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1 Introduction

Since several formal results have been proven about their relationship, Structural Causal Mod-

els (SCMs) and Rubin Causal Models (RCMs) are often viewed as analogues (Pearl (2014b), Pearl

(2012)).1 For example, a latent index model of selection is equivalent to selection under the as-

sumptions of independence and monotonicity (Vytlacil (2002)). In addition, SCMs are formally

equivalent to RCMs in the following sense: There exists a SCM generating the hypothetical con-

tingency tables represented by any RCM (Pearl (2009b) p 244, Halpern (2000), Galles and Pearl

(1998)). This paper shows that different approaches to modeling outcomes make SCMs and RCMs

distinct in the following sense: There does not exist a unique SCM generating the hypothetical

contingency tables represented by a given RCM.

A simultaneous strength and weakness of potential outcomes is that they do not represent an

“all causes” model (Heckman and Vytlacil (2007)). Thus, while potential outcomes are able to

characterize Data Generating Processes (DGPs) without knowing all relevant causes (Freedman

(1987), Imai et al. (2010)), they require similar assumptions to structural equations when used

to make out of sample forecasts (Heckman and Vytlacil (2005), Aliprantis (2014)). One attempt

to connect internal and external validity characterizes potential outcomes in terms of structural

equations (Heckman (2010), Pearl (2014a)).

When comparing potential outcomes and structural equations, it is important to note that there

are at least two definitions of a structural equation. Under these alternatives, structural equations

represent relationships with varying degrees of autonomy, or invariance when other relationships

are subject to external influence (Aldrich (1989), Woodward (2000), Pearl (2009b) Section 2.9.3).

Definition 1 is that the outcome variable can be written as a structural equation of the treatment

variable if the specified relationship describes changes from interventions manipulating only treat-

ment. Definition 2 is that the outcome variable can be written as a structural equation of the

treatment variable if the specified relationship describes changes from interventions manipulating

any variables other than the outcome.

This paper shows that distinguishing between these definitions of structural equation matters

for inductive inference with causal effects. Specifically, while potential outcomes can be considered

structural equations under Definition 1 (Angrist et al. (1996a)), they are not structural equations

under Definition 2 (Pearl (2009b), Definition 5.4.1). These alternative definitions create a diver-

gence between the modeling of outcomes in SCMs and RCMs.2

Specifically, SCMs define causal effects in terms of a single DGP specified by nature, while

potential outcomes define causal effects in terms of a model specified by the researcher that can

accommodate many DGPs. As a result, outcome equations in SCMs imply conditional indepen-

dencies in the data that similarly specified outcome equations in RCMs do not. Two implications

are that: (1) The Directed Acyclic Graph (DAG) of a RCM is quite different from the DAG of a

1Alternatively labeled as structural equation modeling (SCMs) and the potential outcome framework (RCMs).
2Note that the distinction here is due to the outcome equations, and not the selection models whose typical

specifications are equivalent (Vytlacil (2002)).
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SCM. And (2) Pearl’s do-calculus does not apply to potential outcomes and the RCM.

2 Defining Structural Equations

Distinguishing between definitions of structural equations, and the resulting differences in causal

effects, differentiates between an “all causes” model assumed to represent the DGP and a model

capable of representing counterfactuals from any number of DGPs. To be clear about this point,

I distinguish between the model at time t, Mt, which is a set of relationships between variables

specified by the econometrician, and the DGP Dt, which is the set of relationships between variables

specified by nature. The following definitions of structural equation might be associated with

Angrist et al. (1996a) (p 450) and Pearl (2009b) (Definition 5.4.1):

Definition 1 Yi = Yi(D) is a structural equation if there exists some variable Z such that

Z ∩ Y = Z ∩D = ∅ and Yi(d, z
′) = Yi(d, z) for all z′ 6= z

Definition 2 Yi = Yi(D, ǫ) is a structural equation if for any observable variable M ,

M ∩ Y = M ∩D = M ∩ ǫ = ∅ implies that Yi(D,m′, ǫ) = Yi(D,m, ǫ) for all m′ 6= m

To investigate the implications of adopting one of these definitions rather than the other, con-

sider the following class of DGPs, which represent a typical mediation system without confounders

(Pearl (2014a)).3 Suppose that at time t ∈ N data are generated by a DGP in which the outcome

variable (Yti) for each individual i is causally determined by two observed variables, treatment

(Dti) and observed covariates (Xti), as well as unmeasured covariates (UY
ti
), or additional factors

not observed by the econometrician. The unmeasured covariates can be broken down into those

factors that are unobserved (Eti) and those that are unobservable (ǫti) at the given level of mea-

surement. In order to focus on unobserved mediators and outcome equations, I consider DGPs

without unobserved confounders.

