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1 Introduction

Thomas Piketty’s Capital in the Twenty-First Century attacks the question of wealth inequality

from two perspectives. The first is a monumental study of historical data, going back hundreds

of years, that documents the dynamics of wealth inequality across several countries. There is no

doubt that this data will be a fruitful source of material, and Piketty has graciously made the

entire set publicly available for researchers to mine.

The second part is a rough sketch of an economic model that details the disastrous effects

(as Piketty sees them) of low economic growth, in terms of ever-expanding inequality. Roughly

speaking, Piketty’s model has two groups of households, workers and capitalists, who derive

all of their income from a single source (labor and capital, respectively); in this environment a

natural measure of inequality is therefore capital’s share of national income. Under some unusual

assumptions about the form of the production function and the savings behavior of capitalists (see

Krusell and Smith 2014), Piketty arrives at the conclusion that inequality will increase explosively

as growth falls to zero. As noted in Krusell and Smith (2014), this result is sensitive to the

unusual assumptions made, particularly to the behavioral assumption about constant net savings

as a function of net output.

Our goal is to shed light on this prediction using (fairly) standard macroeconomic tools. The

basic model of macroeconomic inequality is Aiyagari (1994) (with predecessors Bewley 1986,

İmrohoroğlu 1989, and Huggett 1993), where ex ante identical households experience different

realizations of their labor productivity and, as a result, accumulate differing amounts of wealth.

This model has been successful at matching a large number of facts about US inequality, at least

when extended in appropriate ways (Krusell and Smith 1998, Carroll 2001, Castañeda, Dı́az-

Giménez, and Rı́os-Rull 2003). We use a variant of this model, extended to include a capitalist-

worker dichotomy, to study how inequality would be expected to respond in the presence of

declining growth.

Our basic model has the following ingredients. Some households, called capitalists, own

claims to the productive technology while other ones, called laborers, do not; both types have

an endowment of time that can be rented to firms in return for labor income. We first study a

version of this model where workers do not use financial markets at all and idiosyncratic risk is

absent. In this model, we can analytically characterize many features of the relationship between
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growth and inequality (measured as the ratio of capitalist income to laborer income). We use

numerical examples to uncover the behavior of income inequality as the long run growth rate of

the economy goes to zero.

We find that, contrary to Piketty’s assertion, steady states with zero growth generally have

lower inequality than steady states with positive growth rates. When growth is low, capitalists

discount the future at a lower rate, and thus accumulate more capital, just as Piketty asserts;

however, this accumulation leads to an abundance of capital relative to labor and results in a

higher equilibrium wages, both absolutely and relative to capital’s return. In terms of inequality,

the movement in relative factor prices away from capital and toward labor mitigates the effects of

increasing wealth. Generally, the factor price effect dominates the rise the wealth. Zero growth

steady states are associated with higher inequality only when the elasticity of substitution in

production between capital and labor is considerably greater than 1 (i.e., strong substitutes in

production). A high elasticity of substitution mutes the factor price effect by preventing wages

from becoming ”too large” relative to the return to capital. The elasticity of substitution cannot

be arbitrarily high, however. Conditional on a particular capital share in production, balanced

growth places a limit on the elasticity of substitution: the higher is capital’s share the lower

is the upper limit on the elasticity of substitution. We find that the explosive increase in long

run inequality described by Piketty only occurs when the elasticity of substitution is very close

to its upper bound. Moreover, the values required for this explosion in inequality to obtain are

starkly at odds with empirical measurements of the elasticity of substitution as well as estimates

of capital’s share of income; to be specific, if capital’s share of income is 0.36 (as documented by

Gollin 2002 for a large sample of countries) the required elasticity is 1.33, which exceeds nearly

every estimate surveyed by Chirinko (2008).

We then turn to a risky environment in which (i) workers save via a return-dominated asset

(money or stored consumption) and (ii) labor productivity is stochastic for both types. Thus, our

model is a two-type version of the one discussed briefly in Krusell and Smith (2014), and we think

it captures better the features that Piketty seems to have in mind. In this model we are able to

measure inequality using standard concepts (in particular, Lorenz curves and Gini coefficients),

and find that low growth involves small decreases in inequality. The mechanism is the same one

identified in the simpler environment, because the asset supply is curve is nearly perfectly-elastic
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in the neighborhood of the equilibrium return. The reasons that the asset supply is very elastic

are well known and elaborated formally in Aiyagari (1994). Roughly put, agents who are wealthy

face little risk of becoming constrained in the future and are therefore ”well-insured”, leading to

a decline in their precautionary savings. As r rises, more agents become well-insured and the

economy approaches the perfectly-elastic complete market case. Elastic labor supply enhances

this effect by insulating sufficiently rich agents from wage productivity variations.

The transition our model produces implies that returns to capital will fall over time as the

capital-labor ratio rises with falling growth. Piketty maintains in his model that returns do not

fall, so to assess his transition’s effects we need a mechanism for preventing a decline in returns.

As noted already, the basic model has little ”room” for preventing declines in returns, because the

wedge between the discount factor and the return to savings is small whenever idiosyncratic risk is

unimportant (which is the case in our model if capitalists are very wealthy and do not work). We

consider two possibilities here, namely financial innovation that eliminates idiosyncratic return risk

for capitalists and capital-biased technical change. The first feature opens a wider gap between

the return to saving and the time rate of preference by increasing the amount of precautionary

savings. The second feature shifts the demand for capital to the right, counteracting the decline

in returns associated with rising capital. The combination could generate a muted decline in

returns, but does not.

2 Model

The model economy is populated by two groups, called capitalists and workers, who are situated

in dynasties that live forever and value the utility of descendents; the size of the two groups are

µ ∈ (0, 1) and 1−µ. Both groups face uninsurable random movements in the productivity of their

labor effort; we remain agnostic as to the sources of these fluctuations (losing one job and finding

one that pays less money, promotions, changes in ability across generations, etc.). Both groups

also have identical preferences over consumption and leisure (non-work time), so that capitalists

are not just ”patient” people who got rich because they were thrifty. Our main assumption is

that there is no mobility across groups – at some point in the infinite past, some dynasties were

lucky enough to get granted access to a productive asset called capital, and some were not, and
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that situation has persisted.

We can represent the dynamic problem of a typical capitalist as

v (k, e) = max
k′,h,c











(

c (1− h)θ
)1−σ

1− σ
+ β (1 + g)1−σ E

[

v
(

k′, e′
)]











(1)

c+ (1 + g) k′ ≤ (1 + r) k + weh (2)

k′ ≥ 0

h ≥ 0

c ≥ 0.

