 1
= ﬁ |:Etbt+n—1 - 506”} (bt+n—1):|

=3
[12

with the moments coming from the method’s algorithm. In order to find the moments
of biyn_1, I append it to the vector of endogenous variables, Zi,, = [X/, bi.,]", for
each nonbinding and binding state at every period ¢+ k. The expectation of b; is fairly
straightforward

birr = Eibiyr = Eibiir—1 + Etigyn.

Appendix E.2 goes over the derivation of the variance of b, ;. Figure 5 and Table 5
show the results of a numerical example for the bond-yield computation with a Monte
Carlo simulation and the paper’s method. For the numerical example of Figure 4, I use
the VAR parameters of the first numerical example (that of Figure 1). Given the VAR
parameters, I estimate the market price of risk parameters in order to fit an upwardly
sloping yield curve at the nonstochastic steady state under the assumption of no ZLB
constraint. The yield curve I try to match has the following nonstochastic steady state

values:

Yields (percent) | yi vt ¥ y?®  yP©
Objective 3.00 325 350 425 5.25
Fitted 3.00 341 3.69 3.87 3.91

Although such a simple term-structure model does not generate a large enough nominal
slope, the 10-year-1quarter slope is still about 91 basis points, which is reasonable given

the simplicity of the model. Given the VAR parameters and the market price of risk,
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I transform the law of motion from the P-measure to the (Q-measure and compute the
time t-yields, where X, is equal to that of the first numerical example. In Figure 5, I
compare the results of the Monte-Carlo simulation with the different cases calculated
with the method in which I allow tracking 1, 2, and 3 previous periods. The results show
that although the approximation for one-period tracking is not quite satisfactory, those
for the cases of tracking 2 and 3 periods approximate the yield curve pretty well. The
difference between the Monte Carlo simulation (with 1076 simulations) is 2.84 and 1.60
basis points at a two-year maturity,-6.84 and -3.89 basis points at a 5-year maturity and
-7.53 and -4.11 basis points at a 10-year maturity for the cases of tracking two or three
periods, respectively. The approximation error increases over the maturity horizon but is
still comparable to the usual one-standard deviation of the measurement error typically
found in the estimated for affine term structure models with a Taylor-rule® for the case

of tracking 2 previous periods and lower for the case of tracking 3 previous periods.

6 Models with more than one lag

Although the law of motion in many affine term-structure models is a VAR with one lag,
macro forecasting generally requires VARs with more lags. In Figure 6 and Table 6, I
show the results of the method when it is applied to a VAR with two lags. I still keep
the maximum of the absolute of the eigenvalues of the system at a moderate level, 0.78.
In principle, one has to keep track of the previous period not only for the first lag of the

interest rate but also for the second lag. I decompose X} . and thJrsfl

i i i
Xiys = BiXpps + Dy
J _ J J
Xivso1 = Ba Xy g + T qwigs

and compute the constraints induced by the ZLB accordingly. Appendix F goes over
the derivation of these constraints for the case of VARs with more than one lag. The
approximation is still reasonable but a little bit worse than that of a one-lag model as
expected. Although the nonbinding case still performs well, the binding case performs
worse. However, since over large periods hitting the probability of the ZLB becomes lower
(for example, it is 7 percent at 20 periods for this example), the deviation of the method
with Monte Carlo simulation is -0.13 percentage point for the unconditional expectation
of the interest rate, and -0.03 percentage point for the output gap, and -0.05 percentage

point for the inflation rate at 20 periods.

For example, Ang and Piazzesi report 18 basis points for the measurement error’s standard deviation

for a 1-quarter yield and 6 basis points for that of a 5-year yield.
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7 Conclusion

In this paper, I develop a new analytical method to obtain forecasts from a reduced-form
VAR model under the ZLB constraint. The introduction of the ZLB in my setting in-
troduces a nonlinearity similar to the settings of Wu and Xia (2014), Priebsch (2013).
However, unlike a shadow-rate model, the ZLB constraint in my setting prevents comput-
ing the exact moments of forecasts for any forecast horizon because the variables in all of
the previous periods need to be tracked. I first show in a forecast exercise of a VAR under
the ZLB constraint how we can compute the exact moments for the first n 4+ 1 periods
when we track n previous periods. Then, for the periods beyond n + 1, I developed an
approximation similar to the one employed by Kim (1994), which he derives for a differ-
ent setting, that of regime-switching. The results show that my algorithm, even for the
simplest case of tracking one-period, works pretty well when there is a moderate degree
of persistence and involves much less computational cost than a Monte Carlo simulation,
even when the initial point for the variables are quite different than the nonstochastic
steady state value. I also show that one can produce better approximations by tracking
more previous periods, though it does require more computational time. In particular, I
show that two- and three-period tracking is a viable alternative to Monte Carlo simula-
tion in terms of computational time, and produces good results for persistent cases, larger
systems, and systems with more than one lag. Going over three periods creates better
approximations but it requires more computational time than a Monte Carlo simulation

with a large number of draws.

Since most of the affine term-structure models use a VAR(1) as the law of motion for
the state variable, I also present a way to compute the yields in an affine terms structure
model where the state also contains the short-rate itself, which is subject to the ZLB
constraint. The results show that the method achieves results where the deviation from
the exact moments are lower than one-standard deviation of usual measurement error
in estimated affine term-structure models where short-rate is explained by a Taylor-type
policy rule. Hence, the method proves useful in computing bond prices for affine term-

structure models in which the lagged interest rate is among the state variables.