If Z is an instrument mimicking an observable intervention manipulating treatment and U

represents unmeasured variables, then the DGP Dt is characterized by the following structural

equations:4

Zti
←−= fZ

t (UZ
ti ) (1)

Dti
←−= fD

t (Zti, U
D
ti ) (2)

Xti
←−= fX

t (Dti, U
X
ti ) (3)

Yti
←−= fY

t (Dti,Xti, U
Y
ti ) (4)

3These DGPs are specified to represent simple systems amenable to potential outcomes (Pearl et al. (2014)).
4In Pearl (2009b)’s Definition 7.1.1 of a structural causal model, the triple < U, V, F > is defined here as

U ≡ (UZ

ti , U
D

ti , U
X

ti , U
Y

ti ), V ≡ (Zti, Dti, Xti, Yti), F ≡ (fZ

ti , f
D

ti , f
X

ti , f
Y

ti ). In this specification Zti randomizes Dti so as
to satisfy the standard ignorability assumption (Imbens (2014), White and Lu (2011)), and Zti separately satisfies
the relevant exclusion restriction from the outcome equation (Angrist et al. (1996b)).
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The←−= notation is used to indicate that these are structural equations under Definition 2. Under

both definitions, a structural equation contains information about counterfactual manipulations to

the right hand side variables, and not only information about what is passively observed in the data.

This represents an asymmetric relationship between the variables on the left and right hand sides of

the equation.5 For example, structural Equation 4 provides information about the counterfactual

values of Yti if we were to control the variables on the rhs, but makes no claim about how any of the

variables on the rhs would behave if we were to control the lhs variable Yti (Pearl (2009b), p 160). A

standard equation makes no distinction between interventions counterfactually manipulating right

hand side variables and information about what is passively observed in the data.6

Under Definition 2, a further implication of the ←−= notation is that given control over the

specified observable (but not necessarily observed) variables on the rhs of the equation, changes

made to additional observable variables would provide no further change to the outcome variable.

This is what distinguishes Definition 2: All variables at the given level of observation not included

on the right hand side satisfy an exclusion restriction (Pearl (2009b), Definition 5.4.1). Definition 1

requires only that an exclusion restriction must hold for one additional variable not included on the

rhs (the one manipulating treatment), not all variables not included as arguments of the outcome

function (Angrist et al. (1996a)).

3 Defining Causal Effects

3.1 Defining Causal Effects as Changes from Interventions to a DGP

One definition of causal effects is as a quantitative characterization of the change in the outcome

variable that would result from an intervention to the DGP. Such interventions to the DGP can be

characterized by how they would, or would not, impact covariates, especially unmeasured variables.

In order to be precise about which features of the DGP are changed, and which are not, under

specific interventions, I use Pearl (2009b)’s do-operator throughout the remainder of the analysis.

Direct effects characterize the change in the outcome variable from a specific type of intervention

to the DGP. Specifically, the controlled direct effect of Dt on Yt, ∆
CDE
ti

(d′, d), is the change in Yt

that would result from an intervention setting Dt from d to d′ while setting all other variables

entering as arguments in fY to fixed values:

∆
CDE

t (d′,d) ≡ E[fY

t (d′, x, UY

ti )]− E[fY

t (d, x, UY

ti )]

= E[Yti|do(Dti = d′,Xti = x)]− E[Yti|do(Dti = d,Xti = x)]

Following Pearl (2014a), this definition is made at the population level, with individual-level ef-

5Some examples of the asymmetry of “directions of influence” (Strotz and Wold (1960)) include the fact that
symptoms do not cause disease (Pearl (2009a)), a child’s height does not cause her father’s height (Goldberger
(1991)), and rainfall determines crop yields but not the reverse.

6Chalak and White (2012) study these distinctions in terms of settings and responses, and White and Chalak
(2009) allow for causal effects in systems of symmetric equations.
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fects given by the expressions under the expectation. Expectations are taken over UY
ti

for the

∆CDE
ti

(d′, d).

Direct effects are often defined relative to a reference set of variables that are set to fixed values

by an intervention, and the values to which the reference variables are set (Spirtes et al. (2001)).

Under such a definition, direct effects need not be invariant to interventions changing variables

outside that reference set. This direct effect, however, is invariant to changes to any variables

outside the parents of Yti, as the reference set in this definition is all other variables at a given

level of measurement. This is because the definition of structural equation adopted in this paper

indicates that all variables at the given level of observation not included on the rhs of Equation

4 satisfy an exclusion restriction. In other words, because we are examining the DGP and not a

model of it, mediators outside the reference set can only be found at a finer level of observation (A

process which, as noted by Holland (1988), always appears to be possible.).