That is, the capitalist chooses consumption c, work effort h, and capital holdings k′ to maximize

lifetime utility; we have already incorporated growth in labor productivity g in the usual method

to ensure the (normalized) wealth of the capitalist remains bounded over time (see King, Plosser,

and Rebelo 1988 for details on how this normalization is done). Note the absence of insurance

claims against e, the productivity of labor. As a result, there is a ”precautionary saving” motive

that leads capitalists to accumulate more capital than they normally would; however, this motive

can disappear as the capitalist can choose to completely eliminate the risk by setting h = 0,

and sufficiently wealthy capitalists will do so. We require that the coefficient of relative risk

aversion/inverse of the intertemporal elasticity of substitution satisfies σ > 0, and will in general

further assume σ ≥ 1.1

1This assumption is uncontroversial for the risk aversion coefficient, but recently there has been an argument

made that the IES is actually substantially above one as well (so that σ < 1 is appropriate). We could extend

our model to permit Epstein-Zin preferences to allow both aspects of preferences to be separately matched; in our

risk-free model this distinction does not exist, and quantities in models with EZ preferences generally are quite

similar to expected utility.
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The dynamic problem of a typical worker is

V (m, s) = max
m′,l,x











(

x (1− l)θ
)1−σ

1− σ
+ β (1 + g)1−σ E

[

V
(

m′, s′
)]











(3)

x+ (1 + g)m′ ≤
m

1 + π
+ wsl (4)

m′
≥ 0

l ≥ 0

x ≥ 0.

Note here the key difference: the return to the worker saving is, on net, negative (we suppose

π ≥ 0); while capitalists can earn a positive return by renting capital to firms, workers can only

”store” their savings as money and thus lose purchasing power over time via inflation. One could

just as easily imagine the workers saving in the form of inventories of goods that rot slowly over

time. As above, there are no insurance claims against variations in s available.

We can obtain the aggregate capital stock and labor input by summing over all individuals.

Let Γ (k, e) be the density of capitalists across different levels of capital and productivity, and

Υ (m, s) be the density of workers over money and productivity.

K =

∫

k

∫

e

kΓ (k, e) (5)

N =

∫

k

∫

e

eh (k, e) Γ (k, e) +

∫

m

∫

s

sl (m, s)Υ (m, s) . (6)

Note the asymmetry – capitalists supply all the capital, but labor is (at least in principle) supplied

by both; note also that aggregate labor input is in terms of ”effective” units of labor (hours

weighted by productivity). The wage index w is then to be interpreted in the same way – one

effective unit of labor earns w units of wage as compensation.

The supply side of our economy consists of a single firm employing a constant returns to scale

production technology (nothing would change if we had a large number of identical firms, except

notation would be more tedious):

Y = (αKν + (1− α)Nν)
1
ν , (7)

where α ∈ (0, 1) is the ”share” of capital in production and ν ≤ 1 governs the elasticity of

substitution. If ν = 1, capital and labor are perfectly substitutable, so that the firm will employ
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only the cheaper factor. If ν = −∞, capital and labor are perfect complements, and therefore

will be employed in fixed ratios (given by α
1−α

). If ν = 0, we get the Cobb-Douglas case where

the shares of capital and labor income in total income will be fixed at α and 1 − α. Profit

maximization yields

r = α

(

α+ (1− α)

(

K

N

)−ν
)

1−ν
ν

− δ (8)

w = (1− α)

(

α

(

K

N

)ν

+ 1− α

)
1−ν
ν

. (9)

Note that both the rental rate and the wage rate are related to the capital-labor ratio, but not

to the levels of capital and labor.2

Finally, there are aggregate conditions that relate supply and demand in each of three markets

– the markets for capital, labor, and ”goods”. First, the firm must hire all the capital and labor

supplied by households (these conditions are ensured by variations in r and w). Second, the

supply of goods must be sufficient to cover the consumption of capitalists, the consumption of

workers, and the investment by capitalists into new capital:

∫

k

∫

e

c (k, e) Γ (k, e) +

∫

m

∫

s

x (m, s)Υ (m, s) +G+

∫

k

∫

e

(

k′ (k, e) − (1− δ) k
)

Γ (k, e) = Y. (10)

The term G denotes the loss of resources associated with worker saving (since π ≥ 0, G ≥ 0

can be interpreted as government consumption that is financed by seigniorage or as inventory

adjustments depending on how one views the worker savings instrument). Walras’s law ensures

that the goods market condition will be satisfied provided both the labor and capital markets

clear.

3 The Model without Idiosyncratic Risk

We first discuss a simplified version of the main model that can be analyzed without using nu-

merical methods, in order to make the forces at play as transparent as possible and to highlight

the role of key parameters. The model environment will be just like that from the main model

2The assumption that firms operate in perfectly competitive goods markets is not restrictive; assuming mo-

nopolistic competition does not change our results, it only changes the market clearing condition for capital by

subtracting the value of profits from the savings of capitalists.
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with one exception – there are no shocks to labor productivity (similar to Moll 2014). Denote

by e and s the respective constant labor productivities for capitalists and laborers; we maintain

that e ≥ s, and generally will assume e = s.

3.1 Household Problems

3.1.1 Laborers

In the absence of risk, a laborer has no incentive to hold an asset which pays a rate of return

strictly below the rate of time preference. Therefore money will not be held, and in each period

the laborers will consume their earnings. A typical laborer’s problem then is reduced to a static

choice of how many hours, l, to supply at a given wage w:

V (K) = max
l











[

wls (1− l)θ
]1−σ

1− σ











. (11)

The solution is

l∗ =
1

1 + θ
(12)

x∗ =
ws

1 + θ
. (13)

3.1.2 Capitalists

A typical capitalist chooses consumption, hours, and savings to solve the dynamic program

v (k,K) = max
k′,h,c











[

c (1− h)θ
]1−σ

1− σ
+ β (1 + g)1−σ v

(

k′,K ′
)











(14)

subject to

c+ (1 + g) k′ ≤ whe+ (1 + r) k (15)

k′ ≥ 0, c ≥ 0, h ∈ [0, 1).

Since the first two boundary conditions will never bind, we ignore them from now on. Taking

the first-order conditions and applying the envelope condition produces three conditions:

[

c (1− h)θ
]−σ

= β (1 + g)−σ
[

c′
(

1− h′
)θ
]−σ

(

1 + r′
)

(16)
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[

c (1− h)θ
]−σ [

we (1− h)θ − θc (1− h)θ−1
]

≤ 0 (17)

c+ (1 + g) k′ = whe+ (1 + r) k; (18)

the second condition holds with equality if h > 0.