I would like to end with two suggestions that may improve the method in terms of ac-
curacy and computing time. The first relies on the mean-reverting property for the VAR
systems. By tracking more periods in the beginning -where there is a higher difference
between the expected value and the ergodic (conditional) expectation- we can minimize
the approximation error where it is more important. After this initial number of periods,

we can always go back to tracking a lower number of previous periods. The second way
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is exploiting the ergodic moments coming from the VAR model with the ZLB. One can
use the ergodic moments conditional on the cases of binding and nonbinding interest rate
constraint. One can then incorporate this information and make the expectation of the
endogenous variables as a convex combination of the moment coming from the method
and the conditional ergodic moment, where the weight for the ergodic moment increases

over time.
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A Appendix A

A.1 The ZLB constraint at ¢ + 1

In this appendix I show the method of Tallis (1965), which provides an exact solution
to compute moments under linear constraints for multivariate normal settings. Consider
the linear constraint on ;.4
If i + @i Xy + Bigr1 > 7= 1 = p; + P, Xy + ige41, and
If Wi + D, X + Zigt—i-l <T= 1 =1
We can equivalently write these two cases as:
If EigtJrl >0 — [ — ¢,X, =iy = Wi + P, X; + Ei5t+17 and
If Eigt—i-l <U— Wi — P,X, = 1, =1.
Accordingly, we have two sets of 41, on the realization of which the interest rate takes
either the minimum value (7) or the value dictated by the VAR dynamics. These sets
are:
Fro={e| Sicr > 71— i — 0, X},
Fra={em|Bieryr <T— i — 0. X} = R*\Fly = (Fin)”-

Whether the constraint binds or not, the value of other endogenous variables at time
t + 1 is given by the VAR law of motion:

Yer1 = py + Py Xy + 2y

First, consider the probability:

Pr (5t+1 - Ftl—l—l) = / 77/} (5t+1) d€t+1 = / / 1/} (8t+1) d617t+1"'d€ng7t+1
Fl €1 Ene

t+1
els such that 3;e441>7—®; X}

Here 1) (¢441) is the multinormal pdf with a mean 0 and I,,. Tallis’s idea was to transform

the set F},; so that the constraint would be on a single transformed shock, 71 41, instead

of a set of shocks. The transformation we are going to use is the orthogonal transformation
/

with ;49 = Hnq, where H has as its first column and the remaining columns

5]
being orthogonal to 3J; and orthonormal amongst themselves. Then,
.7‘}1“ (et41) = {er1; Bicry1 27— pi — ©:X4}

Z—Mi—q)z‘Xt}

ft1+1 (Ma41) = {7]1,t+1;771,t+1 > = =i
(A

]:tl+1 (et11) = }}1+1 (M1,641) -
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Tallis showed that if ;.1 ~ N (0,7),

Pr (€t+1 € ~7:tl+1> =1-V(a),

Y(a) X
L= (c) 5]

where WU (.) is the cumulative distribution of a standard normal at ¢; and ¥ (¢p) is its

E; [5t+1| €1 € j:t1+1] =

density at the same point. Similarly, we can find the corresponding moments for the
domain F}'; by multiplying both sides by -1:
Fi (1) = {er1; Zicvyr > 71— py — ©,X,}
= {err1; — g <T1— i — X}
so that
Pr(ep € Fiy) =1=V(—c1) =¥ (1)
V(=) =X (a) X

E, e i1 € Fly| = -
¢ [ t+1| t+1 t+1] 1_ W (—Cl) HZZH g (Cl) HEzH

I will not show the variance computation for this case directly. However, when discussing

the multirestriction case, we transform the multi-restriction case to the case of moment
computation for the truncated multinormal distribution (Tallis, 1961) for which I provide

the computation for both the expectation and the variance.

A.2 The ZLB constraint at ¢t + 2
A.2.1 Simulation

Now consider the simulation of the variable at period ¢ + 2 :

Yt+2 = Uy + CI)y)(t—‘,-l + Zygt-i-Q

P pi + QX+ Bigpo | i gy + P X + g0 >0
e 41 =1 if gy + @i X1+ Bigg2 <7

The constraint p; + ®; X1 + Xicr10 > 7 defines a set ftlﬂ and its complement ftﬁrz
~7:tl+2: {eto| Bigrpo > 7 — p; — D, X111}
7:t2+2= {eio] Bigrro <T— i — X141} = R"E\E1+2 = (j:tl+2)c

However, remember that the value of X;.; depends on whether ,,1 belong to F},, or

its complement, F7,; since

Q, Xip1 = Pyitpr1 + Pyylia
D Xip1 = Dyt + iy
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and 4441 = 7 if g1 € FPy and i1 = p; + DXy + Bieqq. Thus, FL, and F7, actually
depend on F},; and F7 . Thus, for the ¢ + 2 simulations we have four cases depending
on whether ¢,41 € F}; or g,41 € F7,. We denote these cases by using one superscript
(1) for t 4+ 1 variables and two superscripts in the variables (7, j), where i and j take 1
for the case in which the lower bound does not bind or 2 for the case in which the lower
bound binds. The superscript i is for the period ¢+ 1, and j is for the period ¢+ 2. Thus,
X}, is the (simulated) value of the variable at period ¢ 4+ 1 when the lower bound does
not bind, and thjrlQ is the (simulated) value of the variable at period t 4 2 where the lower
bound does not bind in both periods. Similarly, Xfo means the (simulated) value of the

variable where the lower bound binds in both periods. Our four cases are as follows:

1. Case lthljrl2

1,1
Yo = My + (I)th1+1 + Ey5t+2
Z1}+12 = Hi + (I)ithﬂ + Nigtt2

2. Case 2:Xt1f2

1,2 1
Yio = ty + Py Xiy + Xyetio
1,2 o
bipgy1 — 0

3. Case ?):thjrl2

yt23r12 = iy + QX7 + Byeria

= iy + Pyt + CI)yythJrl + Xyt
iy = fti + QX7 + Tigso

= i + Py + (I)iyyt2+1 + Yi€ti2

4. Case 4: Xfo

2,2
Yt =ty + ‘I>yX1;2+1 + XyEri2
= iy + Oyt + Oty + Dyerio

22
g =1

A.2.2 Computing the moments

Since there are four different cases depending on whether ¢;,,; € ]:tl+1 or not and &9
€ F}l., or not, we have conditional moments corresponding to those four cases. In this

section I first review the method to compute the moments for those conditional moments.
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I then aggregate them to find the conditional moment with less information going all the
way to time t conditional moments. I present the method to compute only one particular
conditional probability, that of the event that lower bound does not bind in the second
period given that it does not bind in the first period. Following our convention of using

the superscripts above, let p/3, denote this probability. i.e. pjiy = Pr (10 > 7|41 > 7).

Remember that Pr (is42 > 7,141 > 7). is the probability that Pr (e,40 € Fl g, €041 € Fiy).
Thus, there are two linear restrictions for this event.
Pr(Xigipe > 70— py — X1, Bigeyr > 7— i — ©:.Xy)
Pr((Zigpre 27— i — X 1) & (Bigrg1 > 7— py — 9,X4))
We need to find the joint event of no binding restriction in both periods. To do that let’s
write the time ¢ 4 2 restriction in terms of period ¢ variables along with time ¢ 4+ 1 and
t + 2 shocks.
eiXeryr > 17— € (u+ PXypq)
61'2615_;,_2 2 71— e [M + P (,u + (I)Xt + E€t+1>]
€; (©E€t+1 + E€t+2) > — €; [/1, + (I)ILL + (I)th + (I)Egt+lj|
eiCyn > 7 — e;as
with 7, as and C defined as
/
1= [E141:€tra)
as = pi+ Op 4+ O*X, + dXe;
Cl = [ oY % ] .
Hence our two restrictions are
e;Cyn > T — e;a,
Y€1 =1 — pi — P X
Notice that these two restrictions are a linear combination of 2 x n, and n, shock variables,
respectively. Just as we reduce the dimensionality of the relevant errors to one for the

restriction at time ¢ + 1, using the method of Tallis (1965) for the multiple constraint

case, we reduce the dimensionality the problem to two in this case. Define

r !
v = I €:€+1 52+2 }
r !
b= | c }
(s, 0
O —
¥ C}
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so that
Cv>p

Let B = [ C' H ], ,where the columns of H are again orthogonal to C' and orthonormal
to each other. Finally define

1N = Bv
by which I transform the linear restriction of many variables into a plane truncation for
which Tallis (1961) provides the methods to compute the moments. I present the relevant
resultsof Tallis (1961) in Appendix C. Then, the 2 linear constraints of a combination
of 2 X n, normal variables is transformed to a truncated normal distribution of 2 X n,

variables where only two of them is truncated below.

A.3 The ZLB constraint at ¢ + 3 and beyond

First we get the Cholesky decomposition of X, 5 for both cases:

1 _ 1 1
Xipg = pixo + I wisn

2 _ 2 2
Xiyo = px o + Mg

In period t + 3,we have four possibilities: Let’s denote non-binding state as nb and
binding state b from here onwards and continue to write the value of Xtiis where 7,7 =1
for non-binding and i, j = 2 for binding cases. It can be (nb, nb), (nb,b), (b,nb) and (b, b)
where the first symbol shows the state for the period ¢ + 2 and the next shows for ¢ + 3.

For example the interest rate for the (nb,nb) and (b,nb) cases are:

thi?, =p+ (I)th+2 + Xetts
= pu+ Pty o + P wips + Segys

Xits =+ @iy + PT%wipn + Depyg

For all of the four cases, I then solve for the set of (w;,1,e:42) that satisfies constraints
induced by the ZLB. Notice that for the b state in period ¢ + 2,47 , = 0 thus it is not
random. Hence, for states starting with b we have only one constraint, i.e. that of period
t 4+ 3 and for the states that start with nb state we have two constraints those of ¢ + 2

and ¢ + 3. For example, the contraints for the (nb, nb) are:
i + ®; <u§gﬁ” + Fﬁ;ﬁ‘wjl) + i > 7

1,nb 1,nb nb =
€i (NX,1 + FX,lwt—i-l >
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We can compute the moments accordingly. For the cases of nb — b and b — b we impose

i2, = 7 and thus have no variance. Since we are tracking one-period we collapse the

X}1s and X725 into X} 5 and X/25 and X727, into X7, ;. We do that using the formulas

provided in Appendix C.

B Appendix B

In this appendix, I explain how we can find the constraints for the cases of tracking
different number of previous periods. I will first go over the first n + 1 periods when we

track n previous periods and then move to the periods after n + 1.

B.1 The first n periods

Suppose at any branch at period k we have the following constraints for the case in which
period £ is nb
e;Cin > 7 — e;ay,
with
n=lel, ey, ....e]
I compute C} ., and a4, for period k is nb and when period £ is b. In the following I

present the case where period k + 1 is nb. The case where period k£ 4 1 is b is the same

except when the last row of both a; and C}, is multiplied by -1.

B.1.1 Period k is nb:

If period k is nb, we have
Xiy1 = p+ X + Yepg1.