A second useful definition of causal effect is the total effect:

∆
TE

t (d′,d) ≡ E
[

fY
t

(

d′, fX
t (d′, UX

ti ), UY
ti

) ]

− E
[

fY
t

(

d, fX
t (d, UX

ti ), UY
ti

) ]

= E[Yti|do(Dti = d′)]− E[Yti|do(Dti = d)].

As with the ∆CDE
ti

(d′, d), this definition is also made at the population level, with individual-level

effects given by the expressions under the expectation. Expectations are taken over UX
ti

and UY
ti

for the ∆TE
ti

(d′, d).

Defining the vector S ≡ (D,X) and re-writing Equation 4 more compactly as Yti
←−= Yti(Sti),

both direct and total effects can be written in terms of the econometric or graphical definitions

given in Heckman (2008) and Pearl (2009b) (Definition 3.2.1).

3.2 Defining Causal Effects as Changes from Interventions to a Model

The Rubin Causal Model (Rubin (2005), Angrist et al. (1996a)) defines causal effects in terms

of the counterfactual outcome variable that would be observed under interventions to treatment.

These counterfactual outcomes are also known as potential outcomes,

Yti(Dti),

where Yti(d) is the outcome of individual i at time t if treatment were set to Dti = d by an

intervention setting Dti but affecting none of the mediators of the total effect of Dti on Yti (ie,

none of the other parents of Yti). Although potential outcomes are generated by the DGP, they

are defined as features of a modelMt that can describe many DGPs. That is, the average causal

effect in the Rubin Causal Model is defined as

∆
RCM

t (d′,d) ≡ E[Yti(d
′)− Yti(d)].
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The expectation in ∆RCM
t (d′, d) is taken over individuals in the given population, allowing for any

number of underlying functional forms and distributions. In contrast, the expectation in ∆TE
t (d′, d)

is taken with respect to the single set of functional forms and distributions specified by the DGP.

4 Interventions to a DGP versus Interventions to a Model

The causal effect from the potential outcome definition represents the change in the outcome

variable from a randomized variation in treatment. The causal effect from the structural equation

definition represents the change in the outcome variable from a randomized and controlled variation

in treatment. This difference can be illustrated by the fact that the inclusion or exclusion of

a variable Xti from the potential outcome Yti(Dti) has no implication for how an intervention

manipulating Xti would or would not change Yti. This contrasts with the inclusion or exclusion

of a variable Xti from the structural equation fY
t . Inclusion implies that manipulating Xti would

change Yti, while exclusion from fY
t implies that manipulating Xti would not change Yti.

More formally, consider the structural and potential outcome equations:

Yti
←−= fY

t (Dti,Xti, ǫti), (5)

Yti = Yti(Dti,Xti). (6)

The distinction between these equations is illustrated in Figures 1 and 2, in which it is useful to

note that I denote unobserved variables with empty nodes and dashed lines. The potential outcome

Y (D,X) is consistent with many DGPs, each containing any number of unobserved mediators. The

structural equation fY (D,X,UY ) is only consistent with DGPs with the specified parents of Y .7

The structural outcome equation 5 implies that for any observable variable that could potentially

be a mediator at the given level of observation, Mti , it is excluded from fY
t . That is, Y (D,X,M) =

Y (D,X), or

Y ⊥⊥M |D,X ∀ M. (7)

Equation 6 makes no such claim about the data. This matters because Equation 7 implies the first

rule of Pearl’s do-calculus, that insertion/deletion of observations is valid (Pearl (2009b), p 85):

Rule 1 P (y|do(d),m, x) = P (y|do(d), x) if
(

Y ⊥⊥M |D,X
)

G
D

.

Since Equation 6 does not imply Rule 1, neither do potential outcomes. The exclusion restrictions

implied by Definition 2 of structural equation (Pearl (2009b), p 101 and p 160) are required for

Pearl’s do-calculus.

7Whether inclusion of a variable as an argument in a structural equation requires that it is a causal variable
hinges on whether we interpret Definition 5.4.1 in Pearl (2009b) as a conditional or biconditional statement (ie, an
“if” or an “if and only if” statement). For example, the triangular system in White and Chalak (2013) does not
require that an argument in a structural equation be a cause, so that in their analysis the converse of the statement
in Definition 5.4.1 in Pearl (2009b) need not be true. In this analysis I interpret Definition 5.4.1 as a biconditional
statement.
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Figure 1: Directed Acyclic Graphs of DGPs Accommodated by Structural Outcome Equations
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Figure 2: Directed Acyclic Graphs of DGPs Accommodated by Potential Outcomes
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