3.1.3 General Equilibrium

A recursive competitive equilibrium is a set of household functions

{

V (K) , v (k,K) , h (k,K) , c (k,K) , k′ (k,K) , l (k,K) , x (k,K)
}

,

price functions r (K) and w (K), and aggregate labor N (K) such that

1. Given pricing functions, the household functions solve the capitalist and laborer problems;

2. Given pricing functions the firm maximizes profit by demanding K and N (K);

3. Markets clear:

k = µK

N (K) = µh (K,K) e+ (1− µ) l (K,K) s

Y (K) = µc (K,K) + (1− µ) x (K,K) + µ (1 + g) k′ (K,K) − (1− δ) µK.

3.2 Steady State

The balanced growth path is characterized by the system of equations

1 = β (1 + g)−σ (1 + r) (19)

h = max

{

we− θ (r − g) k

(1 + θ)we
, 0

}

(20)

c = whe + (r − g) k (21)

l =
1

1 + θ
(22)

x = w (r) ls (23)

w (r) = (1− α)
1
ν
r + δ

α

[

(

r + δ

α

)
ν

1−ν

− α

]
ν−1
ν

. (24)

9



The steady state Euler equation pins down r,

r =
(1 + g)σ − β

β
, (25)

as well as the steady state wage

w = (1− α)
1
ν
r + δ

α

[

(

r + δ

α

)
ν

1−ν

− α

]
ν−1
ν

. (26)

Notice that for σ > 0, the steady state interest rate is increasing in g. If we restrict attention to

non-negative growth rates, the interest rate attains its minimum and the wage rate its maximum

when g = 0, where the interest rate is

rmin =
1− β

β

and the wage is

wmax = (1− α)
1
ν
rmin + δ

α

[

(

rmin + δ

α

)
ν

1−ν

− α

]
ν−1
ν

. (27)

Notice that while rmin is determined only by the discount factor, wmax also depends upon

capital share in production, α, and the elasticity of substitution parameter, ν. Figure 1 plots

the steady state wage when g = 0. For higher values of ν, the steady state wage increases

exponentially, and the slope is increasing in α. Not all combinations of α and ν are permissible

since

α
1

1−ν < (rmin + δ)
ν

1−ν (28)

must hold for wages to be real numbers. Given (α, β, δ) , the upper bound on ν is νmax =

log(α)
log(rmin+δ) . In order to allow for capital and labor to be either complements or substitutes in

production, we impose that α > 1−β
β

+ δ, which implies νmax > 0. Under the baseline calibration

(see below), rmin ≈ 0.0101, implying that νmax ≈ 0.305. Thus, balanced growth puts a restriction

on the degree to which capital and labor are substitutable; letting ξ = 1
1−ν

denote the elasticity,

we find ξmax = 1
1−0.305 = 1. 438.

Under appropriate conditions for α and ν, we can find K by imposing the the capital market
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clearing condition at r:

K =

{

[

r+δ
α

]
ν

1−ν − α

1− α

}− 1
ν

N

= ϕN (29)

where

N = µhe+ (1− µ)
1

1 + θ
s. (30)

Note here that ϕ is the the capital-to-labor ratio. Since under the restrictions on α and ν

dϕ

dr
= −

1

α (1− α) (1− ν)

(

(

r+δ
α

)
ν

1−ν − α

1− α

)− 1+ν
ν (

α

r + δ

)
1−2ν
1−ν

< 0 (31)

and dr
dg

> 0, ϕ rises as g falls. Thus, the capital-labor ratio will be higher in a low-growth

economy. Finally, the steady state relative return on capital (as compared to human capital)

r − g falls if and only if

σ (1 + g)σ−1 > β,

which, near g = 0, requires σ ≥ 1. We have already noted that there is a case for σ < 1 (in

this situation the IES interpretation is the only relevant one since risk is absent); estimates run

from nearly zero (Hall 1988, Campbell 1999) to close to one for the subgroup of stock market

participants (Guvenen 2004) to significantly above one (Vissing-Jorgensen 2002); given the ap-

propriate estimates would apply to stockholders, the latter two estimates are likely the right ones,

but in our quantitative work below we choose a compromise value of 0.5 because we do not wish

to introduce preference heterogeneity.

Aggregate effective labor is a function of K because the capitalist hours decision depends upon

wealth. If wealth is sufficiently high, then the non-negativity constraint on hours binds. We

consider both the binding and non-binding cases below.
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3.2.1 Case 1: Capitalists Work

Under the assumption that capitalists supply positive hours, we can obtain aggregate capital by

substituting the definition of h into the market clearing condition for capital,

K = ϕN

=
ϕ
(

µe+(1−µ)s
1+θ

)

1 + ϕ θ
1+θ

(r−g)
w

. (32)

It can be shown that
w

ϕ
=

(

r + δ

α

)ξ

− (r + δ) > 0, (33)

where ξ = 1
1−ν

is the elasticity of substitution between capital and labor. The strict inequality

results from imposing the restriction ν < νmax. Multiplying the numerator and denominator by

w
ϕ
, we arrive at

K =
w [µe+ (1− µ) s]

(1 + θ)
[

(

r+δ
α

)ξ
− (r + δ)

]

+ θ (r − g)
.

Individual capitalist wealth is

k =
K

µ

=
[µe+ (1− µ) s]

µ

w

r − g

1

(1 + θ) r
r−g

z (g) + θ
,

where

z (g) =

(

r+δ
α

)ξ
− (r + δ)

r
=

w
r
K
N

> 0. (34)

Two of three factors in determining the behavior of steady state inequality, the factor price ratio

and the capital-to-labor ratio, are expressed in the function z (g). The sensitivity of the factor

price ratio relative to the capital-to-labor ratio affects how inequality responds near zero growth;

and this sensitivity depends directly upon the elasticity of substitution between capital and labor.

Substituting k into h,

h =
1

1 + θ

[

1−
µe+ (1− µ) s

µe

θ
1+θ

r
r−g

z (g) + θ
1+θ

]

. (35)
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We can now derive steady state income inequality, ζ, measured by the ratio of capitalist’s income,

y = whe+ rk , to laborer’s income, q = ws
1+θ

:

ζ =
y

q

=
e

s
+

µe+ (1− µ) s

µs
Q (z (g) ; θ)

where

Q (z (g) ; θ) =

r
r−g

− θ
1+θ

r
r−g

z (g) + θ
1+θ

.

Inequality increases as the measure of capitalists, µ, decreases. Holding all other parameters

constant, the steady state Euler equation implies a unique capital-to-effective labor input ratio,

and consequently w and r are invariant to µ. Because laborer’s hours are constant, a lower

µ necessarily implies higher effective labor supply. Therefore, K must rise in proportion to N ,

and so capitalists’ wealth, k = K
µ
, also increases. Because factor prices do not change, laborer’s

income is constant, but capitalists’ income increases.