Suppose I am computing the constraints for the case in which period k£ + 1 is nb. Then,

the constraint for period k + 1 is
ei (u+ ®Xy + Xepy1) > 0.
Note that the period k constraint for e; X}, > 7 is
e, Cin > 71— e, & Xy > 7,

making
Xk =ai + C,/CT]
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Thus,

€; (/JJ + X, + E€k+1) >1
e (b + @ (ar + Cpn) + Bepyr) 27
e; (PCLn + Xepy1) >7— e; (u+ Pag) .

Thus,

a1 = b+ Pag
Chia = [ oCy X }

Obviously, for the case period in which k£ + 1 is b, we have
e;Cyn > —1— e;ay,
with
apt1 = — (u+ Pay),
O,;H:—[cbc,; 2].
B.1.2 Period k is b:

If period k is nb, we have

X1 = 1+ AN+ Ayyn + Xega.
Then, the constraint for period k + 1 is

e (1 + AN+ Ayyp + Xepy1) > 7
Using

Yk = eka
= €y ((lk + Cl,fn) )

We have

e (14 Nt + Ayey (ar + Cpn) + Begq) >0

e; (M\yeyCrn + Bepi1) > 7 — e; (1 + N7+ Ayeya) .
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Thus,

ar = b+ N+ Ayeyag,

1 = [ AeyCp 38 } .
Obviously, for the case period k + 1 is b, we have

e;Cyn > —1— e;ay,
with

ap = — (b + N7+ Myjeyar)
Cini=—| MeCp 2]

B.2 For periods after n + 1

Suppose we are using X, as our initial period. If this initial period state is nb, we first
decompose it as follows:

Xigs = Myyps + Tegps.

Note that if we track n previous periods we will have the following (n + 1) constraints

for periods:

eiXtrsih S U

What are they? Assume we want to check whether all of them are greater than 7, i.e.,

we are checking whether it is (nb — nb — ... — nb) Then, we have

Xt+s = Myys + F€t+s>

KXivst1 = p+ PXyps + Xepysrt,

KNiysik =+ PXipopn 1 + Vet sir

Then, the constraints are:

e; (Migs + Derps)

>
ei (4 PXyps + Xepisi1) > 7,

e (14 PXiqsph1 + BDetqoqn) > 7.
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The first constraint can be written in the e,C}n > 7 — e;a;, fashion with

Qg = Myys,

C'=T.
Similarly, the second constraint can be written

i (p 4 PXyys + Berrq1)
=e; (14 @ (Myps + Fepps) + Vergsq1) > 7

Qsy1 = [0+ q)mt—l—s
;+1 = [ or X ]

Thus, with the exception of the first constraint, the recursion is same for the case in
which X, is nb.

If X;,, is b,by definition we have iy, = 7, and we have
Xips = Myps + Tergs

with a I that has its (1, 1) entry set to zero. Thus we don’t need have the constraint for
the period t 4+ s. For the period t 4+ s + 1, we have

Xitst1 = B+ AT+ AyYirs + Xergsi1,
and the constraint is

ei (b + N+ A\yYeys + Xerysy1)

=€ (u+ T+ ey Xips + Xepysi1)

= e; (1 + N+ Ayey (Myys + Tepps) + Bepon)
> 1.

Thus

Asi1 = [+ AT+ Ayeymys,
L= del B
Suppose we are computing the case for (b — nb — nb) , for period t + s + 2 we have

Xigst2 =+ PX oy + Xeisq0.
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Hence, the constraint will be
asro = p+ Pagyy,
w2 = [ ®CL, X ] :
To sum up, if X, is b we have k constraints with the first constraint being
Asp1 = fb+ AT+ Ayeymyy g,
Cla = [ Ae, T 3]

and the rest evolving as above.

C Appendix C

In this appendix, I provide the results of Tallis (1961) for the computation of the first and
second moment for the truncated multinormal distribution. Let X have the multivariate
normal distribution with N (0, R) with the correlation matrix R, and let X be truncated
at a, so that X = [X1, Xs, ..., X,)] and X; > a1, Xo > as, ..., X,, > a,,.

a="Pr(X;>a, Xy > as,...> X, >a,)
Then

0E (X;) = ilp@-qcb (ag) By (Ays : Ry)

ak (XzX]> = Qpjj + leqiquaq¢ (aq) q)n—l (Aqs . Rq)
q:

" z: {qu‘ <Z¢ (aq, ar; qu)) Do (Al 1 Ryr) (prj — ququ)} )

r#q

where p;; is the correlation coefficient between X; and Xj; ¢, is the normal probability
distribution function, and ® is the normal cumulative distribution function for dimension

n; R, and Ry, are the first and second order partial correlation coefficients with

s — Psq
A = q-"q
qs 1 5 )
AV psq
q _ as — ﬂsq.raq - ﬂsr.qar

rs

Ja—e2) (1-s2,)

and s # ¢ in ®,_; and s # ¢ # r in ®, 9.0, and (., are the partial regression
coefficients of X, on X, and X,, respectively, and p,, , is the partial correlation coefficient
between X, and X, for fixed X,.
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D Appendix D

In this appendix, I derive the computation of the moments for mixed normals. Suppose

I have S mixed normals with N (u;, ¥;) each with probabilities ;. Note that
var (X) = EX? — (EX)”.
Thus,
EX? =% + pip,