Given population share, labor productivities, and preferences, the behavior of inequality fun-

damentally depends on the term Q (z (g) ; θ). Notice that Q (z (g) ; θ) is continuous in θ.

Proposition 1. Inequality is bounded from below by the productivity ratio e
s
.

Proof. Because e, s > 0 and µ ∈ (0, 1), we only need to show that

Q (z (g) ; θ) > 0.

Notice first, that θ
1+θ

∈ [0, 1). If σ ≥ 1, then the min r
r−g

= 1 for non-negative growth rates,

since the limg→∞
r

r−g
= 1. Finally, z (g) > 0, so for finite θ, Q (z (0) ; θ) > 0, and min ζ = e

s
.

It follows immediately from the non-negativity of Q, that inequality is increases with the

capitalist-laborer productivity ratio, e
s
. We assume that capitalists are at least as productive as

laborers, and since e
s
is the lower bound, we can without loss of generality assume that e = s = 1.

We do this in the remainder of the paper.

Proposition 2. Holding z (g) constant, inequality is increasing in r
r−g

.
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Proof. It is immediate that

dQ

d
[

r
r−g

] =

r
r−g

z (g) + θ
1+θ

− z (g)
(

r
r−g

− θ
1+θ

)

[

r
r−g

z (g) + θ
1+θ

]2

=
θ

1+θ
+ z (g) θ

1+θ
[

r
r−g

z (g) + θ
1+θ

]2

> 0.

As g → 0, r
r−g

declines monotonically to 1 so it acts to reduce inequality in a zero growth

steady state. Note that since r
r−g

can be written as

1

1−
(

r
g

)−1 ,

the above proposition is the same as saying that inequality rises in r
g
(again ignoring z (g)), which

is consistent with Piketty’s claim that as the gap between r and g increases so does inequality.

Of course, r
r−g

cannot move without changing z (g) as well, since z is a function of both r and

g. It is useful though to understand that if inequality increases as g goes to zero, it must result

entirely from a decline in z (g). The sign of dz
dg

is ambiguous, and so then is the sign of dQ
dg

. In a

later section, we use numerical methods to get a clearer picture of exactly how g affects ζ.

Proposition 3. Steady state inequality is greater when the preference for leisure is weak (i.e., θ

is small).

Proof. A larger θ implies less willingness to work on the part of households. The steady state

interest rate and z (g) are independent of θ. Then

dQ

dθ
=

dQ

d θ
1+θ

d θ
1+θ

dθ

=






−

r
r−g

z (g) + r
r−g

(

r
r−g

z (g) + θ
1+θ

)2







1

(1 + θ)2

< 0

Inequality rises as θ falls.
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3.2.2 Case 2: Capitalists Do Not Work

The expressions are simpler when capitalists do not work. When h = 0, N is fixed at 1−µ
1+θ

s, and

K = ϕ
(

1−µ
1+θ

s
)

:

k =
K

µ
=

1− µ

µ
ϕ

s

1 + θ
,

so

ζ =
1− µ

µ

ϕ

w
r.

Substituting in (33), inequality can be written as a function of the rental rate and the model

parameters,

ζ =

[

1

µ
− 1

]

r
(

r+δ
α

)ξ
− (r + δ)

=

[

1

µ
− 1

]

1

z (g)

=

[

1

µ
− 1

]

Q (z (g) ; 0)

Having solved for inequality in terms of Q, we can, for a fixed growth rate, bound steady state

inequality and order it over θ.

Proposition 4. For a given growth rate, g, ζ ∈

[(

1
µ
− 1
)

Q (z (g) ; 0) , 1 + 1
µ
Q (z (g) ; 0)

]

.

Proof. Consider θ̄ such that for all θ > θ̄, h = 0, and all θ ≤ θ̄, h > 0. Let 0 < θ1 < θ̄ < θ2. Then

since θ
1+θ

∈ [0, 1) is continuous, strictly monotonic, and decreasing in θ, and since Q is decreasing

in θ,

ζθ2 =

[

1− µ

µ

]

Q (z (g) ; 0)

≤ ζθ̄

= 1 +
1

µ
Q
(

z (g) ; θ̄
)

< 1 +
1

µ
Q (z (g) ; θ1)

< 1 +
1

µ
Q (z (g) ; 0)

= 1 +
1

1− µ
ζθ2 ,

15



where the first equality holds because h = 0 at θ2, and the second line follows from the continuity

of Q in θ. Because capitalists do not work in a steady state with θ > θ̄, inequality will be

unaffected by increasing θ beyond θ̄. Therefore, for any θ ≥ 0, ζθ is bounded below by the
[

1−µ
µ

]

1
z(g) and above by 1 + 1

µ
1

z(g) .

Because ϕ = K
N
, we can re-write Q (z (g, 0)) as the capital-to-labor ratio divided by the factor

price ratio.

Q (z (g, 0)) =
1

z (g)
=

K
N
w
r

=
rK

wN
.

The market clearing conditions for capital and labor imply

r + δ

w
=

MPK

MPN
=

1− α

α

(

K

N

)
1
ξ

.

This enables us to express the bounds on inequality in terms of the capital-to-labor ratio and the

steady state interest rate,

ζ ∈

[

1− µ

µ

α

1− α
χ

(

K

N

)(1− 1
ε)

, 1 +
1

µ

α

1− α
χ

(

K

N

)(1− 1
ε)
]

,

where χ = r
r+δ

.

Proposition 5. Steady state inequality is a increasing function of α and ξ.

Proof. Fix θ. Then

Q (z (g) ; θ) =

r
r−g

− θ
1+θ

r
r−g

z (g) + θ
1+θ

Because steady state r is invariant to changes in α and ξ, all that matters for inequality is z (g).

z (g) =

[

(

r(g)+δ
α

)ξ

− (r (g) + δ)

]

r (g)

=
1

χ

[

α−ξ (r (g) + δ)ξ − (r (g) + δ)
]

r (g) + δ

=
1

χ

[

α−ξ (r (g) + δ)ξ−1
− 1
]

.

Because ξ ≥ 0, a greater capital’s share decreases z and increases steady state inequality. Likewise

steady state inequality will be greater for larger elasticities of substitution since

dz (g)

dξ
=

1

χ

{

−α−ξ (r (g) + δ)ξ−1 log (r (g) + δ)

[

1−
log (α)

log (r (g) + δ)

]}

< 0

where the strict inequality holds since r + δ < α < 1.
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Finally, we state a necessary condition for steady inequality to be higher in a zero growth

steady state than it is in a near zero growth steady state.

Proposition 6. For e = s, if ζ (g) < ζ (0), then the elasticity of substitution is greater than 1.

Proof. First, in order for ζ (g) < ζ (0), z (0) < z (g). There are four cases to consider: (1)

h (g) = 0, h (0) = 0; (2) h (g) > 0, h (0) > 0; (3) h (g) > 0, h (0) = 0; and (4) h (g) = 0, h (0) > 0.

It will be shown that the fourth case cannot obtain. The first case is obvious since ζ (g) < ζ (0)

implies
1

z (g)
<

1

z (0)

since z is non-negative. For the second case, ζ (g) < ζ (0) implies

r(g)
r(g)−g

− θ
1+θ

r(g)
r(g)−g

z (g) + θ
1+θ

<
1− θ

1+θ

z (0) + θ
1+θ

.

By Proposition 2,

1− θ
1+θ

z (g) + θ
1+θ

<

r(g)
r(g)−g

− θ
1+θ

r(g)
r(g)−g

z (g) + θ
1+θ

so
1− θ

1+θ

z (g) + θ
1+θ

<
1− θ

1+θ

z (0) + θ
1+θ

.

For the third case,

1 +
1

µ

r(g)
r(g)−g

− θ
1+θ

r(g)
r(g)−g

z (g) + θ
1+θ

<

(

1− µ

µ

)

1

z (0)
.

If this is true, then by Proposition 2 and Proposition 3

1 +
1

µ

r(g)
r(g)−g

− θ
1+θ

r(g)
r(g)−g

z (g) + θ
1+θ

< 1 +
1

µ

1− θ
1+θ

z (0) + θ
1+θ

< 1 +
1

µ

r(g)
r(g)−g

− θ
1+θ

r(g)
r(g)−g

z (0) + θ
1+θ

.

Now for the final case, which we will show implies a contradiction. From (35),

h = max







0,
1

1 + θ



1−
1

µ

θ
1+θ

r(g)
r(g)−g

z (g) + θ
1+θ











.

Because h (g) = 0 and h (0) > 0

1

µ

θ
1+θ

r(g)
r(g)−g

z (g) + θ
1+θ

> 1 >
1

µ

θ
1+θ

z (0) + θ
1+θ
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so

z (0) >
r (g)

r (g)− g
z (g) > z (g) .

We can see from the (35), for each growth rate, there is a θ̄ (g) such that

h (g) = 0 ∀ θ > θ̄ (g)

> 0 ∀ θ < θ̄ (g) .

In order for h (0) > h (g) = 0 at θ, it would have to be the case that θ̄ (g) < θ̄ (0), and θ ∈

[

θ̄ (g) , θ̄ (0)
]

. Additionally, ζ (g) must be at its minimum

ζ (g) =

(

µ− 1

µ

)

1

z (g)

while

ζ (0) >

(

µ− 1

µ

)

1

z (0)
.

We know from case (1), that min [ζ (g)] < min [ζ (0)], which implies that z (g) < z (0). Because z

is invariant to θ, it cannot be the case that z (0) > z (g), so case (4) cannot obtain. Simply put,

θ̄ (0) < θ̄ (g) . Therefore whenever ζ (g) < ζ (0), z (g) > z (0). Now to close the proof

z (g) =
1

χ (g)

[

α−ξ (r (g) + δ)ξ−1
− 1
]

where again χ = r(g)
r(g)+δ

. If ζ (0) > ζ (g), then

1

χ (0)

[

α−ξ (r (0) + δ)ξ−1
− 1
]

<
1

χ (g)

[

α−ξ (r (g) + δ)ξ−1
− 1
]

Because χ is increasing in g,

(r (0) + δ)ξ−1 < (r (g) + δ)ξ−1

Now since r (g) > r (0) = rmin, this condition can only hold if ξ > 1.

Intuitively, this proposition tells us that in order for zero growth to lead to a steady state with

greater inequality, factor prices w
r
must rise by less than K

N
, which only happens if the elasticity of

substitution between labor and capital is above 1. Additionally, positive depreciation increases

the required degree of substitutibility. The tradeoff can be seen most easily when z (g) is written

as the ratio

z (g) =
w
r
K
N

=
w

r+δ

χK
N

.
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and ξ = 1 (i.e., the production function is Cobb-Douglas). In that case,

z (g) =
(1− α)

α

1

χ (g)
.

and

z (0) > z (g)

so ζ (g) > ζ (0). Note that without depreciation, χ would be 1, and z (g) would be constant

which again would imply that ζ (g) > ζ (0).

3.2.3 How Income Inequality Changes with Growth

Because the closed-form expressions for steady state inequality do not yield unambiguous results

for the effect of g on inequality, we use a computer to evaluate the expressions and plot the results

for long run growth rates between 0 and 10 percent. To analyze the model numerically, we need

to assign values to the structural parameters of the model. Here, we pick a reasonable set of

values for some parameters, where reasonable means ”gives rise to aggregates roughly consistent

with US post-war averages.” These numbers are β = 0.99, σ = 2, α = 0.36, δ = 0.025, θ = 1.25,

g = 0.02, and e = s = 1. Finally, to give Piketty’s argument a stronger case, we set ν = 0.1

(ξ ≈ 1.11) so that capital and labor are more substitutable than the usual Cobb-Douglas case

(ξ = 1); this value of ν satisfies the restrictions needed to have a steady state growth path.3

Figures 2-3 show the steady state ratio of capitalist income to laborer income for growth rates

between 0 and 10 percent for the baseline capital share of income in production and for a higher

value.

In most cases, within a neighborhood of zero growth, inequality is falling rather than rising,

even if capital and labor are substitutes. High inequality only obtains whenever the elasticity of

substitution is close to the maximum conditional on α. In the steady state we have

ζ =
whe + rk

w s
1+θ

=
he

ls
+

rk

q
; (36)

3Thus, our productivity growth should be interpreted as purely labor-augmenting or as exogenously-accumulating

human capital (see King, Plosser, and Rebelo 1988); with Cobb-Douglas it does not matter whether the productivity

growth affects capital, labor, or both.
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notice we use the word ”capital” and not ”capitalist” since the capitalist household may have

labor income as well. When capitalists do not work (h = 0),

ζ =
1 + θ

s

r

w
k

so inequality depends upon the interaction between wealth, k, and the relative factor price, r
w
.

When capitalists supply positive hours, some algebra shows that once again inequality depends

upon r
w
k. Labor supply by the capitalists is

h =
we− θ (r − g) k

(1 + θ)we

=
1

1 + θ

[

1−
θ

e

r − g

w
k

]

. (37)

Substituting (37) into (36) and simplifying produces

ζ =
we− θ (r − g) k + (1 + θ) rk

ws

=
1

s

[

e+
r + θg

w
k

]

.