S
Hx = 2%#17

var (X) = EX? — (EX)?
= EX? — puxpily,

S
EX? =Y mEX?
=1

S
= ;7@‘ (3 + pipe;) -

Thus,
S
var (X) = [Zm 5+ mun] -
=1

What about the covariance between X and Y, where both X and Y are linear functions
of Z a mixed normal? Suppose
X=a+AZ
Y =p+BZ

where S mixed normals with N (;, ;). Then,

cov(X,Y) = Acov(Z, Z)B'
= Avar(Z)B’

E Appendix E

This appendix provides a detailed computation for Section 5. First, I present a simple

term structure model and derive the yields for different maturities and then I explain
n—1

how we can find the moments of the sum of the short-rates, b; 1,1 = > 4;; under the
i=0

ZLB constraint using the method of the paper.
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E.1 A simple term-structure model with lagged interest rate,

output gap and inflation

The state vector follows a VAR with one lag.
Xi=pu+DX, 1+ ey

The short-rate is an affine function of the state

iy = 0o + 01X,
The nominal stochastic discount factor iswith

Mi41 = ETP (—it - %)\2)\,5 - )\25t+1)

where the market price of risk is also an affine function of the state.

At = o+ M Xy

!
The state vector consists of the short-rate, output gap and inflation: X; = [ it g Ty }

I assume the market price of the risk takes the below functional form:

o1 0 A2 Auis
Ao = )\0,2 ,)\1 = 0 )\1,22 )\1,23
)\0,3 0 )\1,32 /\1,33

Given the parameters u, ® and ¥, the Q—measure is defined by

Once I have that

n—1
P = EtQ {GXP (‘ Zitﬂ')]
i=0
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E.1.1 Bond-prices under Q-measure

1-period bond

Since

Thus

with

n-period bond

Ptl = EtQ [th]

1
EtQ {eXp <—’Lt — 5)\2)\15 — )\£€t+1)‘|

1
exp (—it - 5)\;)%) X EtQ [exp (Aeer1)]

1 1
exp (—it — 5)\;)\,5> X exp (5)\;)\,5)

exp (—1iy)

1 = €; Xt

log (P) = a1 + b X,
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PP =Ep [Pro! x exp (—iy)]
= EtQ [exp (Ozn_l + B;z—lXt-i-l) X exp (—it)}
= exp (—it +ap 1+ B, i+ ﬁ,'%l&)Xt> x B2 lexp (B),_15e141)]

~ 1
= exXp <—Zt + Ap—1 + B;L,l,a -+ 5;,1®Xt + 55,’1122'5%1)

Thus
!/ ~ 1 / !/
Ap = Olp—1 + 67],—11“ + é/Bn—IEZ ﬁn—l
By, =—ei+ 0, ,®
E.1.2 Yields
. —log (P
o = kD)
—1
- — [an + BnXt]
n
n—1
E.2 Finding the moments of b;., 1 = ) i;,; under the ZLB con-
5=0

straint

In the affine term structure model of the paper, the yields are given by
n—1
exp (—ny;') = EtQ {GXP (— > it+s)]
s=0
I first define the cumulative interest rate variable,
by = i
bek = ek + bepr—1

and approximate the yields from the unconditional (time ¢—conditional) mean and the

variance of by, i.e:
1
exp (—ny;') = exp {—E?bt+n—1 + 51}&7’? [bt+n_1]}
The expectation term is computed directly from the algorithm:

bt:it

EthtHc = E?it+k + E?bwrk—l
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I denote the expectation of b, s with by, i.e. by s = Eybyy s (this is also the case for the
different cases).
- -
b7, = B [P

Next, I explain how the variance term is computed.

E.2.1 The variance of b,

Below, first I explain how to compute the expectation and the variance of b;,; and then

move to the other periods.For period 1 where i; > 7 (nb), I have

X}y = p+ X, + ey with C1 holding
b%+1 = i%—&-l + bo
Thus,

bt1 41 = constant + e;Xe;

by 1 =i+ Eiify
vary (b)) = vary (i)
covy (biﬂ, Xt1+1) = covy (z';_l, Xt1+1)
Since everything is correlated because of the constraints, these can be computed with
A= [X]
B =[X]
vary (b)) = Avary (gp41) A’

covy (byyy, Xiy1) = Avary (041) B’

Hence, in order to compute the variance of b, ,, we need to compute A and B terms. For

any period and any state notice that
vary (bﬁs) = Avar; (9444) A’
covy <bifs, Xﬂi) = Avary (V1,5) B’
, where 95 = [g] 1, €., ..,6Q+s]/ for s <m+1and Uy = [W, n €l pgnits - Erps) fOT
s > n+ 1. Notice that the B term is computed by the paper’s algorithm; for period ¢ + s,
B = C,. Thus, I need to compute current A’s from past A’s and past and current B's

In the next section, I explain how to compute these terms for the first n + 1 periods and

for the periods beyond n + 1.
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E.2.2 Computing A

First n + 1 periods: Suppose we know the term A% and we would like to compute
A9 and AY2. Note that AY! is the coefficient for the i — j — nb state so that

ij1 ij ij1
bilrs = o + i3
= b + B [ifs] + eiA78 40 + €87 e
Thus
an = o]
Similarly, for ¢ — j — 2, we have
B2 _ pis2

1J2 ] R
irs = Uiy +is = by + €AY

so that
AR =] A5 o |
Using the same logic for 1 — 1 state we have,
by = biyo +ifhg
= by, + By [if},] + eiA’ern + eiBerio

so that
At = [AZ’ 0]+B’“

and
Az = [ 4o
We can continue doing these if we track more periods like i-j-k-1 and i-j-k-2, like
ikt [ ik @ } | piikl
Aidk2 [ Aiik }
The initial points (i.e. the A terms for the first period) are:

Al =%
A% =
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Periods after n 4+ 1: In the first part of the Appendix E.2.2, I show how to compute
expectation and the variance of b;,; and the covariance of b;,; with other variables for
the first n + 1 periods. Given these, I form the vector Z},, = [X/,,, bi+k]/ and find the
distribution of Z},, and Z72, . For periods after n + 1, I use Cholesky decomposition to
characterize the (approximate) distribution of Z} r, and Zt2+k. For example, for two-period

tracking we use the distribution of Z},,_, and Z7_,_,:

Zt1+k—2 =Lk [Ztl-i-k—ﬂ + 1% 02,
Zt2+k,2 = E; [ZEHC,Q} + f2§t+k72-

Note that this ordering results in the same I' for var; X; ;_o. For periods t + k — 1 and
t+k, I do not check whether b;,_» and b, are greater than zero as opposed to i; ;o

and 7,41 so that in essence I only use the first n, entries of &4 o :

Witkh—2 = &n—2 (1 1 ).

The additional part that I used in this decomposition relative to that of X, o is the

part of the last row of I, '} row vector. I decompose T and &iip—o as follows:

7
i i | Miyk—2
L [ t+k—2] =My = [ i ] )
t+k—2

!/
Stak—2 = [W£+k—2a77t+k—2} )

[ oo
" = P so that
i Iy Ty
=i [ Fiwt+k—2
I p—o = , , .
" I Diwiir—o + Lyynigr—2

For one-period tracking, we have

ZZ—‘,—k—l = Et [ Z+k_1:| + fift-ﬁ-k—lv

with
; _ i i i
tk—1 = Opp1 + Dpwrn—1 + Dpptign—1-

Then for t + k,

by = biyr + lerk
= bi+k71 + Et [it—l-k] + Féwt_;_k_l + Fébnt—&-k—l + el‘Bﬂ.

Thus,
AT = [ A0 ] + B,
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and
Aaz—| o]
For two-period tracking, we use
Zg+k:—2 = Ly [Z;rk—ﬂ + fi€t+k—2
with
byinz = byipo + D2 + Thylieri—2.

Then for t + k — 1,

Dishg = bpsga +itsn1
= b}, 4o + Bt [irsn—1] + Dywirn—s + Tiyhiern—z + €87
Thus,
A= A 0| +B",
and

A”:[Ai 0].

Denote the variance of the vector o = [w},_,, €;+k_1], with

vary (o) = €.
Then,
vary (b ,_o) = Ty, + ATQAY,
Similarly,

A= [ i g ],
A [ A 0.
Thus for our eight cases, we have
AT = :Ai 0 0: +[B“ 0]+B“1,
A 40 o|+[B" 0],

it _Ai 0 0__|_Bi21’

A2 =1 A 0 0 |.
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Since we do not directly follow B'! and B! in the algorithm, we compute them here. B!

is the coefficient for X!,
th—ll-k—l =p+t ‘I)thik—Q + 2erip-1,
so that
Bl —| o8 ¥ |.
On the other hand, things get a little interesting for B2!, which is the coefficient for X?!,

which is

so that
B = | \e,B % |,

We can continue in this fashion and derive the A’s for different cases. In the next section
I summarize how to compute A’s for the cases of one, two and three previous period

tracking.

E.2.3 Coefficients for term structure computation (A)

n periods tracking

First n 4+ 1 periods:

Al =[5

A? = [0]

A= Ao |+B
A= A 0]

=i 0] 45
A= a5 o |
ikt — [ ik @ } | gkl

a2 = [ 4 |

After n + 1 periods:
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Aﬂ:[fv 0]
n=2
A =B
A= 40 0|+| BT 0]+B"
A2 40 0|+] B 0]
A = [ 4 0 o] +B%
A2 [ 4 0 o],
with
B“:[Bl 2}
Ble[AyeyBQ E]
n=3
Al — B
A= 40 0 0]+]B1 0 0-+[B“1 0]+B“”
A4 0 0 0]+|B 0 0|+]|B" 0]
A2 [ 40 0 0|+]B" 0 0]+B™
A2 = 4 00 0|+|[B" 0 0]
A = [ 40 0 0|+ B~ 0}+Bi2”
A2 40 0 0|+]B2 0]
A2 40 0 0 |+B2
A2 — [ 4 0 0 0]
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with

A=At 00 0]+|B1 0 0-+[B“1 0}+B“”
A2 — | A1l 0 0 0|+ | B 0 0 +[B“1 0}
A2 [ 419 0 0]+ B 0 0]+B"2
A2 4t g 0o0|+[B" 0 0]
A [ A4 0 0 0]+ B 0}+B”“
A2 _[ 41 9 0 0]+ B2 0}
A2 [ 41 0 0 0]
Al 2000|482 0 0_+[B2“ 0}+821“
A2 42 000|482 00 +[8211 0}
A2 | 2 0 0 0|+ |8 0 0+B
A2l 2 000|+[B" 00
A2 [ 2 0 0 0]+ B 0}+822“
A22 [ 22 0 0 0]+ B2 0}
A2221— :AQ 0 0 0:+l_32221
A22 [ g2 0 0 0|

Bllz[cpzsl 2}

B = | A, 3 |

and
Bl = [ o5 ¥ |
Bi?l

[ Ay, B2 % ] )
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F Appendix F

In this appendix, I explain how we can find the constraints for the different cases when
we have lags. For the illustraton of the method, I present the case for a system with two
lags, where I follow the previous two periods, which is the case in the example presented
in the paper. I first explain the constraints for the first three periods and then explain

the constraint for periods beyond three.