Regardless of capitalists’ hours, whether inequality rises or falls depends solely upon the product

of wealth, k, and r+θg
w

, which behaves in the same way as the factor price ratio r
w
.

For all of the parameter values, wealth decreases with growth. Figures 4-5 plot k (g) for

several values of ξ and of α. As the elasticity of substitution between capital and labor increases,

the level of capital in the zero-growth steady state becomes very large, especially when capital’s

share, α, is high. If we ignored the general equilibrium effect on prices, savings behavior alone

would suggest extreme inequality; however, the factor price ratio also responds to g. Because

w (r) is decreasing in r and r is increasing in g,

dw

dg
< 0.

Therefore as the long-run growth rate declines so does the factor price ratio. Numerical results

show that unless ξ is close to ξmax (α) =
1

1−νmax
, the declining factor price ratio more than offsets

wealth near g = 0, so capital income to laborer income declines in the neighborhood of zero

growth.

To make the key point clear, Figure (8) displays ζ in the steady state as a function of g; the

kink occurs when the capitalist’s labor supply hits zero. At higher levels of g, where, under
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the baseline calibration, capitalists supply positive hours, inequality is decreasing in g, but the

effects are not very large. In this region, the rise in r
r−g

discussed in Proposition 2 is offset by a

rise in z (g). Remember that z (g) = w
r
/K
N
. By (31), we know that the denominator of z (g) is

falling. As capital becomes scarce relative to labor, the numerator falls as well. Because ξ is not

sufficiently greater than 1 in the baseline, the factor price ratio declines faster than the capital-

labor ratio. The dashed line below inequality, labeled ζ (h = 0) in the figure, shows the behavior

of z (g) more clearly. It plots
[

1
µ
− 1
]

Q (z (g) ; 0), the appropriate measure when capitalists do

not work, which only depends on z (g). Notice that this line declines much faster in g than does

actual inequality.

Continuing toward g = 0, we see that steady state income inequality rises slightly after the

kink before descending sharply. To the left of the kink, capitalists do not work, so r
r−g

has no

direct effect ζ. Initially, z (g) is still falling and without a corresponding decline in r
r−g

income

inequality rises. Eventually, as g moves closer to 0 and K
N

climbs steeply, the aggressive adjustment

for the factor price takes over and z (g) rises. As before, the dashed line below inequality shows

a counterfactual measure, this time using the measure for when capitalists work. Notice that it

falls more sharply than ζ, highlighting the combined effects of z (g) and r
r−g

falling.

We also plot in Figure (9) the dynamics of ζ starting from the steady state with g = 0.02;

inequality initially jumps up due to changes in labor supply, then declines monotonically as capital

accumulates. In the first period, income inequality jumps for two reasons. First, because only

capitalists supply labor elastically, the increase in Nt is due entirely to capitalists. The wage falls

in response, but not in the same proportion as Nt rises, so capitalist’s labor income increases.

Second, although Kt is inelastic, rt increases, pushing up capital income. Therefore, both sources

of capitalist’s income rise while laborer’s income falls slightly because of lower wages. After the

initial surge in inequality, capitalists accumulate wealth over time, so wages rise and the return

on capital falls. In the new steady state, income inequality is well below its original level.

3.2.4 Piketty’s Predictions in a Zero Growth Steady State

Piketty and Zucman (2014) predicts that a zero growth steady state will be associated with very

high levels of capital relative to income, capital share of income, and income inequality. These

predictions are based largely on strong assumptions about the elasticity of substitution between
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capital and labor and the capital share in production. As shown above, in order for extreme

levels of income inequality, capital relative to output, and capital share of output, to appear as

growth declines, the capital share and the elasticity of substitution in the production function

must be high. In fact, given a capital share, α, these quantities only become extreme when ξ

approaches the upper bound placed upon it by balanced growth. Figures 6-7 plot contour maps

K
Y

and ζ, respectively, for (α, ξ) combinations when g = 0.4 Consistent with Piketty and Zucman

(2014), locations farther to the north and east (i.e., higher capital share in production and higher

elasticity of substitution) are associated with both greater K
Y

(and, consequently, (r+δ)K
Y

). This

pattern persists until the (α, ξ) combination violates the condition imposed by balanced growth,

that is ν > log(α)
log(rmin+δ) , where ξ > ξmax (α). For instance, at α = 0.36, the maximum elasticity

of substitution is roughly 1.44.5 At this maximum, K
Y

is 2.8 times larger than it is when the

elasticity of substitution is 1. Likewise, capital share of income goes from 0.36 to 0.99. Notice,

however, that for most of the permissible region, K
Y

is much lower and (r+δ)K
Y

is not so dramatically

high. At the same capital share, an elasticity of substitution of 1.2 produces a K
Y

only 60 percent

larger than the ratio with unit elasticity, and (r+δ)K
Y

is 0.57.6 Piketty and Zucman (2014) suggest

α = 0.21, substantially smaller than conventional estimates. To reach extreme values of K
Y

and

(r+δ)K
Y

with this lower capital share of production, the elasticity of substitution must be 1.87!

Likewise extreme levels of income inequality only occur in a region very close to the balanced

growth boundary.

A natural question to ask is whether an elasticity of substitution of 1.44 is even ”reasonable”,

let alone 1.87. Chirinko (2008) conducts a survey of estimates; of the 31 studies, only two support

an elasticity above 1.5, and only three additional studies find evidence for an elasticity above one,

while the median is significantly below one.7 More recently, Karabarbounis and Neiman (2014),

4Because when g = 0, r = rmin, a plot of (r+δ)K
Y

looks the same as a plot of K
Y
.

5Gollin (2002) finds that capital’s share of income is roughly one-third, once one takes careful account of self-

employment income; see also Gomme and Rupert (2007).
6For reference, in the 2013 wave of the Survey of Consumer Finances, the ratio of average real income of the top

quintile to the median is about 5.84. Income in this calculation is measured by the SCF variable ”INCOME.”
7Palivos (2008) provides two additional references that find elasticities above one, based on abandoning the CES

structure in favor of a production function with a variable elasticity. These elasticities are just barely above one,

however. The most extreme estimate in Chirinko (2008) is 3.4, based on Mexican data and long-run tax reforms;

it is unclear whether such an estimate should be applied to the questions at hand.
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Rognlie (2015), and Semieniuk (2014) argue that Piketty overstates the aggregate elasticity of

substitution and that the true value is likely less than one.8

3.3 Takeaways

This simplified two-household model has shown that the parameters that primarily govern the

behavior of inequality in a zero growth steady state are related to production. The capital share

and the elasticity of substitution between capital and labor control how quickly both the steady

state wage rate and wealth rise as g nears zero. In addition, they also change the response of

hours. In general, steady state hours are higher when g = 0, but if both α and ν are sufficiently

high, hours are lower (perhaps zero) in low growth steady states and rise as g increases.

In all cases, steady state inequality is higher when g = 0 than it is under a positive growth

rate. The cause for the rise, however, depends upon the parameters. Generally, it is the result

of capitalists supplying more hours. In fact, capitalist’s income from wealth relative to laborer’s

income declines as growth nears zero. Only when capital’s share of production and the elasticity

of substitution are high does a rise in capital income relative to laborer’s income account for

high inequality. Finally, steady states with extreme values of capital to income, capital share

of income, and income inequality only arise when the elasticity of substitution between capital

and labor and capital share in production are jointly very near to values which violate balanced

growth.

In our view, though, this model provides a view of inequality that is somewhat misleading –

within group inequality is also important, particularly for discussions of the so-called 1 percent.

For evidence, we point to the fact that capital income as a share of total income varies substan-

tially across individuals and capital and labor income are positively correlated (see Table 1 in

Carroll and Young 2009 or Tables 4 and 5 in Budŕıa Rodŕıguez et al. 2002). Furthermore, there

is substantial mobility in earnings and wealth (see Tables 15 and 16 Budŕıa Rodriguez et al. 2002

or Tables 2 and 3 in Carroll, Dolmas, and Young 2014). Thus, there an empirical argument for

introducing idiosyncratic risk back into the model.

8Rognlie (2015) focuses on the distinction between gross and net elasticities, showing that net elasticities are

always smaller; this result implies that Piketty is overstating the elasticity that applies to his model (which is the

net elasticity). This distinction is not important for our purposes.
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There is also a theoretical argument for the introduction of idiosyncratic risk. As we showed

above, without risk r and g are inextricably linked through Equation (25), so that changes in g

simply cannot involve constant r (except in the unreasonable case of σ = 0). Idiosyncratic risk

will introduce a wedge between discounting and returns operating through precautionary savings,

which potentially allows us to consider the possibility that returns will remain high along the

transition.

4 The Model with Idiosyncratic Risk

We now suppose that e and s follow identical, highly persistent AR(1) processes in logs:

log
(

e′
)

= 0.95 log (e) + 0.1η′

where η′ is a standard normal random variable. The definition of equilibrium for this model

is a straightforward extension of the model without idiosyncratic risk and is omitted.9 We set

π = 0.02, equal to the average inflation rate in the postwar US.

Due to the special relationship between r and w we can solve this model by finding a single

number, namely the return r, such that at that given rate the household’s supply of capital and

labor, if hired entirely by the firm, lead to a marginal product of capital (net of depreciation)

equal to r itself (that is simply Equation 8). We can draw a picture of the steady state as

the intersection of the ”demand curve” corresponding to the right-hand-side of Equation 8 and

a ”supply curve” that links the aggregate capital/labor ratio (as chosen by households) to the

return; see Figure 10.10

We focus on measuring inequality using Lorenz curves and the Gini coefficient. We present

in Figure 11 the Lorenz curves both for our model and for the recent US, using the Survey of

Consumer Finances 2007 sample. Our model does a reasonable job of fitting the US Lorenz

curve (see Figure 11); the middle part would be matched better if we allowed occasional transits

between capitalists and workers. Our model is also consistent with mean wealth – the ratio of

9There is significant debate over the appropriate form for the labor productivity process, as well as the value of

the coefficients. Our results are not sensitive to changes in the parameters of the process for e (and s). They are

also not sensitive to allowing capitalists and workers to have different mean productivities.
10We use standard numerical methods to solve for the steady state and the transitional dynamics; a technical

appendix outlines the details and is available upon request.
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K/Y is 6 in the benchmark, consistent with the measurement in McGrattan and Prescott (2013)

as well as the number used by Piketty (2014).

Making comparisons across Lorenz curves is difficult, since they could cross multiple times.

When making comparisons we will use the Gini coefficient, which is obtained by integrating the

area between the perfect-equality line and the actual Lorenz curve. Larger Gini coefficients trans-

late into more unequal distributions. In terms of Gini coefficients, our model does a reasonable

job reproducing the extreme inequality observed in the US – our Gini coefficient is even slightly

larger, at 0.84, than the US at 0.8. Comparing the two model curves we see that inequality

actually drops as g goes to zero, at least in the long run, but not much – the dashed-line curve

lies everywhere above the solid one but they are quite close together (the new Gini coefficient is

0.83). Thus, Piketty’s prediction of explosive inequality, at least if measured in the conventional

way, is not consistent with our model. However, the fact that r drops significantly is also not

consistent with Piketty’s maintained hypothesis. r drops because the capital-output ratio roughly

doubles while aggregate labor input remains roughly constant, leading to a large increase in the

capital/labor ratio and a concomitant decline in returns.11

4.1 Transition to Zero Growth

Because the long run comparisons could be misleading if inequality temporarily rises or r takes a

long time to fall, we explicitly compute the transition path as the economy moves from the initial

growth path with g = 0.02 to the one with g = 0. We focus on four variables because these are

the ones Piketty highlights, namely the capital/output ratio, the return to capital, capital’s share

of income, and the Gini coefficient on wealth. As seen in Figure 12, the transition takes over

100 years to complete for the mean capital stock (which is all that matters for r and K
Y
), and

takes even longer for the Gini coefficient (these two results are manifestations of an approximate

aggregation property of this model, as discussed in Krusell and Smith 1998, namely that higher

moments of the distribution of wealth do not materially affect prices). The Gini coefficient first

drops a bit, then recovers, but the quantitative size of the movements are small, meaning that

11Krusell and Smith (2014) also find small effects of g on inequality, although their model features only one type

of household and shocks to household discount factors drive much of the inequality. The underlying reasons are

the same as ours, though.

25



the steady state is not hiding substantial inequality dynamics.

5 Preventing Declines in r

Clearly, our model does not reproduce the transition that Piketty envisions – while K
Y

rises sig-

nificantly, r falls and therefore rK
Y

increases but not substantially. In contrast, Piketty maintains

that r will not fall, meaning that the increase in K
Y

will translate directly into an increase in

rK
Y
. It is clear from inspecting Figure 10 that the model cannot reconcile a decline in g with a

constant r, since there is no ”room” between r and the effective discount factor of the capitalists

(β (1 + g)−σ) – if g drops by a nontrivial amount (say, from the postwar average of 2 percent to

zero), r must fall in the new steady state. We therefore consider some changes to the benchmark

model that either (i) open a wider gap between time rates of preference and returns or (ii) shift

the demand for capital outward.