F.1 Systems with 2 lags

Suppose
Xe=p+ P Xy 1 + P Xy o+ ey

F.1.1 Period 1
X1 =p+ P Xog+ P X 1 + Xerpy
We have two cases. For nb we have

e; X1 > 7,
€; (25t+1) >0 —€; ([L + (I)lXO -+ (DQX_l) ,

SO

a; = pp+ P Xg + P2 X 4,
Cy =X,

and for b we have

a; = — [[L + ‘I)lXo + (I)QX_l] s
o =%

F.1.2 Period 2

Xo = p+ P1Xy + P Xo + Megyo
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Previous period nb: If previous period is nb we have

Xo = p+ DXy + Do X + Yepyo
=pu+ Q1 (4 P1Xo+ P2 X1 + Bepp1) + PoXo + Xeygo.

For current period nb we have

ay = pt+ @1 (1 + @1 Xo + P2 X_1) + P2 X,
o = [ oY ¥ } .

For current period b we have

Gy = _[M‘l‘q)l <M+(I)1X0+<D2X_1)+CI)2X0},
Cl = [ o,y ¥ }

Previous period b:

Xo = o+ A0+ A yyn + PoXo + Yeyyo
= p+ AT+ Agey (1 + 1Xo + P Xy + Bepy1) + P Xo + Xeppo.

For current period nb we have

Ay = fb+ A1+ Argyeypt + A yey @1 Xo + Arye, P X g + P X,
Cé = [ )\17yey2 b)) :| .

For current period b we have

a9 = — [[L + )\172‘5‘1‘ Al,yeyﬂ + )\17y€y<p1X0 + Al,yey(DQX—l + CI)QXQ] ,
Ch=—[ Mye,s 3.

F.1.3 Period 3:

X3 = p+ P Xy + P Xy + Xeyy3

Decompose &, = [ AMi Ay } such that ®1.X,_1 = Ay 51+ -1 and $y = [ A2
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Previous two periods: nb-nb If previous two periods are nb-nb we have

X3 =p+ O1Xo + DXy + ey
= U + (1)1 (M + ‘I)le + (I)QXO + ZEH_Q) + (1)2 (/L + (I)lXO + (I)QX_l + E€t+1) + E€t+3.

For current period nb we have
e; X1 > 7,
so that
ag = p+ O1 (1 + ©1.X1 + P2 Xo) + Py (1 + 1 Xo + P2 X ),
C§:[¢>2E o3 2}.

For current period b, we have

ag = — [+ 1 (u+ @1X1 + PyXg) + Py (1 + @1 X + P X_1)],
ng—[chz o3 2}.

Previous two periods: b-nb If previous period is nb but two periods ago is b we have

X3 = p+ P1.Xo + Xt + Ao 1 + Yerys
=pu+ D (4 At + A yey (p+ @1 Xo + PoX g + Xepyg) + P X + Teryo)
+ Ao, + Aoyey (0 + P1Xo + P2 Xy + Bepy1) + Beggs.

If current period is nb we have

JTas

J P+ AT+ Agey (1 + 1.Xo 4+ P Xy + Xeryq)
’ ' +Po X + Lergo ’

+A2,7 + Aayey (11 + @1 Xo + P X g + Xepyq) + Xy
C38 = O (M yeyXern + Sepga) + AgyeyXery + Yeggs,
Ch=| Bidiye, S+ daye, S BE T
If current period is b we have

u+

e — | ® P AT+ Agey (1 + @1 Xo 4+ Do X g + Xepyq)
° ! +®2X0 + 2€t+2 ’

+Xo0,7 + Aayey (p+ P1Xo + P Xy + Bepi) + Ve
Ch=—| 2y, S+ doye,S &8 .
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Previous two periods:nb-b If previous period is b but two periods ago is nb we have

Xg =+ A0+ A yya + Do Xy + Yepys
=+ A7+ Agey (04 P (p+ P1Xo + PoX g + Xepgr) + PoXo + Xeyyo)
+ @y (p+ P Xo + Po X1 + Beri) + Lepys.

If current period is nb we have

pt At
az =9 +Aryey[pp4+ P (p+ @1 Xo+ P X_ 1) + P Xo] o,
+q)2 (,M + (I)lX() + q)gX_l)

C:Iy)é = Al,yey (®12€t+1 -+ E€t+2) -+ @228t+1 -+ E€t+3,
Ch= | My @S+ 5 Aye,S B

If current period is b we have

H+ Ayt
a3 == FAyey [+ P (p+ @1Xo + P2 X 1) + P2 Xo] o,
+®y (1 + @1 Xo + P2 X 1)

Ch= = | My @18+ 5 Aye,S .

Previous two periods:b-b

Xy = o+ A0+ Mgy + Aot + Ao 1 + Xegs
= [b 4 At 4+ Ao+ Argey (104 A+ Agey (4 @1 X0 + @ X1 + Xeyyr) + $oXo + Xeyyo)
+ )\Q,yey (,u + (I)lX() + (I)QX_l + Z€t+1) + Z€t+3.