5.1 Financial Innovation/Capital-Biased Technical Change

Piketty suggests a number of possible mechanisms that would prevent r from falling (or even

cause it to increase). We pick one of these proposed mechanisms here – financial innovation:

In addition, capital markets may become more and more sophisticated and more and more

”perfect” in the sense used by economists (meaning that the return on capital will become

increasingly disconnected from the individual characteristics of the owner). (Piketty 2014,

page 376).

We explore this idea by assuming that, in the initial steady state, the capitalist is exposed to

an iid idiosyncratic shock to end-of-period wealth u, changing his program to

v (k, e) = max
k′,h,c











(

c (1− h)θ
)1−σ

1− σ
+ β (1 + g)1−σ E

[

v
(

u′k′, e′
)]











c+ (1 + g) k′ ≤ (r + 1− δ) k + weh

k′ ≥ 0

h ≥ 0

c ≥ 0.
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We set the standard deviation of u to be 0.1, equal to the innovation variance of the wage shock.

Figure 13 shows that the initial steady state now has a substantially lower r and a larger gap

between the discount factor and the return (a symptom of market incompleteness). As discussed

in Mendoza, Quadrini, and Rı́os-Rull (2009), a decline in idiosyncratic risk will make the asset

supply curve shift to the left as precautionary motives are blunted, a force which will increase r

and work against the decline in g.12

The transition with financial innovation looks very similar qualitatively to the benchmark

model, with one clear exception – there is now a substantial decrease in the Gini coefficient on

wealth. Thus, inequality as measured by Piketty ( rK
Y
) and by standard measures (Gini) move

in opposite directions. Figures 14 and 15 show the Lorenz curves and transitional dynamics;

the decrease in inequality occurs because there is less inequality in wealth within the capitalist

population.13

We also consider an increase in α, a form of capital-biased technical change; specifically, we

consider what happens if α increases to 0.45 at the same time the variance of u goes to zero and g

goes to zero.14 Figure 16 shows the rightward shift in the demand curve that a rise in α generates.

Thus, a combination of the two forces – financial innovation and capital-biased technical change

– could result in a small (or even zero) decline in r; however, as noted earlier, the near-infinite

elasticity of asset supply near the equilibrium return makes a decline in r inevitable. The result

is that changes in α have little effect.

Piketty suggests a number of other alternatives. A ”race to the bottom” in capital taxation

would lead to the effective return to capital rising. An increasing returns to scale technology

for financial management would lead to wealthy agents receiving higher returns on their saving,

as would a risk-return tradeoff in a model with multiple risky assets. Finally, inflation increases

would raise the relative return to capital by reducing the return on worker saving. We do not

12This setup is not isomorphic to an entrepreneurial economy with persistent productivity shocks, such as the

model used by Cagetti and DeNardi (2008) to study wealth inequality, but it captures enough of the critical details

to make our point here.
13The ”blip” in the dynamic path for the Gini coefficient is not a numerical artifact – it is an upward jump

followed by a quick but continuous decline back to the previous transition path. We have not been able to figure

out where this blip comes from, but it clearly does not affect the results we emphasize.
14Remember that the size of α is restricted, so 0.45 is almost as large as we can make it, given the value of ν,

without destroying the balanced-growth property of the model.
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examine these changes explicitly here. A reduction in a flat capital income tax has little effect on

inequality (Carroll, Dolmas, and Young 2014). The second and third alternatives would lead to

transitory changes only, since the long-run return would still be determined by a version of Figure

10.15 Finally, changing π has no quantitative effect in our model, although it does operate in

the right direction – while a rise in π leads to increasing labor supply by workers and therefore

a higher marginal product of capital the effect is very small because workers already hold very

little assets.

Rather than elaborate formally some additional alternatives that did not work, we will simply

note for the reader that we also considered a two-sector economy where workers saved through

capital in a sector with low capital efficiency (giving them low returns) and a model where workers

simply own inefficient capital. Neither change made any change worth devoting space to; results

can be obtained upon request of the corresponding author.

6 Conclusion

We have not engaged Piketty’s policy suggestions in this paper. He suggests that a tax on wealth,

particularly inherited wealth, will be needed to defend society against the corrupting influence of

the explosion in inequality. Recently optimal tax theorists have studied the nature of optimal

taxation when redistribution is a concern and growth is small (see the references in Farhi and

Werning 2014), finding that the case for a progressive wealth tax relies on very specific assumptions

about how individuals value their children. We leave (as Farhi and Werning themselves do) to

others careful scrutiny of those assumptions empirically.

One could easily think about optimal allocations for our model. In our setup, the reasons that

households cannot borrow and cannot buy contingent claims are not specified explicitly. If we

assume that, whatever these factors are, they apply also to the government, then the government

cannot transfer resources across individuals or over time (no insurance and no debt), as in Dávila

et al. (2012). In that paper, which does not feature either labor effort or differentiated access

to capital markets, ever-increasing inequality and an enormous increase in K
Y

turns out to be

15McKay (2013) develops a model of search and returns that leads to small inequality effects in a life-cycle model

when calibrated to match the median fee for financial management and the average time spent by households on

financial management.
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optimal, because the increase in capital supports the wages of the poor. Clearly, this setup does

not capture Piketty’s policy prescriptions, which involve large transfers to the workers financed

by progressive capital taxation. Whether such a policy is optimal in this model is something we

are currently exploring.

We also do not address the political implications of inequality, which arguably is the main

concern Piketty raises. It is feasible in our model to study political equilibria, using the machinery

developed in Carroll, Dolmas, and Young (2014), Corbae, D’Erasmo, and Kuruşçu (2009), and

Bachmann and Bai (2014). If wealth raises the voting power of individuals, extreme inequality

could lead to a heavily distorted tax system that reinforces the inequality. While we find some

questions interesting, they lie well beyond our goals for this paper.
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Figure 1: Equilibrium Wage in g = 0 Steady State
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Figure 2: Steady State Inequality
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Figure 3: Steady State Inequality
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Figure 4: Steady State Wealth
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Figure 5: Steady State Wealth
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Figure 6: Capital to Income Ratio in a Zero Growth Steady State
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Figure 7: Capital Share of Income in a Zero Growth Steady State
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Figure 8: Steady State Inequality
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Figure 9: Dynamics of Inequality
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Figure 10: Steady State with Labor Productivity Risk
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Figure 11: Lorenz Curves
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Figure 12: Transitional Dynamics
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Figure 13: Steady State with Return Risk
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Figure 14: Lorenz Curves
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Figure 15: Transitional Dynamics
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Figure 16: Steady State with Technological Progress
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