If current period is nb we have

ag = ft+ AT+ Aot + A yey (10 + At + Ay ey (1 + P1Xo + P2 X ) + P2 X))
+ Aoyey (p+ 01X + P2 X _4),
C58 = Myey (MyeyXeiin + Bepia) + Aoy, Xerir + Yerrs,
Cs = | (Myeyriyey + A2ye) S Aiye, X 2 ] .
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F.1.4 Periods after 3

nb-nb  We have to consider two cases differently: If it is nb-nb two periods before, we

have

Xio = p13 g+ Thowp_a,

Xio1 =ty + Deoqwp1.
Then,

X =p+ 91X + P X9 + Xey,
=g+ @1 (ug + Dhorwi—1) + P2 (1o + Thoowi—2) + S

If current is nb

ar = p+ upip_y + Poprjy,
Cllc - [ CI)QFk_Q <I>1Fk_1 E :| .

If current is b

ar = — [+ Prpy + Poptis)
C//c - — |: <I>2Fk_2 CIDJ‘k_l Z ] .

The other periods are:

X
Qp—1 = MHg_1,

C]/g—l = Fk—la
and

ag—2 = M?;%
b-nb

Xj—2 = ppg + Diowy_a,

Mo = 71_‘16*2 = )
o [ Hia ] [ 0 iy ]

X1 = pi g + Thorwp—1.
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Then

Xk =u-+ CI)le,1 + CI)QX]C,Q + Eé?k
= pi4 D1 (g + Dhorwi—1) + Aail + Aayey (1o + Thoayywi—2) + Zey.

If current is nb

ap = [+ Oy pt g + Aot + Aoyeyliy )
O]; = [ )\Q,yeyl—‘k—lyy (I)ll“k_l by i| .

If current period is b

ay = — [N + (I)lﬂi(—l + )\2,ﬂ+ AZ,y%M%—J )
CY]IC = — |: )\27yey1_\k727yy ®1Fk*1 2 ] '

Period k£ — 1 is

X
Qrp—1 = Mp_q,

and we do not have any restriction for the period k£ — 2’s b.

nb-b
Xp o= ui(,g + I owi—o,
X1 = i+ Teorwp1,
X 7 0 0
Mg = [ ,u%—l ] T2 = [ 0 Pk—Lyy ] .
Then

Xp=p+ Q1X 1 + P Xp_o + Xy,
= p+ AT+ Ayey (B + Tho1gywio1) + Pa (7o + Trowi2) + Xep,

If current is nb

k= JuF AT+ Ageyhi g + Paptic_s,
Cllc = [ q)QFk,g Al,yeyFk,Lyy by i| .
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If current is b

ap = — [P+ AT+ Agyeypd_ + CI)W?*?] '
Ch = — [ Dol Ayeylooiyy, X ] '

We do not have any restriction for the period k£ — 1’s b and period k — 2 parameters are

X
Qg—2 = Hg_9,

C”C—Q - Fk_Q
b-b
X
Xp—o = Hp_o + Ti_owp_o,
Mo = 7F2 = )
L M2 1 |0 Thoyy |
Xpo1 = pay + Diqwp—r,
7] (0 0 |
:uk—l = 7F2 =
i My ] 0 Thoryy |
Then,

Xp=p+ P X1+ P Xp o + Xey,
= [+ At A ey (,LLZ_l + kal,yywkfl) + A2t + Ag ey (N%_z + Fk*2,yywk72) + Yeg.

If current is nb

ap = [,u + A1+ Agyeyid g+ Ao+ /\2,y6yﬁb%_2] )
Cl,c = [ )\27yeyFk,2,yy )\LyeyFk,Lyy 2 ] .

If current is b

ay = — [,u + )\1,25—’_ )\l,y,uz_l + )\271‘74— )\g,y,uz_Q] R
Cli: == |: A2,1/1—‘16—27yy A1,yFk_17yy b i| .

and we do not have any restrictions for the previous two periods.
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Figure 1: The results from numerical exercise 1: The upper left chart shows the probability of hitting the ZLB. The upper right chart shows the
mean of the endogenous variables conditional on the ZLB constraint does not bind. The lower left chart shows the mean of the endogenous
variables conditional on the ZLB constraint binds. The lower right chart shows the unconditional (time 0 conditional) mean of the endogenous
variables.
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Figure 2: The results from numerical exercise 2: The upper left chart shows the probability of hitting the ZLB. The upper right chart shows the
mean of the endogenous variables conditional on the ZLB constraint does not bind. The lower left chart shows the mean of the endogenous
variables conditional on the ZLB constraint binds. The lower right chart shows the unconditional (time 0 conditional) mean of the endogenous
variables.
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Figure 3: The results from numerical exercise 3: The upper left chart shows the probability of hitting the ZLB. The upper right chart shows the
mean of the endogenous variables conditional on the ZLB constraint does not bind. The lower left chart shows the mean of the endogenous
variables conditional on the ZLB constraint binds. The lower right chart shows the unconditional (time 0 conditional) mean of the endogenous
variables.
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Figure 4: The results from numerical exercise 4: The upper left chart shows the probability of hitting the ZLB. The upper right chart shows the
mean of the endogenous variables conditional on the ZLB constraint does not bind. The lower left chart shows the mean of the endogenous
variables conditional on the ZLB constraint binds. The lower right chart shows the unconditional (time 0 conditional) mean of the endogenous
variables.
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Figure 5: The results from numerical exercise 5: The upper left chart shows the probability of hitting the ZLB under the Q-measure. The upper
right chart shows the term structure of nominal interest rates .
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Figure 6: The results from numerical exercise 6: The upper left chart shows the probability of hitting the ZLB. The upper right chart shows the
mean of the endogenous variables conditional on the ZLB constraint does not bind. The lower left chart shows the mean of the endogenous
variables conditional on the ZLB constraint binds. The lower right chart shows the unconditional (time 0 conditional) mean of the endogenous
variables.
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